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Abstract

The paper considers linear problems on weighted spaces of high-dimensional
functions. The main questions addressed are: When is it possible to approximate
the original function of very many variables by the same function; however with
all but the first k variables set to zero, so that the corresponding error is small?
What is the truncation dimension, i.e., the smallest number k = k(ε) such that the
corresponding error is bounded by a given error demand ε? Surprisingly, k(ε) could
be very small.

1 Introduction

This paper is a continuation of our study initiated in [5, 7] on the truncation di-
mension for functions with a huge (or even infinite) number of variables. Since our
notion of the truncation dimension is very different from the one used in the statis-
tical literature, we next provide its definition and then compare it to the statistical
one.

Let F be a normed linear space of s-variate functions defined on Ds. Here s
is very large or even infinite. For simplicity, we assume that 0 ∈ D where D is a
subinterval of R (we also allow D to be unbounded). Let

S : F → G

be a continuous linear operator into another normed linear space G. Consider
the problem of approximating S(f). Since the number s of variables is huge (or
even s = ∞), it is natural to ask whether approximations of functions fk(x) =
f(x1, . . . , xk, 0, 0, . . . ), that depend only on k � s variables (here � indicates in an
informal way that k is “much” smaller than s), are good enough to approximate
S(f). This leads to the following notion of truncation dimension.

Suppose that for any f ∈ F and any k ∈ N := {1, 2, 3, . . .} the function fk
obtained from f by setting all the variables xj with j > k to be zero,

fk(x) := f(x1, . . . , xk, 0, 0, . . . ) for x = (x1, x2, . . . , xs), (1) starstar
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also belongs to F . For given k ∈ N, by the kth truncation error we mean

errtrnc(k) := sup
f∈F

‖S(f − fk)‖G
‖f − fk‖F

.

def:truncdim Definition 1 For a given error demand ε > 0, the ε-truncation dimension for
approximating S (or truncation dimension for short) is defined as

dimtrnc(ε) := min
{
k : errtrnc(k) ≤ ε

}
.

We stress that the truncation dimension is a property of the problem. In particular,
it depends on the spaces F ,G, the operator S, and the error demand ε. This is
in a contrast with the truncation dimension concept in statistical literature (see
e.g. [1, 10, 11, 13]), which depends on the particular function under consideration.
Moreover, it is defined via ANOVA decomposition which is hard to approximate
directly using only function evaluations.

In the rest of the paper we estimate the truncation dimension for a special, yet
important, class of γ-weighted spaces F with anchored decomposition and S having
a tensor product form.

Roughly speaking, functions from F have a decomposition

f(x) =
∑
u

fu(x),

where the sum is with respect to finite subsets u ⊆ {1, . . . , s} (or u ⊂ N if s =∞),
and each function fu depends only on the variables listed in u. Moreover, each fu
belongs to a normed space Fu, and we define the norm in F by

‖f‖F =

(∑
u

γ−pu ‖fu‖
p
Fu

)1/p

<∞

for some 1 ≤ p ≤ ∞ and positive numbers γu called weights. Of course ‖f‖F =
supu γ

−1
u ‖fu‖Fu when p =∞.

For s =∞, these spaces include spaces of special functions of the form

f(x) = g(X(t)),

where X(t) is the value of the stochastic process X(t) =
∑∞

i=1 xi φi(t) at time t.
Here the xi’s are i.i.d. random variables and the base functions φi(t) converge to
zero sufficiently fast. Clearly

f(x) = g

( ∞∑
i=1

xi φi(t)

)
whereas fk(x) = g

(
k∑
i=1

xi φi(t)

)
.

Moreover, the weights γu can be written as product weights of the form

γu =
∏
j∈u

φβj (t)
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for some β ≤ 1. We prove that then (cf. Theorem 2) the truncation dimension can
be bounded from above by the smallest integer k such that ∞∏

j=1

(1 + (C1φ
β
j (t))p

∗
)

1− exp

−Cp∗1

∞∑
j=k+1

(φβj (t))p
∗

1/p∗

≤ ε.

Here and elsewhere, p∗ is the conjugate of p (i.e., 1
p + 1

p∗ = 1), C1 > 0 is a number
such that ‖S1‖ ≤ C1 and ‖S1‖ is the norm of the operator S restricted to the space
F{1} of functions depending only on one variable. (One has to apply the usual
adaptions if p = 1, cf. Theorem 2 again.) From this result it can be seen that faster

decay of the φβj (t) leads to smaller truncation dimension.
We illustrate this for different values of ε, p, and γu. We use product weights of

the form γu =
∏
j∈u j

−α for α ∈ {2, 3, 4, 5}. For simplicity, we assume that C1 = 1.
For p = 2 we have:

ε 10−1 10−2 10−3 10−4 10−5 10−6

dimtrnc(ε) 4 19 90 416 1933 8973 α = 2

dimtrnc(ε) 2 5 13 33 84 210 α = 3

dimtrnc(ε) 2 3 6 12 22 43 α = 4

dimtrnc(ε) 1 2 4 7 11 18 α = 5

In particular, for the error demand ε = 10−3 it is enough to work with only 90
variables when α = 2, only 13 variables when α = 3, and with 6 or 4 when α = 4
or 5, respectively.

For p = 1 we have dimtrnc(ε) = dε−1/α − 1e, which leads to even better results.
The following table already appeared in [7]:

ε 10−1 10−2 10−3 10−4 10−5 10−6

dimtrnc(ε) 3 9 31 99 316 999 α = 2

dimtrnc(ε) 2 4 9 21 46 99 α = 3

dimtrnc(ε) 1 3 5 9 17 31 α = 4

dimtrnc(ε) 1 2 3 6 9 15 α = 5

The content of the paper is as follows. In Section 2, we provide basic definitions
and the main result. In Section 3, we propose spaces that are generalizations of an-
chored Sobolev spaces with bounded mixed derivatives of order one, that have been
considered extensively in the literature. We next apply the general results to these
special spaces. In Section 4, we study some unanchored spaces and show when they
are equivalent to their anchored counterparts. Note that the equivalence implies
that algorithms with small errors for anchored spaces also have small errors for the
corresponding unanchored spaces. The results in Section 4 are simple extensions of
results in [2, 3, 4, 6].

