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A UNIFIED FRAMEWORK FOR ADAPTIVE BDDC

CLEMENS PECHSTEIN1∗ AND CLARK R. DOHRMANN2

Abstract. In this theoretical study, we explore how to automate the selection of
weights and primal constraints in BDDC methods for general SPD problems. In
particular, we address the three-dimensional case and non-diagonal weight matrices,
such as the deluxe scaling. We provide an overview of existing approaches, show
connections between them, and present new theoretical results: A localization of the
global BDDC estimate leads to a reliable condition number bound and to a local
generalized eigenproblem on each glob, i.e., each subdomain face, edge, and possibly
vertex. We discuss how the eigenvectors corresponding to the smallest eigenvalues can
be turned into generalized primal constraints. These can be either treated as they are,
or (which is much simpler to implement) be enforced by (possibly stronger) classical
primal constraints. We show that the second option is the better one. Furthermore,
we discuss equivalent versions of the face and edge eigenproblem which match with
previous works and show an optimality property of the deluxe scaling. Lastly, we give

a localized algorithm which guarantees the definiteness of the matrix S̃ underlying
the BDDC preconditioner under mild assumptions on the subdomain matrices.

1. Introduction

The method of balancing domain decomposition by constraints (BDDC) (see [18, 33]
for closely related methods) is, together with the dual-primal finite element tearing and
interconnecting (FETI-DP) method [32], among the most advanced non-overlapping
domain decomposition methods for partial differential equations. The two methods
can be considered as dual to each other, and for symmetric positive definite problems,
the corresponding preconditioned operators have identical spectrum (up to values of
one and zero) [72, 69, 74, 10].

For a variety of PDEs discretized by the finite element method, a poly-logarithmic
bound C(1+log(H/h))2 of the spectral condition number of the preconditioned system
has been established, where H/h is the maximal ratio of subdomain diameter and ele-
ment size. Covered cases are scalar diffusion problems [78, 59, 71, 55], linear elasticity
[58], Stokes flow [68, 44], almost incompressible elasticity [56, 87, 35], Reissner-Mindlin
plates [66], as well as positive definite problems in H(curl) [23, 16, 12, 114] and H(div)
[84, 85]. The same kind of bound has been obtained for spectral elements [86], boundary
elements [88, 89], mortar methods [40, 41], discontinuous Galerkin [27, 14, 16, 28, 99],
and isogeometric analysis [5, 7, 60, 63, 6]. Without giving a list of further references,
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we note that BDDC and FETI-DP were successfully applied to many more problems,
mostly of a mechanical type. Preconditioners based on Schur complement approxi-
mation similar to BDDC were recently proposed by Kraus et al. [61] and Schöberl
[98].

The constant C in the bound is usually independent of subdomain diameters and
mesh sizes and thus also of the number of subdomains, which is necessary for scalability.
Ideally, C is also independent of problem parameters, typically coefficient jumps [59,
92, 35], coefficient ratios [23], or geometry details [55, 12]. As shown in [59, 72, 74], at
least for SPD problems, part of the analysis is problem-independent, and the condition
number estimate reduces to a single norm estimate of a projection operator (PD). For a
given decomposition into subdomains, this estimate is influenced by two sources: (i) the
weights/scalings and (ii) the primal constraints.

(i) Several scalings have been used in the literature. The multiplicity scaling is
not robust for coefficient jumps. A coefficient-dependent scaling, sometimes called ρ-
scaling, based on constant values per vertex/edge/face leads to robustness for coefficient
jumps between subdomains. The stiffness scaling takes more information into account
and may look promising, but can lead to very high condition numbers in the case of
irregular meshes [55] or mildly varying coefficients [94, 89]. A trade off “between” the
latter two for jumps along interfaces has been proposed in [94, 89], see also [90]. All
the scalings above involve diagonal weight matrices. The deluxe scaling introduced
in [22] (for early experiments see also [21]) breaks with this rule as the weights are
dense matrices per subdomain face/edge/vertex. For subdomain faces, it was observed
several times, that the deluxe scaling can lead to very good results [23, 84, 7, 16, 66, 50].
Computationally economic versions are discussed in [23, 49].

(ii) The selection of good primal constraints is not an easy task either. On the one
hand, choosing too few constraints leads to poor performance of the preconditioner
[107, Algorithm A]. On the other hand, choosing too many constraints results in a
large coarse problem, which leads to a computationally inefficient method. Although
large coarse problems can be alleviated using multiple levels [109, 108, 75, 102], it is
better to keep the coarse problem size at a necessary minimum. For scalar diffusion and
linear elasticity with coefficients that are constant in each subdomain, good selection
algorithms are available, see [107] as well as [100] and the references therein. For hard
problems with varying coefficients or coefficient jumps along subdomain interfaces,
these recipes may happen to work but can also easily lead to poor performance [64, 53,
29, 92] (see [93, 94, 90] for the classical FETI method). This has led to problem-adapted
algorithms for choosing primal constraints, called adaptive BDDC/FETI-DP, which we
discuss in the following. Although the adaptive choice means more computational work,
this can pay off in highly parallel regimes, where local operations are expected to be
comparably cheap [47, 116, 117].

Mandel and Soused́ık [73] were the first to investigate, for general diagonal scalings,
the influence of primal constraints under quite general assumptions on SPD problems
and in an algebraic framework. They came up with a condition number indicator which
is based on a local estimate per closed face F , reading∑

i∈NF

|ΞiF (PDw)i|2Si
≤ ωF

∑
i∈NF

|wi|2Si
.(1)

Here NF is the set of subdomains shared by face F , ΞiF extracts the degrees of freedom

on F , and | · |Si is the subdomain (semi)norm. The best constant ωF is the maximal
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eigenvalue of an associated generalized eigenproblem and as such computable. The
maximum of all indicators ωF turned out to be quite reliable for some practical appli-
cations. The eigenvectors corresponding to the largest eigenvalues can also be used to
create new, adaptive constraints in order to enhance the condition number. Together
with Š́ıstek, this approach was extended to three-dimensional problems [76, 102].

The idea of replacing difficult local estimates by local generalized eigenproblems has
been used before, e.g., in smoothed aggregation multigrid [11], balancing Neumann-
Neumann methods [9], or spectral AMGe [15]. More recently, this technique has been
used in overlapping Schwarz methods [34, 25, 24, 30, 31, 112, 103]. Spillane and Rixen
[104] have used it for the classical FETI method, see also [37]. Kraus, Lymbery, and
Margenov [61] use a similar idea in the context of the additive Schur complement
approximation. Other works on BDDC and FETI-DP will be mentioned below.

There are four limitations of the method in [73, 76, 102]:

(a) The theory considers only diagonal scaling matrices.
(b) In the original works, the local bounds are only indicators and were not (yet)

proven to be reliable.
(c) To obtain adaptive constraints, the eigenvectors corresponding to F have to be

split into constraints on the corresponding open face F and the edges on its
boundary. This can possibly lead to unnecessary constraints. Disregarding the
vectors on the face boundary is suggested but not supported theoretically.

(d) It is assumed that the initial set of primal constraints already controls the
kernel of the underlying PDE, such as the rigid body modes of elasticity; this is

needed to realize the (formal) matrix inverse S̃−1 in the BDDC preconditioner.
It would be good if the local eigenproblems could even detect these kernels and

guarantee that S̃ is definite.

Issue (b) has only been resolved quite recently. In [50], Klawonn, Radtke, and Rhein-
bach show that for two-dimensional problems, where all vertices are chosen primal, the
maximum of all indicators ωF serves as a reliable condition number bound up to a be-
nign factor. In that work, more general scaling matrices are also considered. In a recent
preprint, [45], Klawonn, Kühn, and Rheinbach show a reliable condition number bound
for general three-dimensional problems, where all vertices are chosen primal, using a
diagonal scaling matrix. Up to a benign factor, the bound is the maximum over all the
indicators ωF and some additional indicators associated with those subdomain edges
that share four or more subdomains. To guarantee the reliability, the obtained face
constraints are split into face and edge constraints as described above. The authors
also provide some recipes on how the additional work for the edge indicators can be
minimized.

In our article, we briefly review the new approach in [45] and show that it can be
equally obtained from a pair-based localization of the PD estimate. In the main part of
our work, however, we take a different path and provide a similar framework as in [76],
but using a glob-based localization. Here, a glob is an open subdomain face, edge, or
possibly vertex. On each glob G, we define an indicator ωG associated with the local
estimate ∑

i∈NG

|ΞiG(PDw)i|2Si
≤ ωG

∑
i∈NG

|wi|2Si
.(2)

Here, NG is the set of subdomains shared by G and ΞG extracts the degrees of freedom
on G. The best local indicator ωG can again be obtained by a generalized eigenproblem,
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and the corresponding eigenvectors associated with the smallest eigenvalues can be used
to create adaptive constraints. Solutions are given to all of the above issues:

(a) We allow general scaling matrices that only need to be block-diagonal with
respect to partitioning into globs.

(b) Up to a benign factor, the maximum over all indicators ωG serves as a reliable
computable condition number bound.

(c) The constraints on open faces need not be split and can be used as they are. The
eigenvectors obtained on subdomain edges, however, are not in the usual form
of primal constraints. We show that we can use them as they are (thereby gen-
eralizing the notion of primal constraints), or convert them to classical primal
constraints, which is more efficient and fully supported theoretically.

(d) The local eigenproblems stay well-defined even if the set of initial primal con-
straints is empty. Under mild assumptions on the subdomain matrices, we can
show that using essentially the eigenvectors corresponding to zero eigenvalues

as primal constraints guarantees that the inverse S̃−1 appearing in the BDDC
preconditioner exists.

In the following, we would like to comment on other approaches to this problem.
A first group of papers considers two-dimensional problems, where all vertices are a-
priori chosen as primal. On subdomain faces (there called edges), generalized eigenvalue
problems (and sometimes analytic estimates) are used to adaptively choose additional
primal constraints. To review and compare, we need a little more notation: Let F
be the subdomain face shared by subdomains i and j, let S?kF denote the “Neumann

face” matrices (S̃
(k)
FF in the notation of [111, 13]), i.e., the Schur complement of the

subdomain matrix eliminating all degrees of freedom (dofs) except those on F , and

SkF the ”Dirichlet face” matrices (S
(k)
FF in the notation of [111, 13]), i.e., starting

with the subdomain matrix, eliminating all interior dofs, and then selecting the block
corresponding to the dofs on face F .

• Klawonn, Radtke, and Rheinbach [49, 46] consider scalar diffusion and com-
pressible elasticity with discontinuous coefficients, discretized by P 1 finite ele-
ments. They propose to use three generalized eigenproblems per face,

S?iF v = λMiF v, S?jF v = λMjF v, S?iF v = λ
ρ̂i
ρ̂j
S?jF v,

where ρ̂k is the maximal coefficient on subdomain k and MkF a scaled mass
matrix. The theory is completed with a discrete Sobolev inequality, |v|2SkF

≤
C1|v|2S?

kF
+C2|v|2MF

, and leads to a reliable method for scalar diffusion and linear

elasticity with varying coefficients. The authors use a coefficient-dependent
scaling similar to the ρ-scaling, based on the values ρ̂k.
• Chung and Kim [17] have worked out a fully algebraic approach (though limited

to two-dimensional problems). They propose to use two eigenproblems per face,

(SiF + SjF )v = λ(S?iF + S?jF )v, S?iF v = λS?jF v.

General scalings are allowed, but the condition number bound depends on the
norm of the scaling matrices. For the multiplicity and the deluxe scaling, this
norm is bounded by one.

In both approaches, in contrast to [73, 76], several (simpler) eigenproblems/estimates
are combined. Moreover, the influence of the primal constraints on the neighboring
vertices (on ∂F ) are not included in the local eigenproblems. These two issues raise
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the question whether the obtained primal constraints are really necessary, or in other
words, whether the local bound is efficient; see also [49, 111].

In our approach, we follow Mandel and Soused́ık [73] and use a natural eigenproblem
that directly follows from the localization (2) of the global PD estimate. This eigen-
problem involves unknowns on all subdomains shared by the glob, i.e., for face, about
twice as many as for the above eigenproblems. Here, the (good) influence of a-priori
chosen primal dofs on neighboring globs can (but need not) be included. Disregard-
ing them leads to a much simpler implementation, but including them can reduce the
number of primal constraints needed for a desired condition number bound. Besides
that, we have collected a number of abstract tools for modifying/simplifying general
eigenproblems.

Intermediate steps of our work are documented in the form of slides [21, 91]. In [91],
we show that for the deluxe scaling, on each subdomain face F shared by subdomains
i and j, one can alternatively use the generalized eigenproblem

(S?iF : S?jF )v = λ(SiF : SjF )v(3)

where : denotes the parallel sum of matrices introduced by Anderson and Duffin [3].
This idea has recently been discussed in a publication by Klawonn, Radtke, and Rhein-
bach [50] comparing three different methods for the two-dimensional case: the method
by Mandel and Soused́ık [73], their own approach [49], and our intermediate approach
[91] involving the parallel sum, for which they propose a variant for general scalings,

(S?iF : S?jF )v = λ(D>jFSiFDjF +D>iFSjFDiF )v,(4)

where DkF are the face scaling matrices. Sound theory for all three cases is given, but
limited to the two-dimensional case. Moreover, economic variants are proposed, where
SiF , S?iF , etc. are replaced by matrices where not all subdomain degrees of freedom
are eliminated, but only those at a certain distance from the face F . Kim, Chung,
and Wang [42, 43] have also compared the method by Chung and Kim [17] with (4).
Zampini [116, 115, 117] as well as Calvo and Widlund [111, 13] have experimented with
(3) too and give suggestions for the three-dimensional case.

In our current paper, we show a new theoretical link: If one disregards the influence
of neighboring globs then the natural generalized eigenproblem corresponding to (2)
on face G = F shared by subdomains i and j is equivalent to (4). In case of the deluxe
scaling, (4) is identical to (3). Moreover, we show that the deluxe scaling minimizes
the matrix trace of the left-hand side matrix in (4), which is in favor of making the
eigenvalues larger. Whereas in [91], we have used the parallel sum as an auxiliary tool,
our new minimizing result shows that it is really encoded into BDDC.

The three-dimensional case including subdomain edges has turned out to be a par-
ticularly hard problem. For simplicity, consider an edge E shared by three subdomains
i, j, k. Calvo and Widlund [111, 13] suggest to use

(S?iE : S?jE : S?kE)v = λ(TiE + TjE + TkE)v,(5)

in context of deluxe scaling, where TiE = SiE : (SjE + SkE). Kim, Chung, and Wang
[42, 43] give a choice for general scalings:

(S?iE : S?jE : S?kE)v = λ(AiE +AjE +AkE)v,(6)

where AiE = D>jESiEDjE + D>kESiEDkE . We provide two alternatives. Firstly, one
can use the natural edge eigenproblem, optionally simplified by discarding the primal
constraints on neighboring globs. We then show how to use the eigenvectors obtained
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as constraints in the BDDC algorithm. Secondly, we show that with further simplifica-
tions, the natural eigenproblem can be decoupled into (n − 1) independent eigenprob-
lems where n is the number of subdomains shared by the edge. When recombining the
decoupled problems, one obtains (6) in general, and (5) in case of the deluxe scaling.

Let us note that Stefano Zampini has experimented with

(S?iE : S?jE : S?kE)v = λ(SiE : SjE : SkE)v,(7)

which behaves robustly for some H(curl) problems [114], but a theoretical validation
is yet missing (and we do not show any).

Apparently, eigenproblems (5) and (6) are simpler than the natural one correspond-
ing to (2), but the primal constraints resulting from (5), (6) may be unnecessary. Vice
versa, the natural eigenproblem corresponding to (2) will lead to efficient constraints,
but is more complicated to be computed. Our decoupled choice is in between.

Note that for all the eigenproblems considered, we show how initially chosen pri-
mal constraints on the respective glob (G, F , or E) can be built in. Essentially, the
eigenproblems has to be projected onto the space where the initial constraints hold.

We hope that our theoretical study will serve as a contribution to better under-
standing of the proposed methods and the links between them, and to help find a good
trade-off between (a) the more efficient, but also more complicated “natural” eigenprob-
lems and (b) simpler eigenproblems that potentially lead to unnecessary constraints but
are easier to compute.

The remainder of this paper is organized as follows: In Sect. 2 we discuss the prob-
lem setting, the BDDC preconditioner, abstract theory for the condition number, and
primal constraints on globs. Sect. 3 provides a localization of the global PD estimate
under mild assumptions on the weight/scaling matrices. Moreover, we localize the con-

dition for S̃ to be definite. The local estimate is turned into an eigenproblem, which
is discussed in detail in Sect. 4. Section 5 is devoted to the choice of the adaptive
constraints for both the face and edge eigenproblems. Section 6 discusses the deluxe
scaling and its optimality property. In Sect. 7 we combine the local definiteness condi-
tion from Sect. 3 and some abstract results from Sect. 4 to show how in practice, and

under mild assumptions on the subdomain matrices, the global definiteness of S̃ can
be guaranteed. An appendix contains auxiliary, technical results.

Our paper is meant to be comprehensive and self contained. To get an overview,
we recommend to skip the sections marked with an asterisk (∗) for the first time.
Experienced BDDC readers may initially skip Sect. 2 as well.

Some Notation: X∗ denotes the algebraic dual of the finite-dimensional (real) vector
space X. We always identify the bi-dual X∗∗ with X. If X is a Euclidean space, we even
identify X∗ with X. For a linear operator A : X → Y , the transpose A> : Y ∗ → X∗

is given by 〈AT y∗, x〉 = 〈y∗, Ax〉, where 〈·, ·〉 are the dual pairings. A linear operator
A : X → X∗ (with X finite-dimensional) is said to be symmetric if 〈Ax, y〉 = 〈Ay, x〉 for
all x, y ∈ X, positive semi-definite if 〈Ax, x〉 ≥ 0 for all x ∈ X, and positive definite if
〈Ax, x〉 > 0 for all x ∈ X \{0}. Symmetric and positive semi-definite (SPSD) operators
A, B : X → X∗ have the following properties, which we will use frequently:

(i) 〈Ax, x〉 = 0⇐⇒ x ∈ ker(A),
(ii) ker(A+B) = ker(A) ∩ ker(B),

(iii) range(A+B) = range(A) + range(B),

(iv) |v|A := 〈Av, v〉1/2 is a semi-norm on X.
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If P : X → X is a projection (P 2 = P ), then X = ker(P )⊕ range(P ), where ⊕ denotes
the direct sum. Moreover, (I − P ) is a projection too, ker(I − P ) = range(P ), and

range(I − P ) = ker(P ). Product spaces are denoted by V1 × · · · × VN or
⊗N

i=1 Vi .

2. BDDC in an algebraic setting

In this section, we summarize the main components of the BDDC method and fix
the relevant notation. For the related FETI-DP method see Appendix B. We give
abstract definitions of globs (equivalence classes of degrees of freedom), classical primal
constraints, and generalized primal constraints.

2.1. Problem setting. We essentially follow the approach and notation in [72]. The
problem to be solved is the system of linear equations

(8) find û ∈ U : R>S R︸ ︷︷ ︸
=: Ŝ

û = R>g︸︷︷︸
=: ĝ

,

where

S =

 S1 0
. . .

