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Abstract. In the last few years, from the modeling point of view, the monolithic approach
for fluid-structure interaction problems in many different application fields has been adopted
by more and more researchers. Meanwhile, the development of monolithic solvers in the
solution procedure for solving such coupled fluid-structure interaction problems all at once is
in general a very hard task and has received a lot of attention. Due to the coupling conditions
on the interface, it is challenging to design efficient preconditioners for the linearized coupled
system of equations, that are robust with respect to the mesh size, time step size and material
parameters. Further, it is nontrivial to realize scalable parallel implementations for solving such
large scale coupled systems, which requires special care for handling the interface conditions.
In this survey, we present an overview of some recent results on robust monolithic fluid-
structure interaction solvers, that are mainly based on the block factorization, geometric and
algebraic multigrid, and domain decomposition methods.
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1 Introduction

Partitioned fluid-structure interaction (FSI) methods are traditionally adopted in engi-
neering applications since it is easy to combine available solvers for fluid and solid
mechanical problems; see, e.g., [23, 27, 32, 4, 53, 31, 37, 18, 9, 10, 19, 20, 78, 59] for
recent development of partitioned methods. However, the separation of the solid from
the fluid part in the solution process usually yield a loss in efficiency and robustness
mainly due to the so-called added-mass effect; see, e.g., [60, 88, 23, 74, 34]. Another
critical point is the control of the systematic errors caused by the accuracy of the fluid,
solid (structure) and mesh sub-problem solvers in each iteration step for solving the
non-linear “Schur-complement-system” (discrete Steklov-Poicaré problem). That is
the main reason why the monolithic methods for solving the FSI problems have re-
ceived more and more interests during the last few years; see, e.g., [13] for the aspects
of algorithms and computations in the monolithic methods for FSI problems. The
methods may be mainly classified into two groups (A and B),

A: the first one relies on the fluid, structure and mesh sub-problem solvers, where
efficient sub-problem solvers on the underlying basis have to be called in some



2 U. Ulrich and H. Yang

way, see, e.g., [43, 44, 25, 26, 7, 61, 6, 31, 5, 55, 66, 36, 58, 54],

B: the second one relies on solving many small local problems, which are charac-
terized by the same form as the global problem, i.e., a restriction of the global
problem onto the local sub-domains or patches, and featured as black-box type
solvers, see, e.g., [47, 64, 11, 92, 12].

The methods mentioned in the above two groups are mainly developed from the classi-
cal methods for solving the individual field problems, e.g., block factorization [68, 85,
51], geometric multigrid [41], algebraic multigrid [73, 67] and domain decomposition
[63, 77, 72] methods. Therefore, we discuss the monolithic methods in the following
corresponding sections:

(1) Section 2, block factorization; see [43, 44, 25, 26, 7, 61, 6, 5, 55],

(2) Section 3, geometric multigrid; see [47, 64, 66],

(3) Section 4, algebraic multigrid; see [36, 58, 54],

(4) Section 5, domain decomposition; see [92, 11, 12].

We mention that some of the methods are combination of two classical ones, e.g.,
[25, 26, 7] based on the block factorization and domain decomposition methods, and
[55, 36, 54] based on block factorization and algebraic multigrid methods. We charac-
terize the methods by their main features. Recently, apart from the above mentioned
work, that we will discuss in detail from the practical point of view, some results on
the analysis of optimal FSI preconditioners have been published in [93]. There opti-
mal FSI preconditioners have been developed under the framework give in [57, 96],
where the uniform well-posedness of the saddle point system and corresponding Riesz
operator are exploited.

Concerning temporal, spatial discretization, linearization for the coupled model FSI
problems, we refer to [13] for details. In short, the computational FSI domain Ωt =
Ωf ∪Ωs is decomposed into two deformable sub-domains, the fluid Ωf and structure
Ωs. The intersection of boundaries of two sub-domains yields the moving interface
Γfs = ∂Ωf ∩ ∂Ωs. By notations ΓDf , ΓNf , and ΓDs , ΓNs , we denote the Dirichlet and
Neumann boundaries for the fluid and structure sub-problem, respectively. We refer to
Fig. 1 for a schematic illustration of the sub-domains, interface and boundaries.

