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Abstract

Isogeometric Analysis is a high-order discretization method for boundary value
problems that uses a number of degrees of freedom which is as small as for a
low-order method. Standard isogeometric discretizations require a global pa-
rameterization of the computational domain. In non-trivial cases, the domain
is decomposed into patches having separate parameterizations and separate dis-
cretization spaces. If the discretization spaces agree on the interfaces between
the patches, the coupling can be done in a conforming way. Otherwise, non-
conforming discretizations (utilizing discontinuous Galerkin approaches) are re-
quired. The author and his coworkers have previously introduced multigrid
solvers for Isogeometric Analysis for the conforming case. In the present paper,
these results are extended to the non-conforming case. Moreover, it is shown
that the multigrid solves get even more powerful if the proposed smoother is
combined with a (standard) Gauss-Seidel smoother.

Keywords: Isogeometric Analysis, Multi-patch domains, Symmetric interior
penalty discontinuous Galerkin

1. Introduction

Isogeometric Analysis (IgA), see [18], is a spline based approach for approximat-
ing the solution of a boundary value problem (BVP). One of the big strengths
of IgA is that it has the approximation power of a high-order method while
the number of degrees of freedom behaves basically like for a low-order method.
To obtain this behavior, we have to be able to increase the spline degree while
we simultaneously increase the smoothness. In IgA, this is typically called k-
refinement and leads to spline based discretizations.
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In IgA, the computational domain (usually called physical domain) is param-
eterized using spline or NURBS functions. Since it might be too restrictive to
parameterize the whole computational domain using just one global (smooth)
geometry function, one typically represents the physical domain as the union of
subdomains, in IgA called patches. Then, each of the patches is parameterized
by its own geometry function (multi-patch IgA).

On each patch, a space of trial and test functions is introduced. The simplest
approach to set up such a function space is to use tensor-product B-splines on the
unit square or unit cube (parameter domain) and to use the geometry function
to map them onto the physical domain or, in the multi-patch case, onto one of
the patches. If we set up the function spaces such that the basis functions on
the interfaces between the patches agree, we can use conforming discretizations.
Approximation errors (cf. [18, 4, 5, 6, 31, 11, 24, 9, 32] and many others) and
multigrid solvers (cf. [12, 10, 17, 16] and others) for such discretizations have
been previously discussed. Since we are interested in k-refinement, we need
results that are explicit in the spline degree. For the single-patch case, such
error estimates have originally been given in [31] and later improved in [24].
In [16], a robust single-patch multigrid solver has been proposed and analyzed
based on the error estimates from [31]. In [29], both the approximation error
estimates and the multigrid solver have been extended to the conforming multi-
patch case. These results are the foundation of the present paper.

If conforming discretizations are not feasible, discontinuous Galerkin (dG) ap-
proaches are possible. One standard dG approach is the Symmetric Interior
Penalty discontinuous Galerkin (SIPG) method, see [2, 3]. Already in [20, 21],
it has been proposed to utilize these approaches to couple patches in IgA. Re-
cently, also the dependence of the approximation error on the spline degree has
been analyzed, see [30]. It was not possible to show that the approximation
error is robust in the spline degree but it could be proven that it only grows
logarithmically.

(Robust) multigrid solvers for such non-conforming discretizations are not known
so far. In the present paper, it is shown how the multigrid solver from [29] can
be extended to SIPG discretizations; we observe – as in [29] – that the numerical
experiments show both robustness in the grid size and the spline degree. For
completeness, we also show how to extend the convergence analysis from [29]
to SIPG discretizations. It is worth noting that there are alternative solvers for
multi-patch IgA, like FETI-type approaches, cf. [19, 15] and others, overlapping
Schwarz type methods, cf. [7], or BDDC methods, cf. [8]; most of them, however,
have not been worked out for the non-conforming case.

Note that the idea behind the proposed subspace corrected mass smoother is
that the boundary value problem on the physical domain (on one patch) can
be well approximated by a boundary value problem on the parameter domain.
Thus, the tensor-product structure on the parameter domain can be used. This
is true if the geometry function is not too distorted. Otherwise, the conver-
gence behavior suffers significantly. The same behavior can be observed by
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other fast solvers that are based on the same idea, cf. the fast diagonalization
method [25]. Here, the authors have improved their method by incorporating
the geometry information into the preconditioner, cf. [23]. For the multigrid
setting, it has turned out that one can overcome these problems quite well if
the subspace corrected mass smother is combined with a Gauss-Seidel smoother
(hybrid smoother) since both approaches have strengths that seem to be some-
what orthogonal to each other (robustness in spline degree vs. robustness in the
geometry), cf. also [28].

In the present paper, we illustrate our findings with numerical experiments. All
presented numerical experiments are available in the G+Smo library [22].

This paper is organized as follows. We give the model problem and a con-
forming discretization in Section 2. Then, in Section 3, we discuss why a
non-conforming discretization might be of interest. Moreover, we propose a
discontinuous Galerkin approach that fits our needs. We proceed to multigrid
solvers: In Section 4, we discuss Gauss-Seidel smoothers and their performance.
Motivated by that section, we introduce a subspace corrected mass smoother
in Section 5 and finally a hybrid smoother in Section 6. In Section 7, we con-
clude and give some outlook. The Appending finally contains the proofs of the
theorems stated in the paper.

2. Model problem and standard Galerkin discretization

Let Ω ⊂ Rd with d ∈ {2, 3} be an open and simply connected Lipschitz domain.
Most of the numerical experiments are done for the two-dimensional domains
shown in Figure 1.

Figure 1: The computational domains: L-shaped domain and Yeti footprint

The first domain is an L-shaped domain consisting of three quadrilaterals. Here,
the geometry function is just the identity or a translation. On the coarsest grid
level ` = 0, each patch consists only of one element, i.e., the local basis functions
are polynomials only. The second domain is the Yeti footprint which consists of
the 21 patches depicted in Figure 1. Here, the grid on the coarsest grid level is as
follows. The five patches at the bottom consist of two elements each, which are
constructed by subdividing the patches on their longer sides. The remaining
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patches consist only of one element each. The grid levels ` = 1, 2, . . . , are
obtained by uniform refinement.

Consider the following Poisson model problem with Dirichlet boundary condi-
tions. Find u ∈ H1(Ω) such that

−∆u = f in Ω, u = g on ∂Ω, (1)

where f ∈ L2(Ω) and g ∈ H2(Ω) are given functions. Here and in what follows,
L2(Ω), Hr(Ω) and Hr

0 (Ω) are the standard Lebesgue and Sobolev spaces.

The experiments are performed for the choice g(x, y) := sin(πx) sin(πy) and
f := −∆g; note that g is the exact solution of the problem.

After homogenization (u := u−g, f := f+∆g), the problem reads in variational
form as follows. Find u ∈ V := H1

0 (Ω) such that

(∇u,∇v)L2(Ω) = (f, v)L2(Ω) for all v ∈ H1
0 (Ω). (2)

The computational domain Ω is a standard multi-patch domain. Thus, we
assume that Ω is composed of K non-overlapping patches Ωk:

Ω =

K⋃
k=1

Ωk with Ωk ∩ Ωl = ∅ for k 6= l, (3)

where each patch is represented by a sufficiently smooth bijective geometry
function

Gk : Ω̂ := (0, 1)d → Ωk := Gk(Ω̂) ⊂ Rd (4)

which can be continuously extended to Ω̂, the closure of Ω̂. Moreover, we assume
that the mesh introduced by the patches satisfies the following condition.

