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Truncation Dimension for Linear Problems on
Multivariate Function Spaces

Aicke Hinrichs, Peter Kritzer* Friedrich Pillichshammer! G.W. Wasilkowski

Abstract

The paper considers linear problems on weighted spaces of high-dimensional
functions. The main questions addressed are: When is it possible to approximate
the original function of very many variables by the same function; however with
all but the first k variables set to zero, so that the corresponding error is small?
What is the truncation dimension, i.e., the smallest number k = k(e) such that the
corresponding error is bounded by a given error demand £? Surprisingly, k(g) could
be very small.

1 Introduction

This paper is a continuation of our study initiated in [, [7] on the truncation di-
mension for functions with a huge (or even infinite) number of variables. Since our
notion of the truncation dimension is very different from the one used in the statis-
tical literature, we next provide its definition and then compare it to the statistical
one.

Let F be a normed linear space of s-variate functions defined on D?®. Here s
is very large or even infinite. For simplicity, we assume that 0 € D where D is a
subinterval of R (we also allow D to be unbounded). Let

S: F—gG

be a continuous linear operator into another normed linear space G. Consider
the problem of approximating S(f). Since the number s of variables is huge (or
even s = 00), it is natural to ask whether approximations of functions fi(x) =
f(z1,...,2,0,0,...), that depend only on k£ < s variables (here < indicates in an
informal way that k is “much” smaller than s), are good enough to approximate
S(f). This leads to the following notion of truncation dimension.

Suppose that for any f € F and any k € N := {1,2,3,...} the function fj
obtained from f by setting all the variables x; with j > k to be zero,

fe(x) = f(z1,...,2,0,0,...) for x = (x1,29,...,25), (1)
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:truncdim

also belongs to F. For given k € N, by the k" truncation error we mean

errtmc(lg) = sup M

rer = full7

Definition 1 For a given error demand ¢ > 0, the e-truncation dimension for
approximating S (or truncation dimension for short) is defined as
dim"™(g) := min {k : err"(k) < ¢}.

We stress that the truncation dimension is a property of the problem. In particular,
it depends on the spaces F,G, the operator &, and the error demand e. This is
in a contrast with the truncation dimension concept in statistical literature (see
e.g. [1 10, 1T}, 13]), which depends on the particular function under consideration.
Moreover, it is defined via ANOVA decomposition which is hard to approximate
directly using only function evaluations.

In the rest of the paper we estimate the truncation dimension for a special, yet
important, class of v-weighted spaces F with anchored decomposition and S having
a tensor product form.

Roughly speaking, functions from F have a decomposition

fl@) =) ful@),

where the sum is with respect to finite subsets u C {1,...,s} (or u C N if s = 00),
and each function f, depends only on the variables listed in u. Moreover, each f,
belongs to a normed space Fy,, and we define the norm in F by

1/p
1fll7 = (Z’yup\\fu!!”u) < 00

for some 1 < p < co and positive numbers -, called weights. Of course || f|lr =

-1
sup, Yy - [lfull 7, when p = oc.
For s = oo, these spaces include spaces of special functions of the form

where X(t) is the value of the stochastic process X(t) = Y 72, z; ¢;(t) at time ¢.
Here the z;’s are i.i.d. random variables and the base functions ¢;(t) converge to
zero sufficiently fast. Clearly

9] k
f(x) =g (Z x; qﬁi(t)> whereas fy(x) = ¢ (Z x; qbi(t)> .
i=1 =1
Moreover, the weights ~, can be written as product weights of the form

T = H ¢Jﬁ(t)

JEU



for some § < 1. We prove that then (cf. Theorem [2|) the truncation dimension can
be bounded from above by the smallest integer k such that

1/p*
[T+ @@y | 1—exp [ -7 Y (o] )" <e.
J=1 j=k+1

Here and elsewhere, p* is the conjugate of p (i.e., % + I% =1), C1 > 0 is a number
such that ||S1]| < C; and ||S1]| is the norm of the operator S restricted to the space
Fyqy of functions depending only on one variable. (One has to apply the usual
adaptions if p = 1, cf. Theorem |2 again.) From this result it can be seen that faster
decay of the gzﬁ? (t) leads to smaller truncation dimension.

We illustrate this for different values of ¢, p, and ~,. We use product weights of
the form ~, = H]Euj @ for a € {2,3,4,5}. For simplicity, we assume that C; = 1.
For p = 2 we have:

£ 1071 1072|1073 | 107* | 107 | 1076
im'™me(e) | 4 19 | 90 | 416 [ 1933 [ 8973 [ a =2
im'™¢(g) || 2 5 13 | 33 | 84 [ 210 [[a=3
im*™me(e) | 2 3 6 12 | 22 | 43 |[[a=4
d1 tmeey 1 2 4 7 11 | 18 [a=5

In particular, for the error demand ¢ = 1072 it is enough to work with only 90
variables when o = 2, only 13 variables when o = 3, and with 6 or 4 when o = 4
or 5, respectively.