Depending on the particular applications, the incompressible Navier-Stokes equa-
tions under the arbitrary Lagrangian-Eulerian (ALE) framework [28, 49, 33, 52] are
considered in the fluid sub-domain Ωf ; the elasticity and hyperelasticity models [45,
91, 17] under the Lagrangian framework are usually used in the structure reference
sub-domain Ω̂s. On the interface Γfs, the no-slip condition and balance of surface
tractions from the fluid and structure sides are fulfilled, i.e., the velocities match and
the surface tractions balance. Further, a geometric adherence condition is imposed,
i.e., the fluid domain displacement and structure displacement on the interface equal
to each other.
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Figure 1. A schematic illustration of the computational FSI domain: Ωt = Ωf ∪Ωs.

In this paper, we focus on a short overview of recent development of the monolithic
methods for solving the FSI linear system of algebraic equations:

Kx = b. (1.1)

In order to ease the demonstration of each method, K denotes the Jacobian system
matrix at the current state, which will be detailed for each case in the respective section,
x the unknown corrections of possible combination of fluid velocity, fluid pressure,
structure displacement, structure velocity, structure pressure, mesh displacement, and
b the corresponding residual. Further, we use the notation P with the corresponding
subscription to indicate the respective preconditioner. In addition, ∆t indicates the time
step size.

The remainder of the paper is organized as follows: Section 2 deals with FSI precon-
ditioners based on block factorizations. In Section 3, we discuss geometric multigrid
methods for solving FSI problems. Section 4 concerns algebraic multigrid methods
applied to FSI problems. Section 5 is devoted to FSI preconditioners based on domain
decomposition techniques. Finally, some conclusions are drawn in Section 7.

2 Block factorization based preconditioners

2.1 Direct LU decomposition

In [48], with a skyline profile technique, a direct LU decomposition of the system ma-
trix is used for preconditioning in solving the discretized FSI problems (in small scale)
using the space-time finite element methods [76, 42, 15]. The BiCGStab solver (see,
e.g., [81]) combined with this preconditioner is quite efficient for smaller examples,
i.e., it only needs a few iterations. However, this method is hardly applicable to large
3D examples.
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2.2 Block-triangular approximations

In [43], three block-triangular approximations for the Jacobian matrix

K =

 S Csu Csp

Cus F G

Cps D

 (2.1)

are used as FSI (fluid in 2D coupled with a 1D thin-walled elastic beam) precondition-
ers by neglecting certain fluid-structure interaction blocks, i.e.,

P̃sup =

 S Csu Csp

F G

D

 , P̃sub =
 S

Cus F G

Cps D

 , P̃diag =
 S

F G

D

 .
(2.2)

Here, S represents the Jacobian matrix from the contributions of the tangent stiffness
matrix of the wall equations and the fluid-structure interaction, F the fluid momentum
equation, G the discrete gradient operator , D the discrete divergence operator, and the
remaining non-zero off-diagonal blocks the coupling between different fields.

The most expensive fluid sub-block in the approximations (2.2) are replaced by a
cheap global pressure Schur complement preconditioner [79], which leads to three FSI
preconditioners

Psup =

 S Csu Csp

F G

X

 , Psub =
 S

Cus F G

Cps X

 , Pdiag =
 S

F G

X

 ,
(2.3)

where X = −(DG)(DFG)−1(DG) is Elman’s BFBt approximation [29] to the pres-
sure Schur complement −DF−1G. These preconditioners show relatively good per-
formance with respect to the Reynolds number and the mesh size.

Further, in [44], two block triangular FSI preconditioners P1 and P2 are proposed
by neglecting the fluid-structure and structure-fluid interaction blocks in the reordered
Jacobian matrix compared to (2.1)

K =

 F G Cus

D Cps

Csu Csp S

 , (2.4)

i.e.,

P1 =

 F G

D

Csu Csp S

 , P2 =

 F G Cus

D Cps

S

 . (2.5)
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Each preconditioning step requires solving the fluid and structure sub-problems ap-
proximately. Compared to the earlier work [43], for the fluid sub-problem, the least
squares commutator (LSC) preconditioner [30] is employed with inclusion of a scaling
factor Q̂ in the pressure Schur complement, that is the diagonal of the velocity mass
matrix. To be more precise, the LSC preconditioner for the fluid sub-problem has the
following form:

PLSC =

[
F G

X̃

]
, (2.6)

where X̃ = (DQ̂G)−1(DQ̂−1FQ̂−1G)(DQ̂−1G)−1 represents a special choice of
proper approximations to the pressure Schur complement. The mesh-independent con-
vergence rates of these two preconditioners are observed using uniform and adaptive
mesh refinement.