Assumption 1. For any k 6= l, the intersection Ωk ∩ Ωl is either (a) empty,
(b) one common vertex, (c) the closure of one common edge, or – for d = 3 –
(d) the closure of one common face.

For each of the patches, we assume to have a hierarchy of grids with levels
` = 0, 1, . . . , L obtained by uniform refinement, which we denote by

Vk,` := {v ∈ L2(Ωk) : v ◦Gk ∈
d⊗
δ=1

Sp,h`} = span {ϕ(i)
k,`}

Nk,`
i=1 , (5)

where
⊗d

δ=1 Sp,h` is the space of tensor-product splines of degree p, smoothness

Hp(Ω̂) (or, equivalently, Cp−1(Ω̂)) and grid size h` = 2`h0 on the parameter

domain Ω̂. Note that the grid can be non-uniform and both the spline degree
and the grid size can depend on the spatial direction and of the patch number;
for simplicity, we do not write down this dependence explicitly. Note that the
grid needs to be quasi-uniform, i.e., there needs to be a constant c > 0 such that
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all knot spans on grid level ` are bounded from below by c h`. The functions

ϕ
(i)
k,` are assumed to form a (standard) B-spline or NURBS basis of Vk,`.

To be able to set up a conforming discretization, we need to assume that the
function spaces are fully matching on the interfaces, cf. [29, Assumption 2.4].
For tensor-product B-spline bases, the following assumption characterizes fully
matching discretizations.

Assumption 2. On each interface between two patches, the geometry func-
tions, the knot vector in tangential direction, and the spline degree in tangential
direction agree.

Assuming a fully matching discretization, we define the conforming discretiza-
tion space by

V c` := {v ∈ V : v|Ωk ∈ Vk,` for k = 1, . . . ,K}. (6)

A basis for this space is visualized in Figure 2 (left), where all basis functions
are represented by their Greville point. The support of the basis functions with
Greville point in the interior of a patch is completely contained in that patch.
The basis functions with Greville points on the interfaces are combinations of
the matching patch-local basis functions. Their support extends to the vertices
if and only if the Greville point is located on the vertex.

Figure 2: Degrees of freedom (represented by Greville points) in conforming case

The conforming discretization of the model problem is obtained using the stan-
dard Galerkin principle: Find u` ∈ V c` such that

(u`, v`)H1(Ω) = (f, v`)L2(Ω) for all v` ∈ V c` . (7)

Using the abovementioned basis for the space V c` , we obtain a standard matrix-
vector problem: Find u` ∈ RN` such that

A` u` = f
`
, (8)

where A` is the stiffness matrix, the vector u` is the representation of u` with
respect to the chosen basis and the load vector f

`
is obtained by testing the

function f with the basis functions.
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3. Symmetric interior penalty discontinuous Galerkin (SIPG) dis-
cretization

Following [20, 21, 30], we use a conforming isogeometric discretization for each
patch and couple the patches using discontinuous Galerkin. We assume that the
domain Ω is again subdivided into patches such that (3), (4) and Assumption 1
are satisfied. We assume again to have patch-local spaces Vk,` as in (5), which
are combined in a non-conforming (i.e., discontinuous) way, i.e., we just define

V n` := {v ∈ L2(Ω) : v|Ωk ∈ Vk,` for k = 1, . . . ,K and v|∂Ω = 0}. (9)

This allows us to drop Assumption 2. Note that we strongly enforce the Dirichlet
boundary conditions in our example; alternatively, one could use the SIPG
method also to enforce the Dirichlet boundary conditions.

Figure 3: Degrees of freedom (represented by Greville points) in non-conforming case

Since we have a discontinuous function space, we can visualize the degrees of
freedom by tearing apart the individual patches, cf. Figure 3. Here, neither
the Greville points nor the basis functions need to agree on the interfaces; the
support of each basis function is contained in one single patch.

Since V n` 6⊂ V , it is not feasible to use the standard Galerkin principle for dis-
cretization. Thus, we couple the patches using the Symmetric Interior Penalty
discontinuous Galerkin (SIPG) method. First, we define

N := {(k, j) : k < j with Ωk and Ωl have a common edge.}

to be the set of interface-indices. For each interface Ik,j with (k, l) ∈ N , we
define the following symbols.

• n is the outer normal vector of Ωk. (Thus, −n is the outer normal vector
of Ωl.)

• J·K is the jump operator: JuK := u|Ωk − u|Ωl .

• {·} is the averaging operator: {u} := 1
2 (u|Ωk + u|Ωl).

Now, we can formulate the SIPG discretization as follows: Find u` ∈ V n` such
that

(u`, v`)A` = (f, v`)L2(Ω) for all v` ∈ V n` , (10)
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where we define

(u, v)A` := (u, v)Q` − (u, v)B` − (v, u)B` , (u, v)Q` := (u, v)K` +
σp2

hL
(u, v)J` ,

(u, v)K` :=

K∑
k=1

(∇u,∇v)L2(Ωk), (u, v)J` :=
∑

(k,l)∈N

(JuK, JvK)L2(Ik,l),

(u, v)B` :=
∑

(k,l)∈N

(JuK, {∇v} · n)L2(Ik,l).

(11)
There is some σ0 > 0 independent of the grid size, the spline degree and the
number of patches such that for all σ ≥ σ0, the bilinear form (·, ·)A` is coercive,
cf. [30, Theorems 8 and 9]. Thus, for σ ≥ σ0, the Theorem of Lax Milgram
states that the problem (10) has exactly one solution. The combination of
Ceá’s Lemma and a naive approximation error estimate yields a discretization
error estimate of the form

|u− uL|2QL ≤ c p
2h2
L|u|2H2(Ω),

cf. [30]. By doing a more careful analysis, we obtain estimates of the form

|u− uL|2QL ≤ c (log p)4h2
L|u|2H2(Ω),

see [30, eq. (15)]. This significantly decreases the influence of the spline degree.

Note that the penalization term has the form

σp2

hL
,

i.e., it depends on the grid size on the finest grid hL. This follows the ideas
from [13]. The idea behind that is that

(u`, v`)A` = (u`, v`)A`+1
and (u`, v`)Q` = (u`, v`)Q`+1

(12)

hold, i.e., we obtain a multigrid solver with conforming coarse-grid correction.
This means that – on the coarse grid levels – the discretization is over penalized
by a factor of 2L−`, i.e.,

σp2

hL︸︷︷︸
Σ̃` :=

= 2L−`
σp2

h`︸︷︷︸
Σ` :=

,

where Σ` is the canonical parameter and Σ̃` is the chosen one. We will see that
this does not cause any problems for the examples we consider; following [13],
convergence theory only holds if the number of smoothing steps is sufficiently
increased for the coarser grid levels, cf. Remark 1.

Using a basis for the space V n` , we obtain a standard matrix-vector problem:
Find u` ∈ RN` such that

A`u` = f
`
. (13)
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4. Multigrid solvers with Gauss-Seidel smoothers

In this and the following sections, we discuss several possible choices of multigrid
smoothers, illustrate their convergence behavior with numerical experiments,
and comment on the convergence theory.

