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Abstract

In a recent paper by A. Chambolle et al. [10] it was proven that if the subgradient
of the total variation at the true data is not empty, the level-sets of the total-variation
denoised solutions converge to the level-sets of the true solution with respect to the
Hausdorff distance. This paper explores a new aspect of total variation regularization
theory based on the source condition introduced by Burger and Osher [9] to prove
convergence rates results with respect to the Bregman distance. We generalize the
results of Chambolle et al. to total variation regularization of general linear inverse
problems. As applications we consider denoising in bounded and unbounded, convex
and non convex domains, deblurring and inversion of the circular Radon transform.
In all these examples we can prove Hausdorff convergence of the level-sets of the total
variation regularized solutions.

1 Introduction

In this paper we are concerned with total variation regularization of linear inverse problems

Au = f , (1)

for functions u defined in a domain Ω which is either R2 or a bounded Lipschitz domain
D ⊂ R2, and A : L2(Ω)→ L2(Σ) is a linear bounded (typically compact) operator. Since
in general the solution of (1) is ill-posed, some sort of regularization needs to be employed.

The method considered in this paper is total variation regularization, in which a reg-
ularization parameter α > 0 is chosen, and either of the two following minimization
problems is solved:

• The Dirichlet (resp. full space) problem consisting of minimization of the functional

Fα(u) :=
1

2
‖Au− f‖2L2(Σ) + αTV(u) (2)

among u ∈ L2(D) ∼=
{
u ∈ L2(R2)

∣∣ supp(u) ⊂ D
}

(resp. u ∈ L2(R2)), where the
quantity TV(u) ∈ [0,+∞] denotes the total variation, computed in R2, of the ex-
tension of u by zero outside of D (resp. the total variation in R2 of u).

• The Neumann problem

F̂α(u) :=
1

2
‖Au− f‖2L2(Σ) + αTV(u ; Ω), (3)

where TV(u ; Ω) is the total variation of u computed in the open set Ω.
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Structure of the paper. The outline of the paper is as follows: In Section 2 we prove
existence of minimizers of Fα and F̂α and review dual formulations of these optimization
problems, with the goal of exploring the convergence of dual variables (see (8)) and its
relation to the source condition. In Section 3, we see that the curvature of level-sets of
minimizers is strongly linked to these dual variables and we explain (following [10]) how
the convergence of the curvatures implies the main result on Hausdorff convergence of
level-sets. In Section 4 we give a proof, for each of the different boundary conditions
considered, of the main ingredient needed for the convergence: density estimates (19) for
the level-sets. Finally, Section 5 contains some examples where the results of previous
sections apply, and the influence of the boundary on the solutions is discussed.

1.1 Notation and spaces

We recall that the total variation in Ω is defined for every function u ∈ L1
loc(Ω) by

TV(u ; Ω) := |Du|(Ω) = sup

{∫
Ω
u div z dx

∣∣∣∣ z ∈ C∞0 (Ω ; R2), ‖z‖L∞(Ω) 6 1

}
.

If the latter is finite, then the distributional derivative Du is a vector-valued Radon mea-
sure on Ω. We also introduce for every Lebesgue measurable E ⊂ Ω the perimeter of E
in Ω,

Per(E ; Ω) := TV(1E ; Ω),

where 1E is the indicator function of E. If this quantity is finite, E is said to have finite
perimeter. When Ω = R2 or when Ω is clear from the context we skip the second argument
in the above notations.

In case the domain Ω is bounded, since we have the inclusion L2(Ω) ⊂ L1(Ω), candi-
dates for minimizers of Fα are in

BVΩ :=
{
v ∈ BV(R2)

∣∣ v ≡ 0 on R2 \ Ω
}
,

where we adopt the standard definition

BV(R2) :=
{
u ∈ L1(R2)

∣∣ TV(u) < +∞
}
.

Since the total variation in R2 is used, this corresponds to a homogeneous Dirichlet bound-
ary condition and possible jumps at the boundary are taken into account. On the other
hand, if Ω = R2, candidates belong only to{

u ∈ L2(R2)
∣∣TV(u) < +∞

}
.

In the case of F̂α, which formally requires minimization among functions satisfying
homogeneous Neumann boundary conditions, the corresponding space is BV(Ω) ∩ L2(Ω).
The influence of Ω and the boundary conditions on the solutions is discussed in Section 5.

2 Dual certificates and source condition

Proposition 1. The functional Fα defined in (2), considered on L2(Ω), has at least one
minimizer. If A is injective, the minimizer is unique.

Proof. Let (uk) be a minimizing sequence. Since uk ∈ L2(Ω) implies uk ∈ L1
loc(R2) and

we work in dimension 2, we can use Sobolev’s inequality [3, Theorem 3.47] to get

‖uk‖L2(Ω) 6 C TV(uk).
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Now, the right hand side is bounded uniformly in k so that the Banach-Alaoglu theorem
for L2(Ω) and a compactness result [3, Theorem 3.23] provide a subsequence (uk) (not
relabelled) that converges both weakly in L2(Ω) and strongly in L1

loc(R2) to some limit uα.
Since A is a bounded linear operator, Auk also converges weakly to Auα in L2(Σ). Lower
semicontinuity of the norm with respect to weak convergence, and of the total variation
with respect to strong L1

loc(R2) convergence [3, Remark 3.5] proves that uα is a minimizer
of Fα.

The uniqueness statement is straightforward, since ‖·‖2L2(Σ) is strictly convex.

Remark 1. Working in BVΩ and with the total variation on R2 can produce markedly
different results, compared to considering functions in L2(Ω) and their total variation
TV(u ; Ω) inside Ω leading to the functional (3). An example is the choice Ω = (−1, 1)2,
Σ = (−1 + η, 1− η)2 for some η ∈ (0, 1), α = 1, f = 0 and A defined by

Au(x) = u(x)− 1

4η2

∫
(−η,η)2

u(x+ y) dy,

continuous since ‖Au‖L2(Σ) 6 2 ‖u‖L2(Ω) by the triangle inequality and Young’s inequality
for convolutions. In this situation, the functional (3) is not coercive: considering the
sequence un := n1Ω, we have that F̂(un) = 0 for all n, but un is not bounded in L2(Ω).
The underlying reason is that constant functions are cancelled by A, that is, A1 = 0, where
1 represents the constant function with value 1 (this situation has also been discussed
in [21]). In contrast, when working in BVΩ we have TV(un) = 4n. Note that in the
denoising case (A = Id) the data term makes the functional coercive in L2(Ω) even when
using TV(u ; Ω).