2.3 Combination with parallel preconditioners

In [25, 26], the two serial block Gauss-Seidel preconditioners P (1)
GS and P (2)

GS are fur-
ther developed in parallel context by performing block factorization of the augmented
Jacobian matrix

K =


Cff CfΓ

CΓf CΓΓ I

Nss NsΓ

NsΓ NΓΓ −I
I −I/∆t

 (2.7)

using the geometry-convective explicit time discretization, neglecting the term −I ,

P
(1)
GS =


Cff CfΓ

CΓf CΓΓ I

Nss NsΓ

NsΓ NΓΓ

I −I/∆t



=


I

I

Nss NsΓ

NsΓ NΓΓ

I




Cff CfΓ

CΓf CΓΓ I

I

I

I −I/∆t


= P

(1)
GS,1P

(1)
GS,2,

(2.8)
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and I/∆t

P
(2)
GS =


Cff CfΓ

CΓf CΓΓ I

Nss NsΓ

NsΓ NΓΓ −I
I



=


Cff CfΓ

CΓf CΓΓ I

I

I

I




I

I

Nss NsΓ

NsΓ NΓΓ −I
I


= P

(2)
GS,1P

(2)
GS,2,

(2.9)

on the off-diagonal part, respectively, and replacing the fluid and structure sub-blocks
with proper parallel preconditioners. Here C with subscripts f and Γ denotes the
fluid stiffness matrix associated with the degrees of freedom in the fluid domain and
on the interface. The same applies to the structure stiffness matrix N . We mention
that, in the augmented system, the two interface conditions are imposed explicitly. In
[25], the same technique is used to construct the FSI preconditioners for the geometry-
convective explicit time discretized FSI system.

Particularly, the three parallel preconditioners PAS(K), P (1)
GS−AS and P (2)

GS−AS are
then built by applying the one-level algebraic additive Schwarz preconditioner [63,
77, 72] to each factor of the full Jacobian matrix, the approximated one P (1)

GS and P (2)
GS ,

respectively. The preconditioners P (1)
GS−AS and P (2)

GS−AS preserve modularity and have
demonstrated similar or better performance than PAS(K) with increasing number of
processors.

A similar preconditioning technique is employed in [7] for the FSI simulation using
anisotropic polyconvex hyperelastic and viscoelastic arterial models at finite strains.
Such an approximated monolithic Dirichlet-Neumann preconditioner PDN is obtained
by performing a block factorization to the Jacobian matrix

K =


F CT1 DdfF

DdsS CT3
C1 C2

C4 H

 (2.10)
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neglecting the coupling block CT3 , i.e.,

PDN =


F CT1 DdfF

DdsS

C1 C2

C4 H



=


I

DdsS

I

I



I

I

I

C4 H



F CT1 DdfF

I

C1 C2

I

 ,
(2.11)

where F denotes the fluid stiffness matrix, S the structure stiffness matrix, H the ge-
ometry stiffness matrix, the remaining stemming from the continuity of two interface
conditions and geometric adherence, DdfF the linearization of the fluid sub-problem
with respect to the fluid domain displacement, DdsS the linearization of the structure
sub-problem with respect to the structure displacement. The one level algebraic ad-
ditive Schwarz preconditioners from [72] are used to approximate the inverse of each
factor in PDN .

2.4 The augmentation preconditioner

In [61], for the linearized saddle point system

KPS =

[
E Cxl

Clx

]
(2.12)

arising from the pseudo-solid mesh problem (large-displacement elasticity), the so-
called augmentation preconditioner [38, 39, 65]

Psaug =

[
Eaug

W

]
=

[
E + CxlW

−1Clx

W

]
(2.13)

is analyzed, which is used to update the moving fluid mesh. Here, E denotes the
tangent stiffness matrix of the unconstrained pseudo-solid problem,Cxl andClx results
from the imposition of the displacement constraint by the Lagrange multipliers [14],
W is an matrix such that Paug is effective and Eaug sparse. In [61], a new optimal
preconditioner is developed by choosing a special block diagonal form of W .