We consider conforming discretizations and non-conforming discretizations which
are set up as discussed in the last two sections. As we have nested spaces in all
cases, the matrix I``−1 is always the canonical embedding from V`−1 into V` and

the restriction matrix I`−1
` is its transpose. The chosen method is presented as

pseudo-code as Algorithm 1, where we choose µ = 1 for the V-cycle method or
µ = 2 for the W-cycle method.

Algorithm 1 Multigrid algorithm

Multigrid
(
`, f

`
, u`

)
// Pre-Smoothing
for n = 1, . . . , ν`

u` ← u` + L−1
`

(
f
`
−A` u`

)
// Coarse-grid correction
if ` = 1

u` ← u` + I``−1A
−1
`−1I

`−1
`

(
f
`
−A` u`

)
// Direct solver

else
for n = 1, . . . , µ

u` ← u` + I``−1Multigrid
(
`− 1, I`−1

`

(
f
`
−A` u`

)
, 0
)

// Post-Smoothing
for n = 1, . . . , ν`

u` ← u` + L−>`

(
f
`
−A` u`

)
return u`

In the finite element world, Gauss-Seidel smoothers are known to be very ef-
ficient smoothers; thus, as a first attempt, we consider such a smoother. One
forward Gauss-Seidel sweep can be represented by

u` ← u` + L−1
`

(
f
`
−A` u`

)
,

where L` is a lower-triangular matrix containing the coefficients of the stiffness
matrix A`, i.e., it is given by

(L`)i,j =

{
(A`)i,j if i ≥ j
0 if i < j

.

To be able to use our multigrid solver as preconditioner for a conjugate gradient
solver, the post-smoothing procedure uses the transposed matrix L>` , which
represents a backward-Gauss-Seidel sweep.
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All tables show the number of iterations required until the stopping criterion

‖ALuL − fL‖`2
‖f

L
‖`2

≤ ε := 10−8

is satisfied.

As usual, the convergence behavior of the overall solver can be improved if the
multigrid method is not just used directly as a solver, but as a preconditioner
within a preconditioned conjugate gradient (PCG) solver. Thus, we present
results for both possibilities; in the following sections we will restrict ourselves
to the more efficient PCG solver. Since the V-cycle and the W-cycle methods
yield comparable iteration counts, we present the results for the more efficient
V-cycle only. The number of smoothing steps is chosen as ν` := 1 in all cases.

The multigrid solver was implemented in C++ based on the G+Smo library [22].
The tables shown in the remainder of this section are obtained with the following
command line instructions, where the values L and p are substituted accordingly.

> git clone https://github.com/gismo/gismo.git

> cd gismo

> make

> cd build/bin

> ./multiGrid_example -g domain2d/ldomain.xml -r L -p p
-s gs -i d // Table 1 (a)

> ./multiGrid_example -g domain2d/yeti_mp2.xml -r L -p p
-s gs -i d // Table 2 (a)

The results for the PCG experiments, presented in Tables 1 (b) and 2 (b), are
obtained by replacing the option -i d by the option -i cg.

(a) Direct – Conforming (b) PCG – Conforming

L \ p 2 3 4 5 6 7 8 2 3 4 5 6 7 8

4 9 24 74 – – – – 8 15 28 53 – – –
5 9 24 73 – – – – 8 15 28 52 – – –
6 9 24 72 – – – – 8 15 28 53 – – –
7 10 24 72 – – – – 8 15 28 54 – – –
8 10 24 72 – – – – 8 15 28 54 – – –

Table 1: V-cycle with Gauss-Seidel smoother for the L-shaped domain

In Table 1, we observe that the multigrid solver is certainly robust in the grid
size. While this approach is very efficient for small numbers of spline degrees, we
observe that the convergence rates deteriorate significantly if the spline degree
is increased. On the right side of the table, one can see the iteration counts for a
preconditioned conjugate gradient method where one V-cycle of the mentioned
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(a) Direct – Conforming (b) PCG – Conforming

L \ p 2 3 4 5 6 7 8 2 3 4 5 6 7 8

3 13 25 75 – – – – 10 15 28 54 – – –
4 14 25 74 – – – – 10 15 28 53 – – –
5 15 25 74 – – – – 11 16 28 54 – – –
6 15 25 72 – – – – 11 16 29 54 – – –
7 17 25 73 – – – – 12 16 29 55 – – –

Table 2: V-cycle with Gauss-Seidel smoother for the Yeti footprint

multigrid method is used as a preconditioner. We observe that the iteration
counts are significantly smaller than the iteration counts obtained by directly
applying the multigrid solver. However, we simultaneously observe that we do
not observe any qualitative improvement. In Table 2, we give the iteration
counts for the Yeti footprint. We observe that – despite the fact that the
geometry function is now non-trivial – the iteration counts are very similar to
those of the L-shaped domain.

When one turns to the non-conforming discretizations, it immediately turns out
that the multigrid solver utilizing the Gauss-Seidel smoother does not converge
well at all.

One can show using standard arguments that the multigrid method converges
with rates that are independent of the grid size and of the number of patches.
The convergence analysis (for the conforming case) employs estimates that in-
crease exponentially in the spline degree, cf. [12]. The numerical experiments
show that this is not only a matter of the proof.

Since we did not obtain convincing results, we are interested in more advanced
smoothers that work well also for SIPG discretizations and which do not dete-
riorate if the spline degree is increased.

5. Multigrid with subspace corrected mass smoother

In this section, we employ the subspace corrected mass smoother as introduced
in [16]. That smoother requires that the spline space has a tensor-product
structure; in our examples, we have such a structure on each patch but not on the
overall domain. The extension of that smoother to conforming discretizations
has been discussed in [29] based on a domain-decomposition approach. The key
idea was to decompose all degrees of freedom on a per-piece bases. Pieces are the
patch-interiors and the interface pieces. In two dimensions, the interface pieces
are the edges and the vertices of each of the patches. In three dimensions, the
interface pieces are the faces, the edges and the vertices of each of the patches.
The decomposition of the degrees of freedom is depicted in Figure 4 (left).
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Figure 4: Decomposition of the degrees of freedom (represented by the Greville point)

The piece-local smoothers, which we denote by L−1
`,T , are defined as follows. For

T being a patch-interior, we choose L−1
`,T to be the subspace corrected mass

smoother as proposed in [16]. We choose the scaling parameter (which was
called σ in [16]) to be δ−1h−2

` for some suitable chosen parameter δ > 0. If T is
an interface piece, we choose

L`,T := P>T A`PT ,

where the matrix P`,T represents the embedding of the piece T in the whole
space. The symbol L−1

`,T refers to be the application of a direct solver. Applying
a direct solver on the interfaces is feasible since the interfaces have much smaller
numbers of degrees of freedom than the interiors of the patches. The overall
smoother is just an additive composition of the piece-local smoothers, i.e., we
choose

L−1
` := τ

∑
T

P`,TL
−1
`,TP

>
`,T , (14)

where the sum is taken over all pieces T . Here, τ > 0 is some damping parameter
to be chosen.

The convergence theory from [29] can be summarized by the following theorem.

Theorem 3. Assume that Ω ⊂ R2 is such that full elliptic regularity is satis-
fied (cf. [29, Assumption 3.1]). Consider the conforming discretization and a
multigrid solver with the smoother (14). There are constants τ∗, δ∗ and θ which
are independent of K, h, L and p (but may depend particularly on the geometry
functions and the maximum number of neighbors of a patch) such that for

τ ∈ (0, τ∗), δ ∈ (0, δ∗) and ν` > ν∗` := p
τ∗

τ

δ∗

δ
θ, (15)

the W-cycle multigrid method converges with a convergence rate q ≤ max` ν
∗
` /ν`.