0 SN

 , g =

 g1
...
gN

 , R =

 R1
...
RN

 ,(9)

with SPSD matrices Si. The assembled system matrix Ŝ is assumed to be definite,
such that (8) has a unique solution. Let Wi be the (real) Euclidean space of subdomain
(interface) degrees of freedom (dofs) and U the Euclidean space of global (interface)
dofs, such that

Ri : U →Wi, R : U →W := W1 × . . .×WN ,

Si : Wi →Wi, S : W →W.
(10)

We simply call the indices i = 1, . . . , N subdomains. Each matrix Ri corresponds to a
local-to-global mapping gi : {1, . . . ,dim(Wi)} → {1, . . . ,dim(U)} and (Ri)`k = 1 if and
only if k = gi(`) (local dof ` on subdomain i corresponds to global dof k), and zero
otherwise. We assume that each mapping gi is injective. Therefore, Ri has row full
rank, and we conclude that1

RiR
>
i = I, R>i Ri = diag(µ

(i)
k )

dim(U)
k=1 , with µ

(i)
k ∈ {0, 1}.(11)

Moreover, R>R = diag(µk)
dim(U)
k=1 with µk =

∑N
i=1 µ

(i)
k being the multiplicity of dof k.

We assume throughout that µk ≥ 2 for all k, which implies in particular that R has
full column rank and the subspace

Ŵ := range(R)(12)

is isomorphic to U .

Remark 2.1. Typically, the matrices Si are constructed from (larger) subdomain finite
element stiffness matrices Ai based on a non-overlapping domain decomposition (e.g.
using a graph partitioner) by the (formal) static condensation of non-shared dofs. For
the corresponding BDDC preconditioner for the non-condensed system see, e.g., [76].

1Note that R> in (8) actually maps W ∗ to U∗ and assembles local contributions to the global
residual (i.e., a functional), whereas R>i in (11) plays a different role as it extends a function in Wi to
U by putting all dofs zero that are not shared by subdomain i.
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Remark 2.2. The assumption that each dof is at least shared by two subdomains
is purely to simplify our presentation. All our results can be generalized to the case
µk ≥ 1, which is, e.g., convenient for BETI [65]. Moreover, we could allow that Ri
is rank-deficient and assume that R>i Ri = I is diagonal with ones and zeros. Then,
however, some formulas would need adaptations. Such “phantom dofs” appear in the
TFETI method [26]. See also [89] for both cases.

2.2. The BDDC preconditioner. There are two main ingredients for the BDDC
preconditioner. The first one is the averaging operator

ED : W → U, EDw :=

N∑
i=1

R>i Diwi ,(13)

where Di : Wi →Wi are weight matrices fulfilling

Condition 2.3 (partition of unity).
∑N

i=1R
>
i DiRi = I (or equivalently EDR = I).

Note that the matrices Di themselves need not be SPSD.

Proposition 2.4. Under Condition 2.3 (partition of unity), range(ED) = U and

RED : W →W is a projection onto Ŵ .

Proof. We have U ⊃ range(ED) ⊃ range(EDR) = U and (RED)2 = REDRED = RED.

Finally, range(RED) = R(range(ED)) = range(R) = Ŵ . �

The simplest weights are given by the multiplicity scaling, Di = diag(1/µgi(`))
dim(Wi)
`=1 ,

where gi(`) is the global dof corresponding to the local dof ` on subdomain i. In some
papers ([72, p. 180], [69, 76]), the weight matrices Di are assumed to be diagonal with
positive entries. In the current paper, we allow more general weights (see Condition 3.4
below). A special choice, the deluxe scaling, is discussed in Sect. 6.

The second ingredient is an intermediate subspace W̃ that fulfills:

Condition 2.5. Ŵ ⊂ W̃ ⊂W.

Condition 2.6. S is definite on W̃ (ker(S) ∩ W̃ = {0}).

The construction of W̃ is further described in Sect. 2.5.2 below. Condition 2.6 is
needed for both the practical application of the BDDC preconditioner and its analysis,
and it will be further discussed in Sect. 3.1 as well as in Sect. 7. Let

Ĩ : W̃ →W.(14)

denote the natural embedding operator and define the restricted operator

S̃ := Ĩ>SĨ : W̃ → W̃ ∗.(15)

Due to Condition 2.6, S̃ is definite and thus has a well-defined inverse. The BDDC
preconditioner for problem (8) is defined by

(16) M−1
BDDC := ED (Ĩ S̃−1 Ĩ>)E>D : U → U.

If we explicitly choose a basis for W̃ , then Ĩ and S̃ have matrix representations and S̃−1

can be constructed via a block Cholesky factorization (see e.g. [69, 58]). Depending

on the structure of the space W̃ , this can cause a loss of sparsity, which leads to
inefficient local solvers when using, e.g., nested dissection. The original BDDC method
[19] is based on primal dofs (explained in Sect. 2.5), and provides an efficient algorithm
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(Appendix C) to realize (Ĩ S̃−1 Ĩ>) using a change of basis only implicitly and preserving

sparsity. A more general construction of the space W̃ (cf. [76]) has certain importance
to our work as well and will be investigated in Sect. 2.6, Sect. 5.4, and Appendix C.3.

2.3. Abstract Analysis. Theorem 2.8 below has been shown several times in the
literature (see, e.g., [72, 74]). For its statement we need the projection operator

PD := I −RED : W →W.(17)

The following properties can be derived from Proposition 2.4.

Proposition 2.7. Under Condition 2.3 and Condition 2.5,

(i) P 2
D = PD,

(ii) PDw = 0⇐⇒ w ∈ range(R) = Ŵ ,

(iii) PDw ∈ W̃ ⇐⇒ w ∈ W̃ , in particular PD(W̃ ) ⊂ W̃ , range(PD) ∩ W̃ = PD(W̃ ).

Theorem 2.8 ([72, Theorem 5]). Let assumptions from Sect. 2.1 hold and let Con-

dition 2.3 (partition of unity), Condition 2.5 (Ŵ ⊂ W̃ ⊂ W ), and Condition 2.6 (S

definite on W̃ ) be fulfilled. Then

λmin(M−1
BDDCŜ) ≥ 1.

Moreover, the three estimates

|REDw|2S ≤ ω |w|2S ∀w ∈ W̃ ,(18)

|PDw|2S ≤ ω |w|2S ∀w ∈ W̃ ,(19)

λmax(M−1
BDDCŜ) ≤ ω(20)

are equivalent. Summarizing, (19) implies κ(M−1
BDDCŜ) ≤ ω.

A proof based on the fictitious space lemma is provided in Appendix A, see also [61].

Remark 2.9. In general, the definiteness of S̃ does not follow from (18) or (19).
Consider one global dof (U = R) shared by two subdomains with S1 = D1 = 1, S2 =

D2 = 0 and W̃ = W = R2. Then S̃ is singular but |PDw|2S = 0 and |REDw|2S = |w|2S .

Remark 2.10. For a fixed problem matrix S and weight matrices Di, consider two

BDDC preconditioners based on spaces W̃ (1) ⊂ W̃ (2) (typically meaning that W̃ (1)

has more primal constraints than W̃ (2)) and let λ
(1)
max, λ

(2)
max denote the corresponding

maximal eigenvalues. Then λ
(1)
max ≤ λ(2)

max. Since in practice, λmin is close or even equal
to one [10, 69, 74, 73], we can expect the smaller space (with the larger set of primal
constraints) to lead to a smaller condition number.

2.4. Globs. In BDDC and FETI-DP the intermediate space W̃ is described using
primal dofs, or coarse dofs. In this particular paper, we restrict ourselves to primal
dofs that are associated with globs2.

Definition 2.11 (globs). For each global dof k ∈ {1, . . . ,dim(U)}, we define the set

Nk :=
{
i = 1, . . . , N : µ

(i)
k = 1

}
2Note that many different definitions of globs are used in the literature: sometimes globs are geo-

metrical sets [79, 89], sometimes the set of globs excludes vertices [73].
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Figure 1. Two examples of subdomain decompositions and globs.
Top: 2D example, bottom: 3D example, left: subdomain decomposition,
middle: visualization of globs with NG displayed, right: parent graph;
arrow points from parent to “child”.

of sharing subdomains. The set {1, . . . ,dim(U)} of global dofs is partitioned into equiv-
alence classes, called globs, w.r.t. the equivalence relation k ∼ k′ ⇐⇒ Nk = Nk′ . We
denote by G the set of all globs and by NG the set of subdomains shared by glob G.
Finally, we define the set

Gi := {G ∈ G : i ∈ NG}
of globs for subdomain i. If |NG| = 2, we call G a face, and we denote the set of all
faces (of subdomain i) by F (Fi, respectively).

Definition 2.12 (glob relationships). A globG1 is called an ancestor ofG2 ifNG1)NG2

and G1 is called a parent of G2 if G1 is an ancestor of G2 and there is no other
glob G3 with NG1)NG3)NG2 . Certainly, a glob can have several parents. If a glob
has no parents, we call it a base glob. Two globs G1 6= G2 are called neighbors if
|NG1 ∩NG2 | ≥ 2, i.e., if they share at least two common subdomains.

Figure 1 illustrates these definitions (assuming a relatively fine mesh and a finite
element space with node-based dofs, such that sets of nodes look like geometrical sets).

Remark 2.13. For general partitions of 3D finite element meshes, e.g., obtained from
a graph partitioner, it can be hard to classify globs geometrically, in particular to
distinguish between vertices and edges. For some rules/heuristics see [51, Sect. 2],
[58, Sect. 3], [23, Sect. 5]. For our purposes, such a classification is not needed. The
above definition also resembles the fat faces/edges/vertices for isogeometric analysis
[5]. Moreover, the setting is not only limited to two- and three-dimensional problems.
Lastly, note that our theory holds for any alternative definition of globs that refines
Definition 2.11 in the sense that each glob of Definition 2.11 is a union of the refined
globs. For instance, one may want to split a glob if it is not connected geometrically;
see also [58, 89, 116, 117].
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symbol explanation reference
F (Fi) set of faces (associated with subdomain i) Def. 2.11
G (Gi) set of globs (associated with subdomain i) Def. 2.11
G∗ (G∗i ) subset of G (Gi), not totally primal Def. 2.20
NG set of subdomain indices associated with glob G Def. 2.11
DiG glob scaling matrix UG → UG Ass. 3.4
RiG restriction matrix Wi → UG Def. 2.14

R̂G restriction matrix U → UG (21)
Q>G evaluation of primal dofs Def. 2.15
ΞG (ΞiG) filter matrix W →W (Wi →Wi) (23)

Ξ̂G filter matrix U → U (23)
Table 1. Notation concerning globs.

Definition 2.14. Let UG denote the space of dofs on G (with a fixed numbering).
For any i ∈ NG, let RiG : Wi → UG be the (zero-one) restriction matrix (of full rank)
extracting these dofs, such that RiGR

>
iG = I.

Since UG has a fixed dof numbering, we can conclude that there exists a matrix

R̂G : U → UG such that

RiGRi = R̂G ∀i ∈ NG , R̂GR̂
>
G = I ∀G ∈ G.(21)

Since the globs are disjoint to each other,

RiG1R
>
iG2

=

{
I if G1 = G2 ∈ Gi
0 otherwise.

(22)

We define the cut-off/filter matrices

ΞiG := R>iGRiG , ΞG := diag(ΞiG)Ni=1 , Ξ̂G := R̂>GR̂G ,(23)

which are diagonal matrices with entry one if the corresponding dof is on G and zero
otherwise.3 From the previous definitions and properties we conclude that

ΞiGRi = RiΞ̂G , ΞGR = RΞ̂G , Ξ2
G = ΞG , Ξ̂2

G = Ξ̂G .(24)

By construction, we have the following partitions of unity on Wi and U ,∑
G∈Gi

ΞiG = I,
∑
G∈G

Ξ̂G = I,(25)

as well as the following characterization of the “continuous” space (cf. [72])

Ŵ := range(R) = {w ∈W : ∀G ∈ G ∀i, j ∈ NG : RiGwi −RjGwj = 0}.(26)

2.5. Primal dofs and the space W̃ . Various definitions of primal dofs have been
used for FETI-DP [32, 67, 59, 58, 89, 107] and BDDC [19, 72, 73] in the literature.
Here, we require that a primal dof must be associated with a glob and is nothing but
a linear combination of regular dofs within that glob. In Sect. 2.5.3 below, we discuss

a more general definition of primal dofs and the space W̃ based on closed globs, which
we, however, do not use in the main part of our theory.

3Our expression ΞiGwi corresponds to Ih(θGwi) in the terminology of [107].
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2.5.1. Classical primal dofs. The following definition is more common in BDDC meth-
ods, which is why we term it “classical”; see Sect. 2.5.3 for a more general definition.

Definition 2.15. Classical primal dofs on the open glob G are described by a matrix

Q>G : UG → UΠG := RnΠG ,

where nΠG ≥ 0 is the number of primal dofs associated with glob G. The subspace of
UG where the primal dofs vanish is

UG∆ := {y ∈ UG : Q>Gy = 0}.(27)

We set

WΠi :=
⊗
G∈Gi

UΠG , WΠ :=
⊗N

i=1
WΠi , and UΠ :=

⊗
G∈G

UΠG ' RnΠ ,

with nΠ =
∑

G∈G nΠG the total number of primal dofs. Analogously to Sect. 2.1, we
can find zero-one matrices

RΠi : UΠ →WΠi , RΠ : UΠ →WΠ , and RΠiG : WΠi → UΠG ,(28)

and a matrix R̂ΠG : UΠ → UΠG such that RΠiGRΠi = R̂ΠG independent of i ∈ NG. Let

Ci : Wi →WΠi , Ci :=
∑
G∈Gi

R>ΠiGQ
>
GRiG .

be the matrix evaluating all primal dofs associated with subdomain i and define the
dual subspaces [72, 107]

Wi∆ := ker(Ci) = {wi ∈Wi : ∀G ∈ Gi : Q>GRiGwi = 0}, W∆ :=
⊗N

i=1
Wi∆.(29)

Remark 2.16. The operators/spaces RΠ, UΠ, WΠ correspond to Rc, Uc, X, respec-
tively, from [73, Sec. 2.3]). The operator QP from [72, 73] reads (in our notation)

Q>P =
∑

G∈G R̂
>
ΠGQ

>
GR̂G : U → UΠ. So Definition 2.15 is equivalent to saying that Q>P

is block-diagonal with respect to the partitions of (primal) dofs into globs.

The next condition states that the primal dofs on G are linearly independent. This
can always be achieved by (modified) Gram-Schmidt orthonormalization or, more gen-
erally, by a QR factorization [36, Sect. 5.2].

Condition 2.17 (linearly independent primal dofs). For each glob G ∈ G, the columns
of the matrix QG are linearly independent.

The following condition is needed later on:

Condition 2.18 (Ci surjective). ker(C>i ) = {0} for all i = 1, . . . , N .

Proposition 2.19. Let {Q>G}G∈G be primal dofs in the sense of Definition 2.15. Then
Condition 2.17 ⇐⇒ Condition 2.18.

Proof. Recall that C>i =
∑

G∈Gi R
>
iGQGRΠiG, i.e., C>i is block-diagonal with respect to

the partition of Wi into globs and to the partition of WΠi into {UΠG}G∈Gi . Hence C>i
is injective if and only if all the matrices {QG}G∈Gi are injective. �

Some special primal dofs control all dofs on a glob (in applications, these are typically
subdomain vertices):

Definition 2.20 (totally primal glob). We call a glob G totally primal if Q>G is injective
(typically the identity). The set of globs (for subdomain i) which are not totally primal
is denoted by G∗ (G∗i respectively).
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2.5.2. The space W̃ . Following [19, 72, 69, 73], we define the “partially continuous

space” W̃ based on primal dofs.

Definition 2.21. For given primal dofs {Q>G}G∈G in the sense of Definition 2.15, we
set

W̃ := {w ∈W : ∀G ∈ G ∀i, j ∈ NG : Q>G(RiGwi −RjGwj) = 0}.(30)

Obviously, the space above fulfills Condition 2.5, i.e., Ŵ ⊂ W̃ ⊂ W . The following
characterization can be shown using the properties of the restriction matrices RΠ..., cf.
[72], [73, Sect. 2.3].

Proposition 2.22. If the primal dofs are linearly independent (Condition 2.17) then

W̃ = {w ∈W : ∃uΠ ∈ UΠ ∀i = 1, . . . , N : Ciwi = RΠiuΠ}.(31)

The side conditions in (30) are called primal constraints, and they fulfill two jobs:

First, we need enough constraints such that Condition 2.6 holds (S̃ is invertible). Sec-
ond, additional constraints may be needed to get a good constant in the bound (19)

(recall Remark 2.10: the smaller the space W̃ , the (potentially) smaller the constant ω).
In particular this is important for 3D problems or parameter-dependent problems. The
first job is treated in Sect. 3.1 and in Sect. 7. The rest of the paper is mainly devoted
to the second job. Here, one has to take into account that, although a smaller space

leads to a better condition number, the amount of coupling within W̃ should be kept

at a minimum, otherwise the algorithm is not efficient. For example, if W̃ = Ŵ , then S̃
(which should actually be cheaper to invert) is the same as the original problem matrix.

Before proceeding, we provide two basic results on the space W̃ . The first one clarifies
its dimension.

Proposition 2.23. If the primal dofs are linearly independent (Condition 2.17), then

dim(W̃ ) = nΠ +
∑N

i=1 dim(Wi∆).

The second result allows us to write W̃ as a direct sum of a continuous and a
discontinuous space, see also [72, Sect. 5], [107, Sect. 6.4].

Proposition 2.24. If the primal dofs are linearly independent (Condition 2.17), then

W̃ = ŴΠ ⊕W∆ ,

where ŴΠ = range(Φ̂) ⊂ Ŵ is given by the full-rank matrix

Φ̂ : UΠ → Ŵ , Φ̂ := RQP = R
∑
G∈G

R̂>GQGR̂ΠG .

Moreover, Φ̂i = C>i RΠi = (
∑

G∈Gi R
>
iGQGRΠiG)RΠi, so the basis has local support.

Remark 2.25. If the primal dofs are orthogonal, i.e., for all G ∈ G: Q>GQG = I, then

CiΦ̂i = I. Otherwise, one can redefine Φ̂ to fulfill the latter property, cf. [72, Lemma 9].

2.5.3. Primal dofs on closed globs∗. In some references and implementations, primal
dofs are defined on the closure of globs, cf. [107, 48, 76].

Definition 2.26. The closure G of glob G is given by G and all its ancestors, i.e.,

G :=
⋃
{G′ ∈ GG}, where GG := {G′ ∈ G : NG′⊇NG}.
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Let UG denote the space of dofs on G (with a fixed numbering). Analogously to the

above, we can find zero-one matrices RiG : Wi → UG and R̂G : U → UG extracting these

dofs such that RiGRi = R̂G independent of i ∈ NG.

Definition 2.27. Primal dofs on the closed glob G are described by a matrix

Q>
G

: UG → UΠG := RnΠG .