For the fully coupled FSI system, the argumentation preconditioner Pfsiaug is ob-
tained by replacing the bottom-right 2 × 2 block (corresponding to the pseudo-solid
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mesh problem) in the FSI Jacobian matrix

K =


F Cfx

Csf S Csx

E Cxl

Cls Clx

 (2.14)

with the above pseudo-solid augmentation preconditioner Psaug, i.e.,

Pfsiaug =


F Cfx

Csf S Csx

Eaug

Cls W

 . (2.15)

Here, F denotes the fluid Jacobian, S the tangent stiffness matrix of the structure, and
the non-zero off-diagonal blocks the coupling between the various fields. Subject to
the constraint that the tangent stiffness matrix of the unconstrained pseudo-solid prob-
lem is symmetric positive definite, the non-unit eigenvalues of the preconditioned FSI
system are bounded by the ones of the preconditioned pseudo-solid problem. This effi-
cient FSI preconditioner leads to a nearly optimal solver with respect to computational
cost, i.e., the time for solving the linearized systems scales linearly with the number of
unknowns.

2.5 Block LU type factorization

In [6], an inexact block LU factorization is employed to construct a FSI preconditioner
for the FSI system using 1-dimensional structures

K =

 Cff Gf Cfσ

Df Dσ

Cσf Gσ Cσσ +N

 , (2.16)

where Cαβ , α, β ∈ {σ, f} represents the fluid matrix associated with the viscous,
convective and 1/∆t scaled mass terms, with σ being nodes on the interface and f
in the fluid domain, Gα the divergence term, Dα = GTα , and N the structure matrix
corresponding to the no-slip interface condition. For the d-dimensional structures, the
arising linear system has the same block structure as (2.16). An exact factorization
leads to the following splitting:

K =

 Cff

Df Spp Spσ

Cσf Sσp Sσσ


 I C−1

ff Gf C−1
ff Cfσ

I

I

 = LU, (2.17)
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where the Schur complements matrices Spp = −DfC
−1
ff Gf , Spσ = Dσ−DfC

−1
ff Cfσ,

Sσp = Gσ − CσfC−1
ff Gf and Sσσ = Cσσ +N − CσfC−1

ff Cfσ.
In the inexact factorization, the inverse of the fluid sub-block C−1

f is replaced by the
zero-order term of its Neumann expansion:

C−1
ff =

(
1
∆t
Mff +Kff

)−1

= ∆tM−1
ff +O

(
∆t2
)
' ∆tM−1

ff , (2.18)

where Kff represents the fluid stiffness matrix associated with the viscous and con-
vective terms, and Mff the fluid velocity mass matrix. The approximations of the
Schur complements follow Spp ' Tpp = −∆tDfM

−1
ff Gf , Spσ ' Tpσ = Dσ −

∆tDfM
−1
ff Cfσ, Sσp ' Tσp = Gσ − ∆tCσfM

−1
ff Gf and Sσσ ' Tσσ = Cσσ + N −

∆tCσfM
−1
ff Cfσ. Now the approximated factors L̂ and Û are given by

L̂ =

 Cff

Df Tpp Tpσ

Cσf Tσp Tσσ

 , Û =

 I ∆tM−1
ff Gf ∆tM−1

ff Cfσ

I

I

 . (2.19)

If the fluid sub-block approximation (2.18) is used in both the lower and upper block-
triangular factors, a pressure-correction like method (Chorin-Temam projection scheme)
is obtained,

PPIC = L̂Û , (2.20)

that is original designed for the numerical solution of the Navier-Stokes equations
[24, 75], and is recently employed and analyzed in the explicit-implicit splitting algo-
rithm for the FSI problems [31]. If the approximation is only used in the lower block
triangular factor, a Yosida like method arrives

PFSY = L̂U, (2.21)

that was originally proposed as an inexact factorization of the matrix arising from the
numerical solution of the Navier-Stokes equations [62]. These two preconditioners are
rather stable for the simulation of a pressure pulse propagation in a blood flow vessel.

In [5], an incomplete LU factorization PILU , the so-called ILUT preconditioner
[68] is applied to the diagonally scaled system:

P−1
ILUD

−1Kx = P−1
ILUD

−1b, (2.22)

where D denotes the diagonal coefficients of K. In addition, an inexact block LU
factorization is used to construct the FSI preconditioner and the same zeroth order
term as in (2.18) is utilized in both the factors. To reduce the computational cost, a
lumped mass matrix in (2.18) is used. These preconditioners show good behavior in
the large range of the added-mass effect [60].
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2.6 A LDU block factorization

In [55], a new FSI preconditioner is constructed in form of L̂D̂Û with L̂, D̂ and Û be-
ing proper approximations to the matrices L, D and U in the LDU block factorization
of the fully coupled and reordered Jacobian matrix

K =

 Am Ams

As Asf

Afm Afs Af

 , (2.23)

where the stiffness matrices Am, As and Af for the mesh movement, structure and
fluid sub-problem are respectively lying on the main diagonal, and the coupling matri-
ces Aβα, β, α ∈ {f,m, s} and β 6= α among different fields on the off-diagonal. An
exact LDU factorization of K reads:

K =

 I

I

AfmA
−1
m ÃfsA

−1
s I


 Am

As

S


 I A−1

m Ams

I A−1
s Asf

I

 ,
(2.24)

with the fluid Schur complement

S = Af − ÃfsA−1
s Asf = Af − (Afs −AfmA−1

m Ams)A
−1
s Asf .