Note that the terms τ∗

τ and δ∗

δ imply that the convergence degrades if too small
values of those parameters are chosen. Thus, it is of interest to choose these
parameters in a rather optimal way.

Note that the convergence theorem requires full elliptic regularity (cf. [29, As-
sumption 3.1]). Thus, it is applicable to the Yeti footprint but it is not directly
applicable to the L-shaped domain. Convergence results for the case with full
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elliptic regularity often carry over in practice to cases where that regularity as-
sumption does not hold. The same behavior can be observed for the numerical
experiments we have considered.

Observe that the convergence theorem suggests that the number of smoothing
steps should increase with p. As already outlined in [29], this seems to be too
pessimistic since the numerical experiments have shown that ν` := 1 in all cases
yields good convergence rates.

The numerical experiments are again applied within the same setup as in the
last section. We set up a V-cycle multigrid method with 1+1 smoothing steps
of the proposed smoother L` (on all grid levels). The damping parameter τ is
chosen as indicated with the option --MG.Damping and the scaling parameter δ
is chosen as indicated with the option --MG.Scaling below. The tables for
the conforming case shown in this section are obtained with the following code,
where the values L and p are substituted accordingly:

> ./multiGrid_example -g domain2d/ldomain.xml -r L -p p
-s scms --MG.Damping 1 --MG.Scaling .12 -i d // Table 3 (a)

> ./multiGrid_example -g domain2d/yeti_mp2.xml -r L -p p
-s scms --MG.Damping .25 --MG.Scaling .2 -i cg // Table 5 (a)

The results for the PCG experiments presented Table 3 (b) are obtained by
replacing the option -i d by the option -i cg.

(a) Direct – Conforming (b) PCG – Conforming

L \ p 2 3 4 5 6 7 8 2 3 4 5 6 7 8

4 27 23 22 20 17 16 15 16 14 13 12 11 11 10
5 29 27 27 26 24 24 22 17 16 15 15 14 14 14
6 30 30 28 27 27 27 26 17 17 16 16 15 16 15
7 31 30 29 28 28 27 27 17 17 17 16 16 16 16
8 32 31 30 29 28 28 28 18 17 17 17 16 16 16

Table 3: V-cycle with subspace corrected mass smoother for the L-shaped domain

All numerical experiments show that the proposed method is robust both in the
grid size and the spline degree. However, when comparing the results for the
Yeti footprint from Table 5 (a) with the corresponding results for the L-shaped
domain from Table 3 (b), we see that the multigrid solver suffers from distorted
geometry functions.

The numbers for the Yeti footprint seem not to be completely robust in the grid
size. Since we have given a convergence theory, we know that the convergence
numbers are bounded uniformly. Thus, the observed behavior is pre-asymptotic.
The reason for this is that on coarser grid levels, the geometry is not resolved
exactly. Let A` be the original stiffness matrix and Â` be the simplified stiffness
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matrix obtained by neglecting the geometry function. Then, we have

κ(Â−1
` A`) = sup

v`∈V`

|v`|2H1(Ω)∑K
k=1 |v` ◦Gk|2H1(Ω̂)

sup
v`∈V`

∑K
k=1 |v` ◦Gk|2H1(Ω̂)

|v`|2H1(Ω)

,

which yields

κ(Â−1
0 A0) ≤ · · · ≤ κ(Â−1

L−1AL−1) ≤ κ(Â−1
L AL)

≤ sup
v∈V

|v|2H1(Ω)∑K
k=1 |v ◦Gk|2H1(Ω̂)

sup
v∈V

∑K
k=1 |v ◦Gk|2H1(Ω̂)

|v|2H1(Ω)

,
(16)

which can be finally bounded by a constant times some power of the quantity
‖∇G‖L∞(Ω̂)‖(∇G)−1‖L∞(Ω̂). Of none of these relations is satisfied by equality.

In such a case, the iteration counts are likely to increase if the grid gets refined.
For more on this topic, see [27, Section 7.4].

As a next step, we turn towards the non-conforming discretizations. Here, each
degree of freedom is assigned to exactly one patch. So, it would be tempting to
set up a patch-wise splitting of the degrees of freedom. Unfortunately, numerical
experiments have shown that this approach does not work well. So, we follow
the approach from [29] also in the non-conforming case and split the degrees of
freedom again into pieces T . This means that we avoid breaking the coupling
which was enforced by the penalty term. So, the degrees of freedom belonging
to one edge (face, vertex) are considered to be one piece, even if the degrees of
freedom belong to different patches, see Figure 4 (right).

For this choice, we can give the following convergence theorem.

Theorem 4. Assume that Ω ⊂ R2 is such that full elliptic regularity holds
(cf. [30, Assumption 4]) and assume that the geometry functions (but not nec-
essarily the discretizations) agree on the interfaces (cf. [30, Assumption 2]).
Consider the SIPG discretization and a multigrid solver with the smoother (14).
There are constants τ∗, δ∗ and θ which are independent of K, h, L and p (but
may depend particularly on the geometry functions and the maximum number
of neighbors of a patch) such that for

τ ∈ (0, τ∗), δ ∈ (0, δ∗) and ν` > ν∗` := 2L−` (1 +L− `)2 p (log p)4 τ
∗

τ

δ∗

δ
θ,

(17)
the W-cycle multigrid method converges with a convergence rate q ≤ max` ν

∗
` /ν`.

We give the proof of this theorem in the Appendix; the proof is based on the
error estimates from [30].

One might observe that the number of smoothing steps required by this conver-
gence theorem increases like (1+L−`)2L−`. This follows the approach suggested
in [13] and is related to the chosen over-penalization discussed in Section 3.
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Remark 1. Note that the number of degrees of freedom on the coarser grid
levels is smaller by a factor of 2d(L−`). So, also using these additional smoothing
steps, the overall complexity of the multigrid solver is still linear in the number of
unknowns on the finest grid level if (a) d ≥ 3 or (b) the V-cycle is considered. If
we consider d = 2 and the W-cycle, the choice (17) yields that the computational
complexity grows like NLL

3, where NL is the number of unknowns on the finest
grid level. In the numerical experiments, we did not observe that increasing the
number of smoothing steps has been required. Analogously to the conforming
case, also the stated dependence on p is too pessimistic; thus, we again choose
ν` := 1 on all grid levels.

Now, we provide numerical experiments for the SIPG discretization. Theoreti-
cally, we could just use exactly the discretization that has been chosen for the
conforming case. This, however, yields a (particularly uninteresting) special
case since Assumption 2 holds. In this special case, we have V c` ⊂ V n` and
the SIPG formulation converges to the conforming discretization for σ → ∞.
Instead, we are interested in a discretization such that Assumption 2 does not
hold: We modify the setup of the spaces. For one third of the patches, we
use the original spline space Sp,h`(Ω̂). For one third of the patches, we use the

spline space Sp+1,2h`(Ω̂). For the last third of the patches, we use the spline

space Sp,2h`(Ω̂). This particular setting is obtained with the command line
option --NonMatching. In this way, we obtain a setup where a conforming
discretization is not possible.