2 Weighted Anchored Spaces of Multivariate

Functions

We begin by introducing the notation used throughout the paper. For s ∈ N and

[s] := {1, 2, . . . , s},
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we will use u, v to denote subsets of [s], i.e., u, v ⊆ [s]. Some of the results hold for
functions with infinitely many variables; then s =∞, [s] = N, and u, v denote finite
subsets of N.

We assume that the functions f ∈ F have the following decomposition

f =
∑
u⊆[s]

fu,

where each fu belongs to a normed linear space Fu such that Fu∩Fv = {0} if u 6= v,
fu depends only on xu = (xj)j∈u, and

fu(x) = 0 if xj = 0 for j ∈ u. (2) star

For u = ∅, F∅ is the space of constant functions with the absolute value as its norm.
Clearly, the property (2) yields that for any f ∈ F and k ∈ [s],

fk(x) =
∑
u⊆[k]

fu(x), (3) dec-tr

where fk is defined in (1).
We assume that for given positive weights γ = (γu)u⊆[s], the norm in F is given

by

‖f‖F =

∑
u⊆[s]

γ−pu ‖fu‖
p
Fu

1/p

.

Let Su be S restricted to Fu, and let ‖Su‖ be its operator norm,

‖Su‖ := sup
fu∈Fu

‖Su(fu)‖G
‖fu‖Fu

.

We have the following simple proposition.

prop:simple Proposition 1 For every k ≤ s we have

errtrnc(k) ≤

∑
u 6⊆[k]

‖Su‖p
∗
γp
∗

u

1/p∗

,

where here and throughout this paper
∑

u6⊆[k] means summation over all u ⊆ [s] with
u 6⊆ [k]. In particular,

dimtrnc(ε) ≤ min

k :

∑
u6⊆[k]

‖Su‖p
∗
γp
∗

u

1/p∗

≤ ε

 .

Of course, for p∗ =∞, we have

errtrnc(k) ≤ sup
u6⊆[k]

‖Su‖ γu and dimtrnc(ε) ≤ min

{
k : sup

u6⊆[k]
‖Su‖ γu ≤ ε

}
.
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Proof. We have

‖S(f)− S(fk)‖G =

∥∥∥∥∥∥
∑
u6⊆[k]

Su(fu)

∥∥∥∥∥∥
G

≤
∑
u6⊆[k]

γu‖Su‖γ−1
u ‖fu‖Fu

≤

∑
u6⊆[k]

‖Su‖p
∗
γp
∗

u

1/p∗

‖f − fk‖F ,

where, in the last step, we used ‖f − fk‖F = (
∑

u6⊆[k] γ
−p
u ‖fu‖pFu

)1/p together with
Hölder’s inequality. From this the result follows. 2

In this paper we mainly concentrate on product weights, introduced in [12], that
have the form

γu =
∏
j∈u

γj

for a decreasing sequence of positive numbers γj for j ∈ N.

thm:simple Theorem 2 Suppose that the weights γ have product and that there exists a con-
stant C1 such that

‖Su‖ ≤ C
|u|
1 for all u. (4) ass:tnspr

For p > 1 and every k ≤ s we have

errtrnc(k) ≤

 s∏
j=1

(1 + (C1 γj)
p∗)

(
1− e−C

p∗
1

∑s
j=k+1 γ

p∗
j

)1/p∗

.

In particular, dimtrnc(ε) is bounded from above by

min

k :

s∏
j=1

(1 + (C1 γj)
p∗)1/p∗

(
1− e−C

p∗
1

∑s
j=k+1 γ

p∗
j

)1/p∗

≤ ε

 .

For p = 1 and every k ≤ s we have

errtrnc(k) ≤ max
u6⊆[k]

C
|u|
1 γu

and if additionally C1 ≤ 1 then errtrnc(k) ≤ C1 γk+1.

Proof. We have∑
u 6⊆[k]

‖Su‖p
∗
γp
∗

u ≤
∑
u6⊆[k]

C
|u| p∗
1

=
∑
u⊆[s]

∏
j∈u

(C1 γj)
p∗ −

∑
u⊆[k]

∏
j∈u

(C1 γj)
p∗

=
s∏
j=1

(1 + (C1 γj)
p∗)−

k∏
j=1

(1 + (C1 γj)
p∗)
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=
s∏
j=1

(1 + (C1 γj)
p∗)
(

1− e−
∑s
j=k+1 log(1+(C1 γj)

p∗ )
)

≤
s∏
j=1

(1 + (C1 γj)
p∗)

(
1− e−C

p∗
1

∑s
j=k+1 γ

p∗
j

)
,

since log(1 + x) ≤ x for all x > −1. From this the result follows. 2

Remark 1 It is well known that (4) holds if F1 is a Hilbert space and, for every
u 6= ∅, the spaces Fu are |u|-fold tensor products of F1 and also Su are |u|-fold tensor
products of S1, i.e.,

Su

⊗
j∈u

fj

 =
⊗
j∈u

S1(fj).

Actually then we have

‖Su‖ = C
|u|
1 and ‖S1‖ = C1.

However, (4) also holds with inequality for Banach spaces Fu and operators Su that
we consider in the next sections.

We introduce some further notation. For x = (x1, x2, . . . , xs) ∈ Ds and u ⊆ [s],
[xu; 0−u] denotes the s-dimensional vector with all xj for j /∈ u replaced by zero,
i.e.,

[xu; 0−u] = (y1, y2, . . . , ys) with yj =

{
xj if j ∈ u,
0 if j /∈ u.

As shown in [5] for the integration problem, the importance of the ε-truncation
dimension lies in the fact that when approximating S(f) for functions f ∈ F it is
sufficient to approximate S only for k-variate functions

fk(x) = f(x1, . . . , xk, 0, 0, . . . ) = f([x[k]; 0−[k]])

with k ≥ dimtrnc(ε) since f − fk =
∑

u6⊆[k] fu and, therefore,

‖S(f)− S(fk)‖G ≤ ε

∥∥∥∥∥∥
∑
u6⊆[k]

fu

∥∥∥∥∥∥
F

.