Proposition 2. The functional F̂α defined in (3), considered in L2(Ω), has at least one
minimizer. If A is injective, the minimizers is unique.

Proof. As noticed in Remark 1, the situation is slightly different from Proposition 1.
Indeed, if as above, (uk) is a minimizing sequence, Sobolev inequality gives the existence
of a constant mk such that

‖uk −mk‖L2(Ω) 6 CTV(uk) 6 C. (4)

Now, if the constant functions are cancelled by A (that is, A1 = 0), then Auk − f =
A(uk − mk) − f and TV(uk −mk ; Ω) = TV(uk ; Ω), so that vk := uk − mk is also a
minimizing sequence. Since vk is bounded in L2(Ω) by (4), it converges weakly to some
v ∈ L2(Ω). Similarly to Proposition 1, one can use compactness and lower semicontinuity
to show that v is a minimizer of (3).
On the other hand, if A1 6= 0, the boundedness of A still gives

‖A ·mk‖L2(Σ) = |mk|‖A1‖L2(Σ),

and since the left hand side is bounded, the sequence |mk| is also bounded and therefore
(uk) is bounded in L2(Ω) and converges weakly (up to a subsequence) to some u. The end
of the proof works then again as in Proposition 1.

In the rest of the section, we assume that we are in the case of Ω = R2 or Dirichlet
boundary conditions, but the results and their proofs are identical for Neumann boundary
conditions.

First, we recall some basic results about the convergence of uα as α vanishes, when
some noise is added to the data f .

Lemma 1. Let A : L2(Ω)→ L2(Σ) be a bounded linear operator. Moreover, assume that
there exists a solution ũ of (1) which satisfies TV(ũ) <∞. Then
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• There exists a solution u† of (1) with minimal total variation. That is Au† = f and

TV(u†) = inf
{

TV(u)
∣∣u ∈ L2(Ω), Au = f

}
.

• Given a sequence (αn) with αn → 0+, elements wn ∈ L2(Ω) and some positive
constant C such that

‖wn‖2L2(Σ)

αn
6 C, (5)

there exist a (not relabelled) subsequence (αn) and minimizers (uαn,wn) of

u 7→ 1

2
‖Au− (f + wn)‖2L2(Σ) + αnTV(u)

such that uαn,wn ⇀ u† weakly in L2(Ω) for u† a solution of (1) with minimal total
variation. Additionally, this convergence is also strong with respect to the L1

loc(R2)
and Lp(Ω) for 1 6 p < 2, topology, respectively, if Ω is bounded. Furthermore,
TV(uαn,wn)→ TV(u†).

Proof. A proof of the first statement can be found in [20, Theorem 3.25]. The second
relies on the compactness of the embedding of BV, and may be found in [20, Theorem
3.26] (see also [1, Theorem 5.1]).

For the results contained in the rest of this section, it will be enough to consider the
noiseless case, and therefore we denote a generic minimizer of Fα with the fixed data f
by uα. The theory of regularization methods is most often concerned with quantitative
versions of the convergence of uα. An essential ingredient of the analysis of convergence
rates analysis is the following source condition:

Definition 1. Let A∗ : L2(Σ) → L2(Ω) be the adjoint of A. We say that a minimum
norm solution u† satisfies the source condition if

R(A∗) ∩ ∂TV(u†) 6= ∅. (6)

Here R(A∗) denotes the range of the operator A∗ and ∂TV(u†) denotes the subgradient of
TV(·) at u† with respect to L2(Ω).

Remark 2. • This source condition, first introduced in [9], is standard in the inverse
problems community. It is the natural condition to obtain convergence rates (with
respect to the Bregman distance) of uα → u†. See [20, Prop. 3.35, Thm. 3.42].

• Let us notice that the set in (6) does not depend on which minimal variation solution

u† is chosen. Indeed, let u†1, u
†
2 be such solutions and assume

A∗p ∈ ∂TV(u†1),

which means that for every h ∈ L2(Ω)

TV(u†1 + h)− TV(u†1) > 〈A∗p, h〉L2(Ω) .

Now we can write for every k, since TV(u†2) = TV(u†1)

TV(u†2 + k)− TV(u†2) = TV(u†1 + (u†2 − u
†
1) + k)− TV(u†1)

>
〈
A∗p, (u†2 − u

†
1) + k

〉
L2(Ω)

=
〈
A∗p, u†2 − u

†
1

〉
L2(Ω)

+ 〈A∗p, k〉L2(Ω)

=
〈
p,Au†2 −Au

†
1

〉
L2(Σ)

+ 〈A∗p, k〉L2(Ω)

= 〈A∗p, k〉L2(Ω) ,
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which means that A∗p ∈ ∂TV(u†2).

Theorem 1. • Let α > 0. The dual problem (in the sense of [15]) of minimizing the
functional Fα, defined in (2), on L2(Ω) consists in maximizing, among p ∈ L2(Σ)
such that A∗p ∈ ∂TV(0), the quantity

Dα(p) := 〈f, p〉L2(Σ) −
α

2
‖p‖2L2(Σ) . (7)

Moreover,
inf

u∈L2(Ω)
Fα(u) = sup

A∗p∈∂TV(0)
Dα(p). (8)

If these quantities are attained by uα, pα, then we have the extremality relations

A∗pα ∈ ∂TV(uα) (9)

and

pα ∈ −∂
(

1

2α
‖A · −f‖2L2(Σ)

)
(uα) =

{
1

α
(f −Auα)

}
.