The tables for the non-conforming case shown in this section are obtained with
the following code, where the values L and p are substituted accordingly:

> ./multiGrid_example -g domain2d/ldomain.xml -r L -p p --DG

--NonMatching -s scms --MG.Damping .9 --MG.Scaling .12

-i d // Table 4 (a)
> ./multiGrid_example -g domain2d/yeti_mp2.xml -r L -p p --DG

--NonMatching -s scms --MG.Damping .25 --MG.Scaling .2

-i cg // Table 5 (b)

The results for the PCG experiments presented in Table 4 (b) are obtained by
replacing the option -i d by the option -i cg.

The PCG discretizations are presented in Tables 4 (b) and 5 (b); we again obtain
robustness in the grid size and the spline degree. Here, for the Yeti footprint,
we have again iteration counts that are slightly increasing with the grid size;
again, this observation can be explained by the fact that finer grids allow to
resolve the geometry function better, cf. (16).

In principle, the method works also if the multigrid solver is applied directly,
cf. Table 4 (a). Here, we suffer from numerical instabilities which are amplified
with an increasing number of levels. One can avoid these instabilities, e.g., by
increasing the number of pre- and post smoothing steps. However, using the
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(a) Direct – Non-conforming (b) PCG – Non-conforming

L \ p 2 3 4 5 6 7 8 2 3 4 5 6 7 8

4 22 28 34 33 23 35 23 17 16 15 14 13 12 12
5 71 48 45 69 35 32 57 19 19 18 17 17 17 16
6 73 71 70 46 69 57 145 21 20 20 19 19 20 19
7 100 106 86 71 92 67 61 22 22 21 21 21 22 22
8 90 94 127 98 291 106 73 23 23 22 22 22 22 23

Table 4: V-cycle with subspace corrected mass smoother for the L-shaped domain

(a) PCG – Conforming (b) PCG – Non-conforming

L \ p 2 3 4 5 6 7 8 2 3 4 5 6 7 8

3 44 42 41 39 37 36 34 40 38 36 35 34 33 31
4 48 47 45 43 43 40 41 44 44 42 42 40 40 39
5 51 49 48 47 45 45 44 49 47 47 46 46 45 44
6 52 51 49 48 47 46 45 58 57 57 56 55 54 53
7 54 53 51 50 49 48 47 74 73 72 71 71 72 70

Table 5: V-cycle with subspace corrected mass smoother for the Yeti footprint

multigrid method as a preconditioner within a PCG solver is obviously the more
efficient approach.

6. Multigrid with hybrid smoother

We have observed that a multigrid method with the subspace corrected mass
smoother is robust in the grid size and the spline degree and works well for both
conforming and discontinuous Galerkin discretizations. We have also observed
that this approach suffers from non-simple geometry functions since it is based
on the close connection between the stiffness matrix A` and the simplified stiff-
ness matrix Â`. The results for the Gauss-Seidel smoother are different: the
multigrid solver works badly both for large spline degrees and for discontinu-
ous Galerkin discretizations. However, by comparing Table 1 with Table 2, we
observe that the method behaves quite robust in the geometry function.

Since the behavior of the two smothers is somewhat orthogonal, we can hope for
a good method if we combine them. Our idea is to use one forward Gauss-Seidel
sweep followed by the subspace corrected mass smoother for pre-smoothing and
the subspace corrected mass smoother followed by one backward Gauss-Seidel
sweep for post-smoothing. The overall method is presented as Algorithm 2.
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Algorithm 2 Multigrid algorithm with hybrid smoother

Multigrid
(
`, f

`
, u`

)
// Pre-Smoothing (forward Gauss-Seidel)

u` ← u` + (LGS` )−1
(
f
`
−A` u`

)
// Pre-Smoothing (subspace corrected mass smoother)
for n = 1, . . . , ν`

u` ← u` + (LSCMS
` )−1

(
f
`
−A` u`

)
// Coarse-grid correction
if ` = 1

u` ← u` + I``−1A
−1
`−1I

`−1
`

(
f
`
−A` u`

)
// Direct solver

else
for n = 1, . . . , µ

u` ← u` + I``−1Multigrid
(
`− 1, I`−1

`

(
f
`
−A` u`

)
, 0
)

// Post-Smoothing (subspace corrected mass smoother)
for n = 1, . . . , ν`

u` ← u` + (LSCMS
` )−1

(
f
`
−A` u`

)
// Post-Smoothing (backward Gauss-Seidel)

u` ← u` + (LGS` )−>
(
f
`
−A` u`

)
return u`

The convergence analysis from Section 5 can be easily carried over to the hybrid
smoother. The iteration matrix for the (V or W cycle) multigrid method with
the hybrid smoother is given by

W̃` := (I − (LGS` )−>A`)W`(I − (LGS` )−1A`),

where W` is the iteration matrix of the (V or W cycle, respectively) multigrid
method with the subspace corrected mass smoother. Since the Gauss-Seidel
iteration is stable in the energy norm, we obtain

‖W̃`‖A` ≤ ‖I − (LGS` )−>A`‖A`‖W`‖A`‖I − (LGS` )−1A`‖A` ≤ ‖W`‖A` .

So, we have using the results from the last section the convergence of the W-cycle
multigrid method with hybrid smoother. Thus, we obtain as follows.

Corollary 5. Consider the multigrid solver with the hybrid smoother. Under
the assumptions of Theorem 3 or 4, respectively, the W-cycle multigrid method
converges with a convergence rate q ≤ max` ν

∗
` /ν`.

The tables for the experiments with the hybrid smoother are obtained with the
following code, where the values L and p are substituted accordingly:
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(a) Direct – Conforming (b) PCG – Conforming

L \ p 2 3 4 5 6 7 8 2 3 4 5 6 7 8

3 12 15 22 29 35 40 47 9 11 14 17 20 21 22
4 13 16 23 32 38 45 50 10 11 15 19 21 23 25
5 14 16 24 35 41 47 53 11 11 16 19 22 24 26
6 15 16 26 37 45 52 55 11 12 16 20 23 26 27
7 16 17 26 38 47 54 57 12 12 17 21 24 26 28

Table 6: V-cycle with hybrid smoothing strategy for the Yeti footprint

(a) Direct – Non-conforming (b) PCG – Non-conforming

L \ p 2 3 4 5 6 7 8 2 3 4 5 6 7 8

3 23 18 35 34 37 24 28 15 17 18 19 20 20 21
4 19 23 31 42 32 59 32 16 19 21 22 24 26 26
5 20 25 34 50 46 67 62 17 20 22 25 27 29 31
6 22 27 30 47 48 52 69 17 20 23 25 27 30 32
7 22 29 33 40 58 52 65 17 21 23 26 29 31 33

Table 7: V-cycle with hybrid smoothing strategy for the Yeti footprint

> ./multiGrid_example -g domain2d/yeti_mp2.xml -r L -p p
-s hyb --MG.Damping .25 --MG.Scaling .1 -i d // Table 6 (a)

> ./multiGrid_example -g domain2d/yeti_mp2.xml -r L -p p --DG

--NonMatching -s hyb --MG.Damping .25 --MG.Scaling .1

-i d // Table 7 (a)

The results for the PCG experiments, presented in Tables 6 (b) and 7 (b), are
obtained by replacing the option -i d by the option -i cg.