For k ≤ s, let

Fk =
⊕
u⊆[k]

Fu

be the subspace of F consisting of k-variate functions f([·[k]; 0−[k]]), and let Ak,n be
an algorithm for approximating S[k](f) for functions from Fk that uses n function
values. The worst case error of Ak,n with respect to the space Fk is

e(Ak,n;Fk) := sup
f∈Fk

‖S[k](f)−Ak,n(f)‖G
‖f‖Fk

.

Now let
Atrnc
s,k,n(f) = Ak,n(f([·[k]; 0−[k]]))
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be an algorithm for approximating functions from the whole space F . The worst
case error of Atrnc

s,k,n is defined as

e(Atrnc
s,k,n;F) := sup

f∈F

‖S(f)−Atrnc
s,k,n(f)‖G

‖f‖F
.

This yields the following theorem.

thm:main Theorem 3 For given ε > 0 and k ≥ dimtrnc(ε) we have

e(Atrnc
s,k,n;F) ≤

(
εp
∗

+ e(Ak,n;Fk)p
∗
)1/p∗

.

Proof. The spaces Fk are subspaces of F . Moreover any fk = f([·[k]; 0−[k]]) belongs
to Fk and

‖fk‖Fk = ‖fk‖F .

Therefore, for any f ∈ F we have

‖S(f)−Atrnc
s,k,n(f)‖G ≤ ‖S(fk)−Ak,n(fk)‖G + ‖S(f)− S(fk)‖G

≤ e(Ak,n;Fk)

∥∥∥∥∥∥
∑
u⊆[k]

fu

∥∥∥∥∥∥
F

+ ε

∥∥∥∥∥∥
∑
u6⊆[k]

fu

∥∥∥∥∥∥
F

≤
(
εp
∗

+ e(Ak,n;Fk)p
∗
)1/p∗

‖f‖F ,

with the last inequality due to Hölder’s inequality. 2

In the following section we consider anchored Sobolev spaces of multivariate
functions and show that the assumptions above are justified. As examples for the
linear approximation problem we consider function approximation and integration.

3 Anchored Spaces of Multivariate Functions
defspace

In this section, we begin by recalling the definitions and basic properties of weighted
anchored Sobolev spaces of s-variate functions with mixed partial derivatives of
order one bounded in Lp-norm. More detailed information can be found in [3, 4, 14].
Such spaces have often been assumed in the context of quasi-Monte Carlo methods.
However, for us they serve as a motivation to consider more general classes of
anchored spaces.

3.1 Anchored Sobolev Spaces
sec1.1

Here we follow [3]. We use the notations [s], and u, v ⊆ [s] as above. We also write
xu to denote the |u|-dimensional vector (xj)j∈u and

f (u) =
∂|u|f

∂xu
=
∏
j∈u

∂

∂xj
f with f (∅) = f.
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For a family of weights γ = (γu)u⊆[s], which are non-negative numbers, and for
p ∈ [1,∞] the corresponding γ-weighted anchored space Fs,p,γ is the Banach space
of functions defined on Ds = [0, 1]s with the norm

‖f‖Fs,p,γ =

∑
u⊆[s]

γ−pu ‖f (u)([·; 0−u])‖pLp([0,1]|u|)

1/p

.

For p =∞, the norm reduces to

‖f‖Fs,p,γ = sup
u⊆[s]

γ−1
u ‖f (u)([·u; 0−u])‖L∞([0,1]|u|).

As shown in [3] the functions from Fs,p,γ have the unique decomposition

f =
∑
u⊆[s]

fu,

where each fu, although formally a function of x, depends only on the variables xu,
and is an element of a space Fu given by

Fu = Ku(Lp([0, 1]|u|)).

Here, for u 6= ∅,

fu(x) = Ku(gu)(x) =

∫
[0,1]|u|

gu(tu)
∏
j∈u

(xj − tj)0
+ dtu,

where (x− t)0
+ = 1 if t < x and (x− t)0

+ = 0 otherwise, and

‖fu‖Fu = ‖gu‖Lp([0,1]|u|).

For u = ∅, Fu is the space of constant functions with the absolute value as its norm.
An important property of these spaces is that they are anchored at 0, i.e., for

any u 6= ∅ and any fu ∈ Fu,

fu(x) = 0 if xj = 0 for some j ∈ u.

This implies that

f (u)([xu; 0−u]) = f
(u)
u and ‖f‖Fs,p,γ =

∑
u⊆[s]

γ−pu ‖fu‖
p
Fu

1/p

.

3.2 More General Anchored Spaces
secgeneral

In this section we extend the definition of Fs,p,γ from the previous section to spaces
of functions

f =
∑
u⊆[s]

fu
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with the components fu given by

fu = Ku(gu) =

∫
D|u|

gu(tu)κu(·u, tu) dtu with κu(xu, tu) =
∏
j∈u

κ(xj , tj),

where κ(x, t) could be more general than (x − t)0
+, and gu could be from a more

general ψ-weighted Lp space.
More specifically, let D be an interval in R that, without any loss of generality,

contains 0. This includes both bounded intervals like D = [0, 1] from the previous
subsection, as well as unbounded ones, e.g., D = [0,∞) or D = R.

Let
ψ : D → R+

be a measurable and (a.e.) positive weight function. For p1 ∈ [1,∞], by Lp1,ψ =
Lp1,ψ(D) we denote the space of scalar functions with the norm

‖g‖Lp1,ψ =

(∫
D
|g(t)|p1 ψ(t) dt

)1/p1

.

For non-empty u, Lu,p1,ψ = Lu,p1,ψ(D|u|) is the space of |u|-variate functions with
the norm given by

‖gu‖Lu,p1,ψ
=

(∫
D|u|
|gu(tu)|p1 ψu(tu) dtu

)1/p1

with ψu(tu) =
∏
j∈u

ψ(tj).

Let
κ : D ×D → R

be a given measurable function. For non-empty u, define

κu(xu, tu) :=
∏
j∈u

κ(xj , tj)

and

Ku(gu)(xu) :=

∫
D|u|

gu(tu)κu(xu, tu) dtu for gu ∈ Lu,p1,ψ.