• Similarly, the formal limits of the minimization problems for (2) and (7) when α→ 0
write

lf := inf{TV(u) | u ∈ L2(Ω), Au = f} (10)

and
ld := sup

A∗p∈∂TV(0)
〈p, f〉L2(Σ) = sup

v∈R(A∗)∩∂TV(0)

〈
v, u†

〉
L2(Ω)

, (11)

and satisfy also the strong duality condition lf = ld. The extremality conditions for
(10) and (11), provided the quantities above are attained by some u†, p0, write

A∗p0 ∈ ∂TV(u†) (12)

and
p0 ∈ −

(
∂χ{f}(A ·)

)
(u†) = L2(Σ),

where χ{f} is the indicator function of the set {f}, i.e. χ{f}(q) = 0 if q = f , and
χ{f}(q) = +∞ otherwise.

Proof. In the L2 setting we can make use of classical duality theorems. In the notation of
[15, Theorem 4.2] our situation corresponds to:

V = L2(Ω), Y = L2(Σ),Λ = A,F (·) = TV(·) and G(·) =
1

2α
‖· − f‖2L2(Σ) .

In the formulas that arise from this theorem, we then use the identity (also used in [10])

∂TV(u†) =

{
v ∈ ∂TV(0)

∣∣∣∣ 〈v, u†〉L2(Ω)
= TV(u†)

}
, (13)

to obtain the statement. This identity, which holds for any 1-homogeneous convex func-
tional, can be derived taking advantage of the 0-homogeneity of the subgradient and noting
that for such a functional, we have the triangle inequality.

The assumption that there exists a maximizer of (11) is in fact related to the source
condition (6):

Lemma 2. There exists p0 maximizing the functional defined in (11) over p such that
A∗p ∈ ∂TV(0) if and only if the source condition (6) is satisfied.
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Proof. First, we note that

〈p, f〉L2(Σ) =
〈
p, Au†

〉
L2(Σ)

=
〈
A∗p, u†

〉
L2(Ω)

. (14)

• The source condition (6) implies the existence of p0 ∈ L2(Σ), v0 ∈ L2(Ω) such that

v0 = A∗p0 ∈ ∂TV(u†).

Then, we note that v ∈ ∂TV(0) implies that
〈
v, u†

〉
L2(Ω)

6 TV(u†). From (13) it

then follows that v0 maximizes
〈
·, u†

〉
L2(Ω)

in ∂TV(0), so that together with (14),

we get that p0 is a maximizer of (11).

• Conversely, if p0 ∈ L2(Σ) maximizes 〈·, f〉L2(Σ) among p such that A∗p ∈ ∂TV(0),
then the extremality condition (12) ensures that

A∗p0 ∈ ∂TV(u†),

and thus the source condition is satisfied.

Remark 3. The minimizers of the primal functionals (2), (10) as well as the maximizers
of the limit dual functional (11) are not unique in general. However, the dual functional
Dα has a unique maximizer. The existence follows directly since ∂TV(0) is weakly closed
(subgradients of lower semicontinuous convex functions are convex and strongly closed [7,
Proposition 16.4], hence weakly closed). Uniqueness follows by the strict convexity of the
squared L2 norm and convexity of ∂TV(0).

The following proposition is a key result explaining the importance of source condition.
In fact boundedness of the maximizers of the dual problems is closely related to the
source conditions. The arguments are similar as proving convergence of the Augmented
Lagrangian Method (see [17]), which have also been used to prove convergence rates results
for dual variables [16] and to prove existence of Bregman TV-flows [8]. The proof of the
first part follows [14].

Proposition 3. Let the source condition (6) be satisfied and let pα be the maximizer of
(7). Then, we have that

lim
α→0+

pα = p∗ strongly in L2(Σ),

where p∗ is the maximizer of (11) with minimal L2(Σ) norm. Conversely, if (pα) is bounded
in L2(Σ), then the source condition is satisfied.

Proof. Let p0 be a maximizer of (11), which exists by Lemma 2. We have that

〈p0, f〉L2(Σ) =
〈
A∗p0, u

†
〉

L2(Ω)
>
〈
A∗pα, u

†
〉

L2(Ω)

and analogously, since pα maximizes Dα(·) that〈
A∗pα, u

†
〉

L2(Ω)
− α

2
‖pα‖2L2(Σ) >

〈
A∗p0, u

†
〉

L2(Ω)
− α

2
‖p0‖2L2(Σ) . (15)

Summing these inequalities, we see that (pα) is bounded and therefore converges weakly
(up to a subsequence) to some p∗ ∈ L2(Σ). Passing to the limit in the two previous
equations gives

〈p0, f〉L2(Σ) = 〈p∗, f〉L2(Σ)
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where A∗p∗ ∈ ∂TV(0), the latter being weakly closed. Equation (15) and weak convergence
imply that

‖p∗‖L2(Σ) 6 lim inf ‖pα‖L2(Σ) 6 ‖p0‖L2(Σ)

which implies that p∗ is actually the minimal norm maximizer of the functional 〈·, f〉L2(Σ)

over p such that A∗p ∈ ∂TV(0), and that the convergence is strong (and for every subse-
quence).

Let us now assume that (pα) is bounded in L2(Σ). Then by weak compactness for the
pα and applying Lemma 1 (with wn = 0), there exist αn → 0, u† a solution of Au = f
with minimal total variation, and p such that

pαn ⇀ p in L2(Σ), and

uαn → u† in L1
loc(Ω).

The extremality conditions (9) and (13) imply that

〈A∗pαn , uαn〉L2(Ω) = TV(uαn).

Since TV(·) is lower semi-continuous on L1
loc(R2), we have TV(u†) 6 lim infn TV(uαn).

On the other hand, one can write

TV(uαn) =
〈
A∗pαn , u

†
〉

L2(Ω)
+
〈
A∗pαn , uαn − u†

〉
L2(Ω)

=
〈
A∗pαn , u

†
〉

L2(Ω)
+ 〈pαn , Auαn − f〉L2(Σ) ,

where the first term of the right hand side converges to
〈
A∗p, u†

〉
L2(Ω)

whereas the second

term goes to zero because (pαn) is uniformly bounded in L2(Ω) and because of the strong
L2(Σ) convergence Auαn → f . Moreover, A∗p ∈ ∂TV(0) because ∂TV(0) is weakly closed.
Hence A∗p ∈ ∂TV(u†), which is the source condition.