The analogous definitions of Ci : Wi →WΠi and Q>P : U → UΠ are

Ci =
∑
G∈Gi

R>ΠiGQ
>
G
RiG, Q>P =

∑
G∈G

R>ΠGQ
>
G
R̂G

and the space W̃ can now be defined as in (31).
Recall that for the classical primal dofs (on “open” globs), the proof of Proposi-

tion 2.19 is very simple. For the closed case, an analogue is not presently known. Yet,
the following is easily verified:

Proposition 2.28. Let RGG := R̂GR̂
>
G

denote the restriction matrix from the dofs on

G to the (fewer) dofs on the open glob G. If for each G ∈ G, the matrix RGGQG has
full column rank, then also QG has full column rank (analogous to Condition 2.17).

If RGGQG has linearly dependent columns, we can split each primal dof on the closed

glob G into primal dofs on all the open globs G′ ∈ GG, orthonormalize them together
with the existing ones, and finally obtain linearly independent primal dofs on open globs
(Condition 2.17). However, to our best knowledge, no algorithm exists to date which
gets Condition 2.17 to hold by modifying QG without increasing the overall number of
primal dofs. See also [76, p. 1819]. This is one of the reasons why we use Definition 2.15.

2.6. Generalized primal constraints∗. Mandel, Soused́ık, and Š́ıstek [76] use a more

general definition of the space W̃ , which is of central importance to our own work:

W̃ = {w ∈W : Lw = 0},(32)

where L : W → X := RM is a matrix with M linearly independent rows. One easily

shows that Ŵ ⊂ W̃ ⊂W (Condition 2.5) if and only if LR = 0, or equivalently,

Lw = 0 ∀w ∈ Ŵ .(33)

Apparently, Definition 2.21 (based on the classical primal dofs) is a special case of (32)

but not vice versa. For the general form (32), the application y = ĨS̃−1Ĩ>ψ for ψ ∈W
is equivalent to solving the global saddle point problem[

S L>

L 0

] [
y
z

]
=

[
ψ
0

]
.(34)

For the special case of L discussed below, a more viable option is given in Appendix C.

Remark 2.29. Actually, for any space W̃ with Ŵ ⊂ W̃ ⊂ W (Condition 2.5), there
is a matrix L such that (32)–(33) holds. In a FETI-DP framework (see Appendix B),
(33) implies that L = L̄B for some L̄, and so, such constraints can be implemented by
deflation [54, 38, 49, 42, 43]. The balancing Neumann-Neumann method [70] can be
interpreted as a BDDC method with (32), however the constraints L are global, cf. [89,
p. 110].
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In [76], Mandel et al. require that each constraint (each row of L) is local to a glob,
i.e., for each glob G ∈ G, there exist matrices LjG : UG → XG, j ∈ NG such that

Lw =
∑
G∈G

R>XG
∑
j∈NG

LjGRjGwj ,(35)

where X is isomorphic to
⊗

G∈G XG and RXG : X → XG is the zero-one matrix ex-
tracting the “G” component. If L is of form (35) then

(i) L has linearly independent rows if and only if for all G ∈ G the block row matrix
[· · · |LjG| · · · ]j∈NG

has linearly independent rows.
(ii) Lw = 0 holds if and only if∑

j∈NG

LjGRjGwj = 0 ∀G ∈ G,(36)

(iii) Lw = 0 for all w ∈ Ŵ (Condition (33)) if and only if∑
j∈NG

LjG = 0 ∀G ∈ G.(37)

The above form of constraints is important to our study, because our localized bounds
(implying the central bound (19) of the PD operator) hold (and are sharp) if constraints
of form (35), (37) are imposed (in addition to previously fixed primal constraints). In
particular, they pop out of local generalized eigenproblems associated with globs that
share more than two subdomains and that involve more than just a few dofs such as
subdomain edges.

Mandel, Soused́ık, and Š́ıstek provide an algorithm for the efficient solution of the
global saddle point problem (34) based the multifrontal massively parallel sparse direct
solver MUMPS [1]. In Appendix C.3, we give an extension of the algorithm proposed

in [19] which realizes Ĩ S̃−1Ĩ> by solving local saddle point problems and one global
(coarse) SPD problem. Under the perspective of the extended algorithm, BDDC with
generalized (but still glob-based) primal constraints becomes amenable for multiple
levels [109, 52, 75, 102] which is a rather attractive option if one thinks of problems
with high contrast coefficients [93, 94, 92, 16, 49] and/or a detailed underlying geometry
[73, 20, 23]. Nevertheless, as we will show in Sect. 5.4 below, it is much more favorable
to use potentially stronger classical primal constraints and the conventional algorithm
from Appendix C.1–C.2 (which is naturally amenable to multiple levels). Although our
result holds for the general case, we will describe it later in Sect. 5, when needed.

3. Localization

In this section, we provide a local condition implying the global definiteness of S̃
(Sect. 3.1, Condition 2.6). After introducing our mild assumptions on the weight/scaling
matrices Di and showing some technical results in Sect. 3.2, we provide local estimates
implying the global estimate (19) of the PD-operator in Sect. 3.3. We also review a
similar approach by Klawonn, Kühn, and Rheinbach [45] (Sect. 3.4). Throughout this

section, we assume a space W̃ based on classical primal dofs (Def. 2.15 and Def. 2.21).

3.1. A local, glob-based condition for the definiteness of S̃. The problem of

how to guarantee definiteness of S̃ already arose in the original FETI-DP method [32].
Suitable choices of primal constraints are known for scalar diffusion and linear elasticity
problems ([67, 107]). For the general SPD case, however, an all-purpose recipe is yet
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Figure 2. Example where (38) is not sufficient to guarantee that S̃
is definite; 2D Laplace problem with Dirichlet boundary conditions on
the dashed line. Bullet indicates primal constraint on subdomain vertex.

missing (to our best knowledge). As one can see easily, the definiteness of S on W̃
(Condition 2.6) implies the necessary local condition

Si is definite on Wi∆ ∀i = 1, . . . , N,(38)

which is, however, not sufficient (see Fig. 2 for a counterexample).
Condition 3.1 below is local and sufficient (Lemma 3.2), although not necessary.

In Sect. 7, we provide an algorithm that computes a set of primal constraints such
Condition 3.1 can be guaranteed under mild assumptions on the problem. For each
glob G ∈ G, we define the (Euclidean) space

WNG
:= {w = [wi]i∈NG

: wi ∈Wi},
where [wi]i∈NG

simply designates a block vector. We denote by wNG
∈ WNG

the
restriction of w ∈W to the subdomains in NG and define the subspace

(39) W̃NG
:= {w ∈WNG

: ∃z ∈ W̃ : wi = zi ∀i ∈ NG}

= {w ∈WNG
: ∀i 6= j ∈ NG ∀G′, {i, j} ⊂ NG′ : Q>G′(RiG′wi −RjG′wj) = 0},

i.e., the space of functions living “around” G, where (previously fixed) primal con-
straints are enforced on all the neighboring globs of G, cf. Def. 2.12. See Fig. 3 for
a two-dimensional example where G is a vertex. If G is a typical edge in a three-
dimensional problem, then in addition to the previously fixed edge constraints, also
previously fixed face and vertex constraints are enforced.

Condition 3.1 (local kernel condition). For each glob G ∈ G∗ (i.e. not totally primal),
assume that

∀w ∈ W̃NG
: (∀i ∈ NG : Siwi = 0

)
=⇒ (∀i, j ∈ NG : RiGwi = RjGwj).

Lemma 3.2. Condition 3.1 =⇒ Condition 2.6 (S is definite on W̃ ).

Proof. Let Condition 3.1 hold and let w ∈ ker(S) ∩ W̃ be arbitrary but fixed. Then
Siwi = 0 for all i = 1, . . . , N . Due to Condition 3.1 for all not totally primal globs G,

∀i, j ∈ NG : RiGwi = RjGwj .

On the remaining totally primal globs, we get the same condition from Def. 2.21 and

Def. 2.20. So, all dofs are continuous across all globs, and with (26), w ∈ Ŵ . Since

ker(S) ∩ Ŵ = {0} (cf. Sect. 2.1), w = 0. Summarizing, ker(S) ∩ W̃ = {0}. �
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Figure 3. Sketch of a vertex G (marked with ◦) and the neighboring

globs where constraints enforced in the associated space W̃NG
(marked

with thick lines and black dots).

Remark 3.3. Condition 3.1 is similar to but substantially different from [73, Assump-
tion 8]. The latter reads as follows. For all faces F ∈ F ,

∀w ∈ W̃NF
: (Siwi = 0, Sjwj = 0) =⇒ (RiFwi = RjFwj),(40)

where {i, j} = NF and F is the closed face (Def. 2.26). Under the additional assumption
that for each glob G ∈ G \ F , one can connect each pair {i, j} ⊂ NG via a path
through faces (which is fulfilled for usual domain decompositions), one can show that
Condition 2.6 holds. Neither Condition 3.1 nor (40) are necessary for Condition 2.6 to
hold.

3.2. Assumption on the weight matrices. In our subsequent theory, we need the
following, mild assumption on the scaling matrices Di:

Assumption 3.4 (Di block diagonal). Each scaling matrix Di is block diagonal with
respect to the glob partition, i.e., there exist matrices DiG : UG → UG, G ∈ Gi such that

Di =
∑
G∈Gi

R>iGDiGRiG .

The condition below is a glob-wise partition of unity and the proposition thereafter
is easily verified.

Condition 3.5 (glob-wise partition of unity). For each glob G ∈ G, there holds∑
j∈NG

DjG = I.

Proposition 3.6. Let Assumption 3.4 hold. Then for all G ∈ G and i ∈ NG,

ΞiGDi = DiΞiG , ΞGD = DΞG(41)

(where D = diag(Di)
N
i=1) and

EDw =
∑
G∈G

R̂>G
∑
i∈NG

DiGRiGwi .(42)

Moreover, Condition 2.3 (partition of unity) is equivalent to Condition 3.5.
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Proof. Firstly, we show (41) and (42):

ΞiGDi
Ass. 3.4

=
∑
G∈Gi

ΞiGR
>
iG︸ ︷︷ ︸

=R>iG

DiG RiG︸︷︷︸
=RiGΞiG

Ass. 3.4
= DiΞiG

EDw =
N∑
i=1

R>i Diwi
Ass. 3.4

=
N∑
i=1

∑
G∈Gi

R>i R
>
iG︸ ︷︷ ︸

=R̂>G

DiGRiGwi =
∑
G∈G

R̂>G
∑
i∈NG

DiGRiGwi .

Secondly, (42) implies EDR =
∑
G′∈G

R̂>G′
∑

i∈NG′

DiG′R̂G′ .

If Condition 2.3 holds, the left-hand side evaluates to I and we obtain Condition 3.5

by multiplying from the left by R̂G and from the right by R̂>G (for an arbitrary G ∈ G
and using (21)). Conversely, if Condition 3.5 holds, the right-hand side evaluates to I
due to (25), so Condition 2.3 is fulfilled. �

The following two results will be helpful for Section 3.3.

Lemma 3.7. Let Assumption 3.4 (Di block diagonal) and Condition 3.5 (glob-wise
partition of unity) hold. Then

(i)

ΞGED = EDΞG , (REDΞG)2 = REDΞG ,

ΞGPD = PDΞG , (PDΞG)2 = PDΞG .

(ii)

ΞiG(PDw)i = R>iG
∑

j∈NG\{i}

DjG(RiGwi −RjGwj).

In particular,

ΞGPDw = 0 ⇐⇒
(
∀i, j ∈ NG : RiGwi = RjGwj

)
.

(iii) If G is totally primal (G 6∈ G∗, cf. Sect. 2.5.1) then

ΞGPDw = 0 ∀w ∈ W̃ .

Proof. (i) By definition, ED = R>D with D = diag(Di)
N
i=1. From (24), (41) we get

Ξ̂GED = Ξ̂GR
>D = R>ΞGD = R>DΞG = EDΞG .

The other assertions follow immediately from (24), the fact that (RED)2 = RED
(Proposition 3.6 and Proposition 2.4) and the definition of PD.
(ii) From the definitions of ED and PD we get

RiG(PDw)i = RiGwi − R̂GEDw ∀i ∈ NG .(43)

Applying R̂G to formula (42), we find that

R̂GEDw
(42)
=

∑
G′∈G

R̂GR̂
>
G′

∑
j∈NG′

DjG′RjG′wj
(22)
=

∑
j∈NG

DjGRjGwj .

Substituting the latter result into (43) yields

R>iGRiG(PDw)i = R>iG

(
RiGwi −

∑
j∈NG

DjGRjGwj

)
.
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The definition of ΞiG and Condition 3.5 yield the desired formula.

(iii) If G 6∈ G∗ and w ∈ W̃ then, Q>G(RiGwi − RjGwj) = 0 for all i, j ∈ NG, cf.

Def 2.21. Since Q>G is non-singular, RiGwi = RjGwj and Lemma 3.7(ii) implies that
ΞGPDw = 0. �

3.3. A glob-based localization of the PD estimate (19). Recall the formula in
Lemma 3.7(ii). We define

PD,G : WNG
→WNG

: (PD,Gw)i := R>iG
∑

j∈NG\{i}

DjG(RiGwi −RjGwj).(44)

Lemma 3.8. Let Assumption 3.4 (Di block diagonal) and Condition 3.5 (glob-wise
partition of unity) hold. Then

(i) ΞiG(PDw)i = (PD,GwNG
)i ∀w ∈W,

(ii) P 2
D,G = PD,G.

(iii) ker(PD,G) = {w ∈WNG
: ∀i, j ∈ NG : RiGwi = RjGwj}.

(iv) PD,Gw ∈ W̃NG
⇐⇒ w ∈ W̃NG

,

in particular, PD,G(W̃NG
) ⊂ W̃NG

and range(PD,G) ∩ W̃NG
= PD,G(W̃NG

),

(v) there exists a projection operator P̃D,G : W̃NG
→ W̃NG

such that

PD,GĨNG
= ĨNG

P̃D,G, where ĨNG
: W̃NG

→WNG
is the natural embedding.

Proof. Part (i) follows from Lemma 3.7(ii) and the definition of PD,G, and Part (ii) from
Lemma 3.7(i). Part (iii) can be derived using Lemma 3.7(ii). Part (iv): For y ∈ WNG

and w = PD,Gy one easily shows that

Q>GRiGwi = Q>GRiG(ΞiGyi −R>iGyG), where yG =
∑
j∈NG

DiGRjGwj ,

Q>G(RiGwi −RjGwj) = Q>G(RiGyi −RjGyj).

Finally, Part (v) follows from Parts (ii) and (iii). �

Remark 3.9. If W̃ does not originate from primal dofs on open globs (Definition 2.15),
then Parts (iii) and (v) do not necessarily hold.

As the next theorem shows, the global bound (19) can be established from local
bounds associated with individual globs:

Local glob estimate:

(45)
∑
i∈NG

|(PD,Gw)i|2Si
≤ ωG

∑
i∈NG

|wi|2Si
∀w ∈ W̃NG

.

Theorem 3.10. Let Assumption 3.4 (Di block diagonal) and Condition 3.5 (glob-wise

partition of unity) be fulfilled and let W̃ be defined by classical primal dofs (Def. 2.21).
For each glob G ∈ G∗ (that is not totally primal), assume that the local estimate (45)
holds with some constant ωG <∞. Then the global PD-estimate (19) holds with

ω =
(

max
i=1,...,N

|G∗i |2
)(

max
G∈G∗

ωG
)
,

where |G∗i | denotes the cardinality of the set G∗i . In particular, if, in addition, S̃ is
definite (Condition 2.6), then Theorem 2.8 implies κBDDC ≤ ω.
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Proof. Firstly, we use (25), Lemma 3.7(iii) and Lemma 3.8(i) to obtain

(PDw)i =
∑
G∈Gi

ΞiG(PDw)i =
∑
G∈G∗i

ΞiG(PDw)i =
∑
G∈G∗i

(PD,GwNG
)i .

Secondly, the Cauchy-Bunyakovsky-Schwarz inequality and the local bounds (45) imply

N∑
i=1

|(PDw)i|2Si
≤

N∑
i=1

|G∗i |
∑
G∈G∗i

|(PD,GwNG
)i|2Si

≤
(

max
i=1,...,N

|G∗i |
) ∑
G∈G∗

∑
j∈NG

|(PD,Gw)j |2Sj

≤
(

max
i=1,...,N

|G∗i |
) ∑
G∈G∗

∑
j∈NG

ωG |wi|2Si

≤
(

max
i=1,...,N

|G∗i |
) N∑
i=1

∑
G∈G∗i

ωG |wi|2Si
.

Finally,
∑

G∈G∗i
ωG ≤ (maxi=1,...,n |G∗i |)(maxG∈G∗ ωG). �

The arguments in the proof above are not new and are used in all the known theo-
retical condition number bounds of FETI, FETI-DP and BDDC for specific PDEs and
discretizations, see, e.g., [7, 22, 57, 59, 77, 78, 107]. The more recent works [16, 49]
make implicitly use of Thm. 3.10, and a similar result for the two-dimensional case can
be found in [50, Thm. 5.1].

Remark 3.11. If Assumption 3.4 did not hold, i.e, if the matrices Di were not block-
diagonal w.r.t. the globs, we would need an estimate of the form∑

i∈NG

|ΞiG(PDw)i|2Si
≤ ωG

∑
j∈N+

G

|wj |2Sj
∀w ∈ W̃ ,

where N+
G are the subdomains of NG and all their next neighbors.

Remark 3.12. Certainly, if the local glob estimate (45) holds on a larger space than

W̃NG
, we get a similar result (possibly with a pessimistic bound ωG). A possible choice

for such a space is

W̃G
NG

:= {w = [wi]i∈NG
: ∀i 6= j ∈ NG : Q>GR

>
iGwi = Q>GR

>
jGwj},(46)

i.e., the space of functions living “around” G, where only the primal constraints asso-
ciated with G are enforced. We shall make use of this later in Sect. 4.2, Strategy 4.

Remark 3.13. Whereas the local estimate (45) is glob-based, other localizations used
in the literature are subdomain-based. For example, translating the suggestion by
Kraus et al. [61, Sect. 5] to our framework leads to the estimate

|(PDw)i|2Si
≤ ωi

∑
j∈Ni

|wj |2Sj
∀w ∈ W̃Ni ,

where Ni are the neighboring subdomains of i and W̃Ni is the restriction of W̃ to these.
Another option, probably related to the work by Spillane and Rixen [104], is∑

j∈Ni

|(PDw)j |2Sj
≤ ωi |wi|2Si

for all w ∈W that vanish in all but the i-th subdomain.
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3.4. A review of a pair-based localization∗. The local estimate (45) was first
proposed in [73] (see also [101, 76, 102]), there, however, in slightly different form on
every closed face F(

|Ξi,F (PDw)i|2Si
+ |Ξj,F (PDw)j |2Sj

)
≤ ωF

(
|wi|2Si

+ |wj |2Sj

)
∀w ∈ W̃ ,(47)

where NF = {i, j} and Ξi,F :=
∑

G⊂F Ξi,G is the filter matrix corresponding to F .

Under Assumption 3.4 (Di block diagonal) and Condition 3.5 (glob-wise partition of

unity), the estimate can be expressed using a space W̃F and an operator PD,F defined

analogously to W̃G and PD,G, respectively. In [73, 76], the local bounds are used to
define the condition number indicator

ω̃ := max
F∈F

ωF .(48)

If every glob G is either totally primal or |NG| = 2 (typical for two-dimensional prob-
lems), then it does not matter whether one uses the open or closed face, and (19) holds
with ω = ω̃, so ω̃ is indeed a reliable bound for the condition number; see also [50,
Thm. 5.1].