For p = 1 we have dim"™¢(¢) = [¢~'/® — 1], which leads to even better results.
The following table already appeared in [7]:

€ 1071 1072|103 107%4]107® | 106
im"¢(e) | 3 9 31 | 99 | 316 | 999 [[a =2
im'™me(e) [ 2 4 9 21 | 46 | 99 [[a=3
im'™e(e) [ 1 3 5 9 17 | 31 [[a=4
d m"(e) || 1 2 3 6 9 15 [a=5

The content of the paper is as follows. In Section 2, we provide basic definitions
and the main result. In Section 3, we propose spaces that are generalizations of an-
chored Sobolev spaces with bounded mixed derivatives of order one, that have been
considered extensively in the literature. We next apply the general results to these
special spaces. In Section 4, we study some unanchored spaces and show when they
are equivalent to their anchored counterparts. Note that the equivalence implies
that algorithms with small errors for anchored spaces also have small errors for the
corresponding unanchored spaces. The results in Section 4 are simple extensions of
results in [2] 3] 14 [6].

2 Weighted Anchored Spaces of Multivariate
Functions

We begin by introducing the notation used throughout the paper. For s € N and

[s] .= {1,2,...,s},
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we will use u, v to denote subsets of [s], i.e., u,v C [s]. Some of the results hold for
functions with infinitely many variables; then s = oo, [s] = N, and u, v denote finite
subsets of N.

We assume that the functions f € F have the following decomposition

f: qua

uCls]

where each f, belongs to a normed linear space F, such that F;, N F, = {0} if u # v,
fu depends only on &, = () ey, and

fulx) =0 ifx; =0forjeu. (2)

For u = (), Fy is the space of constant functions with the absolute value as its norm.
Clearly, the property yields that for any f € F and k € [s],

frl@) = ) ful@), (3) [dec-tr
uC[x]

where f is defined in .
We assume that for given positive weights v = (7u)uc[s), the norm in F is given
by
1/p

Fll = | D %P llfullh,
uCJs]

Let Sy be S restricted to Fy, and let ||.Sy|| be its operator norm,

HSu(fu)Hg
Syll == sup ——,
15ull = sup e

We have the following simple proposition.

op:simple Proposition 1 For every k < s we have
1/p*

err™ (k) < [ D [ISullP" A& ,
ugZ k]

where here and throughout this paper Zug[k] means summation over all u C [s] with
u < [k]. In particular,

1/p*
dimtmc(&“) <min{ k : Z HSqu* 75* <e
ugZ[k]

Of course, for p* = oo, we have

err'™ (k) < sup [|Sul| w  and  dim™(e) <min Q& < sup [|Sullw <e g
ugZ[k] uZ[k]



Proof. We have

IS(f) = S(fi)llg = Z Su(f)|| < Z 'VuHSuH’7u_1||quFu
ugZ [k T
1/p*
<| D ISPt If = frllF,
ugZ[k]

where, in the last step, we used [|f — fillr = Cugp fyu_pruH%u)l/p together with
Holder’s inequality. From this the result follows. O

In this paper we mainly concentrate on product weights, introduced in [12], that
have the form
Tu = H'Yj
JEuU

for a decreasing sequence of positive numbers «y; for j € N.

hm:simple Theorem 2 Suppose that the weights v have product and that there exists a con-

stant Cy such that
1.l < €M for all u. (4)

Forp>1 and every k < s we have
s 1/p*

errtrnC(k) < H(1+(Cl ,yj)p*) (1 _efo Z;=k+17§ >

j=1
In particular, dim"™ () is bounded from above by

S * s * 1/pﬁ.<
ming k : H(1+ (Cy )P VP (1 —e O Timkr1 > <e
j=1
Forp=1 and every k < s we have
|

trnck < C
err ()_@?ﬁ 1

and if additionally C; < 1 then err™ (k) < C1 V1.

Proof. We have

SIS < ST o

ug k] ug[k]
= > @ =3 Ty
uCls] jeu uClk] jeu
s k
= J[a+ @) - T+ )
j=1 j=1



s

= H(l +(Cry)") (1 — o XLj=kt1log(1+(C %‘)p*))

j=1
S * *
< [0+ @) (1= Seen '),
j=1
since log(1 + x) < x for all z > —1. From this the result follows. 0

Remark 1 It is well known that holds if Fi is a Hilbert space and, for every
u # (), the spaces Fy, are |u|-fold tensor products of F; and also S, are |u|-fold tensor
products of Sy, i.e.,

Sl fi | = Q) si(f)
J€EuU J€Eu

Actually then we have
ISl = & amd|Sa] = Cu.