For both cases, we obtain that the iteration counts are quite robust in the
grid size (even if the maximum number of iterations is not reached for the
coarser grid levels). We observe that the number of iterations increases with
the spline degree. This is indeed due to the fact that for small values of p,
the Gauss-Seidel smoother yields very fast convergence and that convergence
behavior is carried over to the hybrid smoother. For larger spline degrees, the
hybrid smoother’s convergence behavior degrades mildly; this is due to the fact
that the Gauss-Seidel smoother is not completely capable to capture all effects
perfectly. Still, keeping in mind that the condition number of the stiffness matrix
grows exponentially with the spline degree, the observed behavior is still very
satisfactory.

Compared to applying the subspace corrected mass smoother only, the hybrid
smoother pays of in most cases. Certainly, applying the hybrid smoother with
ν` := 1 means basically that 2 pre- and 2 post-smoothing steps are applied.
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Since the Gauss-Seidel smoother is slightly cheaper than the subspace corrected
mass smoother, the costs for one such cycle are smaller than the costs of two
multigrid cycles with the subspace corrected mass smoother only.

Figure 5: The 3D computational domains: Fichera corner and twisted Fichera corner

Besides the two-dimensional examples considered so far, the proposed methods
can be directly extended to three dimensional problems (even if the details of
the convergence theory have not been worked out for these cases). We consider
the two domains depicted in Figure 5: the Fichera corner and a variant of
that domain with non-trivial geometry function, which we call twisted Fichera
corner.

The tables for the three dimensional domains are obtained with the following
code, where the values L and p are substituted accordingly:

> ./multiGrid_example -g domain2d/fichera.xml -r L -p p
-s hyb --MG.Scaling .12 --MG.Damping 1 -i cg // Table 8 (a)

> ./multiGrid_example -g domain2d/twisted_fichera.xml -r L -p p
-s hyb --MG.Scaling .12 --MG.Damping .25 -i cg // Table 9 (a)

The results for the DG experiments, presented in the Tables 8 (b) and 9 (b),
are obtained by adding the command line options --DG --NonMatching.

(a) PCG – Conforming (b) PCG – Non-conforming

L \ p 2 3 4 5 6 2 3 4 5 6

2 6 6 7 8 8 12 13 15 16 19
3 6 7 7 8 8 13 15 16 18 20
4 6 8 9 9 10 14 16 18 19 20
5 6 8 9 10 11 14 16 17 19 20

Table 8: V-cycle with hybrid smoothing strategy for the Fichera corner

Similar to the results for the Yeti footprint, Tables 8 and 9 again show small
iteration counts. For the twisted Fichera corner, we observe that the number
of iterations increases mildly when the grid gets refined; this is again to be
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(a) PCG – Conforming (b) PCG – Non-conforming

L \ p 2 3 4 5 6 2 3 4 5 6

2 10 13 14 15 17 22 25 28 30 31
3 13 15 18 20 22 29 31 33 36 38
4 14 17 19 22 25 31 34 37 40 42
5 16 17 20 23 26 31 36 40 44 47

Table 9: V-cycle with hybrid smoothing strategy for the twisted Fichera corner

explained by the better resolution of the geometry function. Moreover, we
observe a very mild dependence on the spline degree.

7. Conclusions and outlook

We have presented robust multigrid solvers for multi-patch IgA with conforming
and non-conforming discretizations. We have given convergence results that
exactly state the robustness of the solvers in the grid size. Concerning the
dependence on the spline degree, the statements seem to be too pessimistic
since the solvers have been completely or (at least) rather robust in practice.

We have addressed another issue, which causes problems for all solvers that use
the tensor-product structure on the parameter domain: the dependence on the
geometry function. We have proposed a hybrid smoother between our subspace
corrected mass smoother and the Gauss-Seidel smoother which seems to reduce
the effect on the geometry function. Finding approaches to better incorporate
the geometry function into the smoother itself seems to be an interesting topic
for further research.

Appendix

In the appendix, we give a proof of Theorem 4 and of some auxiliary results.

Every constant c used within the appendix is assumed to be independent of
the grid size, the grid level, the spline degree and the number of patches, but
it may depend on the geometry function (cf. [30, Assumption 3]), the number
of neighbors of a patch (cf. [29, Assumption 2.3]), the constant in the elliptic
regularity assumption (cf. [29, Assumption 3.1]) and the quasi-uniformity of the
grid, i.e., the ratio between the largest and the smallest knot span of the knot
vectors on one level. We write A . B if and only if there is a constant c such
that A ≤ c B and we write A h B if and only if A . B and B . A.

First, we show the following lemma, which is basically a trace inequality.
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Lemma 6. Let S := S(1)⊗S(2) be the space of tensor-product splines of degree
p on a quasi-uniform grid with size h on the parameter domain Ω̂ := (0, 1)2.
Then, the estimate

|u(0)|2 .
(

log

(
1 +

p4

h2θ2

))2 (
|u|2

H1(Ω̂)
+ θ2‖u‖2

L2(Ω̂)

)
holds for all u ∈ S and all θ ≥ 1.

Proof. For ν = 1, 2, let (ψν,i)
Nν
i=1 be the eigenfunctions of S(ν), i.e., such that

(ψν,i, ψν,j)L2(0,1) = δi,j and

(ψ′ν,i, ψ
′
ν,j)L2(0,1) + θ2(ψν,i, ψν,j)L2(0,1) = λν,iδi,j ,

where δi,j is the Kronecker delta and λν,1 ≤ λν,2 ≤ · · · ≤ λν,Nν are the cor-
responding eigenvalues. Using coercivity of (·′, ·′)L2(0,1) and a standard inverse
estimate, cf. [26, Corollary 3.94], we obtain

θ2 ≤ λν,1 and λν,Nν . p
4h−2 + θ2.

We define level sets

Iν,m := {i : µm−1 := 2m−1θ2 ≤ λν,i < µm := 2mθ2}

for m ∈ {1, 2, 3, . . . ,M}, where

M := 1 + max
ν∈{1,2}

blog2(θ−2λν,Nν )c . log(1 + p4h−2θ−2)

is the number of level sets. Note that by construction every eigenvalue belongs
to exactly one level set. Every function u ∈ S can be represented as

u(x, y) =

N1∑
i=1

N2∑
j=1

ui,jψ1,i(x)ψ2,j(y) =

M∑
m=1

M∑
n=1

∑
i∈I1,m

∑
j∈I2,n

ui,jψ1,i(x)ψ2,j(y)

︸ ︷︷ ︸
wm,n(x, y) :=

.

A standard trace estimate, cf. [29, Lemma 4.4], yields

|wm,n(0)|2 . ‖wm,n‖L2({0}×(0,1))‖wm,n‖H1({0}×(0,1))

. ‖wm,n‖1/20,0,1‖wm,n‖
1/2
1,0,1‖wm,n‖

1/2
0,1,1‖wm,n‖

1/2
1,1,1

(18)

where

‖w‖2a,b,η :=

∥∥∥∥ ∂a+b

∂xa∂xb
w

∥∥∥∥2

L2(Ω̂)

+ η2(a+b)‖w‖2
L2(Ω̂)

for a, b ∈ N0. Since θ ≥ 1 and since all eigenvalues are in I1,m or I2,n, respec-
tively, we obtain

‖w‖2a,b,1 ≤ ‖w‖2a,b,θ h µamµ
b
n‖wm,n‖2L2(Ω̂)

.
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Using (18), we obtain further

|wm,n(0)|2 . µmµn‖wm,n‖2L2(Ω̂)
h ‖wm,n‖1,0,θ‖wm,n‖0,1,θ

≤
(
|wm,n|2H1(Ω̂)

+ θ2‖wm,n‖2L2(Ω̂)

)
.