For the three-dimensional case, the reliablity of (48) was open for quite a long time.
In their recent preprint [45], Klawonn, Kühn, and Rheinbach show that in general,
(48) is reliable, if (i) all vertices are totally primal and (ii) one includes some estimates
associated with those subdomain edges that share more than three subdomains. In the
following, we present this latest theory under a slightly different perspective.

If Assumption 3.4 (glob-wise partition of unity) holds then

(PDw)i =
∑
j∈Ni

∑
G∈G∗
{i,j}⊂NG

R>iGDjG(RiGwi −RjGwj),(49)

where Ni :=
⋃
G∈Gi NG is the set of neighboring subdomains of subdomain i. This

formula motivates a neighbor-based viewpoint and the following definition.

Definition 3.14 (generalized facet). For each pair {i, j}, i 6= j, we define the general-
ized facet

Γij :=
⋃

G∈G∗ : {i,j}⊂NG

G,

i.e., the set of dofs shared by subdomains i and j, excluding totally primal dofs. Note
that Γji = Γij . The set of non-trivial generalized facets is given by

Υ∗ := {Γij : i, j = 1, . . . , N, i 6= j, Γij 6= ∅}.

Remark 3.15. Most of these generalized facets are closed faces. Assume that every
vertex is chosen totally primal, then in two dimensions, all generalized facets are actu-
ally closed faces. In three dimensions, if we have a regular subdomain edge E shared
by four or more subdomains, then for each pair i 6= j with {i, j} ∈ NE where no face
F exists such that {i, j} ∈ NF we get a generalized facet Γij . According to [95, 45],
for decompositions generated from a graph partitioner, most of the subdomain edges
share only three subdomains.

We fix an ordering of the dofs for each set Γij and denote by RiΓij : Wi → UΓij the
corresponding zero-one restriction matrix. For each sub-glob G ⊂ Γij , we denote by
RGΓij : UΓij → UG the zero-one restriction matrix such that RiG = RGΓijRiΓij .
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Moreover, for each pair (i, j) with Γij ∈ Υ∗, we denote by Wij , W̃ij the restriction

of W , W̃ , respectively, to the two components i, j. The restriction of a vector w ∈ W̃
or W is denoted by wij . With this notation, we deduce from (49) that

(PDw)i =
∑

j : Γij∈Υ∗

R>iΓij

( ∑
G⊂Γij

R>GΓij
DjGRGΓij

)
︸ ︷︷ ︸

=: DjΓij

(RiΓijwi −RjΓijwj)

=
∑

j : Γij∈Υ∗

R>iΓij
DjΓij (RiΓijwi −RjΓijwj)︸ ︷︷ ︸

=: (PD,Γijwij)i

,

(50)

where PD,Γij : Wij →Wij . The following result was first shown in [45, Lemma 6.1] with
essentially the same constant.

Lemma 3.16. Let Assumption 3.4 (glob-wise partition of unity) be fulfilled. If for
every Γij ∈ Υ∗, the inequality

|(PD,Γijwij)i|2Si
+ |(PD,Γijwij)j |2Sj

≤ ωij

(
|wi|2Si

+ |wj |2Sj

)
∀wij ∈ W̃ij

holds, then

|PDw|2S ≤ ω |w|2S ∀w ∈ W̃ ,

with ω =
(

maxi=1,...,N n
2
i

) (
maxΓij∈Υ∗ ωij

)
, where ni := |{j : Γij ∈ Υ∗}|.

Proof. The Cauchy-Bunyakovsky-Schwarz inequality implies

N∑
i=1

|(PDw)i|2Si
≤

N∑
i=1

ni
∑

j: Γij∈Υ∗

|(PD,Γijwij)i|2Si

≤
(

max
i=1,...,N

ni
) ∑

Γij∈Υ∗

(
|(PD,Γijwij)i|2Si

+ |(PD,Γijwij)j |2Sj

)
.

Employing the local estimate and using Cauchy-Bunyakovsky-Schwarz another time
yields

N∑
i=1

|(PDw)i|2Si
≤
(

max
i=1,...,N

ni
) ∑

Γij∈Υ∗

ωij

(
|wi|2Si

+ |wj |2Si

)

=
(

max
i=1,...,N

ni
) N∑
i=1

∑
j: Γij∈Υ∗

ωij |wi|2Si

≤
(

max
i=1,...,N

n2
i

)(
max

Γij∈Υ∗
ωij
) N∑
i=1

|wi|2Si
. �

Unlike the glob-based operator PD,G, the pair-based operator PD,Γij fails to be a
projection. For this reason and the fact that adaptive constraints on the generalized
facets Γij would have to be specially treated (e.g., split) in order to ensure that the
constraints associated with each subdomain are linearly independent, we do not pursue
the pair-based localization further. Note, however, that parts (not all) of our theory
could be transferred to the pair-based localization.
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4. The glob eigenproblem for general scalings

The local glob estimate (45) is directly related to a generalized eigenproblem A = λB,
where A, B correspond to the right- and left-hand side of the estimate, respectively,
and the best constant is the inverse of the minimal eigenvalue. We show this relation
in detail (Sect. 4.1), allowing both A, B to be singular (in this, our presentation differs
from [74, 76]). Next, we show how to reduce generalized eigenproblems by using Schur
complements and how to modify them, obtaining the same or related estimates. In
Sect. 4.2, we discuss the eigenproblem associated with estimate (45) and provide some
strategies on how it could be computed in practice.

4.1. Technical tools for generalized eigenproblems∗. The following definition and
lemma are common knowledge, but stated and proved for the sake of completeness; see
also [36, Sect. 7.7.1], [76, Lem. 2], [103, Def. 2.10, Lem. 2.11], and [30, 49] for similar
results.

Definition 4.1. Let V be a finite-dimensional (real) Hilbert space and A, B : V → V ∗

linear operators. We call (λ, y) a (real) generalized eigenpair of (A,B) if either

(a) λ ∈ R and y ∈ V \ {0} fulfill Ay = λBy, or
(b) λ =∞ and y ∈ ker(B) \ {0}.

We will not need complex eigenvalues in the sequel. In this text, we say that λ is a
genuine eigenvalue of (A,B) if there is an associated eigenvector in V \(ker(A)∩ker(B)).

Apparently, λ is a generalized eigenvalue of (A,B) if and only if 1/λ is a generalized
eigenvalue of (B,A), where 1/0 :=∞ and 1/∞ := 0. The eigenspaces corresponding to
λ = 0 and λ =∞ are ker(A) and ker(B), respectively. If ker(A)∩ ker(B) is non-trivial
then every (λ, y) with λ ∈ R∪ {∞} and y ∈ ker(A)∩ ker(B) is a generalized eigenpair.
If an eigenvalue λ has only eigenvectors in ker(A)∩ ker(B), we call it ambiguous in the
sequel. If B is non-singular then the generalized eigenvalues of (A,B) are the same as

the regular eigenvalues of B−1A, and if B is SPD as those of B−1/2AB−1/2, where B1/2

is the SPD matrix square root. The next lemma treats the general SPSD case, and its
proof is given on p. 25.

Lemma 4.2. Let V be a finite-dimensional (real) Hilbert space and A, B : V → V ∗

linear operators that are SPSD. Then there exist at least n = dim(V ) − dim(ker(B))
genuine generalized eigenvalues

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn <∞

and a basis {yk}
dim(V )
k=1 of V such that (λk, yk)

n
k=1 and (∞, yk)

dim(V )
k=n+1 are generalized

eigenpairs of (A,B) and

〈Byk, y`〉 = δk`, 〈Ayk, y`〉 = λkδk` ∀k, ` = 1, . . . , n,

and ker(B) = span{yk}
dim(V )
k=n+1. Furthermore, for any k ∈ {0, . . . , n− 1} with λk+1 > 0,

〈Bz, z〉 ≤ 1

λk+1
〈Az, z〉 ∀z ∈ V, 〈By`, z〉 = 0, ` = 1, . . . , k.

The constant in this bound cannot be improved.

The next result is interesting in itself, cf. [103, Lem. 2.11].
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Corollary 4.3. Let k ∈ {0, . . . , n− 1} with λk+1 > 0 as in the previous lemma and let

Πk : V → V be the projection defined by Πkv :=
∑k

`=1〈Bv, y`〉y`. Then

|Πkv|A ≤ |v|A , |(I −Πk)v|A ≤ |v|A , |Πkv|B ≤ |v|B , |(I −Πk)v|B ≤ |v|B .

Moreover,

|(I −Πk)v|2B ≤
1

λk+1
|(I −Πk)v|2A ≤

1

λk+1
|v|2A ∀v ∈ V.

Proof. All the estimates can be easily verified by using that any v ∈ V can be written

by v =
∑dim(V )

`=1 β`y` and by using the results of Lemma 4.2. �

For the proof of Lemma 4.2, we need an auxiliary result.

Principle 4.4 (“Schur principle”: reduction of infinite eigenvalues by Schur comple-
ment). Let V be a finite-dimensional (real) Hilbert space and A, B : V → V ∗ two linear
and self-adjoint operators. Let V2 ⊂ ker(B) be a subspace and V1 some complementary
space such that V = V1⊕V2 (direct sum, not necessarily orthogonal). In that situation,
we may identify V with V1 × V2 and write

A =

[
A11 A12

A21 A22

]
, B =

[
B11 0
0 0

]
.

Assume that ker(A22) ⊂ ker(A12) (cf. Lemma D.3) and let S1 := A11 − A12A
†
22A21 be

a generalized Schur complement (cf. Appendix D). Then the following holds:

(i) (λ, y) is a generalized eigenpair of (A,B) if and only if
either λ =∞ and y ∈ ker(B), or

y =

[
y1

−A†22A21y1 + vK2

]
, for some vK2 ∈ ker(A22)

and (λ, y1) is a generalized eigenpair of (S1, B11).
(ii) Assume that A, B are positive semi-definite and let y1, . . . , ym ∈ V1 be fixed.

Then

〈Bz, z〉 ≤ γ〈Az, z〉 ∀z ∈ V : 〈B
[
y`
0

]
, z〉 = 0, ` = 1, . . . ,m

if and only if

〈B11z1, z1〉 ≤ γ〈S1z1, z1〉 ∀z1 ∈ V1 : 〈B11y`, z1〉 = 0, ` = 1, . . . ,m.

Proof of the “Schur” Principle 4.4. Part (i): Let (λ, y) be a generalized eigenpair of
(A,B) and assume that y 6∈ ker(B). Consequently λ 6=∞ and

A11y1 +A12y2 = λB11y1 ,

A21y1 +A22y2 = 0.

The second line holds if and only if y2 = −A†22y1 + vK2 for some vK2 ∈ ker(A22).
Substituting y2 into the first line yields

A11y1 −A12(A†22A21y1 + vK2 ) = λB11y1 .

Due to our assumption vK2 ∈ ker(A12) and so S1y1 = λB11. Conversely, assume that
(λ, y1) is a generalized eigenpair of (S1, B11). If λ =∞ then y1 ∈ ker(B1) and y defined
as in (i) fulfills y ∈ ker(B), so (∞, y) is a generalized eigenpair of (A,B). If λ 6= ∞,
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one can easily verify that Ay = λBy for y defined as in (i).
Part (ii) follows from the definition of B and from the minimizing property of S1:

〈Bz, z〉 = 〈B11z1, z1〉 ≤ γ〈S11z1, z1〉 ≤ γ〈Az, z〉. �

Proof of Lemma 4.2. We apply the “Schur” Principle 4.4 with V2 := ker(B) and some
complementary space V1, such that n = dim(V1). Since A is SPSD, Lemma D.3
ensures that indeed ker(A22) ⊂ ker(A12). Now B11 is positive definite, has a well-
defined inverse, and defines an inner product (v, w)B11 := 〈B11v, w〉 on V1. Apparently,
B−1

11 S11 : V1 → V1 is self-adjoint with respect to (·, ·)B11 . The classical spectral the-

orem (see e.g., [36, Sect. 8.1]) yields the existence of eigenpairs (λ̃k, ỹk)
n
k=1 such that

0 ≤ λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃n <∞ with (ỹk)
n
k=1 forming a basis of V1 and

〈B11ỹk, ỹ`〉 = δk`, 〈S1ỹk, ỹ`〉 = λ̃kδk` ∀k, ` = 1, . . . , n.

Next, we show an auxiliary estimate. Let k < n be such that λ̃k+1 > 0. Let z1 ∈ V1 be

of form z1 =
∑dim(V1)

`=k+1 β`ỹ`, which is equivalent to 〈B11ỹ`, z1〉 = 0, ` = 1, . . . , k. Then

〈B11z1, z1〉 =
n∑

`=k+1

β2
` ≤

1

λ̃k+1

n∑
`=k+1

λ̃`β
2
` =

1

λ̃k+1

〈S1z1, z1〉.

The constant cannot be improved due to the Courant-Fisher minimax principle [36,

Thm. 8.1.2]. Let (yk)
dim(V )
k=n+1 be a basis of ker(B) and set

λk = λ̃k, yk =

[
ỹk

−A†22A21ỹk

]
for k = 1, . . . , n.

Now all the statements follow from Principle 4.4. �

The “Schur” Principle 4.4 is not only valuable for the proof of Lemma 4.2 but will
be quite useful in our subsequent theory and method as it provides a way to reduce
an eigenproblem by keeping all the finite eigenvalues. Conversely, Principle 4.4 can be
used to unroll a Schur complement popping up in a generalized eigenproblem.

Sometimes, we want to compute with matrices but on a subspace of Rn for which we
do not have a basis at hand. The following principle is a slight generalization of [73,
Lemma 5].

Principle 4.5 (projected eigenproblem). Let A, B ∈ Rn×n, let Π: Rn → Rn be some
projection onto a subspace range(Π) ⊂ Rn, and let Q ∈ Rn×n be SPD on range(I −Π),
e.g., Q = tI with t ∈ R > 0.

(i) For λ ∈ [0,∞),
(a) ΠTAΠy = λΠ>BΠy and y ∈ range(Π)

if and only if
(b) (ΠTAΠ + (I −Π>)Q(I −Π))y = λΠTBΠy.

(ii) If A is SPD on range(Π) then Π>AΠ + (I −Π>)Q(I −Π) is SPD.

Proof. Part (i): If (a) holds, then y ∈ range(Π) = ker(I − Π) and so (b) holds. If (b)
holds, then (I−Π>)Q(I−Π)y ∈ range(Π>) = ker(I−Π>) and so (I−Π>)Q(I−Π)y = 0.
Since Q is SPD on range(I − Π), we obtain that (I − Π)y = 0, i.e., y ∈ ker(I − Π) =
range(Π), and so (a) holds.
Part (ii): Assume that A is SPD on range(Π) and that

〈(Π>AΠ + (I −Π>)Q(I −Π))y, y〉 = 0.
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Then 〈AΠy,Πy〉 = 0 and 〈Q(I −Π)y, (I −Π)y〉 = 0. Due to the assumptions on A and
Q, we obtain Πy = 0 and (I −Π)y = 0, and finally y = 0. �

Remark 4.6. It is yet questionable whether it is easier to construct a basis for a
subspace of Rn or a projection onto it. If the matrices Si stem from sparse stiffness ma-
trices, then we would like the basis transformation matrix to be sparse too, in the sense
that all rows and columns have O(1) non-zero entries except for O(1) rows/columns
which may be dense.

Remark 4.7 (“saddle point” eigenproblem). With similar arguments as in the proof
of the “Schur” Principle 4.4, one can show that the generalized eigenproblem

〈Ay, z〉 = λ〈By, z〉 ∀y, z ∈ V := {v ∈ Rn : Cv = 0},

with surjective C ∈ Rm×n, m < n, is equivalent to[
A C>

C 0

] [
v
µ

]
= λ

[
B 0
0 0

] [
v
µ

]
,

up to some eigenvalues of infinity. The latter eigenproblem is posed on the simpler
space Rn+m.

In the following two principles, the eigenvalues might change.

Principle 4.8 (eigenproblem on larger space). Let V , A, B be as in Lemma 4.2 and

let Ṽ ⊃ V be a larger space with the natural embedding operator E : V → Ṽ . Suppose

that there are SPSD operators Ã, B̃ : Ṽ → Ṽ ∗ such that A = E>ÃE and B = E>B̃E,

and let (λ̃k, ỹk) be the eigenpairs of (Ã, B̃) according to Lemma 4.2. If λ̃k+1 ∈ (0,∞)

then for all z ∈ V with 〈E>B̃ỹ`, z〉 = 0, ` = 1, . . . , k,

〈Bz, z〉 = 〈B̃Ez,Ez〉 ≤ 1

λ̃k+1

〈ÃEz,Ez〉 =
1

λ̃k+1

〈Az, z〉.

Principle 4.9 (nearby eigenproblem). Let V , A, B be as in Lemma 4.2 and let Ã,

B̃ : V → V ∗ be two SPSD operators such that

Ã ≤ c1A and B ≤ c2B̃,

and let (λ̃k, ỹk) be the eigenpairs of (Ã, B̃) according to Lemma 4.2. If λ̃k+1 ∈ (0,∞)

then for all z ∈ V with 〈B̃ỹ`, z〉 = 0, ` = 1, . . . , k,

〈Bz, z〉 ≤ c2〈B̃z, z〉 ≤
c2

λ̃k+1

〈Ãz, z〉 ≤ c1 c2

λ̃k+1

〈Az, z〉.

When A, B have block structure, a special application of Principle 4.9 allows us to
decouple the eigenproblem (at the price of approximation).

Principle 4.10 (decoupling). For a finite-dimensional Hilbert space V , let A, B : V n →
(V n)∗ be SPSD block operators,

A =

A11 · · · A1n
...

. . .
...

An1 · · · Ann

 , B =

B11 · · · B1n
...

. . .
...

Bn1 · · · Bnn

 .
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and let m ≤ n be the maximal number of non-zero block-entries per row of B. For each
i = 1, . . . , n let Si the Schur complement of A eliminating all but the i-th block. ThenS1

. . .

Sn

 ≤ nA, B ≤ m

B11

. . .

Bnn

 .
So if (λ

(i)
k , y

(i)
k ) are the eigenpairs of (Si, Bii), and if λ

(i)
ki+1 ∈ (0,∞), then for all z ∈ V n

with 〈Biiy(i)
` , zi〉 = 0 for ` = 1, . . . , ki,

〈Bz, z〉 ≤ nm max
i=1,...,n

1

λki+1
〈Az, z〉.

Of course, different choice of the space splitting (leading to the block structure) can lead
to different spectra in the decoupled eigenproblem.

Proof. The first spectral inequality follows from the minimizing property of the Schur
complement (Lemma D.5), while the second one is simply a consequence of the Cauchy-
Bunyakovsky-Schwarz inequality. The rest follows from Principle 4.9 (nearby eigen-
problem). �

We also provide a simple result to recombine decoupled eigenproblems (Ai, Bi), i =
1, . . . , n.