However, also holds with inequality for Banach spaces F; and operators S, that
we consider in the next sections.

We introduce some further notation. For @ = (z1,z9,...,25) € D* and u C [s],
[€y;0_,] denotes the s-dimensional vector with all z; for j ¢ u replaced by zero,
ie.,

. x; if j €,
[wu§ Ofu] — (y17y27 st ?yS) Wlth y] = { 0] lf] ¢ u.

As shown in [5] for the integration problem, the importance of the e-truncation
dimension lies in the fact that when approximating S(f) for functions f € F it is
sufficient to approximate S only for k-variate functions

fk(m) = f(x17"‘7$k50707"') = f([w[k}ao—[k]b

with k > dim™"¢(e) since f — fi = > ug[k) fu and, therefore,

1S~ SUllg < ||

ugZ[k] F

Fo=EP A

uClk]|

For k < s, let

be the subspace of F consisting of k-variate functions f([-(4; 0_[]), and let A, be
an algorithm for approximating Sm( f) for functions from Fj, that uses n function
values. The worst case error of Ay, with respect to the space Fj, is

7 o sup 1S~ APl
| s A VS

Now let
AR (f) = Apn(f (g5 0-])

6



thm:main

be an algorithm for approximating functions from the whole space F. The worst
case error of A" is defined as

IS(f) = AZRe (Dl

s,k,n

e(ALRS: F) := sup
feF [halFa

This yields the following theorem.

Theorem 3 For given € > 0 and k > dim"™™°(g) we have
trnc p* p* /v
(AL F) < (& + e(Apui F))

Proof. The spaces F}, are subspaces of F. Moreover any fi, = f([-x); 0_[x)]) belongs
to Fi and

1 fellz = [ fellr
Therefore, for any f € F we have

IS(f) = AZka(Dllg < 1S(fr) — Aen(fi)llg + IS(F) = S(fi)llg

e(Akni Fi) || D h|| +e qu

uClk] _7: ug[k b

< (" et 7)1l

IN

with the last inequality due to Holder’s inequality. O

In the following section we consider anchored Sobolev spaces of multivariate
functions and show that the assumptions above are justified. As examples for the
linear approximation problem we consider function approximation and integration.

3 Anchored Spaces of Multivariate Functions

In this section, we begin by recalling the definitions and basic properties of weighted
anchored Sobolev spaces of s-variate functions with mixed partial derivatives of
order one bounded in L,-norm. More detailed information can be found in [3] 4} [14].
Such spaces have often been assumed in the context of quasi-Monte Carlo methods.
However, for us they serve as a motivation to consider more general classes of
anchored spaces.

3.1 Anchored Sobolev Spaces

Here we follow [3]. We use the notations [s], and u,v C [s] as above. We also write
x, to denote the |u|-dimensional vector (z;) ey and

B alulf

oxy

£ _ Hi Fowith O = f
jcu (%cj



ecgeneral

For a family of weights v = (u)uc[s], Which are non-negative numbers, and for
p € [1,00] the corresponding y-weighted anchored space Fsj~ is the Banach space
of functions defined on D* = [0, 1]* with the norm

1/p

1 0Fe = | P IO 0-DIE o

uCls]

For p = 0o, the norm reduces to

17 pn = sup 7t Hf(u)([’u§ Ofu])”Loo([o,ulul)-

uCls

As shown in [3] the functions from F;, 4 have the unique decomposition

f: qua

uCls]

where each f,, although formally a function of x, depends only on the variables x,,
and is an element of a space F, given by

Fy = Ku(Ly([0,1]M)).

Here, for u # (),

fu(w) = Ku(gu)(w) = / gu(tu) H(xj - tj)(i dt,,

[071}‘,"' jeu
where (z —t)% =1if t <z and (z — t)] = 0 otherwise, and

||fu||Fu = ||gu||Lp([O71}|u|)

For u = (), F), is the space of constant functions with the absolute value as its norm.
An important property of these spaces is that they are anchored at 0, i.e., for
any u # () and any f, € Fy,

fu(xz) = 0 if 2; =0 for some j € u.
This implies that

1/p

Oz 0]) = £ and | fllz,, = [ Y wlflb,
uC|s]

3.2 More General Anchored Spaces

In this section we extend the definition of F,  from the previous section to spaces

of functions
f = Z f u

uCls]



with the components f, given by

Ju = Ku(gu) = / ‘gu(tu) Hu('uatu) dt, with ry(zy, ty) HH xjatj
Du
JEuU

where £(z,t) could be more general than (z —t)Y, and g, could be from a more
general 1-weighted L, space.