3 Convergence of Level-Sets

From Proposition 3 it follows that the family

(vα) := (A∗pα) converges strongly in L2(Ω)

if the source condition (6) it satisfied, so the family is bounded and equi-integrable. That
is the basis of the proof in [10] of convergence of level-sets.

Before stating the result, we introduce uα,w a minimizer of Fα or F̂α for the data f+w,

where w corresponds to a noise, as in Lemma 1. For every t ∈ R, we denote by U
(t)
α,w the

t level-set of uα,w, that is

U (t)
α,w := {x ∈ Ω | uα,w(x) > t} for t > 0,

U (t)
α,w := {x ∈ Ω | uα,w(x) 6 t} for t < 0,

this choice being made to ensure that the volume of the level-sets considered are always
finite (except the zero one that should be considered separately, see [10]). Similarly, we

call U
(t)
† the level-sets of u†. Then, we have

Theorem 2. Assume that either:
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• For Dirichlet boundary conditions or Ω = R2, let (wn) ⊂ L2(Σ) and αn → 0+ such
that

‖wn‖L2(Σ)‖A∗‖
αn

6 η <
√
π. (16)

If Ω is bounded, assume further that it admits a variational curvature κΩ ∈ L1(R2)
such that κΩ > g with g ∈ L2(R2 \ Ω).

• For Neumann boundary conditions, with (wn) ⊂ L2(Σ) and αn → 0+ such that

‖wn‖L2(Σ)‖A∗‖
αn

6 η <
1

C(Ω)
, (17)

with C(Ω) is some Sobolev-Poincaré constant, to be specified later.

Then up to a subsequence and for almost all t ∈ R, denoting Uαn,wn by Un, we have
that

lim
n→∞

|U (t)
n ∆U

(t)
† | = 0, and lim

n→∞
∂U (t)

n = ∂U
(t)
† ,

the second limit being understood in the sense of Hausdorff convergence.

In what follows, we use the notion of variational curvature that we make precise now.

Definition 2. Let v ∈ L1(Ω). Then a set E is said to have variational curvature v in Ω
if

• The perimeter in Ω of E finite.

• E minimizes the functional

F → Per(F )−
∫
F
v

among compact perturbations, that is, for every F such that F∆E is compactly
supported in Ω we have

Per(E)−
∫
E
v 6 Per(F )−

∫
F
v. (18)

Remark 4. For smooth sets, this notion is strongly related with the differential notion of
curvature. Indeed, assuming that the boundary of E is smooth and that v is also smooth,
one may consider diffeomorphic deformations φs : Ω → Ω applied to E such that each
boundary point x ∈ ∂E is mapped to x + sh(x)ν(x), where ν is the outer unit normal
vector and h : Ω→ R a smooth function. We obtain at s = 0 [19, Section 17.3]

d

ds
Per

(
φs
(
E
))

=

∫
∂E
h(x)κ(x) dH1(x) and

d

ds

∫
φs
(
E
) v =

∫
∂E
h(x)v(x) dH1(x),

where κ is the curvature of ∂E and H1 is the 1-dimensional Hausdorff measure. Since h
was arbitrary and using the minimality (18) of E, we must have κ

∣∣
∂E

= v.
In [5], the authors show that every set with finite perimeter has a variational curvature

in L1(R2), so such a quantity will exist for every set considered in this paper.
The restriction κΩ > g that is put on Ω in Theorem 2 roughly means that inside corners

(where the curvature is negative, see Figure 1 (c)) are not allowed. Indeed, corners are
known not to have a curvature in L2(R2) [18, Theorem 1.1]. However, many interesting
domains satisfy κΩ > g with g ∈ L2(R2 \ Ω) (see Figure 1 (a) and (b)), in particular:
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Figure 1: Three Lipschitz domains. Domains (a) and (b) have a variational curvature with
lower bound in L2 of their complements, whereas (c), because of the inside corner, does
not.

• Any convex domain, even with corners, has a variational curvature κΩ such that
κΩ = 0 on R2\Ω, since a convex set minimizes perimeter among outer perturbations.
Indeed, if F ⊃ E, this writes Per(F ) > Per(E) which is precisely (18) after using∫
F κΩ =

∫
E κΩ +

∫
F\E κΩ.

• Any C1,1 domain has a curvature κΩ ∈ L∞(R2). To see this, first notice that at
boundary points of a C1,1 set one can place balls of radius bounded below and
completely inside or outside Ω [13, Theorems 7.8.2 (ii) and 7.7.3]. Moreover, it is
proved in [4, Remark 1.3 (ii)] that the variational curvature constructed in [18] for
a set with the mentioned property is bounded.

We outline the main ingredients of the proof of Theorem 2 below, along the lines of
[10], highlighting the differences that appear because of the operator A and the different
boundary conditions.

3.1 Structure of the proof of Theorem 2

Denoting by un the functions uαn,wn , minimizers of either the Functional Fα or F̂α with
data f +wn and parameter αn, and since the condition (16) (resp. (17)) is stronger than
(5), we know by Lemma 1 that un → u† strongly in L1

loc(R2).
The proof is accomplished in two steps. The first is to improve the convergence of u

from L1
loc to L1, which is the convergence in mass of its level-sets. In the second step, the

L1 convergence of the level-sets is improved to Hausdorff convergence.

First step. We show in Section 3.4 that actually the un have a compact support (that
does not depend on n) so that the convergence of un also holds in L1 strong, which implies

that, up to a subsequence that we still denote by n, the level-sets U
(t)
n of un converge to

the level-sets U
(t)
† of u† in L1, and for almost every t.