Principle 4.11 (recombination). Let V be a finite-dimensional Hilbert space and Ai,
Bi : V → V ∗, i = 1, . . . , n SPSD operators. We consider the single eigenproblem

〈(A1 : A2 : . . . : AN )︸ ︷︷ ︸
=:A

y, z〉 = λ〈(B1 +B2 + . . .+BN )︸ ︷︷ ︸
=:B

y, z〉 for y, z ∈ V,

with eigenpairs (yk, λk). For m < n with λm+1 > 0,

|z|2Bi
≤ 1

λm+1

|z|2Ai
∀z ∈ Rn : 〈Byk, z〉 = 0 ∀i = 1, . . . , n

The same result holds for any A with A ≤ Ai for all i = 1, . . . , n.

Proof. For i and z as above,

|z|2Bi
≤ |z|2

B
≤ 1

λm+1

|z|2A ≤
1

λm+1

|z|2Ai
. �

Finally, we need a result for general eigenproblems of special structure.

Lemma 4.12. Let V be a finite-dimensional Hilbert space, A : V → V ∗ a linear SPSD
operator and P : V → V a projection (P 2 = P ). Then for

B := β P>AP, with β ∈ (0,∞),

the following statements hold:

(i) The eigenspace of infinite generalized eigenvalues of (A,B) is given by

ker(B) = ker(P )⊕ (ker(A) ∩ range(P )) ,

and the ambiguous eigenspace by

ker(A) ∩ ker(B) = (ker(A) ∩ ker(P ))⊕ (ker(A) ∩ range(P )).

(ii) If ker(A) ⊂ ker(P ), then (A,B) has no genuine zero eigenvalues.
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(iii) If ker(A) ∩ range(P ) = {0} and if (A,B) has no genuine zero eigenvalues then

ker(A) ⊂ ker(P ).

Proof. (i) Since P is a projection, V = ker(P )⊕ range(P ). Assume that

v = v1 + v2 ∈ ker(B), with v1 ∈ ker(P ), v2 ∈ range(P ).

From the definition of B we see that Bv1 = 0 and so, if v ∈ ker(B) then

0 = 〈Bv, v〉 = 〈Bv2, v2〉 = β 〈APv2, Pv2〉 = β 〈Av2, v2〉,

and so Av2 = 0. Conversely, if v1 ∈ ker(P ) and v2 ∈ ker(A) ∩ range(P ), then v1 + v2 ∈
ker(B). The formula for ker(A) ∩ ker(B) is then straightforward.
(ii) If ker(A) ⊂ ker(P ) then ker(A) ∩ range(P ) = {0} and so ker(B) = ker(P ). Also,
ker(A) ∩ ker(B) = ker(A) ∩ ker(P ) and ker(A) \ ker(B) = ∅.
(iii) Let λ1 ≤ . . . be the genuine eigenvalues of (A,B) according to Lemma 4.2. If there
are no genuine zero eigenvalues, then λ1 > 0. Suppose v ∈ ker(A), then

〈Bv, v〉 ≤ 1

λ1
〈Av, v〉 = 0

and so v ∈ ker(B) = ker(P )⊕ (ker(A)∩ range(P )), using Part (i). Due to our assump-
tions, ker(A) ∩ range(P ) = {0} and so v ∈ ker(P ). �

Let us apply the “Schur” Principle 4.4 to the generalized eigenproblem (A, βP>AP )
and eliminate ker(P ). If ker(A) ∩ range(P ) = {0}, then the reduced eigenproblem
neither has ambiguous nor infinite eigenvalues. Under the stronger condition ker(A) ⊂
ker(P ) (see Lemma 4.12(ii) and (iii)), the reduced eigenproblem has only eigenvalues
in (0,∞).

4.2. Generalized eigenproblems associated with estimate (45). Let us fix a set
of linearly independent primal dofs in the sense of Definition 2.15 (possibly an empty

set) and let G ∈ G∗. Recall the space W̃NG
from (39) and let ĨNG

: W̃NG
→WNG

denote
the natural embedding. Moreover define

SNG
:= diag(Si)i∈NG

: WNG
→WNG

and consider the

generalized eigenproblem associated with glob G:

S̃NG
y = λ B̃Gy (y ∈ W̃NG

),(51)

with

S̃NG
:= Ĩ>NG

SNG
ĨNG

, B̃G := P̃>D,GS̃NG
P̃D,G = Ĩ>NG

P>D,GSNG
PD,GĨNG

,

where P̃D,G is the projection operator from Lemma 3.8(v). The next result immediately
follows from Lemma 4.2.

Corollary 4.13. Let (λG,k, ỹG,k)
dim(W̃NG

)

k=1 be the generalized eigenpairs of (S̃NG
, B̃G)

according to Lemma 4.2 with 0 ≤ λG,1 ≤ λG,2 ≤ . . . ≤ ∞.
(i) If there are no genuine zero eigenvalues (λG,1 > 0), then estimate (45) holds with

ωG =
1

λG,1
.
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(ii) Let us fix a number mG such that 0 < λG,mG+1 <∞ and let ΦG,add : RmG →WNG

be the matrix whose columns are the first mG eigenvectors,

ΦG,add =
[
· · ·
∣∣ĨNG

ỹG,k
∣∣ · · · ]mG

k=1
.

Then

∑
i∈NG

|(PD,Gw)i|2Si
≤ 1

λG,mG+1

∑
i∈NG

|wi|2Si
∀w ∈ W̃NG

, Φ>G,addP
>
D,GSNG

PD,Gw = 0,

(52)

which is an improved estimate compared to (45).

Lemma 4.14. If Assumption 3.4 (Di block diagonal) holds and Condition 3.1 (local
kernel condition, p. 16) is fulfilled then (51) has no genuine zero eigenvalues.

Proof. Condition 3.1 is equivalent to ker(SNG
) ∩ W̃NG

⊂ ker(PD,G) which, by using
Lemma 3.8(v), is further equivalent to

ker(S̃NG
) ⊂ ker(P̃D,G).

Due to Assumption 3.4 and Lemma 3.8(v), P̃D,G is a projection and the statement
follows from Lemma 4.12(ii). �

Remark 4.15. The converse of Lemma 4.14 does not hold in general. In Sect. 7, we
will formulate additional assumptions, under which one can conclude Condition 3.1
(local kernel condition) from the positivity of the genuine eigenvalues.

One can now think of several strategies.

Strategy 1. We solve the generalized eigenproblem (51) right away.

Strategy 2. If each Si is the Schur complement of a sparse stiffness matrix Ai, we can
unroll the elimination and consider, by applying the “Schur” Principle 4.4, the associ-
ated sparse generalized eigenproblem which has the same spectrum up to ambiguous
and infinite eigenvaues. Applying additionally Principle 4.5 (projected eigenproblem)
leads to the method in [73, 76], except that the eigenproblem therein is posed on the
closed faces, and that the roles of A and B are interchanged.

Strategy 3. In Strategies 1 and 2, we expect a series of infinite eigenvalues. To get rid
of (some of) them, observe that

ker(P̃D,G) = X̃G ⊕ ŶG,

X̃G = {w ∈ W̃NG
: ∀i ∈ NG : RiGwi = 0},

ŶG = {w ∈ W̃NG
: ∀i ∈ NG : RiGcwi = 0 and ∀j ∈ NG : RiGwi = RjGwj)},

where RiGc is the restriction matrix extracting all dofs not associated with glob G,
with the property

R>iGRiG +R>iGcRiGc = I.(53)

Functions from the space X̃G ⊂ W̃NG
vanish on G, whereas functions from ŶG are

continuous on G and vanish on all other dofs. Using a change of basis, we can param-

etrize W̃NG
and the two subspaces above explicitly. Forming the Schur eigenproblem

according to Principle 4.4 eliminating ker(P̃D,G), we get rid of some ambiguous infinite
eigenvalues, which may be important in practice.
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Strategy 4. We apply Principle 4.8 and embed the eigenproblem into the larger space

W̃G
NG

:= {w ∈WNG
: ∀i, j ∈ NG : Q>G(RiGwi −RjGwj) = 0}

from Remark 3.12. We warn the reader that doing this, we discard any (good) influ-
ence of the primal constraints on the neighboring globs of G. Defining the projection

operator P̃GD,G analogously as P̃D,G in Lemma 3.8(v), replacing W̃NG
by W̃G

NG
, we find

that the eigenproblem has the form (S̃GNG
, (PGD,G)>S̃GNG

PGNG
). As an advantage,

ker(P̃GD,G) = XG ⊕ Ŷ ,

where the first space

XG =
{
w ∈WNG

: ∀i ∈ NG : RiGwi = 0
}

=
⊗
i∈NG

{wi ∈Wi : RiGwi = 0} ⊃ X̃G

is much simpler than X̃G. Consequently, it is much simpler to implement the Schur

complement operator of SNG
on W̃G

NG
eliminating XG ⊕ Ŷ . Let us also note that if

no primal constraints are enforced on the neighboring globs (G′ with |NG ∩NG′ | ≥ 2),

then W̃NG
= W̃G

NG
, i.e., the two eigenproblems are identical.

For all strategies, the underlying spaces are given implicitly, as subspaces of Rn.
One can either explicitly parametrize them by Rm, m < n (i.e., constructing a basis),
or construct a projection from Rn to the subspace and apply Principle 4.5 (projected
eigenproblem). As an alternative, one can use the constraints defining the subspace in
the eigenproblem (Remark 4.7). Note also that for all the Strategies 1–4, the initially
chosen primal constraints on the glob G are preserved. Modifying them means changing
the eigenproblem; see also Remark 4.16 below.

No matter which of the four strategies we use, we will always get the statement of
Corollary 4.13 (with some of the operators replaced):

1. If the minimal eigenvalue λG,1 of the respective generalized eigenproblem is

positive, then the local glob estimate (45) with ωG = 1
λG,1

.

2. We can improve the estimate by enforcing additional constraints of the form

Φ>G,addP
>
D,GSNG

PD,GwNG
= 0.(54)

These constraints are of the more general form in Sect. 2.6 and fulfill the
conditions (35)–(36) of locality and consistency.

Remark 4.16 (orthogonality of constraints). For each of the strategies, we consider a

generalized eigenproblem of the form: find eigenpairs (y, λ) ∈ Ṽ × R:

〈Ay, z〉 = λ〈By, z〉 ∀z ∈ Ṽ := {v ∈ V : Cv = 0},

where Cv = 0 correspond to initially chosen constraints. An adaptively chosen con-
straint reads

〈qk, w〉 := 〈Byk, w〉 = 0,

where yk is an eigenvector. Assume that B is SPD. Then the functionals qk are pairwise
orthogonal in the B−1-inner product. Since Cyk = 0, it follows that

CB−1qk = 0,
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so the new constraints qk are also pairwise orthogonal to the initial constraints in
the B−1-inner product. This pattern also applies to the simpler eigenproblems in the
coming section.

5. Adaptive choice of primal dofs

In this section, we

(i) study more in detail the structure of the glob eigenproblem (51) for subdomain
faces (Sect. 5.2) and general globs (Sect. 5.3),

(ii) show how to turn the constraints (54) originating from the local generalized
eigenproblems into primal dofs (Sect. 5.4),

(iii) provide a way to rewrite the glob eigenproblem using a transformation of vari-
ables and to decouple it into (n− 1) independent eigenproblems where n is the
number of subdomains shared by the glob (Sect. 5.5),

(iv) show that recombining the (n− 1) into a single one leads to the eigenproblem
proposed by Kim, Chung, and Wang (Sect. 5.6),

(v) comment on how the eigenproblems could be organized in an algorithm (Sect. 5.7).

To this end, we need further notation (given below) and the parallel sum of matrices
(Sect. 5.1).

Definition 5.1. For G ∈ Gi let

SiG := RiGSiR
>
iG(55)

denote the restriction of Si to the dofs on G and

SiGGc := RiGSiRiGc , SiGcG := RiGcSiRiG, SiGc := RiGcSiRiGc(56)

the other subblocks of Si, where RiGc is the restriction matrix from (53). Finally, we
define the (generalized) Schur complement

S?iG := SiG − SiGGcS†iGcSiGcG .(57)

Remark 5.2. In practice, the matrix S?kG is usually linked to a problem on subdomain
k with fixed dofs on G and homogeneous “Neumann” conditions on the remaining
boundary dofs. Figure 4 shows that it may happen that SkG, SkGc , or S?kG are singular.

Remark 5.3. As we use these matrices in the subsequent eigenproblems, we spend
some words on their handling in practice. Suppose that Si is the Schur complement
of a sparse matrix Ai eliminiating interior dofs. Since SiG is a principal minor of Si,
its application can be realized by a subdomain solve. Some direct solvers, such as
MUMPS [2] or PARDISO [62] offer the possibility of computing the dense matrix SiG
directly. Since Gc usually contains many more dofs than G, computing SiGGc , SiGcGc

in the same way would be inefficient. Instead, following Stefano Zampini [113], one can

compute S†i once and extract S?iG as a principal minor of S†i , see also [81].

5.1. The parallel sum of matrices∗. The following definition was originally intro-
duced by Anderson and Duffin [3] for Hermitian positive semi-definite matrices.

Definition 5.4 (parallel sum of matrices [3]). For two SPSD matrices A, B ∈ Rn×n
the parallel sum of A, B is given by

A : B = A(A+B)†B,
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Figure 4. Left: Laplace/linear elasticity: SkF c empty, S?kF singular.
Right: Linear elasticity, straight edge E: SkEc = SkF singular, SkF c =
SkE non-singular, S?kF , S?kE singular.

were (A+B)† is a generalized inverse, i.e., (A+B)(A+B)†f = f for all f ∈ range(A+B),
cf. Def. D.1. The definition is independent of the particular choice of the generalized
inverse (cf. [3, p. 579] and Proposition D.2), A : B = B : A [3, Lemma 1], and A : B is
again SPSD [3, Lemma 2, Lemma 4]. Moreover, due to [3, Lemma 6], (A : B) : C =
A : (B : C).

Remark 5.5. If A and B are both SPD, then A : B = (A−1 +B−1)−1. Therefore, up
to a factor of 2, the above matrix generalizes the harmonic mean value 2

a−1+b−1 of two

positive scalars a, b, cf. [4]. Moreover, it can be shown that for A, B SPD,

x>(A : B)x = inf
x=x1+x2

(x>1 Ax1 + x>2 Bx2) ∀x ∈ Rn,(58)

i.e., ‖x‖A:B is the natural norm on the sum of the Hilbert spaces (Rn, ‖·‖A), (Rn, ‖·‖B),
see also [8] and Corollary 5.11 below. See also [106, Eqn. (4)] for a related result.

Let A, B be as in Def. 5.4. We easily see that

A : A = 1
2A, (cA) : (cB) = c(A : B) ∀c ∈ R+

0(59)

(see also [3, Thm. 10]). Since A, B are SPSD, we have

ker(A+B) = ker(A) ∩ ker(B), range(A+B) = range(A) + range(B),

and we can conclude that

ker(A : B) = ker(A) + ker(B), range(A : B) = range(A) ∩ range(B),(60)

cf. [3, Lemma 3]. From Definition 5.4 and Proposition D.2, one easily shows

A : B = A−A(A+B)†A = B −B(A+B)†B.(61)

Next, let us consider the generalized eigenproblem

Ap = λ(A+B)p(62)

in the sense of Sect. 4.1. With the above relations, it is straightforward to show that,
if (p, λ) is an eigenpair of (62) (and p 6∈ ker(A) ∩ ker(B)) then λ ∈ [0, 1] and

Bp = (1− λ)(A+B)p,

(A : B)p = λ(1− λ)(A+B)p.(63)

From (60) and (63), we easily conclude that

A : B ≤ A, A : B ≤ B,(64)

which is a special case of [3, Lemma 18] (as usual, A ≤ B stands for y>Ay ≤ y>By for
all y ∈ Rn). Anderson and Duffin also show an important transitivity property:
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Lemma 5.6 ([3, Corollary 21]). Let D, E, F ∈ Rn×n be SPSD. Then D ≤ E implies
D : F ≤ E : F .

As the next proposition shows, the parallel sum A : B is—up to a factor of two—a
sharp “lower bound matrix” of A and B.

Proposition 5.7. Let A, B be as in Def. 5.4 and let the matrix C ∈ Rn×n be SPSD
with C ≤ A and C ≤ B. Then

C ≤ 2(A : B).

Proof. Due to Lemma 5.6, C ≤ A implies 1
2C = C : C ≤ A : C and C ≤ B implies

A : C ≤ A : B. �

The following result states that the parallel sum of two spectrally equivalent matrices
is spectrally equivalent to the parallel sum of the original matrices.

Proposition 5.8. Let A, Ã, B, B̃ ∈ Rn×n be SPSD and assume that

αA ≤ Ã ≤ αA, βB ≤ B̃ ≤ βB,

with strictly positive constants α, α, β, β. Then

min(α, β)(A : B) ≤ Ã : B̃ ≤ max(α, β)(A : B).

Proof. Firstly, we set γ := min(α, β), γ := max(α, β) and observe that

γA ≤ Ã ≤ γA, γB ≤ B̃ ≤ γB.

Secondly, from Lemma 5.6 we obtain

Ã : B̃ ≤ (γA) : B ≤ (γA) : (γB) = γ(A : B)

as well as the analogous lower bound Ã : B̃ ≥ γ(A : B). �

Proposition 5.9. For non-negative constants c1, c2 and a SPSD matrix A,

(c1A) : (c2A) = c1(c1 + c2)†c2A.

The last lemma of this subsection appears to be new (for earlier versions see [91, 48])
and generalizes the elementary identity and inequality

a b2

(a+ b)2
+

a2 b

(a+ b)2
=

a b

a+ b
,

a b2

(a+ b)2
≤ min(a, b)

for non-negative scalars a, b with a+ b > 0, cf. [107, (6.19), p. 141].

Lemma 5.10. Let A, B ∈ Rn×n be SPSD. Then

B(A+B)†A(A+B)†B +A(A+B)†B(A+B)†A = A : B.

In particular,
B(A+B)†A(A+B)†B

A(A+B)†B(A+B)†A

}
≤ A : B ≤

{
A,

B.

Proof. Since A : B = B(A+B)†A = A(A+B)†B (see Def. 5.4),

B(A+B)†A(A+B)†B︸ ︷︷ ︸
=:H1

+A(A+B)†B(A+B)†A︸ ︷︷ ︸
=:H2

= (A : B)(A+B)†B + (A : B)(A+B)†A

= (A : B)(A+B)†(A+B) = A : B.
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The last identity holds because for any v ∈ Rn, (A + B)†(A + B)v = v + vK for
some vK ∈ ker(A+ B) = ker(A) ∩ ker(B) ⊂ ker(A) + ker(B) = ker(A : B), cf. (125),
Appendix D and (60). So H1 + H2 = A : B. Since H1 and H2 are both SPSD, H1,
H2 ≤ A : B. Due to (64), A : B ≤ A, B, which concludes the proof. �

Corollary 5.11. For SPSD matrices A, B ∈ Rn,

|x|2A:B = inf
x=x1+x2

|x1|2A + |x2|2B ∀x ∈ Rn.

Proof. Minimization yields the first order condition x∗1 = (A+ B)†Bx+ x1K for some
x1K ∈ ker(A+B) = ker(A)∩ ker(B) and x∗2 = (A+B)†Ax+ x2K for a suitable vector
x2K ∈ ker(A) ∩ ker(B). The Hessian is given by A + B, so all these solutions are
minimizers. Due to Lemma 5.10, |x∗1|2A + |x∗2|2B = x>(A : B)x = |x|2A:B. �

Remark 5.12. Unfortunately, Lemma 5.10 cannot be generalized to three matrices
(see also [13]), in the sense that already for SPD matrices A, B, C,

B(A+B + C)−1A(A+B + C)−1B 6≤ A : B in general!