More specifically, let D be an interval in R that, without any loss of generality,
contains 0. This includes both bounded intervals like D = [0, 1] from the previous
subsection, as well as unbounded ones, e.g., D = [0,00) or D = R.

Let

YD — Ry

be a measurable and (a.e.) positive weight function. For p; € [1,00], by Ly, 4 =
Ly, (D) we denote the space of scalar functions with the norm

uw%w=<émwwwwwfm.

For non-empty u, Ly, ¢ = Lyp, (D) is the space of [u|-variate functions with
the norm given by

1/p1
|mum¢=(émmmwmo@) with vt = [[(t,)

JjEu

Let
k:DxD — R

be a given measurable function. For non-empty u, define

w(@y, t H/’i xj,t;

jeu

and
Ky(gu)(zy) = / ‘gu(tu) Ku(Ty, ty)dt,  for gy € Lyp, -
D u

We assume that

w0\ )
Rp (x) = (/D <¢1/pi(t)> dt) < oo forallz e D. (5) |ass:def

Of course, for p; =1, RK1(z) = esssup,ep |k(z,t)|/1(t) < oo for all € D. Then

fu(®) = Ku(gw)(x) (9 € Lupy.y)

are well defined functions since

|ful@)] < Ngull Ly, Rupi (@), where Ry, () = [ R (2))-
JEU

We also assume that K, is an injective operator, i.e.,

Ky(gy) =0 implies g, = 0 ae. (6)



We define the following Banach spaces

Fy = Ku(Lupyp(DM) with  [|Ku(g)llr, = I9ullz, -

We assume also that
k(0,) = 0. (7)

Then the spaces F), are anchored at zero since for every f,, € F, we have
fu(xz) = 0 if x; =0 for some j € u.

As in the previous section, Fj is the space of constant functions.
Finally, for po € [1,00], consider the Banach space Fs p; py.~

Foprpay = @ F, of functions f = Z fu, where f, € F,

uCls] uCls]

with the norm given by

1/p2
A1 gy = | D W Il : (8)
uCls]
Remark 2 For functions with infinitely many variables, Fu p, p,~ is the comple-

tion of |J, Fi with respect to the norm . In general, it is a space of sequences
f = (fu), since > fu(x) may not exist when x has infinitely many non-zero x;’s.
Of course, it exists for & = [x,;0_,]. However, Fog p, p,~ is a function space if

1/p5
<Z mm,m(w))p%) < oo forall ze D" (9)

u

since then

qu(m)

are well defined.

1/p3
S HfH]'—oo,pl,pQ,'y (Z (fyu /’%\uml (x))p2> < o0

u

We end this section with the following examples.

Example 1 As in Section D =10,1], ¥ =1 and s(z,t) = (z — t)}. Then the
assumptions f are satisfied and

Rpy (x) = /1,

Moreover, for product weights and s = oo, @D holds iff Z;’il 'yf 2 < 00 (or sup, 1 <
oo if p5 = 00) since

1/p3 00 *
(Z(%‘ //%u,m(m))p;) — H (1 + 7573 ;U?/PT)l/pz .

u j=1

10
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Example 2 Let D = [0,00), k(z,t) = (z — )" /(r = 1)! for r > 1, and ¢ (t) = eM
for given A € R. Recall that (v — )’ = (max(0,z — t))"~. For s = 0o, the space
Foopr pey 18 @ sequence space. Hence we consider here only finite s.

For p; = 1, R1(z) (r—1)! = max,eo 4 (z—t)" "t e M. For A > 0orz < (r—1)/|A|,
the maximum above is attained at t = 0. Otherwise, it is attained at t =z — (r —
1)/|A|l. Hence

:L‘T_l ) .

R B m if A Z 0orx S W,
ri(z) = (r — 1)r=1 ePla=(r=1) " .
N = 1)1 i )\<Oandx>W.

For p; > 1, p} < oo and pj/p1 = p} — 1. Hence

~ 1 ’ I
Rp, () = -\ (x—1t) le 12 dt .

(r—1
If A >0, then
xT_l/pl
3 < .
") S T e 1
If A <0, then
« 1/p}
Al (p1—1) !
. €
Rp (z) (r = 1)1 < [ 2D —
" Al (p} — 1)
and

x 1/p7

(r—=1)pi+1 !
= 1) < |Naep-n A T
H;pl (x) (T 1) — <e ! (T _ 1)p>{ + 1

Hence, for A < 0,

r—1 1 1/101k
By (z) < eMam T (min( < ) )) .
m(@) < = G Dp 1 WD)

1)!
For this example, f(0) = f/(0) = --- = f"=1(0) = 0. Our result also holds
for functions of the form f(x) = E;;% ajz? /j! + Ki(g) with the norm changed to
171 = (i D) + gl e,

For r =1 and p; > 1, one can get exact values

/P if A =0,
(1 . e—/\:c/(lh—l))l/pT it A >0,

1/ * >k
<p1 — 1> " (e“'l’/(m—ﬂ - 1)1/]31 if A < 0.