The new FSI preconditioner PLDU = L̂D̂Û is formed as

PLDU =

 I

I

AfmÂ
−1
m

ˆ̃AfsÂ−1
s I


 Âm

ÂS

Ŝ


 I ÂmAms

I Â−1
s Asf

I

 ,
(2.25)

where the Schur complement approximation Ŝ corresponds to the perturbed fluid sub-
problem, that is obtained by modifying corresponding entries in the original fluid ma-
trix with an explicitly constructed approximation to the exact perturbation stemming
from the sparse matrix-matrix multiplications:

Ŝ = Af − ˆ̃Afs
ˆ̂A−1
s Asf = Af − (Afs −Afm ˆ̂A−1

m Ams)
ˆ̂A−1
s Asf , (2.26)

where ˆ̂Am = diag[Am] and ˆ̂As = diag[As] denote the point-wise block diagonal of
the corresponding mesh movement and structure matrices.

The inverse operations of Â−1
m , Â−1

s and Â−1
f in each factor of the Jacobian matrix

are realized by applying a few W-cycles of a special class of algebraic multigrid meth-
ods [50, 86, 87, 40, 94] to the corresponding mesh, fluid and structure sub-problems
with 0 as initial guess.
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Further, dropping L̂ leads to a reduced FSI preconditioner P̂LDU in form of P̂LDU =
D̂Û :

P̂LDU =

 Âm

ÂS

Ŝ


 I ÂmAms

I Â−1
s Asf

I

 , (2.27)

that is based on an inexact Uzawa method (see, e.g., [16]) and originally analyzed in
[71] for the fluid problem. The preconditioners demonstrate relatively good robustness
with respect to temporal and spatial discretization parameters, and certain material
parameter.

3 Geometric multigrid methods
3.1 A Vanka-like smoother

In [47, 64], a special monolithic ALE FSI system with respect to displacement, veloc-
ity and pressure unknowns on the whole computational FSI domain is formulated in a
unified manner; see also [89]. For such a formulation, the conforming biquadratic (for
displacement and velocity), discontinuous linear (for pressure) Q2P1 finite element
pair is chosen. This leads to a natural fulfillment of the interface conditions, namely,
the no-slip condition and the balance of the surface tractions. In addition, it allows
the fluid and structure pressure jumps across the interface, that usually occurs in the
FSI simulation. A geometrical multigrid method is then used to solve the linearized
system of equations with the Jacobian matrix:

K =

 Suu Suv

Svu Svv B

BT
s BT

f

 , (3.1)

where S represents the discrete reactive, diffusive and convective terms, B the discrete
gradient term, BT

s and BT
f the discrete divergence term. In particular a Vanka-like

smoother [84, 79] is performed on the mesh level l, i.e., on each patch (element) Ωi,
a local 39 × 39 system matrix KΩi (in 2D) is inverted, with 3 pressure degrees of
freedom and associated 36 displacement and velocity degrees of freedom:

xk+1
l = xkl + ωk

∑
Ωi

K−1
Ωi
rnΩi , k = 1, ..., ν, (3.2)

where ν denotes the smoothing steps, ωk the relaxation parameter, rn
Ωi

the defection
on the patch Ωi, and KΩi has the following structure:

KΩi =

 Suu|Ωi Suv|Ωi
Svu|Ωi Svv|Ωi B|Ωi
Bs|Ωi Bf |Ωi

 , (3.3)
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that is a restriction of the global stiffness matrix K onto the patch Ωi. This geometric
multigrid method shows the accuracy and robustness with respect to the constitutive
models.