Our counterexample in Appendix E shows that B(A+B+C)−1A(A+B+C)−1B 6≤ A.
Since A : B ≤ A, the above inequality cannot hold.

5.2. Subdomain faces. Suppose that F is a face shared by subdomains NF = {i, j}.
Firstly, we have a look at the right-hand side of eigenvalue problem (51).

Lemma 5.13. Under Assumption 3.4, for a face F with NF = {i, j}, we have

z>P>D,FSNG
PD,F y = (RiF zi −RjF zj)>MF (RiF yi −RjF yj) ∀y, z ∈WNF

,

with

MF := D>jFSiFDjF +D>iFSjFDjF(65)

Proof. We obtain from (44) that

(PD,Fw)i = RiFDjF (RiFwi −RjFwj) ,
(PD,Fw)j = RjFDiF (RjFwj −RiFwi) .

Hence,

z>P>D,FSNG
PD,F y

= (RiF zi −RjF zj)> [D>jF −D>iF ]

[
SiF 0
0 SjF

] [
DjF

−DiF

]
︸ ︷︷ ︸

= (D>jFSiFDjF +D>iFSjFDjF )

(RiF yi −RjF yj). �

The lemma shows that the constraints z>P>D,GSNG
PD,Fw = 0 are classical primal

constraints (Definition 2.15), and so for each column z of ΦG,add in (54), we can use

MF (RiF zi −RjF zj)(66)

as an additional column in QG (after a modified Gram-Schmidt orthonormalization).

Secondly, we investigate the structure of eigenproblem (51). The next lemma reduces

the eigenproblem on W̃F
NF

(Strategy 4) to an eigenproblem on a subspace of UG.
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Lemma 5.14. Let F be a face shared by subdomains NF = {i, j}. Then the correspond-

ing generalized eigenproblem of Strategy 4, i.e., finding eigenpairs (y, λ) ∈ W̃F
NF
× R,

〈SNF
y, z〉 = λ〈P>D,FSNF

PD,F y, z〉 ∀z ∈ W̃F
NF

(67)

is (up to infinite eigenvalues) equivalent to finding eigenpairs (y̌F , λ) ∈ UF∆ × R,

〈(S?iF : S?jF )y̌F , žF 〉 = λ〈MF y̌F , žF 〉 ∀žF ∈ UF∆ ,

where y̌F := RiF yi − RjF yj, žF := RiF zi − RjF zj, UF∆ = {q ∈ UF : Q>F q = 0}, and
MF is the matrix from (65).

Proof. Let us first rewrite (67) using Lemma 5.13:[
zi
zj

]>[
Si 0
0 Sj

][
yi
yj

]
= λ(RiF zi −RjF zj)>MF (RiF yi −RjF yj).

Due to Definition 5.1, we can write

yk = R>kF ykF +R>kF cykF c for k ∈ {i, j},(68)

for some vectors ykF , ykF c . Since y ∈ W̃F
NF

(not W̃NF
) we do not get any constraints

on yiF c , yjF c . Moreover, since PD,F y is independent of yiF c , yjF c , we can use the
“Schur” Principle 4.4. With (57), we obtain that that eigenproblem (67) is (up to
infinite eigenvalues) equivalent to[

ziF
zjF

]>[
S?iF 0
0 S?jF

][
yiF
yjF

]
= λ(ziF − zjF )>MF (yiF − yjF ),(69)

where the eigenvectors and test vectors fulfill Q>F (yiF − yjF ) = 0, Q>F (ziF − zjF ) = 0,
respectively. To get the last side condition explicitly, we use a simple transformation
of variables:

yiF = ŷF + 1
2 y̌F , ziF = ẑF + 1

2 žF ,

yjF = ŷF − 1
2 y̌F , zjF = ẑF − 1

2 žF .
(70)

Since

yiF − yjF = y̌F , ziF − zjF = žF ,(71)

the condition y, z ∈ W̃F
NF

is equivalent to

ŷF , ẑF ∈ UF , y̌F , žF ∈ UF∆ .

A straightforward calculation shows that[
ziF
zjF

]> [
S∗iF 0
0 S∗jF

] [
yiF
yjF

]
=

[
ẑF
žF

]> [ S∗iF + S∗jF
1
2(S∗iF − S∗jF )

1
2(S∗iF − S∗jF ) 1

4(S∗iF + S∗jF )

] [
ŷG
y̌G

]
.(72)

Hence, we can use the “Schur” Principle 4.4 once again and eliminate ŷF , ẑF from the
eigenproblem. The corresponding Schur complement of the matrix in (72) is given by

1
4 [(S?iF + S?jF )− (S?iF − S?jF )(S?iF + S?jF )†(S?F i − S?jF )]

= 1
4 [(S?iF + S?jF )(S?iF + S?jF )†(S?F i + S?jF )− (S?iF − S?jF )(S?iF + S?jF )†(S?F i − S?jF )]

= 1
4 [2S?iF (S?iF + S?jF )†S?jF + 2S?jF (S?iF + S?jF )†S?iF ]

= S?iF : S?jF ,

cf. Definition 5.4 (Sect. 5.1). �
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Remark 5.15. (i) The generalized eigenproblem (S?iF : S?jF )v = λMF v has been

used in [48, 50] and in [91, 13, 116, 117] for the deluxe scaling, which we further
investigate in Sect. 6.1 below.

(ii) If we consider the original glob eigenproblem (51) (on W̃NG
), we can still apply

the “Schur” Principle 4.4 to the splitting (68). But the primal constraints
enforced on the globs neighboring F (i.e., globs G 6= F with |NG ∩ NF | ≥ 2)
result in an equivalent eigenproblem of the form[

ziF
zjF

]> [
TiiF TijF
TjiF TjjF

] [
yiF
yjF

]
= λ(ziF − zjF )>MF (yiF − yjF ),

in general with TijF 6= 0, TjiF 6= 0. In that case, the transformation (70) will
lead to a matrix different than (S?iF : S?jF ).

5.3. Globs shared by more than two subdomains. Recall that

(PD,Gy)i = R>iG
∑

j∈NG\{i}

DjG(RiGyi −RjGyj).

Therefore, any new constraint of the form

(PD,Gz)
>SNG

PD,Gy = 0,

we wish to impose, rewrites as∑
i∈NG

( ∑
j∈NG\{i}

(RiGzi −RjGzj)>D>jG
)
SiG

( ∑
j∈NG\{i}

DjG(RiGyi −RjGyj)
)

= 0.(73)

(The matrix on the left-hand side is related to but substantially different from the
matrix AE in [42, Slide 10].) It is not hard to show that (73) has the form∑

j∈NG

LjGRjGyj = 0,(74)

(Condition (35) from Sect. 2.6). From Lemma 3.8(iii), we know that PD,G vanishes
for functions that are continuous across G, from which we obtain

∑
j∈NG

LjG = 0,

(Condition (37) from Sect. 2.6).

Appendix C shows that such generalized primal constraints (73) can be cast into
an algorithm very similar to the original BDDC method [19], leading to independent
subdomain problems and a sparse SPD coarse problem. Alternatively, in a FETI-
DP framework, one can enforce the generalized primal constraints by deflation [54,
38, 49], see also [42, 43]. In the next section, we suggest for BDDC to convert the
constraints (74) into (stronger) classical primal constraints and show that this is more
favorable.

5.4. Enforcing generalized primal constraints by (stronger) classical primal
constraints∗. In this section, we assume that we are given generalized primal con-
straints of form (35) (or (74)). We show first how these can be enforced by classical
primal constraints (cf. Def. 2.15). Although this can increase the total number of con-
straints, we are able to show in a second step, that the coarse problem underlying the
classical constraints is smaller or equal in its dimension to the coarse problem under-
lying the generalized constraints (while the condition number bound we obtain for the
generalized constraints also holds for the classical constraints).
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Let G be an arbitrary but fixed glob and consider one of the rows of the equation∑
j∈NG

LjGRjGwj = 0, which we rewrite as∑
j∈NG

`>jGRjGwj = 0,

where `jG is the column vector with the same entries as the selected row of LjG. Since
the constraint above is non-trivial and because of (37), at least two of the vectors
{`jG}j∈NG

are non-zero. We select j∗ ∈ NG such that `j∗G is non-zero. Without loss
of generality, we assume that

NG = {1, . . . , n}, j∗ = 1,

and introduce the simplified notation

wjG := RjGw, j ∈ NG .

Next, we define a transformation of variables:{
ŵ1G := 1

n

∑n
j=1wjG,

w̌jG := wjG − w1G ∀j = 2, . . . , n.
(75)

The inverse transformation is given by{
w1G = ŵ1G − 1

n

∑n
k=2 w̌kG,

wjG = ŵ1G − 1
n

∑n
k=2 w̌kG + w̌jG ∀j = 2, . . . , n.

(76)

Using (37) one can show that
∑

j∈NG
`>jGwjG =

∑n
j=2 `

>
jGw̌jG, and so,

`>kG(wiG − wjG) = 0 ∀i, j ∈ NG ∀k ∈ NG \ {j∗}(77)

=⇒ `>jGw̌jG = 0 ∀j = 2, . . . , n

=⇒
∑
j∈Nj

`>jGwjG = 0.(78)

The first line is in a suitable form for classical primal constraints, only that we should
orthonormalize the vectors {`kG}k∈NG\{j∗} and possibly drop some of them. Because
of (37), the space of vectors {wiG}i∈NG

fulfilling (77) is independent of the choice of
the distinguished index j∗. If |NG| = 2 then (77) and (78) are equivalent.

From the development above, it becomes clear that in any case, we end up with a
matrix Q>G of full row rank such that for some matrix TG of full column rank,

LCG :=


...

LjG
...


j∈NG

= TGQ
>
G, rank(LCG) = rank(Q>G)(79)

(LCG is a block column vector). A primal dof matrix Q>G fulfilling the above can be
obtained in various ways. Theoretically, we just have to remove linearly dependent rows
from LCG. In practice, one can use the (thin) QR factorization (either implemented via
Householder, Givens, or (modified) Gram-Schmidt, cf. [36, Sect. 5.2]):

LCG =
[
Q1 Q2

] [R1

0

]
= Q1R1, set TG := Q1, Q

>
G := R1 ,
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such that Q>G is even upper triangular. Note that the QR factorization is also used in
the algorithm proposed in [76, Sect. 5]. In any case, the number of classical primal dofs
on glob G is given by

nΠG = dim(UΠG) = rank(LCG).(80)

Following this construction for all globs results in classical primal dofs {Q>G}G∈G and the

corresponding space from Definition 2.21, which we denote by
˜̃
W in order to distinguish

it from W̃ defined by (32). From Proposition 2.23, we obtain

Corollary 5.16. Let
˜̃
W be as in Definition 2.21 based on the classical primal dofs Q>G

from (79) and let

˜̃
W∆ =

N⊗
i=1

˜̃
W i∆ ,

˜̃
W i∆ := {wi ∈Wi : ∀G ∈ Gi : Q>GRiGwi = 0}

(cf. (29)). Then for any space
˜̃
WΠ fulfilling

˜̃
W =

˜̃
WΠ ⊕

˜̃
W∆,

dim(
˜̃
WΠ) = nΠ = dim(UΠ) =

∑
G∈G

nΠG =
∑
G∈G

rank(LCG).

Before we can state the main theorem of this section, we need to discuss the dimension

of the more general space W̃ of form (32), (35). Let rΠG denote the number of (linearly
independent) constraints on G, i.e., the number of linearly independent rows of the
equation

∑
j∈NG

LjGRjGwj = 0. Since each RjG is surjective,

rΠG = rank(LRG), where LRG :=
[
· · · |LjG| · · ·

]
j∈NG

(81)

(LRG is a block row vector, opposed to LCG). Moreover, it is easily seen that

dim(W̃ ) =
N∑
i=1

dim(Wi)−
∑
G∈G

rΠG .(82)

We define the generalized dual spaces

Wi∆ :=
{
wi ∈Wi : ∀G ∈ Gi : LiGRiGwi = 0

}
, W∆ :=

N⊗
i=1

Wi∆(83)

as well as the numbers

qΠiG := rank(LiG), qΠi :=
∑
G∈Gi

qΠi .(84)

Proposition 5.17. Let W̃ be the space based on generalized primal constraints given
by (32), assume that (35), (37) hold, and let W∆ be as in (83). Then

(i) W∆ ⊂ W̃,

(ii) the space W∆ in (83) is the maximal subspace of W̃ which has the form
⊗N

i=1 Vi,
(iii) dim(Wi∆) = dim(Wi)− qΠi with qΠi from (84),

(iv) for any complementary space W̃Π fulfilling W̃ = W̃Π ⊕W∆,

dim(W̃Π) =
N∑
i=1

qΠi −
∑
G∈G

rΠG ,

with rΠG from (81).
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Proof. Parts (i)–(iii) can easily be verified. Since the sum in Part (iv) is direct, we
obtain from (82) and Part (iii) that

dim(W̃Π) = dim(W̃ )−
N∑
i=1

dim(Wi∆)

=
( N∑
i=1

dim(Wi)−
∑
G∈G

rΠG

)
−

N∑
i=1

(
dim(Wi)−

∑
G∈Gi

qΠiG

)
= −

∑
G∈G

rΠG +
∑
G∈G

∑
j∈NG

qΠjG = −
∑
G∈G

rΠG +

N∑
i=1

∑
G∈Gi

qΠiG . �

We next state the main result of this section.

Theorem 5.18. Let W̃ be the space based on generalized glob constraints given by (32)

and let W̃∆ denote the corresponding dual space from (83). Then, for
˜̃
W ,

˜̃
W∆ as in

Corollary 5.16, ˜̃
W ⊂ W̃ , dim(

˜̃
W∆) ≤ dim(W̃∆),

and for any complementary spaces W̃Π,
˜̃
WΠ with W̃ = W̃Π⊕W̃∆ and

˜̃
W =

˜̃
WΠ⊕

˜̃
W∆,

dim(
˜̃
WΠ) ≤ dim(W̃Π).

Let us first rephrase the statement of Theorem 5.18 based on the following observa-

tion. According to [19, 72] (or Appendix C), the action of
˜̃
I
˜̃
S
−1˜̃
I
>

can be performed
by independent subdomain problems and a sparse SPD coarse problem of dimension

dim(
˜̃
WΠ). Correspondingly, the operator Ĩ S̃−1Ĩ> involving the more general space W̃

leads to a coarse problem of size at least dim(W̃Π). Actually, we show in Appendix C

that the coarse problem is of size exactly equal to dim(W̃Π). So,

(i) although in
˜̃
W more constraints are enforced than in W̃ , working with the space˜̃

W leads to a coarse problem of lower dimension (thus solvable more efficiently)

than for W̃ .
(ii) At the same time, we obtain from Remark 2.10, that at high probability the

smaller space
˜̃
W leads to a smaller condition number as well.

Summarizing, the advantages of using the (stronger) classical primal dofs from (79)
clearly prevail.

See Figure 5 for a simple example showing that this is (although counter-intuitive)
indeed possible.

Remark 5.19. If the constraints are imposed by deflation in a FETI-DP framework
[54, 38, 49, 42, 43], things turn around: Since there, the number of dofs in the sec-
ond coarse problem equals the number of constraints, it is better to use the original
constraints (35) (or (74)) in the deflation process.

Proof of Theorem 5.18. The first two statements follow from Definition 2.15, (32), and
(77)–(78). The remainder of the proof is devoted to the inequality relating the primal
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(a) (b)

Figure 5. Two examples of generalized constraints on a vertex shared
by four subdomains. White bullet: dual (unconstrained) dof, black bul-
let: primal (constrained) dof, dashed line: constraint. In example (a),
the coarse space requires two basis functions, one having support on the
two left subdomains and vanishing on the two right ones, the other one
supported on the right. Example (b) requires one coarse basis function.
For both examples the stronger constraint is simple the classical vertex
constraint involving a single coarse dof.

space dimensions. Beforehand, recall the matrices LCG from (79). From Corollary 5.16
and Proposition 5.17, we obtain

dim(
˜̃
WΠ) =

∑
G∈G

rank(LCG),

dim(W̃Π) =
∑
G∈G

(
qΠG − rΠG

)
, qΠG =

∑
j∈NG

qΠjG .

We will show that each of the summands in the first line is less than or equal to the
corresponding one in the second line. Therefore, we can consider a single glob G ∈ G
at a time. For a clearer presentation, we assume that NG = {1, . . . , n} and omit the
subscripts G and Π.

For each j ∈ NG we consider the matrix LjG, which may have incomplete row rank.
However, we can find matrices L̄jG of full row rank such that

LjG = KjGL̄jG, qΠjG := rank(LjG) = rank(L̄jG) ≤ rΠG ,(85)

for some matrix KjG ∈ RrΠG×qΠjG , e.g., via the thin QR factorization [36, Sect. 5.2].
It is easy to see that

rank(LC) = rank(L̄C), where L̄C :=

L̄1
...
L̄n

 .
Therefore, we only have to show that

rank(L̄C) ≤ q − r, where q =

n∑
j=1

qj .(86)

Recall that LR := [L1| · · · |Ln] and r = rank(LR), cf. (81). If m is the number of dofs
on glob G, then

dim(ker(LR)) = nm− r.
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A different characterization is related to the matrices {Kj}nj=1 from (85). From Lj =

KjL̄j we derive

LR = [K1| · · · |Kn]︸ ︷︷ ︸
=:K

L̄1

. . .

L̄n


︸ ︷︷ ︸

=:L̄D

.

Since each L̄j is surjective, so is L̄D and we can conclude that

dim(ker(LR)) = dim(ker(L̄D)) + dim(ker(K)).(87)

From rank(L̄j) = qj it follows that dim(ker(L̄D)) = nm −
∑n

j=1 qj = nm − q. Com-

bining with (87), we obtain

dim(ker(K)) = q − r.(88)

Finally, recall that
∑n

j=1 Lj = 0, which can be rewritten as

KL̄C = [K1| . . . |Kn]

L̄1
...
L̄n

 = 0.

In other words, the columns of L̄C are in ker(K), and so there can only be as many
linearly independent columns as the dimension of ker(K). To summarize,

rank(LC) = rank(L̄C) ≤ dim(ker(K)) = q − r. �

5.5. Alternative eigenproblem for subdomain edges. In this section, we show
that using the transformation of variables (75)–(76) and Principle 4.9 (nearby eigen-
problem), one can decouple the glob eigenproblem of Strategy 4 into |NG|− 1 indepen-
dent eigenproblems, similar to Principle 4.10. The price to pay is a potentially larger
set of constraints because (i) we use Strategy 4 and neglect the neighboring globs (cf.
Def. 2.12) and (ii) replace the coupled eigenproblem by a decoupled one.

Let G be an arbitrary but fixed glob and assume without loss of generality that
NG = {1, . . . , n}. Recall the shortcut wiG = RiGwi as well as the transformation (75):{

ŵ1G := 1
n

∑n
j=1wjG,

w̌jG := wjG − w1G ∀j = 2, . . . , n.

Notice for |NG| = 2 that this transformation (up to a positive or negative sign) is not
biased towards either the first or second subdomain in G. In contrast, for |NG| > 2,
there is a clear bias towards the first subdomain.