Example 3 Consider D = [0, 00) and
k(z,t) = G(xt)

for a smooth function G with G(0) = 0. Then the functions
f@) = [ wtetgd = [ Gt gt di
0 0

11



with g € L, , have all derivatives continuous given by

F0 (@) = /O TG ) () dt

00 n Py
</ ‘W/tpl(t) dt) < oo for all n, (10) -condxy
0

and |G| < 00, e.g. for G(y) =1 —e ¥ or G(y) = 1 — cos(y).
Indeed, consider first n = 1. Then

© Gz +1/n)t) — Gzt

provided that

f'(x) = lim g(t) dt
n—oo Jq 1/n
— lim Oog(t)tG(:Jct—l-t/n)—G(:ct) &t
n—o0 fo+ t/n
= / g(t)t G (zt)dt.
0

The last equality holds due to the dominated convergence theorem because

G(xzt+t/n) — G(zt)

. _ /
’g(t) t Glot+ ti;g — Glat) ‘ < |g(t)t|||G"||L.. due to mean value theorem,

and |g(t) t| is integrable, since by Holder’s inequality and

o I . P 1/p}
/0 lg(t)t| dt < HQHLPNL, (/0 ‘1/)1/?1(75) dt) < 0.

The proof for an arbitrary n is by induction. Since the inductive step is very
similar to te basic one for n = 1, we omit it.
Assume additionally that G (0) # 0 for all n = 1,2,... and that there exists

x such that -
| Gz (11)
0

Then @ holds. Indeed, consider g such that

f :/0 G(-t) g(t) dt = 0.

Then ~
0= M) = G™(0) / 1 g(t) dt.
0

i.e., g is orthogonal to all polynomials p(¢) = ¢" for n = 1,2,..., i.e., g is constant.
However then, due to , g=0.

The assumptions above are quite restrictive. For some special functions G, @
holds under weaker conditions like e.g.

1 :
D € Lyp:([0,00)). (12) ’ass:def_unlform

12
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We illustrate this for G(y) = 1—e ¥ and G(y) = 1 —cos(y). It is enough to consider
u= {1} in (6), i.e. to show that the operator K given by

(Kg)(x) = / o(t) w(z, 1) dt

D

satisfies g = 0 almost everywhere whenever Kg = 0 and g € L, 4.

Indeed, using Holder’s inequality and (12)), we get that Ly, , C L1([0,00)).
Hence it is enough to show that K¢ = 0 for some g € L;([0,00)) implies g = 0 in
L1 ([0, ).

For G(y) =1—¢e7Y, ie.

(Kg)(x) = /0 T (1 — e dr,

this follows from the properties of the Laplace transform L. Indeed, observe that
with ¢ = [ g(t) dt, we have

0= (Kg)(z)=c—(Lg)(z) forall ze0,00).

Hence Lg = c is a constant, which is only possible if this constant is ¢ = 0. But
then Lg = 0, and g = 0 almost everywhere follows from the injectivity property of
the Laplace transform.

For G(y) = 1 — cos(y), i.e.

(Ko)(w) i= [~ o(t) (1~ cos at)

we can argue similarly with the Fourier transform instead of the Laplace transform
by extending ¢ to an even function on (—oo, 00).

3.3 The Function Approximation Problem

We follow [14]. Let w be a probability density on D and let ¢ € [1,00]. For non-
empty u, let Ly 4. = Lu,q,w(Dh") be the space of functions with finite semi-norm

1/q
Fleee = ([, 1F00atan) " with e = T[ote

Jj€u

For u = (), the corresponding space is Ly, ,, the space of constant functions.
Consider next the embedding operators

Su(fu) = fu € Lu,q,w~

For them to be well defined, we assume that

1/q
Rgprw = H’f%leL{l}’W = </D |Rp, (2)]? w(zx) dx) < 00.

Then for any f, € F, we have

||quLu,q,w S Hfu”Fu %1;271@7 i‘e‘7 ”SuH S T{l]lf‘pl,w‘ (13)

13



This means that holds with
Cl = gq7p17w'

Of course, C1 = Ky p, « depends also on 9.
Let L, 4. be a space containing Fsp, », ~ and endowed with a semi-norm such
that for every u and f, € F,

HquE.s,q,w S HquLu,q,w'
Finally, let S5 be the embedding operator
88 : fsap17p277 — £S7q9w'

Of course, it depends on all the parameters, p1,p2, q, ¥, w, and the weights ~v. We
assume that these parameters satisfy the following condition

1/ps
wu )"
Z TuFgpyw < %0
uCls]
since then

1/p5

~ P3

1S < {32 (v, )

uCls]

Note that for product weights the embedding operator is of tensor product form.
We illustrate the assumptions above for the examples from the previous section.