Second step. An improvement of mode of convergence like the one we need can, in
general, only be accomplished through a regularity result. In our case, the adequate prop-
erty is termed weak-regularity in [10], and relates to the well-known density estimates for
Λ-minimizers of perimeter [19, Theorem 21.11]. Thanks to (20) below and the parame-
ter choice (16,17), we will see that the curvature of level-sets of uα,w is controlled which
roughly speaking implies that it cannot contain sharp tips, which in turn will imply that
such a level-set should locally have significant mass at both sides of its boundary. In sym-
bols, E and its complement Ec have a significant fraction of mass around each x ∈ ∂E.
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That is, one considers for small r the sets E \B(x, r) and E ∪B(x, r), and obtains lower
bounds of the type

|B(x, r) ∩ E|
|B(x, r)|

> C and
|B(x, r) \ E|
|B(x, r)|

> C. (19)

We prove this property for all the different boundary conditions in Section 4. Let us now
explain how (19) implies that for collections of sets which lie inside a common ball (we
will see that the level-sets of uα,w do), L1 convergence and Hausdorff convergence are
equivalent. To see this, just consider En converging to F in L1 such that the En satisfy
(19) with C and r 6 r0 uniform in n, and the definition of Hausdorff distance:

dH(En, F ) = max

{
sup
x∈En

d(x, F ), sup
y∈F

d(y,En)

}

= max

{
sup
x∈En

inf
y∈F
|x− y|, sup

y∈F
inf
x∈En

|x− y|

}
,

and suppose without loss of generality that the first term of the right hand side does not
converge to 0. This would imply that there is a δ > 0 (we can take δ < r0) and xn ∈ En
such that d(xn, F ) > δ, and in particular B(xn, δ)∩F = ∅. This implies using the density
estimate (19) that

|En ∆F | > |(En ∩B(xn, δ)) \ F | = |En ∩B(xn, δ)| > Cδ2,

contradicting the L1 convergence.

3.2 The level-set problem

We turn our attention to the function

vα,w = A∗pα,w =
1

α
A∗(f + w −Auα,w),

derived from the dual certificates for the minimization of (2) (resp. (3)). The reason is

that this function is the variational curvature of U
(t)
α,w. Indeed, it is proved in [10, Prop.

3] that the extremality relation (9) is equivalent to the statement that for every F ⊂ Ω
and every t 6= 0,

Per(F )− sgn(t)

∫
F
vα,w > Per(U (t)

α,w)− sgn(t)

∫
U

(t)
α,w

vα,w, (20)

which implies that U
(t)
α,w has a variational curvature sgn(t)vα,w. Furthermore, it is also

shown in [10, Prop. 3] that (13) implies that the U
(t)
α,w satisfy

Per(U (t)
α,w) = sgn(t)

∫
U

(t)
α,w

vα,w.

These formulas are consequences of slicing equations (9) and (13) using the coarea and
layer cake formulas.

3.3 Parameter choice

First, we will see that the noise does not significantly modify the geometrical properties
of the level-sets, as long as α is chosen relatively to the noise level. Indeed, in view of (7)
one can note that pα,w is the L2(Σ) orthogonal projection of f+w

α onto the convex set{
p ∈ L2(Σ)

∣∣ A∗p ∈ ∂TV(0)
}
.

10



The non-expansiveness of the projection operator leads to

‖pα − pα,w‖L2(Σ) 6
‖w‖L2(Σ)

α
,

which, together with the boundedness of A∗, means that

‖vα − vα,w‖L2(Ω) 6
‖w‖L2(Σ)‖A∗‖

α
6 η,

so that the curvatures of the level-sets of uα,w and uα, for noisy and noiseless data respec-
tively, can be forced to be as close as needed when w → 0 through the choice of α. The
necessity of the restrictions for η of (16) and (17) is made apparent in Sections 3.4 and 4
below.

3.4 Upper bounds and compact support

We now prove that sets E satisfying

Per(E) =

∫
E
vα,w (21)

(in particular, the level-sets of the minimizers uα,w) have uniformly bounded perimeter,
and their support is contained in a common ball. The latter completes the first step of
Section 3.1.

If we work with bounded Ω, a bound on the perimeter follows easily from (21) and
(16) (resp. (17)):

Per(E) 6

∣∣∣∣∫
E

(vα,w − vα)

∣∣∣∣+

∣∣∣∣∫
E
vα

∣∣∣∣ 6 η
√
|Ω|+

√
|Ω|‖vα‖L2(Ω)

6

(
η + sup

α
‖vα‖L2(Ω)

)√
|Ω|.

The R2 case is very close to what is done in [10]. We sketch now the arguments given
in [10], that apply directly to this case. The same parameter choice (16) is required.

Here, by Proposition 3, we have that vα → v0 strongly in L2(Ω), and therefore the
family (vα) is L2-equiintegrable, which means that one can find a ball B(0, R) such that∫

R2\B(0,R)
v2
α 6 η.

Then, for every E with finite mass that satisfies (21) and provided α and w satisfy (16),

Per(E) 6

∣∣∣∣∫
E

(vα,w − vα)

∣∣∣∣+

∣∣∣∣∣
∫
E∩B(0,R)

vα

∣∣∣∣∣+

∣∣∣∣∣
∫
E\B(0,R)

vα

∣∣∣∣∣
6 η

√
|E|+

√
|B(0, R)|‖vα‖L2(Ω) +

√
|E \B(0, R)|η

6

(
η + sup

α
‖vα‖L2(Ω)

)√
|B(0, R)|+ 2η

√
|E \B(0, R)|.

Now, isoperimetric inequality (that is, 4π|E| ≤ Per(E)2) and sub-additivity of the perime-
ter lead to√

|E \B(0, R)| 6 1√
4π

Per(E \B(0, R)) 6
1√
4π

(
Per(E) + Per(B(0, R))

)
,

11



which when used in the previous equation, since η <
√
π, implies that Per(E) is bounded

uniformly in α. Once again using the isoperimetric inequality yields the boundedness of
|E| independently of α, as long as (16) is satisfied.