Lemma 5.20. Under the assumptions above,∑
i∈NG

|(PD,Gw)i|2Si
≤ (|NG| − 1)

n∑
i=2

w̌>iGMiGw̌iG ,

where

MiG := D>iG

( ∑
j∈NG\{i}

SjG

)
DiG+

( ∑
j∈NG\{i}

D>jG

)
SiG

( ∑
j∈NG\{i}

DjG

)
for i = 2, . . . , n.

For a face, i.e., G = F ∈ F , we have equality and M2F = MF .
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Proof. Firstly, observe that

(PD,Gw)i = R>iG
∑

j∈NG\{i}

DjG(wiG − wjG)

= R>iG


∑

j∈NG\{1}
−DjGw̌jG i = 1,(

D1Gw̌iG +
∑

j∈NG\{1,i}
DjG(w̌iG − w̌jG)

)
i 6= 1.

(89)

Using the above, we rewrite the expression∑
i∈NG

(PD,Gz)
>
i Si(PD,Gw)i

in the new variables (ŵ1G, w̌2G, . . . , w̌nG), (ẑ1G, ž2G, . . . , žnG). The whole expression is
independent of ŵ1G, ẑ1G; in particular, the diagonal entry corresponding to ŵ1G, ẑ1G

is simply zero. The diagonal entry corresponding to w̌kG, žkG computes as

D>kGS1GDkG +
n∑
i=2

(
D1Gδik +

n∑
j=2
j 6=i

DjG(δik − δjk

︸ ︷︷ ︸
=


∑n

j=1
j 6=i

DjG k = i

DkG k 6= i

)
)>
SiG

(
D1Gδik +

n∑
j=2
j 6=i

DjG(δik − δjk)
)

= D>kG

( n∑
i=1
i6=k

SiG

)
DkG +

( n∑
j=1
j 6=k

DjG

)>
SkG

( n∑
j=1
j 6=k

DjG

)
.

The second inequality in Principle 4.10 yields the desired inequality. �

Applying the whole idea of Principle 4.10 (decoupling), we have to compute the Schur
complement of diag(S?iG)i∈NG

but in the transformed variables (ŵ1G, w̌2G, . . . , w̌nG)

eliminating w̌kG for k = 2, . . . , n, which we call S̃?kG in the sequel. From Lemma D.6, we

know that S̃?kG does not depend on the complementary space. Therefore, we may use the
simpler transformation (w1G, . . . , wnG) 7→ (w1G, . . . , w(k−1)G, w̌kG, w(k+1)G, . . . , wnG),
where wkG = w1G + w̌kG. When we write the operator diag(S?iG)i∈NG

in the new
variables, then (w1G, w̌kG) are decoupled from the remaining variables. So, if we form
the Schur complement eliminating wjG, j = 1, . . . , n, j 6= k, it suffices to take the Schur

complement of

[
S?1G + S?kG S?kG

S?kG S?kG

]
, which is

S̃?kG = S?kG − S?kG(S?1G + S?kG)†S?kG = S?kG : S?1G,(90)

where in the last step, we have used (61). Principle 4.10 implies
n∑
k=2

w̌>kG(S?kG : S?1G)w̌kG ≤ (n− 1)
n∑
j=1

w>jGS
?
jGwjG ,(91)

and we may alternatively study (n− 1) decoupled eigenproblems of the form

ž>iG(S?iG : S?1G)y̌iG = λž>iGMiGy̌iG for y̌iG, žiG ∈ UG∆ ,(92)

for i = 2, . . . , n and with the matrix MiG from Lemma 5.20. Apparently, there is a bias
towards the first subdomain.
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Remark 5.21. If we compute the decoupled eigenproblems independently to form
primal constraints, we have to orthonormalize eigenvectors originating from different
eigenproblems. This can, however, lead to many unnecessary constraints. A more
attractive strategy could be the following:

• Compute the eigenproblem for i = 2 and get adaptive constraints QG2

• For i = 3, . . . , n:
– Project the eigenproblem i onto the space orthogonal to QG2, . . . , QG(i−1)

– Compute constraints QGi.
• Use QG2, . . . , QGn as set of adaptive constraints.

(This corresponds to updating UG∆ each time in the spirit of a Gauss-Seidel iteration.)

5.6. A recombined edge eigenproblem. A different recipe is to use Principle 4.11
and recombine the decoupled eigenproblems (92) into a single one:

ž>G(S?1G : S?2G : . . . : S?nG)y̌G = λž>G(M2G + . . .+MnG)y̌G for y̌G, žG ∈ U∆G .

Due to the Cauchy-Bunyakovsky-Schwarz inequality,

MiG ≤
∑

j∈NG\{i}

D>iGSjGDiG + (|NG| − 1)
∑

j∈NG\{i}

D>jGSiGDjG︸ ︷︷ ︸
=:AiG

.

Therefore,
n∑
i=2

MiG ≤ |NG|
n∑
i=1

AiG .

Applying Principle 4.9 (nearby eigenproblem with constant c2 = |NG|) yields the eigen-
problem

ž>G(S?1G : S?2G : . . . : S?nG)y̌G = λž>G(A1G + . . .+AnG)y̌G for y̌G, žG ∈ U∆G ,(93)

which is the one proposed by Kim, Chung, and Wang [42, 43].

5.7. Comments on the adaptive algorithm. In general, adaptively chosen con-
straints can be enforced in several ways. Firstly, one can just add them to the pre-
viously chosen ones (if there are any) and recompute some components of BDDC.
Secondly, for FETI-DP, the newly chosen constraints can be enforced by deflation, see
[54, 38, 49, 42, 43]. Suppose, we want to add adaptively chosen constraints to the
existing primal constraints, then we fall into one of the two cases below.

(i) If the chosen glob eigenproblems discard the influence of their neighboring globs
(or if the neighboring globs are all totally primal), then they can be computed
independently from each other.

(ii) Otherwise, one has to make an additional choice whether after computing the
adaptive constraints on a single glob, one would update at once the global set
of primal constraints (in the spirit of a Gauss-Seidel iteration), or not (like a
Jacobi iteration). In the first case, of course the ordering of the globs matters.

In several publications [73, 76, 17, 49, 50], it is proposed to use a fixed tolerance as
bound for the eigenvalues and use all the corresponding eigenvectors simultaneously for
constraints. A different option is to impose one constraint at a time and update the
neighboring eigenproblems at once, see also Remark 5.21.
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6. The deluxe scaling

The deluxe scaling was originally introduced in [22] for 3D H(curl) problems and
further used in, e.g., [22, 23, 84, 7, 16, 66, 12, 50, 6]. Recall the definition of SiG from
(55) and set

S̄G :=
∑
j∈NG

SjG .(94)

The deluxe scaling is the following choice of the scaling matrices DiG from Assump-
tion 3.4:

DiG = S̄−1
G SiG .(95)

It is easily seen that S̄G is a principal minor of the original problem matrix Ŝ and as
such non-singular. The application of the inverse S̄−1

G can be realized in several ways.

Firstly, applying S̄−1
G is equivalent to solving an SPD matrix problem on the subdomains

NG sharing glob G [7]. Secondly, some sparse direct solvers such as MUMPS [2] or
PARDISO [62] offer a Schur complement option to compute the dense matrices SjG
in a complexity comparable to a direct subdomain solve (see also Remark 5.3). The
latter option might be quite interesting for computations on a large number of cores
[116, 117].

By construction, choice (95) fulfills the glob-wise partition of unity property (Condi-
tion 3.5). Note that it is not guaranteed that each single matrix SjG is non-singular. For
example, for the standard FEM-discretization of Poisson’s problem or linear elasticity,
the matrix SkF corresponding to Figure 4(left), p. 32 is singular.

6.1. Deluxe scaling on faces. Recall that for a face F with NF = {i, j},

z>P>D,FSNF
PD,F y = (RiF zi −RjF zj)>MF (RiF yi −RjF yj).

with

MF = D>iFSjFDiF +D>jFSiFDiF = SiF S̄
−1
F SjF S̄

−1
F SiF + SjF S̄

−1
F SiF S̄

−1
F SjF

for the deluxe scaling.
Whereas it has been shown in many references [23, 7, 16] that DiFSiFDjF ≤ SiF and

DiFSiFDjF ≤ SiF . The inequality in Lemma 5.10 implies D>jFSiFDjF ≤ SiF : SjF , see

also [49], and so

MF ≤ 2(SiF : SjF ).

The core of Lemma 5.10, however, implies the surprising result:

Corollary 6.1. If F is a face with NF = {i, j}, and if DiF , DjF are chosen according
to the deluxe scaling (95), then the following identity holds for MF (defined in (65)):

MF = SiF : SjF .

Using Corollary 6.1, the eigenproblem in Lemma 5.14 (under the stated assumptions!)
rewrites as

ž>F (S?iF : S?jF )y̌F = λ ž>F (SiF : SjF )y̌F for y̌F , žF ∈ UF∆.

We warn the reader that possible constraints enforced on globs neighboring G are
ignored in the above eigenproblem, whereas they are present in the original eigenprob-
lem (51).
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Remark 6.2. Assume that SkF is spectrally equivalent to αkSF , k ∈ {i, j} and S?kF
to αkS

?
F , k ∈ {i, j}, with constant coefficients αk > 0 and with benign equivalence

constants. Due to Proposition 5.9,

(αiSF ) : (αjSF ) =
αi αj
αi + αj

SF , (αiS
?
F ) : (αjS

?
F ) =

αi αj
αi + αj

S?F .

Together with Proposition 5.8 we can instead study the eigenproblem

ž>F S
?
F y̌F = λ ž>F SF y̌F for y̌F , žF ∈ UF∆.

For the case of scalar diffusion, S?F corresponds to the H1/2(F )-norm and SF to the

H
1/2
00 (F )-norm, see [107]. The coefficient-dependent scaling DkF = αk

αi+αj
I (sometimes

called ρ-scaling, cf. [107, 96]) leads to the same eigenproblem.

Remark 6.3. As noted by Stefano Zampini [116, 117], if we compute the eigenproblem
on the space UF instead of UF∆, and if SiF , SjF , S?iF , S?jF are all definite, then one
can apply the formula from Remark 5.5 and rewrite the eigenproblem as

(S−1
iF + S−1

jF )v = λ(S?iF
−1 + S?jF

−1)v.

6.2. Optimality of the deluxe scaling for subdomain faces∗. Below tr(M) :=∑n
i=1Mii denotes the trace of the matrix M ∈ Rn×n. The following lemma can be seen

as a matrix version of Corollary 5.11.

Lemma 6.4. Let A, B ∈ Rn×n be SPSD matrices with A+B definite and define

MA,B(X) := X>AX + (I −X)>B(I −X).

Then for any (fixed) symmetric positive definite matrix C ∈ Rn×n, the functional

JA,B,C(X) = tr(CMA,B(X)C)

attains its global minimum at

X∗ = (A+B)−1B.

Proof. Let us first assume that C = I. From the properties of the trace, we see that
for any X, Y ∈ Rn×n,

JA,B,I(X + Y ) = JA,B,I(X) + 2 tr(Y >AX + Y >B(X − I)) + tr(Y >(A+B)Y ).

Since 〈M1,M2〉F := tr(M>1 M2) is an inner product on Rn×n, we find that the gradient
of JA,B,I at X is given by AX +B(X − I). The gradient vanishes if and only if

(A+B)X = B.

Since the expression tr(Y >(A + B)Y ) is positive unless Y = 0, we have the global
minimum. For a general SPD matrix C, one easily sees that

CMA,B(X)C = M
Ã,B̃

(X̃)

where Ã = CAC, B̃ = CBC, and X̃ = C−1XC. From the earlier case, the minimum

of JA,B,C(X) = J
Ã,B̃,I

(X̃) is attained at X̃∗ = (Ã+ B̃)−1B̃. Transforming back reveals

the formula for X∗. �

Corollary 6.5. Let F be a subdomain face and let 0 ≤ λ1(X) ≤ · · · ≤ λn(X) ≤ ∞
denote the generalized eigenvalues of

(SiF : SjF )y = λMSiF ,SjF
(X)y for y ∈ UF ,
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so for X = DjF and I −X = DiF , the matrix on the right-hand side equals MF from
Lemma 5.14. Assume further that SiF : SjF is non-singular such that λ1(X) > 0. Then
the choice X = DjF = (SiF + SjF )−1SjF according to the deluxe scaling minimizes

J (X) :=
n∑
i=1

λi(X)−1.

Proof. We set C = (SiF : SjF )−1/2, where (SiF : SjF )1/2 is the SPD matrix square
root. Then 0 ≤ λn(X)−1 ≤ · · · ≤ λ1(X)−1 < ∞ are the regular eigenvalues of the
matrix CMSiF ,SjF

(X)C (recall that we have set ∞−1 := 0) and,

J (X) = tr(CMSiF ,SjF
(X)C).

The rest follows from Lemma 6.4. �

In a practical algorithm, one would actually like to minimize the number m of outliers
where λ1(X) ≤ · · · ≤ λm(X) � λm+1(X), but this would lead to a non-quadratic
optimization problem. But under the outlier assumption,

m∑
i=1

λi(X)−1 ≈
n∑
i=1

λi(X)−1 = J (X).

The term on the left-hand side is the sum over factors that we could potentially obtain
in the condition number bound, so minimizing the quadratic functional J (X) appears
to be a good alternative.

Remark 6.6. The case of singular (SiF : SjF ) is harder and left for future research.

6.3. Economic deluxe scaling on faces∗. Economic versions of the deluxe scaling
have been proposed in [23, 50]. Recall that in the typical application, the matrix Si
and the derived matrices SiF , S?iF stem from the elimination of interior subdomain
dofs. Replacing the original stiffness matrix Ki by the one just assembled over the
elements at a distance ≤ η from the face F , one arrives at matrices SiFη, S

?
iFη with the

properties

SiF ≤ SiFη, S?iFη ≤ S?iF ,(96)

for details see [50]. The economic deluxe scaling (on face F shared by subdomains i
and j) is given by

DiF := (SiFη + SjFη)
−1SiFη .

For sufficiently small η, the computation of this matrix or its application to a vector is
much cheaper than for the original deluxe scaling. In [23], only one layer of elements
is used (η = h). From (96) and Lemma 5.10, we obtain

MF = D>iFSjFDiF +D>jFSiFDjF ≤ D>iFSjFηDiF +D>jFSiFηDjF = SiFη : SjFη .(97)

From (96) and Proposition 5.8, we obtain

(S?iFη : S?jFη) ≤ (S?iF : S?jF ).(98)

In [50], it is proposed to consider the face eigenproblem

(S?iFη : S?jFη)v = λ(SiFη : SjFη)v.

In view of (96)–(98), this is an implicit application of Principle 4.9 (nearby eigenprob-
lem).
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6.4. Deluxe scaling on edges. For arbitrary globs, we consider the eigenproblem

SNG
= λP>D,GSNG

PD,G in WNG
,

here discarding any influence of primal constraints and let the weight matrices {DjG}j∈NG

vary subject to the condition
∑

j∈NG
DjG = I. One can show that the trace of the

matrix on the right-hand side attains a minimum if the weight matrices are chosen
according to the deluxe scaling.

Next, we investigate the decoupled eigenproblem from Sect. 5.5. Suppose again that

NG = {1, . . . , n} and set S]iG :=
∑

j∈NG\{i} SjG = S̄G−SiG. Then, due to Lemma 5.10,

MiG = SiGS̄
−1
G S]iGS̄

−1
G SiG + S]iGS̄

−1
G SiGS̄

−1
G S]iG = SiG : S]iG

Hence, the (n− 1) decoupled eigenproblems from (92) rewrite as

ž>iG(S?iG : S?1G)y̌iG = λž>iG(SiG : S]iG)y̌iG for y̌iG, žiG ∈ UG∆ , ∀i = 2, . . . , n.(99)

Applying Principle 4.11 (recombination), we obtain the single eigenproblem

ž>G(S?1G : S?2G : . . . : S?nG)y̌G = λž>G(T2G + . . .+ TnG)y̌G for y̌iG, žiG ∈ UG∆ ,

where TiG := SiG : S]iG. Applying Principle 4.9 (nearby eigenproblem) replacing the
matrix on the right-hand side by T1G + . . .+ TnG results in the eigenproblem proposed
by Calvo and Widlund [111, 13].

Remark 6.7. Recall the eigenproblem (93),

ž>G(S?1G : S?2G : . . . : S?nG)y̌G = λž>G(A1G + . . .+AnG)y̌G for y̌iG, žiG ∈ UG∆ ,

proposed by Kim, Chung, and Wang [42, 43], where AiG =
∑n

j=1,j 6=iD
>
jGSiGDjG. For

the deluxe scaling,
n∑
i=1

AiG =

n∑
i=1

n∑
j=1,j 6=i

SjGS̄
−1
G SiGS̄

−1
G SjG =

n∑
j=1

SjGS̄
−1
G S]jGS̄

−1
G SjG ≤

n∑
j=1

TjG ,(100)

where in the last step, we have used Lemma 5.10. That means, for the deluxe scaling,
one can get from the Kim-Chung-Wang eigenproblem to the Calvo-Widlund eigenprob-
lem by Principle 4.9 (nearby eigenproblem) using the spectral inequality (100).

7. Achieving definiteness of S̃

In this section, we show that under the following mild assumptions, we can guarantee

the definiteness of S̃ algorithmically.

Assumption 7.1. Each substructure has at least one face.

Assumption 7.2. If F is a face of substructure k then

(Skwk = 0, RkFwk = 0) =⇒ wk = 0.

Assumption 7.3. For each k = 1, . . . , N either

1. ker(Sk) = {0}, or
2. substructure k has two faces, or
3. substructure k has only one face F , NF = {k, `} and the matrix

MF = DT
kFS`FDkF +DT

`FSkFD`F

is definite on UF∆ := {u ∈ UF : QTFu = 0}.
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Lemma 7.4. If Assumptions 7.1–7.3 hold, then for each G ∈ G∗,

ker(SNG
) ∩ range(PD,G) ∩ W̃NG

= {0}.

Proof. Throughout the proof, let w ∈ ker(SNG
)∩ range(PD,G)∩ W̃NG

be arbitrary but

fixed. From w ∈ range(PD,G) ∩ W̃NG
and Lemma 3.8, we obtain that

w = PD,Gy for some y ∈ W̃NG
.(101)

We treat two cases. Firstly, assume that G is a face shared by substructures i and j,
such that

wi = (PD,Gy)i = RTiGDjG(RiGyi −RjGyj)
wj = (PD,Gy)j = −RTjGDiG(RiGyi −RjGyj)

(102)

Assume now that Siwi = 0 and Sjwj = 0. For k ∈ {i, j} we apply Assumption 7.3:

1. If ker(Sk) = {0} then wk = 0.
2. If substructure k has two faces, namely G and F ′ then we see from (102) that
RkF ′wk = 0 and Assumption 7.2 implies that wk = 0.

3. Finally, if substructure k has only one face (namely G) and if MG is definite on
UG∆, we have (using (102) and the fact that SiG = RiGSiR

T
iG etc.)

0 = |wi|2Si
+ |wj |2Sj

= (RiGyi−RjGyj)T (DT
jGSiGDiG +DT

iGSjGDiG)︸ ︷︷ ︸
=MG

(RiGyi−RjGyj).