Example 4 We continue Example [I| here. Consider w = 1. This case was studied
in [7]. We have

1 if g=o00 or p; =1,

Sil| £ & =
151l < Fgprw { (1+q/p>{)*1/q otherwise.

Example 5 We return to Example [2[ and assume that w(z) = pe™* for some
1> 0. In what follows and some other places we use the well known fact that

/ e % dr = M for a,b>0.
0 pat1

We begin with the case of p; = 1. It is easy to see that

= _ ) e (= Da+ 1))V i g < oo
L1 00 if ¢ = o0,

for A > 0. For A <0, Koo p, w = 00 if ¢ = 00 or 1+ Ag/p1 < 0. Otherwise, for A < 0,

- _ 1 r—1 1/
Kgprw < (74‘)\’) (e_ﬂ(r—l)/|>\|+e—(r—1)/|/\\) ¢

We now consider the case of p; > 1. For ¢ = oo and any A we have

z 1/py
(r—1! ’A{OO,Plyw = Ssup (/ (x — t)(rfl)pl e MPI-1) dt)
x>0 0

14



1 . . 1/py
> sup (/ (z — t)r=DPi g~ API 1) dt> = oo.
0

r>1

Therefore, for the rest of this example, we consider ¢ < co.
If A > 0, then

- (=g + 1)V
q,p1,w (7" _ 1)' ((7“ _ 1)p>{ + 1)1/}7? 'ur—l/p1

Consider next A < 0. Since

x—1 ) 1/131k
(r = 1)1y (2) > < / A dt) ,
0

we conclude that

Rgprw = 00 if ,u—l—)\i < 0.
b1

If 4+ Ag/p1 > 0, then Ky p, ., is bounded from above by

(C((r = Dg + 1)
(r — DU (pr — D)VPE pb/a (u+ Ag/py)r—1+1/a

and
(C((r—1)q+2))"/*
(r — D1 ((r — 1)p + 1)V/Pi /9 (i + Aq/p)r— 120"

Let the assumptions from the previous section be satisfied.

Remark 3 In this setting the e-truncation dimension from Definition[I]is the small-
est natural number £ such that

Z fu S I Z fu for all f = Z fu S Fs,phpz,‘)"
uZ[k] ug[k] uCls]

‘CS#LW FS»PLPQ,’Y

We obtain the following corollary of Proposition [T] and Theorem

Corollary 4 We have

1/p5
dim™ () <min{ k | D (wEM, )P <e (14)
ugZ k]

which reduces to dim™™°(g) < min {k : SUDPyug [k Vu '/%l;:zlm w < a} for ps = 1.

For product weights, dim*™¢(¢) is bounded from above by

s . e U
minl k : H(l + (75 k'q7p17w)p2)1/p2 (1 —e ZjZk-‘rl('YquyPl«w)PQ) 2 <e

j=1

15



For k£ < s let
‘Fk,Pl,Pz,‘Y = @ Ey
uClk]

be the subspace of Fs, ;, 4 consisting of k-variate functions f([-jx);0-(x)]), and
let Ay, be an algorithm for approximating functions from F,, ,, ~ that uses n
function values. The worst case error of Ay, with respect to the space Fj p, p, 4 is

I/ = Arn(F)lle
(A Frprpay) = sup 7 - kg
fe;k‘,pl,pg;y ]:k’pl P2y

Now let
ALR () = Apn(f (g5 0-])

be an algorithm for approximating functions from the whole space F p, p, ~. The
worst case error of A2 is defined as

I1f = ASRS (e
e(AZf£?n5fS,P17p27‘Y) = Sup o S’qw'
fefs,pl,pg,‘y ”f”fs,pl,pQ,'y

This yields the following corollary of Theorem

Corollary 5 For given € > 0 and k > dim"™°(e) we have

" A\ 1/p3
trnc . D . y2
e(Ag ks Fsprpany) < (5 2+ e(Akn; Frprpoy) 2)

which reduces to e(Atr};’Cn;}'syphlﬂ) <max (e, e(Agn; Frpi1~)) for pp =1.