We assume that

κ̂p1(x) :=

(∫
D

(
|κ(x, t)|
ψ1/p1(t)

)p∗1
dt

)1/p∗1

< ∞ for all x ∈ D. (5) ass:def

Of course, for p1 = 1, κ̂1(x) = ess supt∈D |κ(x, t)|/ψ(t) <∞ for all x ∈ D. Then

fu(x) = Ku(gu)(x) (g ∈ Lu,p1,ψ)

are well defined functions since

|fu(x)| ≤ ‖gu‖Lu,p1,ψ
κ̂u,p1(x), where κ̂u,p1(x) :=

∏
j∈u

κ̂p1(xj).

We also assume that Ku is an injective operator, i.e.,

Ku(gu) ≡ 0 implies gu = 0 a.e. (6) ass:1-1
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We define the following Banach spaces

Fu = Ku(Lu,p1,ψ(D|u|)) with ‖Ku(gu)‖Fu := ‖gu‖Lu,p1,ψ
.

We assume also that
κ(0, ·) ≡ 0. (7) ass:anchor

Then the spaces Fu are anchored at zero since for every fu ∈ Fu we have

fu(x) = 0 if xj = 0 for some j ∈ u.

As in the previous section, F∅ is the space of constant functions.
Finally, for p2 ∈ [1,∞], consider the Banach space Fs,p1,p2,γ

Fs,p1,p2,γ =
⊕
u⊆[s]

Fu of functions f =
∑
u⊆[s]

fu, where fu ∈ Fu,

with the norm given by

‖f‖Fs,p1,p2,γ :=

∑
u⊆[s]

γ−p2u ‖fu‖p2Fu

1/p2

. (8) def:norm

rem1 Remark 2 For functions with infinitely many variables, F∞,p1,p2,γ is the comple-
tion of

⋃
u Fu with respect to the norm (8). In general, it is a space of sequences

f = (fu)u since
∑

u fu(x) may not exist when x has infinitely many non-zero xj ’s.
Of course, it exists for x = [xu; 0−u]. However, F∞,p1,p2,γ is a function space if(∑

u

(γu κ̂u,p1(x))p
∗
2

)1/p∗2

< ∞ for all x ∈ DN (9) ass:inft

since then ∣∣∣∣∣∑
u

fu(x)

∣∣∣∣∣ ≤ ‖f‖F∞,p1,p2,γ
(∑

u

(γu κ̂u,p1(x))p
∗
2

)1/p∗2

< ∞

are well defined.

We end this section with the following examples.

exmp1 Example 1 As in Section 3.1, D = [0, 1], ψ ≡ 1 and κ(x, t) = (x− t)0
+. Then the

assumptions (5)–(7) are satisfied and

κ̂p1(x) = x1/p∗1 .

Moreover, for product weights and s =∞, (9) holds iff
∑∞

j=1 γ
p∗2
j <∞ (or supu γu <

∞ if p∗2 =∞) since(∑
u

(γu κ̂u,p1(x))p
∗
2

)1/p∗2

=
∞∏
j=1

(
1 + γ

p∗2
j x

p∗2/p
∗
1

j

)1/p∗2
.

10



exmp3 Example 2 Let D = [0,∞), κ(x, t) = (x− t)r−1
+ /(r− 1)! for r ≥ 1, and ψ(t) = eλt

for given λ ∈ R. Recall that (x− t)r−1
+ = (max(0, x− t))r−1. For s =∞, the space

F∞,p1,p2,γ is a sequence space. Hence we consider here only finite s.
For p1 = 1, κ̂1(x) (r−1)! = maxt∈[0,x](x−t)r−1 e−λt. For λ ≥ 0 or x ≤ (r−1)/|λ|,

the maximum above is attained at t = 0. Otherwise, it is attained at t = x− (r −
1)/|λ|. Hence

κ̂1(x) =


xr−1

(r − 1)!
if λ ≥ 0 or x ≤ r−1

|λ| ,

(r − 1)r−1 e|λ|x−(r−1)

|λ|r−1 (r − 1)!
if λ < 0 and x > r−1

|λ| .

For p1 > 1, p∗1 <∞ and p∗1/p1 = p∗1 − 1. Hence

κ̂p1(x) =
1

(r − 1)!

(∫ x

0
(x− t)(r−1)p∗1 e−λ t (p∗1−1) dt

)1/p∗1
.

If λ ≥ 0, then

κ̂p1(x) ≤ xr−1/p1

(r − 1)! ((r − 1)p∗1 + 1)1/p∗1
.

If λ < 0, then

κ̂p1(x) (r − 1)! ≤

(
x(r−1) p∗1

e|λ|x (p∗1−1)

|λ| (p∗1 − 1)

)1/p∗1

and

κ̂p1(x) (r − 1)! ≤

(
e|λ|x (p∗1−1) x(r−1)p∗1+1

(r − 1) p∗1 + 1

)1/p∗1

.

Hence, for λ < 0,

κ̂p1(x) ≤ e|λ|x/p1
xr−1

(r − 1)!

(
min

(
x

(r − 1) p∗1 + 1
,

1

|λ| (p∗1 − 1)

))1/p∗1
.

For this example, f(0) = f ′(0) = · · · = f (r−1)(0) = 0. Our result also holds
for functions of the form f(x) =

∑r−1
j=1 aj x

j/j! +K1(g) with the norm changed to

‖f‖ = (
∑r−1

j=1 |f (j)(0)|p2 + ‖g‖p2Lp1,ψ)1/p2 .