3.2 A Dirichlet-Neumann smoother

In [66], a geometric mulitigrid preconditioner within the GMRES method is used in
solving the linearized FSI system of algebraic equations. A smoothing step consists
of approximations of the structure Neumann and fluid Dirichlet sub-problems on the
mesh level l:

xk+1
l = Sl(x

k, bl), k = 1, ..., ν, (3.4)

where Sl denotes the corresponding smoothing operator. In fact, the Neumann and
Dirichlet sub-problem approximations correspond to the dynamic (balance of surface
traction) and kinematic (no-slip) interface conditions, respectively. For approximation
of each sub-problem in the smoothing step, several preconditioned Richardson itera-
tions are applied. In particular, a stabilized incomplete lower-upper decomposition of
the stiffness matrix for each sub-problem is used as a corresponding preconditioner.
The numerical results have demonstrated the robustness and efficiency with respect
to the mesh size and problem parameters, e.g., fluid density, average inflow velocity,
shear modulus and Poisson’s ratio.

4 Algebraic multigrid methods

4.1 Smoothed aggregation multigrid methods

In [36], the block Gauss-Seidel preconditioner combined with approximate block in-
verses for respective fluid, mesh and structure sub-problems by algebraic multigrid
methods are used to solve the FSI system with the Jacobian matrix:

K =

 S SSF

G GGF

FFS FFG F

 , (4.1)

where on the main diagonal, S, G and F represent the stiffness matrix from the struc-
ture, mesh and fluid sub-problem, respectively, the off-diagonal blocks the coupling
matrix between two different fields indicated with the supscriptions S-structure, F -
fluid and G-mesh. In particular, the preconditioner PBGS has the following form

PBGS =

 S

G

FFS FFG F

 . (4.2)
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As pointed out in [36], that the preconditioner PBGS only models a one-way interac-
tion from the structure to the fluid without feedback from the fluid to the structure.
To approximate the inverses of sub-problem in the preconditioning steps, in particular,
the so-called smoothed aggregation multigrid for symmetric positive definite elastic-
ity equations [83, 82, 56] and Petrov-Galerkin smoothed algebraic multigrid for the
nonsymmetric Navier-Stokes equations [69] are used.

Furthermore, a truly monolithic algebraic multigrid method was developed for solv-
ing the FSI system of equations in [36]. The combined level transfer operators PFSIl

and RFSIl using the individual prolongation and restriction operators for each sub-
problem on a level l are constructed as

PFSIl =

 PSl
PGl

PFl

 , RFSIl =

 RSl
RGl

RFl

 , (4.3)

where PSl , PGl and PFl are prolongation operators on level l for the structure, mesh
and fluid sub-problem, respectively; RSl , RGl and RFl are corresponding restriction
operators. The matrix on the coarse level l + 1 is then built as:

Kl+1 =

 RSl
RGl

RFl


 S SSF

G GGF

FFS FFG F


l

 PSl
PGl

PFl



=

 RSl SlP
S
l RSl S

SF
l PFl

RGl GlP
G
l RGl G

GF
l PFl

RFl F
FS
l PSl RFl F

FG
l PGl RFl FlP

F
l

 .
(4.4)

The damped Richardson iteration with block Gauss-Seidel preconditioner P̃BGS is
used as a smoother: For k = 0,

xk+1 = xk + ωkP̃
−1
BGS(b−Kx

k) (4.5)

with the Richardson iteration index k and a level-dependent damping parameter ωk.
In the preconditioning step, the inverse approximation for each sub-problem are re-
alized by simple smoothing steps, e.g., ILU or Gauss-Seidel. The monolithic FSI
solution method combined with the new monolithic algebraic multigrid shows the best
performance.

In [58], a novel generalized monolithic solution procedure is proposed, that keeps
consistency in the nonconforming temporal and spatial discretizations. The above
algebraic multigrid methods are utilized in solving the condensed monolithic linear
system by eliminating the unknown Lagrange multipliers λ discretized by dual mortar
shape functions [90].
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In [35], these block Gauss-Seidel and monolithic algebraic multigrid precondition-
ers are employed in the preconditioners for the coupled system of the lung model prob-
lem, which contains the standard FSI system and additional algebraic constraints [95].
Using the idea of semi-implicit methods for the pressure-linked equations (SIMPLE,
see, e.g., [22]) of the coupled system, the predictor equation, arising there, is actually
corresponding to the FSI system and approximated by these FSI preconditioners.

4.2 Matrix-graph based algebraic multigrid methods

In [54], a similar technique has been employed in developing algebraic multigrid meth-
ods for solving the linearized FSI system using three hyperelastic structure models,
namely Neo-Hookean, Mooney-Rivlin and anisotropic two-layer thick-walled artery
(see [8, 46, 1]). In particular, the W-cycles of the special matrix-graph based alge-
braic multigrid methods for individual fields have been applied in each smoothing step
[50, 86, 87, 40, 94]. Furthermore, the algebraic multilevel methods has been developed
for solving the coupled FSI system [2, 3, 85, 51]. These methods show robustness with
respect to the mesh size and different structure models.