Finally, the Cauchy-Schwarz inequality and orthogonality of the basis functions
(both in L2 and H1) yield

|u(0)|2 .M2
M∑
m=1

M∑
n=1

|wm,n(0)|2

.M2
M∑
m=1

M∑
n=1

(
|wm,n|H1(Ω̂) + θ2‖wm,n‖L2(Ω̂)

)2

= M2
(
|u|2

H1(Ω̂)
+ θ2‖u‖2

L2(Ω̂)

)
,

which finishes the proof. �

Now, we give bounds on the smoother which allow to show the smoothing prop-
erty.

Lemma 7. Provided the assumptions of Theorem 4, the estimate

A` ≤ L` . p(log p)2(1 + L− `)22L−`
τ∗

τ

δ∗

δ
L̃`

holds, where L̃` := Q` + (1 + 2`−Lh−2
` )M` and M` is the standard mass matrix.

Proof. The proof of this Lemma requires the notation from [29], i.e., we denote
the set of all patch-interiors by K, the set of all edges by E and the set of all
vertices by V.

Observe that we have
A` h Q` (19)

for all ` = 0, 2, . . . , L, where Q` is defined by (11) and (12). For ` = L, this
statement directly follows from [30, Theorem 8]. Since [30, Theorem 8] also
holds in cases of over-penalization, we can apply that theorem also to the case
` < L and obtain (19) also in that case.

As first step, we bound L` from below. (The following arguments are analogous
to [29, Lemma 4.3].) The triangle inequality yields

A` .
∑

T∈K∪E∪V
P`,T (P>`,TA`P

>
`,T )P>`,T . (20)

For T ∈ K, [16, Lemma 8] and (19) yield L`,T & P>`,TQ`P
>
`,T & P

>
`,TA`P

>
`,T . For

T ∈ E∪V, we have by definition L`,T = P>`,TA`P
>
`,T . Thus, we obtain from (20)

A` .
∑

T∈K∪E∪V
P`,TL`,TP

>
`,T
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and for all τ ∈ (0, τ∗) with τ∗ small enough further

A` ≤ τ−1
∑

T∈K∪E∪V
P`,TL`,TP

>
`,T = L`,

which shows the first part of the desired inequality.

Now, we bound L` from above. We use the decomposition

Q` = K` +
σp2

hL
J`,

cf. (11). Using (19), we obtain

L`,T = P>`,TA`P`,T h P>`,TQ`P`,T = P>`,TK`P`,T︸ ︷︷ ︸
K̃`,T :=

+
σp2

hL
P>`,TJ`P`,T︸ ︷︷ ︸
J̃`,T :=

for all T ∈ E ∪ V and, therefore,

L` h K̃` +
σp2

hL
J̃`, (21)

where
K̃` := τ−1

∑
T∈K

P`,TL`,TP
>
`,T + τ−1

∑
T∈E∪V

P`,TK`,TP
>
`,T

and
J̃` := τ−1

∑
T∈E∪V

P`,TJ`,TP
>
`,T .

Completely analogous to [29, Lemma 4.7], we obtain

K̃` . p
τ∗

τ

δ∗

δ
(K` + h−2

` M`) ≤ p
τ∗

τ

δ∗

δ
(Q` + h−2

` M`) ≤ p2L−`
τ∗

τ

δ∗

δ
L̃`. (22)

So, it remains to bound J̃` from above. Since the restriction of J` to any patch-
interior vanishes, the same arguments as in the proof of [29, Lemma 4.7] and
the triangle inequality yield

∑
T∈E
‖PTP>T u`‖2J` =

∥∥∥∥∥∑
T∈E

PTP
>
T u`

∥∥∥∥∥
2

J`

=

∥∥∥∥∥u` −∑
T∈V

PTP
>
T u`

∥∥∥∥∥
2

J`

≤ ‖u`‖2J` +
∑
T∈V
‖PTP>T u`‖2J` .

and therefore ∑
T∈E∪V

P`,T J̃`,TP
>
`,T . J` +

∑
T∈V

P`,T J̃`,TP
>
`,T . (23)
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Note that J` models jumps and note that these jumps can be bounded from
above using the triangle inequality with the function values on both sides. Thus,
we obtain ∑

T∈V
‖PTP>T u`‖2J` .

K∑
k=1

∑
T∈V

(u`|Ωk |T )2‖ψ‖2L2(0,1),

where u`|Ωk is the restriction of u` to the patch Ωk and u`|Ωk |T is the eval-
uation of the continuous extension of that function to the vertex T at that
vertex and ψ(x) = max{1−x/h`, 0}p is the corresponding basis function. Using
‖ψ‖2L2(0,1) h p−1h`, cf. [29, Eq. (4.16)], Lemma 6 (with θ := (1 + h−2

` 2`−L)1/2),
and h` ≤ 1, we further obtain

∑
T∈V
‖PTP>T u`‖2J` .

h`
p

(
log

(
1 +

p4

h2
`(1 + h−2

` 2`−L)2

))2

K∑
k=1

(
|u` ◦Gk|2H1(Ω̂)

+ (1 + 2`−Lh−2
` )‖u` ◦Gk‖2L2(Ω̂)

)
.
h`
p

(log p)(1 + L− `)2
K∑
k=1

(
|u` ◦Gk|2H1(Ω̂)

+ (1 + 2`−Lh−2
` )‖u` ◦Gk‖2L2(Ω̂)

)
.

Using [30, Lemma 6], we obtain∑
T∈V
‖PTP>T u`‖2J` .

h`
p

(log p)2(1+L−`)2
(
|u`|2H1(Ω) + (1 + 2`−Lh−2

` )‖u`‖2L2(Ω)

)
and thus∑

T∈V
P`,T J̃`,TP

>
`,T .

h`
p

(log p)2(1 + L− `)2(K` + (1 + 2`−Lh−2
` )M`).

This shows together with (23) and hL h 2`−Lh`

σp2

hL
J̃` = τ−1σp

2

hL

∑
T∈E∪V

P`,T J̃`,TP
>
`,T

. τ−1

(
σp2

hL
J` + p(log p)2(1 + L− `)22L−`(K` + (1 + 2`−Lh−2

` )M`)

)
. τ−1p(log p)2(1 + L− `)22L−`L̃`.

Since δ ∈ (0, δ∗) and since τ∗ h 1, we obtain

σp2

hL
J̃` . p(log p)2(1 + L− `)22L−`

τ∗

τ

δ∗

δ
L̃`,

which finishes together with (21) and (22) the proof. �
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Lemma 8. Let ‖v‖2
Q+
`

:= |v|2H1(Ω) + σ−2p−44`−Lh2
` |v|2H2(Ω). The estimate

inf
v`∈V n`

‖u− v`‖2Q+
`

. |u|2H2(Ω)

holds for all u ∈ H2(Ω).

Proof. Let

W := {u ∈ H1(Ω) : u ◦Gk ∈ S1,1(Ω̂) for all k = 1, . . . ,K},

be the set of all globally continuous functions which are linear locally. Observe
that W ⊆ V n` . Using u and w being continuous, we obtain

‖u− w‖2
Q+
`

= |u− w|2H1(Ω) +
h2
`

σ2p44L−`
|u− w|2H2(Ω).