We now prove that the mass and perimeter of level-sets of uα,w are bounded away from
zero. The equiintegrability of (vα) ensures that there is no concentration of mass for vα:∫
E v

2
α is small if |E| is small. Then, if E satisfies (21), Cauchy Schwarz inequality provides

an inequality of the type
Per(E) 6 ε

√
|E|,

which together with the isoperimetric inequality, implies Per(E) 6 CεPer(E), which is
not possible for ε too small. Therefore, |E| must be bounded away from zero (and Per(E)
as well thanks to the isoperimetric inequality).

One can then show, using [2], that if E has a finite mass and satisfies (21), it can
be split into connected components which also satisfy (21). Therefore, the perimeter and
mass of such components are bounded from above and below, which implies that there
can only be finitely many of them. Since their perimeter is bounded, their diameter is
bounded too, which implies that they all lie in a ball B(0, R). So does E.

Remark 5. As a byproduct of the previous proof, one can notice that all level-sets of u†

belong to some ball B(0, R), which means that ∂TV(u†) 6= ∅ implies that u† has a compact
support. To our knowledge, this property was never stated before, although it is implicit
in [10]. Since it is a result on the subgradient, it applies whether A = Id or not.

4 Proof of the density estimates

In this section, we derive the density estimates (19) in each of the three boundary frame-
works that are mentioned in this article. The proof follows the usual strategy for this kind
of estimates (see [19], for example), but the appearance of different boundary conditions
requires a closer examination.

The general strategy of the proof is to use minimality of a set in problem (20) and
compare it with the sets obtaining by adjoining or substracting pieces of balls centered at
a point of its boundary, leading to the first and second parts of (19) respectively.

In what follows we consider only the first estimate, since the second one can be derived
analogously. We emphasize that the bounds obtained need to be uniform in α in order to
obtain the desired convergence.

For a Lebesgue set E ⊂ R2, we use the notations E(1) and E(0) for the points where
the density of E is 1 and 0 respectively. That is, for s ∈ {0, 1} we have

E(s) =

{
x ∈ R2

∣∣∣∣ lim
r→0

|B(x, r) ∩ E|
|B(x, r)|

= s

}
.

Furthermore, we note that by the Lebesgue differentiation theorem

|E(0)∆(R2 \ E)| = 0 and |E(1)∆E| = 0.

Since D1E is a Radon measure, one can consider the perimeter of E in every Borel
subset F , which we denote by P (E ; F ) := |D1E |(F ). We can then prove

Lemma 3. Let κ ∈ L2(Ω) (with Ω bounded or Ω = R2) and E ⊂ Ω minimize

F 7→ Per(F )−
∫
F
κ,

where the perimeter is either understood in Ω (Neumann) or in R2 (Dirichlet). Then, one
has for almost every r

Per(E ∩B(x, r))−
∫
E∩B(x,r)

κ 6 2 Per(B(x, r) ; E(1)) (22)

12



Remark 6. One can note that

Per(B(x, r) ; E(1)) = H1(∂B(x, r) ∩ E) for almost every r, (23)

for H1 the 1-dimensional Hausdorff measure. In fact, (22) can be proved for all r by
keeping track of extra terms in (24) and (25) that appear when the sets have tangential
contact.

Proof. We use the following inequality, valid for every finite perimeter sets F,G ⊂ Ω,

Per(F \G) + Per(G \ F ) 6 Per(F ) + Per(G), (24)

which can be proved by using (16.11) of [19, Theorem 16.3] twice. We will also apply the
following equality, which holds for almost every r > 0

Per((B(x, r) ∩ Ω) \ E)

= Per(B(x, r) ∩ Ω ; E(0) ∩ Ω) + Per(E ; B(x, r) ∩ Ω)

= Per(B(x, r) ∩ Ω ; E(0) ∩ Ω) + Per(E ∩B(x, r) ; Ω)− Per(B(x, r) ∩ Ω ; E(1) ∩ Ω).
(25)

This equality can be deduced using relations (16.11) and (16.10) of [19] and noting that
for almost every r,

H1 [(∂(B(x, r) ∩ Ω) ∩ ∂∗E) ∩ Ω] = 0, (26)

since H1(∂∗E) <∞, where ∂∗E is the reduced boundary of E [19, Chapter 15].
Using the minimality of E, then the two formulas above, and the additivity of perime-

ter, we get

Per(E)−
∫
E
κ 6 Per(E \B(x, r))−

∫
E\B(x,r)

κ

6 Per(E) + Per(B(x, r) ∩ Ω)− Per((B(x, r) ∩ Ω) \ E)−
∫
E\B(x,r)

κ

= Per(E) + Per(B(x, r) ∩ Ω)− Per((B(x, r) ∩ E)− Per(B(x, r) ∩ Ω ; E(0) ∩ Ω)

+ Per(B(x, r) ∩ Ω ; E(1) ∩ Ω)−
∫
E\B(x,r)

κ

= Per(E)− Per(B(x, r) ∩ E) + 2 Per(B(x, r) ; E(1) ∩ Ω)−
∫
E\B(x,r)

κ,

where in the last equality we use [19, Theorem 16.2] and again (26). Since E(1) ⊂ Ω, the
above is the statement of (22).

4.1 The R2 case.

Here, Ω = R2 and the proof is then the one presented in [10] up to making more explicit
the constants involved. We denote by E a level-set (which we assume without loss of
generality to be positive) of uα,w that therefore minimizes

F 7→ Per(F )−
∫
F
vα,w,

and x ∈ ∂E. Thanks to the equiintegrability of vα (which, as noted before, follows from
the strong convergence in L2 showed in Proposition 3), for every δ > 0 and |F | 6 πr2

0 with
r0 small enough (independent of α but dependent of δ) one has
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(∫
F
|vα|2

)1/2

6 δ. (27)

Then, (16) and the above imply that for r 6 r0,∣∣∣∣∣
∫
E∩B(x,r)

vα,w

∣∣∣∣∣ 6 |E ∩B(x, r)|1/2‖vα,w‖L2(B(x,r))

6 |E ∩B(x, r)|1/2
(
‖vα‖L2(B(x,r)) + η

)
6 |E ∩B(x, r)|1/2(δ + η).