5 Domain decomposition preconditioners
5.1 A restricted additive Schwarz preconditioner

In [92], a fully implicit domain decomposition based Newton-Krylov-Schwarz method
is proposed for solving the nonlinear coupled FSI system of algebraic equations in
3D. In solving the right-preconditioned Jacobian system with the GMRES method, a
restricted additive Schwarz preconditioner [21] is used, that is an overlapping variant
of the classical additive Schwarz preconditioner for general sparse linear systems:

P−1
RAS =

N∑
l=1

(R0
l )
TB−1

l Rl, (5.1)

where Rl denotes the restriction operator (a mapping of global unknowns to the cor-
responding ones on the local overlapping sub-domain), Bl = RlKR

T
l the local sub-

domain Jacobian, R0
l the restrictions to the unknowns on the non-overlapping sub-

domain. Such a preconditioner requires a particular partition of the finite element
meshes into overlapping sub-domains containing both the fluid and structure elements.
Note that the overlapping regions are only used to construct the sub-domain Jacobians
and provide information to solve the local sub-problems, but not considered in the
prolongation procedure. Although increasing overlapping size will reduce iteration
numbers of the GMRES method, the computational time may increase due to higher
local sub-problem solving cost. The preconditioner has shown parallel scalability up to
2048 processors and robustness with respect to material parameters, e.g., fluid density,
structure density, Young’s modulus and Poisson ratio.
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The same technique has been used in earlier work [11] for solving the FSI problems
in 2D, that shows the robustness with respect to some material parameters, and parallel
scalability up to hundreds of processors.

5.2 A two-level Schwarz preconditioner

In [12], a two-level Newton-Krylov-Schwarz algorithm is used to solve the nonlinear
FSI system at each time step, that is given in an abstract form:

Gh(xh) = 0. (5.2)

The solution of the analogous coarse grid problem

GH(xH) = 0 (5.3)

is taken as a good initial guess for solving the nonlinear problem (5.2) on the fine
mesh. We mention that the nonlinear system (5.3) on the coarse mesh is solved by an
inexact Newton method. To solve the linearized system on the coarse and fine meshes,
the one-level restricted additive Schwarz preconditioner PH as (5.1) and the two-level
hybrid preconditioner Ph [72, 77] are employed, respectively. In particular, on the
fine mesh level, a multiplicative preconditioner combined both the coarse-level and
fine-level ones is proposed:

P−1
h = IhHB

−1
0 IHh +

N∑
l=1

(R0
l )
TB−1

l Rl, (5.4)

where the second term is the restricted additive Schwarz preconditioner on the fine
level, IHh denotes the restriction from the fine grid to the coarse one, IhH = (IHh )T the
corresponding interpolation operator from the coarse grid to the fine one, and B−1

0 the
solution procedure on the coarse grid. The preconditioner has demonstrated robustness
with respect to the structure’s Young’s modulus and the time step size, and the nearly
perfect weak scaling up to some thousand processors.

6 Some numerical studies
In this section, we test some of monolithic FSI solvers that are developed in our pre-
vious work [54, 55]. We solve a 3D benchmark problem using block Gauss-Seidel,
complete LDU factorization and AMG preconditioned GMRES solvers. The com-
putational FSI domain and the mesh, generated by Netgen [70], are illustrated in Fig.
2. Three mesh levels are used to test the robustness of the preconditioners; see mesh
information in Table 1, where we provide the number of nodes (#Nod), tetrahedral
elements (#Tet) and degrees of freedom (#Dof).

In this experiments, we extend the FSI2 test, that was originally proposed in [80]
as a two-dimensional FSI test, to three dimensions. The geometry configuration is
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Figure 2. Geometry (left) and mesh (right) for half of the computational FSI domain.