For r = 1 and p1 > 1, one can get exact values

κ̂p1(x) =



x1/p∗ if λ = 0,(
p1 − 1

λ

)1/p∗1 (
1− e−λx/(p1−1)

)1/p∗1
if λ > 0,(

p1 − 1

λ

)1/p∗1 (
e|λ|x/(p1−1) − 1

)1/p∗1
if λ < 0.

exam5 Example 3 Consider D = [0,∞) and

κ(x, t) = G(xt)

for a smooth function G with G(0) = 0. Then the functions

f(x) =

∫ ∞
0

κ(x, t) g(t) dt =

∫ ∞
0

G(xt) g(t) dt

11



with g ∈ Lp1,ψ have all derivatives continuous given by

f (n)(x) =

∫ ∞
0

G(n)(x t) tn g(t) dt

provided that (∫ ∞
0

∣∣∣∣ tn

ψ1/p1(t)

∣∣∣∣p∗1 dt

)1/p∗1

< ∞ for all n, (10) condxy

and ‖G(n)‖L∞ <∞, e.g. for G(y) = 1− e−y or G(y) = 1− cos(y).
Indeed, consider first n = 1. Then

f ′(x) = lim
n→∞

∫ ∞
0

g(t)
G((x+ 1/n) t)−G(x t)

1/n
dt

= lim
n→∞

∫ ∞
0+

g(t) t
G(x t+ t/n)−G(x t)

t/n
dt

=

∫ ∞
0

g(t) tG′(x t) dt.

The last equality holds due to the dominated convergence theorem because

lim
n→∞

g(t) t
G(x t+ t/n)−G(x t)

t/n
= g(t) tG′(x t),∣∣∣∣g(t) t

G(x t+ t/n)−G(x t)

t/n

∣∣∣∣ ≤ |g(t) t| ‖G′‖L∞ due to mean value theorem,

and |g(t) t| is integrable, since by Hölder’s inequality and (10)∫ ∞
0
|g(t)t|dt ≤ ‖g‖Lp1,ψ

(∫ ∞
0

∣∣∣∣ t

ψ1/p1(t)

∣∣∣∣p∗1 dt

)1/p∗1

<∞.

The proof for an arbitrary n is by induction. Since the inductive step is very
similar to te basic one for n = 1, we omit it.

Assume additionally that G(n)(0) 6= 0 for all n = 1, 2, . . . and that there exists
x such that ∫ ∞

0
G(x t) dt 6= 0. (11) ass:hateit

Then (6) holds. Indeed, consider g such that

f =

∫ ∞
0

G(· t) g(t) dt ≡ 0.

Then

0 = f (n)(0) = G(n)(0)

∫ ∞
0

tn g(t) dt.

i.e., g is orthogonal to all polynomials p(t) = tn for n = 1, 2, . . . , i.e., g is constant.
However then, due to (11), g ≡ 0.

The assumptions above are quite restrictive. For some special functions G, (6)
holds under weaker conditions like e.g.

1

ψ1/p1
∈ Lp∗1([0,∞)). (12) ass:def_uniform

12



We illustrate this for G(y) = 1−e−y and G(y) = 1−cos(y). It is enough to consider
u = {1} in (6), i.e. to show that the operator K given by

(Kg)(x) :=

∫
D
g(t)κ(x, t) dt

satisfies g = 0 almost everywhere whenever Kg = 0 and g ∈ Lp1,ψ.
Indeed, using Hölder’s inequality and (12), we get that Lp1,ψ ⊆ L1([0,∞)).

Hence it is enough to show that Kg = 0 for some g ∈ L1([0,∞)) implies g = 0 in
L1([0,∞)).

For G(y) = 1− e−y, i.e.

(Kg)(x) :=

∫ ∞
0

g(t) (1− e−xt) dt,

this follows from the properties of the Laplace transform L. Indeed, observe that
with c =

∫∞
0 g(t) dt, we have

0 = (Kg)(x) = c− (Lg)(x) for all x ∈ [0,∞).

Hence Lg = c is a constant, which is only possible if this constant is c = 0. But
then Lg = 0, and g = 0 almost everywhere follows from the injectivity property of
the Laplace transform.

For G(y) = 1− cos(y), i.e.

(Kg)(x) :=

∫ ∞
0

g(t) (1− cos (xt)) dt,

we can argue similarly with the Fourier transform instead of the Laplace transform
by extending g to an even function on (−∞,∞).

3.3 The Function Approximation Problem
secalgdef

We follow [14]. Let ω be a probability density on D and let q ∈ [1,∞]. For non-
empty u, let Lu,q,ω = Lu,q,ω(D|u|) be the space of functions with finite semi-norm

‖f‖Lu,q,ω =

(∫
D|u|
|f(tu)|q ωu(tu) dtu

)1/q

with ωu(tu) =
∏
j∈u

ω(tj).

For u = ∅, the corresponding space is L∅,q,ω, the space of constant functions.
Consider next the embedding operators

Su(fu) = fu ∈ Lu,q,ω.

For them to be well defined, we assume that

κ̃q,p1,ω := ‖κ̂p1‖L{1},q,ω =

(∫
D
|κ̂p1(x)|q ω(x) dx

)1/q

< ∞.

Then for any fu ∈ Fu we have

‖fu‖Lu,q,ω ≤ ‖fu‖Fu κ̃
|u|
q,p1,ω, i.e., ‖Su‖ ≤ κ̃|u|q,p1,ω. (13) help

13



This means that (4) holds with

C1 = κ̃q,p1,ω.

Of course, C1 = κ̃q,p1,ω depends also on ψ.
Let Ls,q,ω be a space containing Fs,p1,p2,γ and endowed with a semi-norm such

that for every u and fu ∈ Fu

‖fu‖Ls,q,ω ≤ ‖fu‖Lu,q,ω .

Finally, let Ss be the embedding operator

Ss : Fs,p1,p2,γ → Ls,q,ω.

Of course, it depends on all the parameters, p1, p2, q, ψ, ω, and the weights γ. We
assume that these parameters satisfy the following condition∑

u⊆[s]

(
γu κ̃

|u|
q,p1,ω

)p∗21/p∗2

< ∞

since then

‖Ss‖ ≤

∑
u⊆[s]

(
γu κ̃

|u|
q,p1,ω

)p∗21/p∗2

.

Note that for product weights the embedding operator is of tensor product form.
We illustrate the assumptions above for the examples from the previous section.

Example 4 We continue Example 1 here. Consider ω ≡ 1. This case was studied
in [7]. We have

‖S1‖ ≤ κ̃q,p1,ω =

{
1 if q =∞ or p1 = 1,

(1 + q/p∗1)−1/q otherwise.