Using the above in (22), we obtain

Per(E ∩B(x, r))− |E ∩B(x, r)|1/2(δ + η) 6 2 Per(B(x, r) ; E(1)),

which combined with the isoperimetric inequality in R2 and finally (23) yields

|E ∩B(x, r)|1/2(2
√
π − δ − η) 6 2H1(E ∩ ∂B(x, r)). (28)

Now, denoting by
g(r) := |E ∩B(x, r)|,

we have that for a.e. r, g′(r) = H1(E ∩ ∂B(x, r)). As a result, (28) reads

(2
√
π − δ − η)

√
g 6 2g′.

Now, if η and δ are chosen such that δ + η < 2
√
π, one can integrate on both sides and

use g(0) = 0 to get (2
√
π − δ − η)r 6 4

√
g(r), which reads

|B(x, r) ∩ E|
|B(x, r)|

>
(2
√
π − δ − η)2r2

16πr2
=

(2
√
π − δ − η)2

16π
,

which is uniform in α. Since δ was arbitrary and the parameter choice (16) implies η <
√
π,

we obtain (19).

4.2 The Dirichlet case

In this subsection, we consider the case of Dirichlet conditions in a bounded domain, and
see that it can be treated through a variational problem formulated in R2:

Lemma 4. Assume that Ω admits a variational curvature κΩ such that κΩ > g with
g ∈ L2(R2), and let E ⊂ Ω satisfy (20) (we assume that t > 0). Then, E satisfies the
following variational problem among sets F ⊂ R2 such that F∆E is bounded:

Per(E)−
∫
E
κα,w 6 Per(F )−

∫
F
κα,w, where κα,w = vα,w1Ω + g1R2\Ω.

Proof. Similarly to [6, Lemma, p. 132], we consider the constraint as an obstacle and we
write

Per(E)−
∫
E
κα,w = Per(E)−

∫
E
vα,w 6 Per(F ∩ Ω)−

∫
F∩Ω

vα,w

6 Per(F ) + Per(Ω)− Per(F ∪ Ω)−
∫
F∩Ω

vα,w

= Per(F ) + Per(Ω)− Per(F ∪ Ω)−
∫
F∩Ω

κα,w.

(29)
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On the other hand, the assumption on Ω implies

Per(Ω)−
∫

Ω
κΩ 6 Per(F ∪ Ω)−

∫
F∪Ω

κΩ,

which we can use in (29) to get

Per(E)−
∫
E
κα,w 6 Per(F )−

∫
F∩Ω

κα,w −
∫
F\Ω

κΩ

6 Per(F )−
∫
F∩Ω

κα,w −
∫
F\Ω

g

= Per(F )−
∫
F∩Ω

κα,w −
∫
F\Ω

κα,w

= Per(F )−
∫
F
κα,w.

Now, for x ∈ ∂E, we may perturb E with balls B(x, r) not necessarily contained in Ω.
Since the κα,w are, as the vα,w, equiintegrable, we can apply the R2 density estimates of
Section 4.1 to obtain (19) for the Dirichlet boundary conditions.

4.3 The Neumann case

We have assumed that Ω is such that its boundary can be locally represented as the graph
of a Lipschitz function (so it is in particular an extension domain, see [3, Definition 3.20,
Proposition 3.21]). Therefore, as a replacement for the isoperimetric inequality, we can
use the following Poincaré-Sobolev inequality [3, Remark 3.50] valid for u ∈ BV(Ω):∥∥∥∥u− 1

|Ω|

∫
Ω
u

∥∥∥∥
L2(Ω)

6 C(Ω) TV(u ; Ω).

With u = 1F the indicator function of some F ⊂ Ω, the left hand side reads∫
Ω

∣∣∣∣1F − |F ||Ω|
∣∣∣∣2 = |F |

(
|Ω \ F |
|Ω|

)2

+ |Ω \ F |
(
|F |
|Ω|

)2

and the inequality yields

C(Ω) Per(F ) >

(
|F | |Ω \ F |
|Ω|2

)1/2

(|Ω \ F |+ |F |)1/2 >

(
|F | |Ω \ F |
|Ω|

)1/2

. (30)

As before, let E satisfy (20). Applying (30) to E ∩B(x, r), we get

|E ∩B(x, r)|1/2 6 C(Ω)

(
|Ω|

|Ω \ (E ∩B(x, r))|

)1/2

Per(E ∩B(x, r))

6 C(Ω)

(
|Ω|

|Ω \B(x, r)|

)1/2

Per(E ∩B(x, r)).

(31)

Now, the parameter choice (17) implies that one can choose r0 independent of x such that
for every r 6 r0,

η <
1

C(Ω)

(
|Ω| − |B(r)|
|Ω|

)1/2
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and such that (27) holds for some δ that satisfies

1

C(Ω)

(
|Ω| − |B(r0)|

|Ω|

)1/2

− δ − η > 0.

We can then use (31) in (22) (which holds since E satisfies (20)) and perform the same
remaining steps as in Section 4.1 to get the estimate

|B(x, r) ∩ E|
|B(x, r)|

>

(
1

C(Ω)

(
|Ω|−|B(r0)|
|Ω|

)1/2
− δ − η

)2

16π
,

where the right hand side is uniform in r and x. This is the first part of (19). In this case,
the other estimate of (19) reads

|(B(x, r) ∩ Ω) \ E|
|B(x, r)|

> C,

which is still enough for the Hausdorff convergence of ∂U
(t)
α,w of Section 3.1.

5 Examples and discussion

We first consider two particular examples of operators A where the above results apply.

5.1 The circular Radon transform

We review from [20] the problem of inverting the circular Radon transform

Rcirc u = v (32)

in a stable way, where

Rcirc : L2(R2)→ L2
(
Σ = S1 × (0, 2)

)
,

u 7→ (Rcirc u)(~z, t) := t

∫
S1
u(~z + t~ω) dH1(~ω) .

(33)

In the following let Ω := B(0, 1) be an open Ball of Radius 1 with center 0 in R2 and let
ε ∈ (0, 1). We are considering the spherical Radon transform defined on the subspace of
functions supported in B(0, 1− ε), that is on

L2(B(0, 1− ε)) :=
{
u ∈ L2(R2)

∣∣∣ supp(u) ⊆ B(0, 1− ε)
}
.