S,

3.4 The Integration Problem

In this subsection we assume that @ is satisfied. We consider the problem of
numerically approximating the integral

Is(f) = e f(m)w[s] (m) de,

where f € Fp, p~, Where w is a probability density function on D, and wy(xy) =

[[jc,w(;) for u C [s].
We require in this section that %, ,, defined by

N AL .
Fp1w (1) ._/D’(/Jl/pl(t)W( ) dz,

is such that ||&p, [, , < cc.
P1

Let now f € Fsp) py - For non-empty u, let g, € Lyyp, 4 be such that || ful|, =
llgull;, - (as outlined in Section . We then have
u,p1,

|IS(fu)‘ =

’ Ju(@y)wy(xy) day,
Dlul

) /Du gult )0’ () H Fpyw(t;) dbu

J€EuU

16



Iu| lu|

< ||9u”L ||Ep1,w||Lpik = Hfu”Fu ||Epl,w||1:pT :

u,p1,%

Since Holder’s inequality is sharp we conclude that

1l = WFp ),
1

where I, is the restriction of Z, to Fy,. This means that hold with equality for

C = ”Epl,w”Lp*-
1

Example 6 Let us once more return to Example [2| with w(z) = pe #*. Then the
Lyz-norm of Kp, 4, is given by

N 1/p}
1 /OO e Atpi/m (u /Oo(x — )t e_’““dac>p1 dt . .
(r=1!\Jo t

The inner integral, after the change of variables z = x — ¢, is equal to

> 1
u/ 2 lem ) g = — e M (r)
0 2

and, therefore,

I(r) 1 p*
||EP1M||LP* _ D) T (PT (A/Plﬂt)) if p+ /\/Pl > 0,
! 00 if u+A/p1 <0

with the convention that (1/(pt(\+ u))'/?1 =1 for pi = oco.

Let the assumptions from the previous section be satisfied.

ef :trdint Remark 4 In this setting the e-truncation dimension from Definition[I]is the small-
est natural number £ such that

SN L(f)|<e | D f for all f = > fu € Fapipoy-
uZ K] ugZ|[k]

-
]:S,pppgf‘/ u_[s}

We obtain the following corollary of Proposition [T and Theorem 2]
Corollary 6 We have

1/ps

dim™(e) < mind k[ SO [Fplly )| e (1)
1

ugZ (k]

which reduces to dim"™(g) < min {k‘ D SUDyg (k] Tu ||Rp17w||‘Lu‘* < 5} for ps = 1.
P1
For product weights dim"™™¢(g) is bounded from above by the smallest k for which

S

[Ta+ Fopsoll EONEE (1 —e

j=1

< e.

* 1 *
zs_kﬂijm,wmnw) "
1

17



m:mainint

For k < s let Ay, be an algorithm for integrating functions from Fj , p, - that
uses n function values. The worst case error of Ay, with respect to the space

]:’%PLP%’Y 18

Li(f) — Agn(f
e(Ak,m]:k,pl,pm‘y) = sup | ( ) 7”( )’
T€Fk,p1 27 HfH]-'k,pr%7

Now let
ATR () = Apn(f (g5 0-])

be an algorithm for integrating functions from the whole space F; ;, ,, ~. The worst
case error of A™P¢ is defined as

IZ(f) = AR (D)
e(AglIfl?n;fS,pl,m,’Y) = Sup e
fEfs,pl,pQ,'y ||f||]:s,p1,p2,'y

This yields the following corollary of Theorem

Corollary 7 For given € > 0 and k > dim"™°(e) we have

1/p3
trnc . P . p 2
e(As ko Fsprpon) < (5 2 + e(Akns Freprpay) 2)

which reduces to e(Agf,?fn;]:s,phlﬁ) < max (e, e(Arn; Frpi 1) for p2 = 1.

4 Unanchored Spaces of Multivariate Func-
tions

Let k, w, and Z; be as in the previous section. Also here we assume that [|Fp, wl|L,. <
oco. In what follows we use I to denote the w-weighted integral operator for uni-
varaiate functions,

1) = | fa)w e

Of course ||I|| = \|Ep1,w”LPT~
Consider

’iu,w(ajua tu) = H ("5(55]" tj) - I(K’(" tj)))
and

Kawlg)(@) = [ gult) (st

and the corresponding space Fp, p,~.w Of functions
flx) = qu,w(mu) with  fuw(@u) = Kuw(gu)(2u)
u

such that

1/p2
HfH-FS,pl,PQ;’YvW = <Z ")/u_p2 ng‘ ii,lqﬂl’) < o
u

18



rop:ANOVA

Instead of being anchored, the functions f,, satisfy the following property
/fuw:cu wak dz; =0 if jeu
keu

As in [3], one can show that the spaces Fsp, poy and Fsp, py~w as sets of
functions are equal if and only if

Y > 0 implies that ~, > 0 forall v Cu. (16)

From now on, we assume that is satisfied. Of course always holds true for
product weights.
Let 1, p, be the embedding

/Lp17p2 : F57p17p277 — fs,pl,pz,'y,w and ZP17P2 (f) = f’

and let 7, "~ be its inverse. As in [6], see also [2], one can check that

leprp2 | = Ny, -

Moreover, following the approach in [2], one can provide exact formulas for the

norms of the embeddings for py,p2 € {1,00} and next, using interpolation theory

(as in [4], see also [2]), derive upper bounds for arbitrary values of p; and ps.
More precisely, we have the following proposition.