Example 5 We return to Example 2 and assume that ω(x) = µe−µx for some
µ > 0. In what follows and some other places we use the well known fact that∫ ∞

0
xa e−b x dx =

Γ(a+ 1)

ba+1
for a, b > 0.

We begin with the case of p1 = 1. It is easy to see that

κ̃q,p1,ω =

{
1

(r−1)!µr−1 (Γ((r − 1)q + 1))1/q if q <∞
∞ if q =∞,

for λ ≥ 0. For λ < 0, κ̃∞,p1,ω =∞ if q =∞ or µ+λq/p1 ≤ 0. Otherwise, for λ < 0,

κ̃q,p1,ω ≤
(
r − 1

|λ|

)r−1 (
e−µ(r−1)/|λ| + e−(r−1)/|λ|

)1/q
.

We now consider the case of p1 > 1. For q =∞ and any λ we have

(r − 1)! κ̃∞,p1,ω = sup
x≥0

(∫ x

0
(x− t)(r−1)p∗1 e−λt(p

∗
1−1) dt

)1/p∗1
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≥ sup
x≥1

(∫ 1

0
(x− t)(r−1)p∗1 e−λt(p

∗
1−1) dt

)1/p∗1

= ∞.

Therefore, for the rest of this example, we consider q <∞.
If λ ≥ 0, then

κ̃q,p1,ω ≤
(Γ((r − 1/p1)q + 1))1/q

(r − 1)! ((r − 1)p∗1 + 1)1/p∗1 µr−1/p1

Consider next λ < 0. Since

(r − 1)! κ̂p1(x) ≥
(∫ x−1

0
eλ t (p∗1−1) dt

)1/p∗1

,

we conclude that
κ̃q,p1,ω = ∞ if µ+ λ

q

p1
≤ 0.

If µ+ λq/p1 > 0, then κ̃q,p1,ω is bounded from above by

(Γ((r − 1)q + 1))1/q

(r − 1)! (|λ| (p∗1 − 1))1/p∗1 µ1/q (µ+ λq/p1)r−1+1/q

and
(Γ((r − 1) q + 2))1/q

(r − 1)! ((r − 1)p∗1 + 1)1/p∗1 µ1/q (µ+ λq/p)r−1+2/q
.

Let the assumptions from the previous section be satisfied.

def:trd Remark 3 In this setting the ε-truncation dimension from Definition 1 is the small-
est natural number k such that∥∥∥∥∥∥

∑
u6⊆[k]

fu

∥∥∥∥∥∥
Ls,q,ω

≤ ε

∥∥∥∥∥∥
∑
u6⊆[k]

fu

∥∥∥∥∥∥
Fs,p1,p2,γ

for all f =
∑
u⊆[s]

fu ∈ Fs,p1,p2,γ .

We obtain the following corollary of Proposition 1 and Theorem 2.

Corollary 4 We have

dimtrnc(ε) ≤ min

k :

∑
u6⊆[k]

(γu κ̃
|u|
q,p1,ω)p

∗
2

1/p∗2

≤ ε

 (14) k-e

which reduces to dimtrnc(ε) ≤ min
{
k : supu6⊆[k] γu κ̃

|u|
q,p1,ω ≤ ε

}
for p2 = 1.

For product weights, dimtrnc(ε) is bounded from above by

min

k :

s∏
j=1

(1 + (γj κ̃q,p1,ω)p
∗
2)1/p∗2

(
1− e−

∑s
j=k+1(γj κ̃q,p1,ω)p

∗
2
)1/p∗2

≤ ε

 .
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For k ≤ s let
Fk,p1,p2,γ =

⊕
u⊆[k]

Fu

be the subspace of Fs,p1,p2,γ consisting of k-variate functions f([·[k]; 0−[k]]), and
let Ak,n be an algorithm for approximating functions from Fk,p1,p2,γ that uses n
function values. The worst case error of Ak,n with respect to the space Fk,p1,p2,γ is

e(Ak,n;Fk,p1,p2,γ) := sup
f∈Fk,p1,p2,γ

‖f −Ak,n(f)‖Lk,q,ω
‖f‖Fk,p1,p2,γ

.

Now let
Atrnc
s,k,n(f) = Ak,n(f([·[k]; 0−[k]]))

be an algorithm for approximating functions from the whole space Fs,p1,p2,γ . The
worst case error of Atrnc

s,k,n is defined as

e(Atrnc
s,k,n;Fs,p1,p2,γ) := sup

f∈Fs,p1,p2,γ

‖f −Atrnc
s,k,n(f)‖Ls,q,ω

‖f‖Fs,p1,p2,γ
.

This yields the following corollary of Theorem 3.

Corollary 5 For given ε > 0 and k ≥ dimtrnc(ε) we have

e(Atrnc
s,k,n;Fs,p1,p2,γ) ≤

(
εp
∗
2 + e(Ak,n;Fk,p1,p2,γ)p

∗
2

)1/p∗2

which reduces to e(Atrnc
s,k,n;Fs,p1,1,γ) ≤ max (ε , e(Ak,n;Fk,p1,1,γ)) for p2 = 1.

3.4 The Integration Problem
secint

In this subsection we assume that (9) is satisfied. We consider the problem of
numerically approximating the integral

Is(f) =

∫
Ds
f(x)ω[s](x) dx,

where f ∈ Fs,p1,p2,γ , where ω is a probability density function on D, and ωu(xu) =∏
j∈u ω(xj) for u ⊆ [s].
We require in this section that κp1,ω, defined by

κp1,ω(t) :=

∫
D

|κ(x, t)|
ψ1/p1(t)

ω(x) dx,

is such that ‖κp1,ω‖Lp∗1
<∞.

Let now f ∈ Fs,p1,p2,γ . For non-empty u, let gu ∈ Lu,p1,ψ be such that ‖fu‖Fu
=

‖gu‖Lu,p1,ψ
(as outlined in Section 3.2). We then have

|Is(fu)| =

∣∣∣∣∫
D|u|

fu(xu)ωu(xu) dxu

∣∣∣∣ =

∣∣∣∣∣∣
∫
D|u|

gu(tu)ψ
1/p1
u (tu)

∏
j∈u

κp1,ω(tj) dtu

∣∣∣∣∣∣
16



≤ ‖gu‖Lu,p1,ψ
‖κp1,ω‖

|u|
Lp∗1

= ‖fu‖Fu
‖κp1,ω‖

|u|
Lp∗1

.