For the choice w ∈ H1(Ω) with w|Ωk := wk = ŵk ◦G−1
k , where

ŵk(x, y) :=

1∑
i=0

1∑
j=0

φ̂i(x)φj(y)ûk(i, j) and φ̂0(t) := 1− t and φ̂1(t) := t,

we further obtain using standard approximation error estimates and [30, Lemma 6]

inf
v`∈V n`

‖u− v`‖2Q+
`

≤ ‖u− w‖2
Q+
`

.

(
1 +

h2
`

σ2p44L−`

)
|u|2H2(Ω).

Using h` ≤ 1, σ ≥ 1, p ≥ 2, and L ≥ `, we obtain the desired result.

Lemma 9. Provided the assumptions of Theorem 4, the estimate

‖(I − I``−1A
−1
`−1I

`−1
` A`)A

−1
` L̃`‖L̃` . (log p)2

holds, where L̃` is as in Lemma 7.

Proof. Let u` ∈ V n` be arbitrary but fixed. Let f` ∈ V n` be such that

(u`, v`)AL = (f`, v`)L2(Ω) for all v` ∈ V n` .

Let u`−1 ∈ V`−1 and u ∈ V be such that

(u`−1, v`−1)AL = (f`, v`−1)L2(Ω) for all v`−1 ∈ V`−1,

(∇u,∇v)L2(Ω) = (f`, v)L2(Ω) for all v ∈ V.

Using f` ∈ L2(Ω) and full elliptic regularity, cf. [29, Assumption 3.1], we obtain
u ∈ H2(Ω) and

|u|H2(Ω) . ‖f`‖L2(Ω) = sup
v`∈V n`

(f`, v`)L2(Ω)

‖v`‖L2(Ω)
= sup
v`∈V n`

(u`, v`)AL
‖v`‖L2(Ω)

= ‖u`‖A`M−1
` A`

.

(24)
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[30, Theorems 12 and 13] and Lemma 8 yield

‖u− u`‖2Q` . min{1, (log σ`)
2σ

1/(2p−1)
` h2

`}|u|2H2(Ω),

‖u− u`−1‖2Q` . min{1, (log σ`−1)2σ
1/(2p−1)
`−1 h2

`−1}|u|2H2(Ω),

where σ` = 2L−`p2σ. Using the triangle inequality, σ h 1, log(ab) . log a log b,
h` h h`−1, p ≥ 2, and we obtain further

‖u` − u`−1‖2Q` . min{1, (log σ`)
2σ

1/(2p−1)
` h2

`}|u|2H2(Ω)

. min{1, (log p)2p2/(2p−1)(1 + L− `)22(L−`)(1/(2p−1))h2
`}|u|2H2(Ω)

. min{1, (log p)22L−`h2
`}|u|2H2(Ω) . (log p)2(1 + 2`−Lh−2

` )−1|u|2H2(Ω)

Using (19), (24) and the definition of u`−1, we obtain further

‖(I − I``−1A
−1
`−1I

`−1
` A`)u`‖2A` . (log p)2(1 + 2`−Lh−2

` )−1‖u`‖2A`M−1
` A`

.

This yields

‖A1/2
` (I − I``−1A

−1
`−1I

`−1
` A`)A

−1
` M

1/2
` ‖

2 . (log p)2(1 + 2`−Lh−2
` )−1

and thus

‖(I − I``−1A
−1
`−1I

`−1
` A`)u`‖2(1+2`−Lh−2

` )M`
. (log p)2‖u`‖A` for all u` ∈ RN` .

Using this estimate and the stability of the A`-orthogonal projection, we obtain

‖(I − I``−1A
−1
`−1I

`−1
` A`)u`‖2L̃` . (log p)2‖u`‖A` for all u` ∈ RN`

and further
‖L̃1/2

` (I − PA−1
`−1P

>A`)A
−1
` L̃

−1/2
` ‖ . log p.

Using the identity ‖A>A‖ ≤ ‖A‖2, we finally obtain the desired result. �

Finally, we can show Theorem 4. Here, we follow the classical approach as
introduced by Hackbusch, cf. [14].

Proof (of Theorem 4). Lemma 7 yields A` ≤ L`. Using standard argu-
ments, cf. [17, Lemma 2] or [14], the smoothing property

‖L−1
` A`(I − L−1

` A`)
ν‖L` ≤

1

ν + 1
≤ 1

ν

follows. Using Lemma 7, we obtain further

‖L̃−1
` A`(I − L−1

` A`)
ν‖L̃` .

p(log p)2(1 + L− `)22L−`

ν

τ∗

τ

δ∗

δ
,
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which shows together Lemma 9

‖(I − L−1
` A`)

ν(I − PA−1
`−1P

>A`)(I − L−1
` A`)

ν‖A`
≤ ‖(I − PA−1

`−1P
>A`)(I − L−1

` A`)
ν‖A`

≤ ‖(I − PA−1
`−1P

>A`)(I − L−1
` A`)

ν‖L̃`
≤ ‖(I − PA−1

`−1P
>A`)A

−1
` L̃`‖L̃`‖L̃

−1
` A`(I − L−1

` A`)
ν‖L̃`

.
p(log p)4(1 + L− `)22L−`

ν

τ∗

τ

δ∗

δ
.

This statement shows convergence of the two-grid method if ν is large enough.
Standard arguments, cf. [14], allow to extend the analysis to the W-cycle multi-
grid method.
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[9] Á. Pé de la Riva, C. Rodrigo, and F. J. Gaspar, An efficient multigrid
solver for isogeometric analysis, [arXiv:1806.05848], 2018.

[10] M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, and H. Speleers,
Robust and optimal multi-iterative techniques for IgA Galerkin linear sys-
tems, Comput. Methods. Appl. Mech. Eng. 284 (2015), 230 – 264.

[11] M. Floater and E. Sande, Optimal spline spaces of higher degree for L2

n-widths, J. Approx. Theor. 216 (2017), 1 – 15.

[12] K. P. S. Gahalaut, J. K. Kraus, and S. K. Tomar, Multigrid methods for iso-
geometric discretization, Comput. Methods. Appl. Mech. Eng. 253 (2013),
413 – 425.

[13] J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin
method, Numer. Math. 95 (2003), no. 3, 527 – 550.

[14] W. Hackbusch, Multi-Grid Methods and Applications, Springer, Berlin,
1985.

[15] C. Hofer and U. Langer, Dual-primal isogeometric tearing and intercon-
necting solvers for multipatch dG-IgA equations, Comput. Methods. Appl.
Mech. Eng. 316 (2017), 2 – 21.

[16] C. Hofreither and S. Takacs, Robust multigrid for isogeometric analysis
based on stable splittings of spline spaces, SIAM J. Numer. Anal. 4 (2017),
no. 55, 2004 – 2024.

[17] C. Hofreither, S. Takacs, and W. Zulehner, A robust multigrid method for
isogeometric analysis in two dimensions using boundary correction, Com-
put. Methods Appl. Mech. Eng. 316 (2017), 22 – 42.

[18] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refinement, Com-
put. Methods Appl. Mech. Eng. 194 (2005), no. 39-41, 4135 – 4195.
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