Level #Nod #Tet #Dof

L1 1913 8400 14073
L2 13166 67200 93114
L3 97292 537600 670944

Table 1. Three finite element meshes.

illustrated in Fig. 3. The structure domain is an elasticity plate with length 40 cm, 30
cm and 2 cm in the x-, y- and z-direction, respectively, attached to a cylinder. The
fluid domain is a cuboid with length 250 cm, 41 cm and 41 cm in the three directions,
respectively, cut by the cylinder along the y-direction. The cylinder has length 41
cm in the y-direction and radius 5 cm at the rest, which is fixed as in the Turek’s
benchmark problem. We mention that the elasticity plate is a bit away from the center
of the cuboid in either y- or z-direction.

y

z
x

41 cm

250 cm

41 cm

(250, 41, 41)

(0, 0, 0)

(20, 41, 20) (20, 0, 20)

5 cm

inflow

outflow

Γd

2 cm
Γ

0

30 cm

5 cm

1 cm
1 cm(20, 20, 20)

x

z

(20, 0, 20)(20, 41, 20)

(20, 20, 20)

y

z

40 cm

20 cm 20 cm

Figure 3. A schematic illustration of the geometry and boundary configuration.

For the structure, we use the nonlinear hyperelastic model of the St. Venant Kirch-
hoff material with density ρs = 1 g/cm3 and Lamé constants µs = 1.15×106 dyn/cm2
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and λs = 1.73 × 106 dyn/cm2. The structure is fixed on the touching part with the
cylinder, i.e., Γd in Fig. 3. The rest of the boundary is the interface Γ0.

We use the incompressible Navier-Stokes equations to model the fluid. The fluid
has density ρf = 1.0 g/cm3 and kinematic viscosity ν = 0.035 cm2/s. A smooth
parabolic velocity profile in time is prescribed at the inflow:

u(0, y, z, t) =

1.5Ū yz(H−y)(H−z)
(H2 )2(H2 )2

1−cos(π2 t)
2 cm/s if t < 2.0

1.5Ū yz(H−y)(H−z)
(H2 )2(H2 )2 cm/s if t ≥ 2.0

(6.1)

with H = 41 and Ū = 100. At the outflow, we use the homogeneous Neumann
boundary condition. The no-slip condition is prescribed on the rest of the fluid domain
boundary.

The structure is initially at rest. The initial condition for the fluid is homogeneous
zero.

For spatial and temporal discretization, and linearization of the nonlinear coupled
FSI system, we refer to our work in [54, 55]. The time step size is set to 0.625 ms. The
velocity fields and structure deformation (enlarged by a factor 16) at time t = 1.625 s
are plotted in Fig. 4.

Figure 4. Visualization of fluid velocity field and structure displacement.

For illustration purpose, we only show the iteration numbers and cost in second
(s) for solving one linearized FSI system of equations. We stop solving the system
when the relative residual error of the preconditioned system in the GMRES method is
reduced by a factor 107. For the performance of the complete simulation of some 3D
benchmarks, we refer to the detailed numerical studies in [55]. In Table 2, we record
the number of iterations and computational time in second (the value in brackets) using
three preconditioned GMRES solvers on the three mesh levels. It is easy to see from
our numerical experiments that, the LDU factorization preconditioned GMRES solver
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GS_GMRES AMG_GMRES LDU_GMRES

L1 23 (26.1 s) 15 (262.1 s) 4 (7.5 s)
L2 54 (493.6 s) 12 (461.6 s) 7 (183.3 s)
L3 164 (12133.3 s) 16 (3107.9 s) 9 (2426.3 s)

Table 2. Number of iterations and cost in second (s) of the solvers: GS_GMRES (GM-
RES solver preconditioned by block Gauss-Seidel), AMG_GMRES (GMRES solver pre-
conditioned by AMG) and LDU_GMRES (GMRES solver preconditioned by complete
LDU factorization.

shows better performance than the other two. It is worth mentioning that the cost of
both GS_GMRES and LDU_GMRES solvers scales well with respect to the number
of degrees of freedom and iteration numbers. For the AMG preconditioned GMRES
solver, we observe better scaling factor than expected. That is because we have the
same problem size on the coarsest AMG level for all the three mesh levels, which is
relatively large (around 2500 × 2500) and dominates computational cost on the level
L1. The problem size on the coarsest level is not easily reduced further, since in the
benchmark, the structure has much fewer Dofs than the fluid one.

7 Conclusions
In this work, we present a short overview on recent development of monolithic FSI
solvers in the last decade, that are developed from classical methods for solving in-
dividual field problems. Several well developed preconditioners, based on block fac-
torization, geometric and algebraic multigrid, domain decomposition methods, have
been discussed. These methods have shown their robustness and efficiency with re-
spect to temporal and spatial discretization parameters as well as material parameters
for a certain class of FSI problems. The topic is relatively new and is still under further
investigation, although a lot of progress has been made by many research groups.
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