Since Hölder’s inequality is sharp we conclude that

‖Iu‖ = ‖κp1,ω‖
|u|
Lp∗1

,

where Iu is the restriction of Is to Fu. This means that (4) hold with equality for

C1 = ‖κp1,ω‖Lp∗1
.

Example 6 Let us once more return to Example 2 with ω(x) = µ e−µx. Then the
Lp∗1 -norm of κp1,ω is given by

1

(r − 1)!

(∫ ∞
0

e−λ t p
∗
1/p1

(
µ

∫ ∞
t

(x− t)r−1 e−µx dx

)p∗1
dt

)1/p∗1

.

The inner integral, after the change of variables z = x− t, is equal to

µ

∫ ∞
0

zr−1 e−µ(z+t) dz =
1

µr−1
e−µ t Γ(r)

and, therefore,

‖κp1,ω‖Lp∗1 =

{
Γ(r)

(r−1)!µr−1

(
1

p∗1 (λ/p1+µ)

)1/p∗

if µ+ λ/p1 > 0,

∞ if µ+ λ/p1 ≤ 0

with the convention that (1/(p∗1(λ+ µ))1/p∗1 = 1 for p∗1 =∞.

Let the assumptions from the previous section be satisfied.

def:trdint Remark 4 In this setting the ε-truncation dimension from Definition 1 is the small-
est natural number k such that∣∣∣∣∣∣

∑
u6⊆[k]

Is(fu)

∣∣∣∣∣∣ ≤ ε

∥∥∥∥∥∥
∑
u6⊆[k]

fu

∥∥∥∥∥∥
Fs,p1,p2,γ

for all f =
∑
u⊆[s]

fu ∈ Fs,p1,p2,γ .

We obtain the following corollary of Proposition 1 and Theorem 2.

Corollary 6 We have

dimtrnc(ε) ≤ min

k :

∑
u6⊆[k]

(γu ‖κp1,ω‖
|u|
Lp∗1

)p
∗
2

1/p∗2

≤ ε

 . (15) k-eint

which reduces to dimtrnc(ε) ≤ min

{
k : supu6⊆[k] γu ‖κp1,ω‖

|u|
Lp∗1
≤ ε
}

for p2 = 1.

For product weights dimtrnc(ε) is bounded from above by the smallest k for which

s∏
j=1

(1 + (γj ‖κp1,ω‖Lp∗1
)p
∗
2)1/p∗2

(
1− e

−
∑s
j=k+1(γj‖κp1,ω‖Lp∗1

)p
∗
2
)1/p∗2

≤ ε.

17



For k ≤ s let Ak,n be an algorithm for integrating functions from Fk,p1,p2,γ that
uses n function values. The worst case error of Ak,n with respect to the space
Fk,p1,p2,γ is

e(Ak,n;Fk,p1,p2,γ) := sup
f∈Fk,p1,p2,γ

|Ik(f)−Ak,n(f)|
‖f‖Fk,p1,p2,γ

.

Now let
Atrnc
s,k,n(f) = Ak,n(f([·[k]; 0−[k]]))

be an algorithm for integrating functions from the whole space Fs,p1,p2,γ . The worst
case error of Atrnc

s,k,n is defined as

e(Atrnc
s,k,n;Fs,p1,p2,γ) := sup

f∈Fs,p1,p2,γ

|Is(f)−Atrnc
s,k,n(f)|

‖f‖Fs,p1,p2,γ
.

This yields the following corollary of Theorem 3.

thm:mainint Corollary 7 For given ε > 0 and k ≥ dimtrnc(ε) we have

e(Atrnc
s,k,n;Fs,p1,p2,γ) ≤

(
εp
∗
2 + e(Ak,n;Fk,p1,p2,γ)p

∗
2

)1/p∗2

which reduces to e(Atrnc
s,k,n;Fs,p1,1,γ) ≤ max (ε , e(Ak,n;Fk,p1,1,γ) for p2 = 1.

4 Unanchored Spaces of Multivariate Func-

tions

Let κ, ω, and Is be as in the previous section. Also here we assume that ‖κp1,ω‖Lp∗ <
∞. In what follows we use I to denote the ω-weighted integral operator for uni-
varaiate functions,

I(f) =

∫
D
f(x)ω(x) dx.

Of course ‖I‖ = ‖κp1,ω‖Lp∗1 .

Consider
κu,ω(xu, tu) =

∏
j∈u

(κ(xj , tj)− I(κ(·, tj)))

and

Ku,ω(gu)(xu) =

∫
D|u|

gu(tu)κu,ω(xu, tu) dtu

and the corresponding space Fs,p1,p2,γ,ω of functions

f(x) =
∑
u

fu,ω(xu) with fu,ω(xu) = Ku,ω(gu)(xu)

such that

‖f‖Fs,p1,p2,γ,ω :=

(∑
u

γ−p2u ‖gu‖p2Lu,p1,ψ

)1/p2

< ∞.
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Instead of being anchored, the functions fu,ω satisfy the following property∫
D
fu,ω(xu)

∏
k∈u

ω(xk) dxj = 0 if j ∈ u.

As in [3], one can show that the spaces Fs,p1,p2,γ and Fs,p1,p2,γ,ω as sets of
functions are equal if and only if

γu > 0 implies that γv > 0 for all v ⊆ u. (16) weights

From now on, we assume that (16) is satisfied. Of course (16) always holds true for
product weights.

Let ıp1,p2 be the embedding

ıp1,p2 : Fs,p1,p2,γ → Fs,p1,p2,γ,ω and ıp1,p2(f) = f,

and let ı−1
p1,p2 be its inverse. As in [6], see also [2], one can check that

‖ıp1,p2‖ = ‖ı−1
p1,p2‖.

Moreover, following the approach in [2], one can provide exact formulas for the
norms of the embeddings for p1, p2 ∈ {1,∞} and next, using interpolation theory
(as in [4], see also [2]), derive upper bounds for arbitrary values of p1 and p2.