Some properties [20, Prop. 3.80 and 3.81] of the circular Radon transform are:

• The circular Radon transform, as defined in (33), is well-defined, bounded, and
satisfies ‖Rcirc‖ ≤ 2π.

• There exists a constant Cε > 0, such that

C−1
ε ‖Rcirc u‖2 ≤ ‖i

∗(u)‖1/2,2 ≤ Cε ‖Rcirc u‖2 , u ∈ L2(B(0, 1− ε)) ,

where i∗ is the adjoint of the embedding i : W1/2,2(B(0, 1)) → L2(B(0, 1)) of the
standard Sobolev space of differentiation of order 1/2 on Ω.
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• For every ε ∈ (0, 1) we have

R(R*
circ) ∩ L2(B(0, 1− ε)) = W1/2,2(B(0, 1− ε)) ,

where

W1/2,2(B(0, 1− ε))

:=
{
u ∈ L2(R2)

∣∣∣ suppu ⊂ B(0, 1− ε) and u|B(0,1) ∈W1/2,2(B(0, 1))
}
.

Note that W1/2,2 is not the standard definition of a Sobolev space because we as-
sociate with each function of the space W1/2,2(B(0, 1− ε)) an extension to R2 by 0
outside. We could also say, in the terminology of this paper, that these functions
satisfy zero Dirichlet boundary condition on B(0, 1− ε).

It was shown in [20, Prop. 3.82 and 3.83] that minimization of the functional (2) with
A = Rcirc:

• is well-posed, stable, and convergent.

• Moreover, the following result holds: Let ε ∈ (0, 1) and u† be the solution of (32).
Then we have the following convergence rates result for TV-regularization: If ξ ∈
∂TV(u†) ∩W1/2,2(B(0, 1− ε)), then

TV(uδα(δ))− TV(u†)−
〈
ξ, uδα(δ) − u

†
〉

= O(δ) for α(δ) ∼ δ.

In the last equation, the left hand side is called Bregman distance of TV at u† and
ξ.

With the results of this paper, if the parameter α is chosen finer, meaning satis-
fying (16), we not only have convergence rates of the Bregman distance, but also
convergence of the level-sets.

There are particular examples for which the source condition is satisfied:

– Let ρ ∈ C∞0 (R2) be an adequate mollifier and ρµ the scaled function of ρ.
Moreover, let x0 = (0.2, 0), a = 0.1, and µ = 0.3. Then

u† := 1B(x0,a+µ) ∗ ρµ

satisfies the source condition.

– Let u† := 1F be the indicator function of a bounded subset of R2 with smooth
boundary. Then, the source condition is satisfied as well [20, Example 3.74].

5.2 A numerical deblurring example

The second situation we consider is a numerical deconvolution example, in which an in-
dicator function has been blurred with a Gaussian kernel and subsequently corrupted by
additive Gaussian noise. Both the convolution kernel and the variance of the noise are
assumed known, and Dirichlet boundary conditions on a rectangle are used. These choices
lead directly to the minimization of (2) and enable the use of a parameter choice according
to (16), so that the the results of Section 3 provide convergence of level-lines.

The discretization of choice is the ‘upwind’ finite difference scheme of [11], and the
resulting discrete problem is solved with a primal-dual algorithm with the convolutions
implemented through Fourier transforms as in [12]. The boundary conditions were imposed
by extending the computational domain and projection onto the corresponding constraint.
The results and parameter choices are shown in Figure 2.

Finally, we make some remarks on the influence of the boundary conditions in the
qualitative properties of the corresponding solutions.
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5.3 Denoising in R2 or in Ω with Dirichlet conditions

In this subsection, we consider only denoising (A = Id). If u† = f has a bounded support
in R2, one can minimize (2) either in R2 or in a bounded domain Ω containing the support
of f . In general, these minimizations yields different results. Nevertheless, when Ω is
convex, we can easily show

Proposition 4. Let f have compact support included in an open convex set Ω. Then,
minimizing (2) on Ω with Dirichlet homogeneous boundary conditions or R2 lead to the
same solution.

Proof. We just need to show that the minimizer u of (2) in R2 has a support in Ω. If
it were not the case, just note that replacing u by u · 1Ω decreases both terms of the
functional. For the total variation part, this result uses the convexity of Ω.

If Ω is not convex, it is easy to construct examples where this result is no longer true,
even for denoising. See Figure 3. Nevertheless, the direct application of Theorem 2 show
that as α→ 0, the level-sets of these two minimizers concentrate around the ones of f .

5.4 Denoising with Neumann boundary conditions

As in the Dirichlet case, there are some configurations where solving in a bounded domain
does not correspond to solving for R2. For example, if A = Id, f = 1B(0,1) and Ω = B(0, R)
with R > 1, the minimizer of (3) is

uα =

(
1− α− 2α

R2 − 1

)
1B(0,1) +

2α

R2 − 1
1B(0,R),

whereas the minimizer of (2) in R2 is clearly 1B(0,1).
One can also see lower left image in Figure 3, which contains the denoising of the C in

a rectangle.
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Figure 2: Deblurring of a characteristic function by total variation regularization with
Dirichlet boundary conditions. First row: Input image blurred with a known kernel and
with additive noise. Second row: numerical deconvolution result, corresponding to mini-
mizers of (2). Third row: some level lines of the results. The regularization parameters
are α = 1, 0.25, 0.0625, 0.0156 and the variance of the Gaussian noise used is α/10.
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Figure 3: Denoising of a C with different boundaries and boundary conditions. Upper left:
original image. Upper middle: convex Dirichlet domain. Upper right: nonconvex domain.
Lower left: result with Neumann boundary. Lower middle: Dirichlet result in the convex
domain Lower right: Dirichlet result in the nonconvex domain. The Neumann solution
reflects the fact that for level-sets that reach the boundary of Ω, part of their perimeter
is not penalized. For the rightmost solution, since the domain is not convex, the solution
is different to that of the R2 case.
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