Proposition 8 Suppose that |[Fp, wl|L,. < oo for p1 € {1,00}. Then
1

max Zf Rl i =1 andpy =1,
nCu

max Y Lfllﬁl,wrwg’; if p1 =1 and ps = oo

[ S

maxz if pp = 00 and ps =1,
nCu

maXZM* if p1 = 0o and py = o0.

u Y

vC[s]\u

To give a flavor of the proof, we prove the proposition for p; = po = 1.

Proof. For f =) fu. we have

fu,w = Ku,w(gu) = /Dlul gu(tu) H(H('ﬁtj) - I(H('at]‘)))dtu

JEU
-y / gu(ta) Folorte) [T (<) I(5(t5) dt.
vCu DIl jEU\p

Therefore

ZZ/H ) fio(-o: to) H (=1) I("i('vtj))dtu

u oCu jEu\v
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wniosek

Z /Dlru Goun (Lo, tw) H(*l) I(/{(-,tj))dtm dt,,

tv,oNo=0) jEW

N Zn:/Dw Fiolo, o)

Where (tn, tm) — tnum, Whlch lmpheS that f — ZD Kn(hn) Wlth

bt = 3 [ doum(tartu) T A )t

Clearly

||m\
Lo

PollLess < D lgounllomr.y 1FLw

t,tNo=0

and using u = v U tv we get

> kol
0

IN

S v gl e > e IRl
u

vCu
T j— —|o
< AP g max > 2 [ 1.
u Yo
vCu
This proves the bound on |[27!||. Since the Holder inequality is sharp, we actually
have equality. The proof for 2 is identical. O

For product weights v, = [ jeu Vi the expressions in the proposition above reduce

to
S

TG+ Fwl.) ifp=1
j=1

and to
S

H (L4 [[Foowllz,) if p1 = oo,
j=1

Applying interpolation theory we get, as in [2]:
Corollary 9 Suppose that ||Rp, wlL,. < oo for any p1 € [1,00]. If p1 < pa then
1

1/p2 200 Hlfl/pl7

lopr oIl < Nl ool V727172 |l 00

and if p2 < p1 then

1/p2—1/p1 211 1/p1 [ ||1—1/p2.

,O0

”thsz < Hloo,l”

For product weights we have
S
lrp1 el = H 1+ HEl:wHLw)l/pl (14, HEOOMHLJl_l/pl .
j=1

It was shown in [4] for product weights and in [6] for a number of different types of
weights that the upper bounds in Corollary [9] are sharp.

Suppose now that Zj’;l 7j < oo. Then the norms of the embeddings are uni-
formly bounded,

o0
_ 1 — 1-1
g ool < TT Q47 F1wllLo) P (147 [Foowlloy) 7,
j=1

for any s including s = co. Hence the results of previous sections are applicable for
unanchored spaces considered in this section.
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Remark 5 It is possible to consider even more general unanchored spaces. Indeed,
consider a linear functional ¢ that is continuous for the space of univariate functions,

i.e., with
(s(-,t))

”ZleLﬁ < oo, where £ (t) := Tt

Suppose also that

e(/Dg(t) n(-,t)dt> - /Dg(t)ﬁ(n(-,t))dt for all g € Ly, (D).

For nonempty u, define
Karlo)@) = [ oult) T[0s(ost) = €0n(:8,))) e
JEU

Then the corresponding functions f, ¢ = K, ¢(gy) satisfy
i(fur) =0 ifjeu

Here /; denotes the functional £ acting on functions with respect to the 4 variable.
More formally,

b= @ i o= {7

n=1

where id is an identity operator. For instance for £(g) = g(0) + [, g(t) dt,

G)@) = f(lw 0-]) + /D f(z)dz; with w={j}.

Let Fsp, po,y.e be the Banach space of functions f =),
norm

>0 K, ¢(gy) with the

1/p2

-1
||-f”-7:5,171,172,’)‘7Z = Z "}/u /p2 ||guHIL7’2“aP1,¢

u,'Yu>0
It is easy to extend all the results of this section provided that ||¢,, || L. is finite for
1
all p;. In particular, Proposition [§] and Corollary |§| hold with |%p, w| z,. replaced
_ 1
by ngl HLp*{ :
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