More precisely, we have the following proposition.

prop:ANOVA Proposition 8 Suppose that ‖κp1,ω‖Lp∗1 <∞ for p1 ∈ {1,∞}. Then

‖ıp1,p2‖ =



max
u

∑
v⊆u

γu
γv
‖κ1,ω‖|u|−|v|L∞

if p1 = 1 and p2 = 1,

max
u

∑
v⊆[s]\u

γu∪v
γu
‖κ1,ω‖|v|L∞ if p1 = 1 and p2 =∞,

max
u

∑
v⊆u

γu
γv
‖κ∞,ω‖|u|−|v|L1

if p1 =∞ and p2 = 1,

max
u

∑
v⊆[s]\u

γu∪v
γu
‖κ∞,ω‖|v|L1

if p1 =∞ and p2 =∞.

To give a flavor of the proof, we prove the proposition for p1 = p2 = 1.

Proof. For f =
∑

u fu,ω we have

fu,ω = Ku,ω(gu) =

∫
D|u|

gu(tu)
∏
j∈u

(κ(·j , tj)− I(κ(·, tj))) dtu

=
∑
v⊆u

∫
D|u|

gu(tu)κv(·v, tv)
∏
j∈u\v

(−1) I(κ(·, tj)) dtu.

Therefore

f =
∑
u

∑
v⊆u

∫
D|u|

gu(tu)κv(·v, tv)
∏
j∈u\v

(−1) I(κ(·, tj)) dtu
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=
∑
v

∫
D|v|

κv(·v, tv)
∑

w,w∩v=∅

∫
D|w|

gv∪w(tv, tw)
∏
j∈w

(−1) I(κ(·, tj)) dtw dtv,

where (tv, tw) = tv∪w, which implies that f =
∑

vKv(hv) with

hv(tv) =
∑

w,w∩v=∅

∫
D|w|

gv∪w(tv, tw)
∏
j∈w

(−1) I(κ(·, tj)) dtw.

Clearly

‖hv‖Lv,1,ψ
≤

∑
w,w∩v=∅

‖gv∪w‖Lv∪w,1,ψ ‖κ1,ω‖|w|L∞

and using u = v ∪w we get∑
v

γ−1
v ‖hv‖Lv,1,ψ

≤
∑
u

γ−1
u ‖gu‖Lu,1,ψ

γu
∑
v⊆u

γ−1
v ‖κ1,ω‖|u|−|v|L∞

≤ ‖f‖Fs,1,1,γ,ω max
u

∑
v⊆u

γu
γv
‖κ1,ω‖|u|−|v|L∞

.

This proves the bound on ‖ı−1‖. Since the Hölder inequality is sharp, we actually
have equality. The proof for ı is identical. 2

For product weights γu =
∏
j∈u γj the expressions in the proposition above reduce

to
s∏
j=1

(1 + γj ‖κ1,ω‖L∞) if p1 = 1

and to
s∏
j=1

(1 + γj ‖κ∞,ω‖L1) if p1 =∞.

Applying interpolation theory we get, as in [2]:

wniosek Corollary 9 Suppose that ‖κp1,ω‖Lp∗1 <∞ for any p1 ∈ [1,∞]. If p1 ≤ p2 then

‖ıp1,p2‖ ≤ ‖ı1,∞‖1/p1−1/p2 ‖ı1,1‖1/p2 ‖ı∞,∞‖1−1/p1 ,

and if p2 < p1 then

‖ıp1,p2‖ ≤ ‖ı∞,1‖1/p2−1/p1 ‖ı1,1‖1/p1 ‖ı∞,∞‖1−1/p2 .

For product weights we have

‖ıp1,p2‖ ≤
s∏
j=1

(1 + γj ‖κ1,ω‖L∞)1/p1 (1 + γj ‖κ∞,ω‖L1)1−1/p1 .

It was shown in [4] for product weights and in [6] for a number of different types of
weights that the upper bounds in Corollary 9 are sharp.

Suppose now that
∑∞

j=1 γj < ∞. Then the norms of the embeddings are uni-
formly bounded,

‖ıp1,p2‖ ≤
∞∏
j=1

(1 + γj ‖κ1,ω‖L∞)1/p1 (1 + γj ‖κ∞,ω‖L1)1−1/p1 ,

for any s including s =∞. Hence the results of previous sections are applicable for
unanchored spaces considered in this section.
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Remark 5 It is possible to consider even more general unanchored spaces. Indeed,
consider a linear functional ` that is continuous for the space of univariate functions,
i.e., with

‖`p1‖Lp∗1 < ∞, where `p1(t) :=
`(κ(·, t))
ψ1/p1

.

Suppose also that

`

(∫
D
g(t)κ(·, t) dt

)
=

∫
D
g(t) `(κ(·, t)) dt for all g ∈ Lp1,ψ(D).

For nonempty u, define

Ku,`(gu)(xu) :=

∫
D|u|

gu(tu)
∏
j∈u

(κ(xj , tj)− `(κ(·j ; tj))) dtu.

Then the corresponding functions fu,` = Ku,`(gu) satisfy

`j(fu,`) = 0 if j ∈ u.

Here `j denotes the functional ` acting on functions with respect to the jth variable.
More formally,

`j =

s⊗
n=1

Tn with Tn =

{
id if n 6= j,
` if n = j,

where id is an identity operator. For instance for `(g) = g(0) +
∫
D g(t) dt,

`j(f)(x) = f([xu; 0−u]) +

∫
D
f(x) dxj with u = {j}.

Let Fs,p1,p2,γ,` be the Banach space of functions f =
∑

u,γu>0Ku,`(gu) with the
norm

‖f‖Fs,p1,p2,γ,` =

 ∑
u,γu>0

γ
−1/p2
u ‖gu‖p2Lu,p1,ψ

1/p2

.

It is easy to extend all the results of this section provided that ‖`p1‖Lp∗1 is finite for

all p1. In particular, Proposition 8 and Corollary 9 hold with ‖κp1,ω‖Lp∗1 replaced

by ‖`p1‖Lp∗1 .
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