Since RiGyi−RjGyi ∈ UG∆ and MG is definite on that space, we conclude that
RiGyi−RjGyj = 0. This is sufficient to conclude (from (102)) that wi = wj = 0.

Secondly, assume that G ∈ G∗ \ F . Due to our assumptions, Skwk = 0 for all k ∈ NG.
For any such k, since substructure k has a face F (cf. Assumption 7.1), we see from (101)
and the formula for PD,G that RkFwk = 0. Assumption 7.2 implies that wk = 0. �

Theorem 7.5. Let Assumptions 7.1–7.3 hold. Assume further that for each glob G ∈
G∗ the glob eigenproblem

(S̃NG
, P̃>D,GS̃NG

P̃D,G︸ ︷︷ ︸
=B̃G

) on W̃NG

has no zero eigenvalues. Then S is definite on W̃ .

Proof. Let G ∈ G∗ be arbitrary but fixed and set A = S̃NG
, P = P̃D,G and B = B̃G.

Thanks to Lemma 7.4,

ker(A) ∩ range(P ) = {0},
and due to our assumptions, (A,B) has no genuine zero eigenvalues. Lemma 4.12(iii)
implies that ker(A) ⊂ ker(P ), which means

∀w ∈ W̃NG
:
(
∀j ∈ NG : Sjwj = 0 =⇒ P̃D,Gw = 0

)
.

Due to Lemma 3.8(iii) the last identity implies

RiGwi −RjGwj = 0 ∀i, j ∈ NG .

Since G ∈ G∗ was arbitrary, Condition 3.1 is fulfilled and Lemma 3.2 concludes the
proof. �
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Remark 7.6. (i) Assumption 7.1 usually holds in practice, otherwise we would
have substructures joined to the rest only by an edge or a vertex, which is
somewhat unphysical.

(ii) Assumption 7.2 is fulfilled for the typical finite element discretizations and for
the typical differential operators, provided that
• the face F is large enough and
• each subdomain is connected.

Note that connectivity is a geometric concept that can, nevertheless, be made
accessible via the matrix graph of the underlying sparse matrix, cf. [114].

(iii) Should neither Item 1 nor Item 2 of Assumption 7.3 hold, then Item 3 can be
fulfilled by computing the eigenproblem

MF = λI

first, and converting any zero modes into primal constraints.
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Appendix A. Proof of Theorem 2.8 based on the fictitious space lemma

We first show that (18) and (19) are equivalent. From the properties of ED and PD,

we find that there exists a projection ẼD : W̃ → W̃ onto Ŵ such that RED Ĩ = ĨẼD
and PD Ĩ = Ĩ(I−ẼD). So (18) is equivalent to ‖ẼD‖2S̃ ≤ ω, and (19) to ‖I−ẼD‖2S̃ ≤ ω,

where ‖ · ‖
S̃

is the norm on W̃ induced by S̃. Since ẼD is a non-trivial projection in

a Hilbert space, ‖ẼD‖S̃ = ‖I − ẼD‖S̃ . This useful result is often ascribed to Kato (cf.
[39, Appendix, Lemma 4], [110, Lemma 3.6]) but has been proved several times in the
literature, see Szyld’s concise presentation [105] with further references.

For the condition number bound, we use Sergei Nepomnyashikh’s fictitious space
lemma [82], [83, Lemma 2.3]; see also [61]. Here, we have rewritten it in terms of
duality products rather than inner products.

Lemma A.1 (Fictitious space lemma). Let H, H̃ be finite-dimensional Hilbert spaces

and A : H → H∗, Ã : H̃ → H̃∗ bounded, self-adjoint and positive definite linear opera-

tors. Moreover, let Π: H̃ → H be a bounded linear operator. Then

λmax(ΠÃ−1ΠTA) = sup
ṽ∈H̃\{0}

〈AΠṽ,Πṽ〉
〈Ãṽ, ṽ〉

=: γ2 .(103)

In addition, let T : H → H̃ be a linear operator such that

ΠTv = v and γ1 〈ÃTv, Tv〉 ≤ 〈Av, v〉 ∀v ∈ H,(104)
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for some constant γ1 > 0. Then λmin(ΠÃ−1Π>A) ≥ γ1. Summarizing,

κ(ΠÃ−1Π>A) ≤ γ2/γ1 .

Proof. With ‖v‖B := 〈Bv, v〉1/2 for positive definite B and basic functional analysis,

we obtain ‖ψ‖B−1 = supv∈V \{0}
〈ψ,v〉
‖v‖B and 〈ψ, v〉 ≤ ‖ψ‖B−1‖v‖B. Since the operator

ΠÃ−1ΠTA is self-adjoint with respect to the inner product 〈Av, v〉, its spectrum is real.
We show (103) using the Rayleigh quotient and simply omit “\{0}” in all suprema:

λmax(ΠÃ−1ΠTA) = sup
v∈H

〈ΠÃ−1ΠTAv,Av〉
〈Av, v〉

v=A−1ψ
= sup

ψ∈H∗

‖ΠTψ‖2
Ã−1

‖ψ‖2
A−1

= sup
ψ∈H∗

sup
ṽ∈H̃

〈ψ,Πṽ〉2

‖ψ‖2
A−1‖ṽ‖2Ã

= sup
ṽ∈H̃

‖Πṽ‖2A
‖ṽ‖2

Ã

.

If (104) holds then

‖ψ‖2A−1 = sup
v∈H

〈ψ,
=v︷︸︸︷

ΠTv〉2

‖v‖2A
= sup

v∈H

〈Π>ψ, Tv〉2

‖v‖2A
≤ ‖ΠTψ‖2

Ã−1 sup
v∈H

‖Tv‖2
Ã

‖v‖2A
≤ 1

γ1
‖ΠTψ‖2

Ã−1 .

Using the Rayleigh quotient we obtain the lower bound for λmin(ΠÃ−1ΠTA). �

To get the BDDC condition number bound, we set H := U , H̃ := W̃ , A := Ŝ,

Ã = S̃ and Π := ED Ĩ. Then bound (18) is equivalent to λmax(M−1
BDDCŜ) ≤ ω. To

get (104), we first define T : U → W̃ by Tv := Rv for v ∈ U which is well-defined since

range(R) ⊂ W̃ . From EDR = I we conclude that ΠT = ED ĨT = I. Finally, since
RED is a projection,

〈ÃTv, Tv〉 = 〈SRv,Rv〉 = 〈Ŝv, v〉 = 〈Av, v〉 ∀v ∈ H = U,

so the inequality in (104) holds with γ1 = 1 and λmin(M−1
BDDCŜ) ≥ 1.

Appendix B. The related FETI-DP method

Let Λ be a Euclidean space (usually called space of Lagrange multipliers) and
B : W → Λ be a matrix (usually called the jump operator) such that

Ŵ = ker(B).

Remark B.1. Identity (12) already implies the existence of a matrix B with Ŵ =

ker(B). For standard choices of B see, e.g., [107, 33]. Furthermore, Ŵ ⊂ W̃ ⊂ W

(Condition 2.5) implies the existence of a matrix L̄ of full rank such that W̃ = ker(L̄B),
see also [73, Sect. 2.3] and Remark 2.29.

With B̃ := B Ĩ : W̃ → Λ, problem (8) can be rewritten as

(105) find (ũ, λ) ∈ W̃ × Λ:

[
S̃ B̃>

B̃ 0

] [
ũ
λ

]
=

[
g̃
0

]
,

where g̃ := Ĩ>g. Since the restriction of S̃ to ker(B̃) is isomorphic to Ŝ, which was
assumed to be definite, problem (105) is uniquely solvable up to adding an element
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from ker(B̃>) to λ. If S is definite on W̃ (Condition 2.6), we can eliminate the variable
ũ and obtain the dual equation

(106) F λ = d,

where F := B ĨS̃−1Ĩ>B> and d := B ĨS̃−1Ĩ>g. We assume that there exists a matrix
BD : W → Λ such that

B>DB = PD = I −RED .

Remark B.2. Under Assumption 3.4 (p. 17) and for fully redundant Lagrange multi-
pliers, BD indeed exists. For the fully redundant setting, Λ =

⊗
G∈G

⊗
i,j∈NG,i>j

UG.
We denote the components of λ ∈ Λ by λG,ij for G ∈ G, i > j ∈ NG and define
(Bu)G,ij := RiGui − RjGuj (cf. (26)). The definition of BD then reads (BDw)G,ij :=
DjGRiGwi−DiGRjGwj . This generalizes the well-known formula for diagonal matrices
Di, see [107, Sect. 6.3.3] or [89, Sect. 2.2.4.2]. The transpose is given by

(BT
Dµ)i =

∑
G∈Gi

∑
j∈NG\{i}

sign(i− j)RTiGDjGµG,ij

from which one can infer that B>DB = PD.

The FETI-DP preconditioner (for problem (106)) is defined as

(107) M−1
FETI−DP := BD S B

>
D : Λ→ Λ.

In [72, 10, 69, 74] it was shown that bound (19) (or equally (18)) implies

κFETI−DP := κ(M−1
FETI−DPF|Λ/ ker(B̃>)

) ≤ ω,

and that the spectra of BDDC and FETI-DP (with corresponding components) are
identical except for possible eigenvalues equal to one.

Appendix C. Realization of ĨS̃−1Ĩ>

The method in Sect. C.1–C.2 treats the case of classical primal dofs (Sect. 2.5) and
was introduced in [19]. For similar approaches see, e.g., [32], [107, Sect. 6.4], [69], [58,
Sect. 4.2], and [89, Sect. 5.3]. In Sect. C.3, we extend the method to the generalized
primal constraints from Sect. 2.6.

C.1. The energy minimizing basis of W̃Π for classical primal dofs. Let the

matrices Ci : Wi → UΠi fulfill ker(C>i ) = {0} (Condition 2.18), let W̃ be defined via
(31), i.e.,

W̃ = {w ∈W : ∃uΠ ∈ UΠ ∀i = 1, . . . , N : Ciwi = RΠiuΠ},
and Wi∆ = {wi ∈Wi : Ciwi = 0}, W∆ :=

⊗N
i=1Wi∆. Let Ψi : WiΠ →Wi fulfill

CiΨi = I.(108)

Such matrices Ψi exist because Ci is surjective, e.g., we could use Ψi = C>i (CiC
>
i )−1.

A distinguished choice is defined by the linear saddle point system[
Si C>i
Ci 0

] [
Ψi

Λi

]
=

[
0
I

]
,(109)

with Lagrange parameters Λi : WΠi → WΠi. Assume that Si is definite on ker(Ci) =
Wi∆ (cf. Condition (38), p. 16). Due to ker(C>i ) = {0} (Condition 2.18)), problem (109)
is guaranteed to have a unique solution.
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The columns of Ψi can be regarded as shape functions on subdomain i. Condi-
tion (108) states that primal dof k of shape function j evaluates to δkj .

Proposition C.1. (i) Ψi has full column rank,
(ii) range(Ψi) ∩Wi∆ = {0},

(iii) if (109) holds then even 〈Sizi, wi〉 = 0 ∀zi ∈ range(Ψi), wi ∈Wi∆.

Proof. Part (i) follows directly from (108).
Part (ii). If wi = Ψiv ∈Wi∆, then 0 = Ciwi = CiΨiv = v, so v = 0 and wi = 0.
Part (iii). From the first line of (109) we derive that for any wi ∈Wi∆,

w>i SiΨi = −w>i C>i Λi = −Λ>i Ciwi︸︷︷︸
=0

= 0. �

For each i = 1, . . . , N , choose Ψi : WiΠ → Wi such that (108) holds. We set Ψ :=
diag(Ψi)

N
i=1 : WΠ →W and define, in a finite element spirit, the assembled basis

Ψ̃ : UΠ →W, Ψ̃ := ΨRΠ ,(110)

where RΠ : UΠ = RnΠ →WΠ is the matrix from (28) and has full column rank.

Lemma C.2. Let Ψ̃ be given as in (110). Then

(i) Ψ̃ has full column rank, in particular, dim(range(Ψ̃)) = nΠ,

(ii) range(Ψ̃) ⊂ W̃ ,

(iii) W̃ = range(Ψ̃)⊕W∆.
(iv) If for each i = 1, . . . , N (109) holds, then even

〈Sw, z〉 = 0 ∀w ∈W∆, z ∈ range(Ψ̃).

Proof. Part (i). Due to Proposition C.1(i), Ψ is injective. Since RΠ is injective, the

composition Ψ̃ is injective too.
Part (ii). Due to (108), for any G ∈ G and i ∈ NG:

QTGRiG(Ψ̃)i =
∑
G′∈Gi

RiΠGR
>
ΠiG′︸ ︷︷ ︸

=δGG′I

Q>G′RiG′ΨiRΠi = RiΠGCiΨi︸ ︷︷ ︸
=I

RΠi = R̂ΠG ,

and so Q>GRiG(Ψ̃)i = Q>GRjG(Ψ̃)j for all i, j ∈ NG.
Part (iii). From Proposition C.1(ii) we obtain range(Ψ) ∩ W∆ = {0} so the sum is
direct. Thanks to Part (i) and Proposition 2.23,

dim(range(Ψ̃)) + dim(W∆) = nΠ + dim(W∆) = dim(W̃ ),

so together with Part (ii), the direct sum must equal W̃ .
Part (iv) follows directly from Proposition C.1(iii). �

C.2. Realization of Ĩ S̃−1Ĩ>. For this section, we only make two assumptions. Firstly,

W̃ = range(Ψ̃)⊕W∆,(111)

where Ψ̃ : UΠ → W̃ is injective and W∆ =
⊗N

i=1Wi∆ with Wi∆ = {wi ∈Wi : Ciwi = 0}.
Secondly, we assume that range(Ψ̃) and W∆ are S̃-orthogonal (see Remark C.6 for the
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non-orthogonal case). Since the sum is direct, we can identify W̃ with the product space

W̃ := UΠ ×W∆ and obtain

Ĩ : W̃ →W :

[
wΠ

w∆

]
7→ Ψ̃wπ + w∆, Ĩ

>
: W ∗ → W̃

∗
: f 7→

[
Ψ̃>f
f

]
.4

The operator S̃ can then be identified with S̃ : W̃ → W̃
∗
, given by[

vΠ

v∆

]>
S̃

[
wΠ

w∆

]
= v>Π(Ψ̃>SΨ̃)wΠ + vT∆Sw∆,

which is a block-diagonal operator. Its inverse is given by

S̃
−1
[
rΠ

r

]
=

[
(Ψ̃>SΨ̃)−1rΠ

z∆

]
where z∆ ∈ W∆ is such that 〈Sz∆, v∆〉 = 〈r, v∆〉 for all v∆ ∈ W∆. The latter can be
obtained by solving the saddle point problem[

S C>

C 0

] [
z∆

µ

]
=

[
r
0

]
,

whose system matrix is block-diagonal with blocks identical to (109).

To summarize, the application v = ĨS̃−1Ĩ>r, r ∈W is now realized by

v = Ψ̃wΠ + z∆,(112)

where wΠ ∈ RnP solves the (global) coarse problem

(Ψ̃>SΨ̃)wΠ = Ψ̃>r,(113)

and the components zi of z∆ solve the local (and independent) saddle point problems[
Si C>i
Ci 0

] [
zi
µi

]
=

[
ri
0

]
.(114)

Remark C.3. Certainly, the saddle point problems (109), (114) can either (i) be solved
as they are, (ii) be reformulated by penalty techniques, or (iii), using a transformation
of basis [51, 69], one can enforce the constraints explicitly, eliminate some dofs, and
reduce the saddle point problem to an SPD problem.

Remark C.4. For the energy minimizing construction (109), the coarse matrix in (113)
can be assembled from the subdomain contributions Ψ>i SiΨi = −Ψ>i C

>
i Λi = −Λi, cf.

[89, Sect. 5.3.4.2].

Remark C.5. If Si is a Schur complement of a matrix Ki eliminating interior dofs,
then the saddle point problems (109) and (114) can easily be rewritten in terms of
Ki and are thus amenable to sparse direct solvers. In that context, however, it is
recommended to suitably scale the second line and to check for the right parameters,
such that the solver can cope with the zero block on the lower right (e.g., weighted
matching [97] in case of PARDISO).

Remark C.6. Based on the block Cholesky factorization, a similar algorithm can also

be given for the case that range(Ψ̃) is not S-orthogonal to W∆. Then, however, the
coarse and the local problems are not anymore independent, and two local problems
have to be solved, see [69] and [89, Sect. 5.3].

4To be strict, we actually add the embedded function w∆ ∈ W∆ ⊂ W and correspondingly, in the

second component of Ĩ
>
f , we would have to write the embedding of f ∈W ∗ ⊂W ∗∆.
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C.3. A basis of W̃Π for generalized primal constraints. Let W̃ be a space gener-
ated from generalized primal constraints, i.e., (32), (35). We give an algorithm comput-

ing a basis of W̃Π that has local support, such that W̃ = W̃Π ⊕W∆, with W∆ defined

in (83). We only require that S is definite on W̃ (Condition 2.6).

Step 1. For each subdomain i and glob G ∈ Gi we construct a matrix L̄iG ∈ RrΠG×qΠiG

of full row rank such that

LiG = KiGL̄iG , qΠiG = rank(L̄iG) = rank(LiG).(115)

This can, e.g., be achieved by the QR factorization [36, Sect. 5.2] (see also the proof
of Theorem 5.18). We collect them into a subdomain constraint matrix

L̄i =


...

L̄iGRiG
...


G∈Gi

,(116)

which again has full row rank qΠi :=
∑

G∈Gi qΠiG. The space from (83) rewrites as

Wi∆ = {wi ∈Wi : L̄iwi = 0}.(117)

Step 2. For each subdomain i, we construct a matrix Ψi : RqΠi →Wi such that

L̄iΨi = I,(118)

e.g., we could use Ψi = L̄>i (L̄iL̄
>
i )−1. A distinguished choice are the energy-minimizing

functions given by the solution of the saddle point system[
Si L̄>i
L̄i 0

] [
Ψi

Λi

]
=

[
0
I

]
(119)

with Lagrange multipliers Λi ∈ RqΠi×qΠi .

Proposition C.7. For a matrix Ψi fulfilling (118), the following statements hold:

(i) The columns of Ψi are linearly independent.
(ii) The system matrix in (119) is invertible.

(iii) If Ψi is constructed via (119), then 〈SiΨi, zi〉 = 0 ∀zi ∈Wi∆.

Proof. Part (i) follows immediately from (118).
Part (ii). Si is definite on ker(L̄i) = Wi∆ (cf. (38), p. 16) and ker(L̄>i ) = {0}.
Part (iii). From the first line in (119) and from (117) we derive for zi ∈Wi∆,

〈SiΨi, zi〉 = −〈L̄>i Λi, zi〉 = −〈Λi, L̄izi〉
(117)
= 0. �

Step 3. Corresponding to (116), the shape functions are arranged into groups corre-
sponding to the globs:

Ψi =
[
· · ·
∣∣Ψ(G)

i

∣∣ · · · ]
G∈Gi

.(120)

One easily shows the property

L̄iGRiGΨ
(G′)
i = δGG′I.(121)
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Step 4. Next, we loop over all globs G ∈ G and return to the original constraint matrices
{LjG}j∈NG

. We form the matrix

KG =
[
· · ·
∣∣LjGRjGΨ

(G)
j

∣∣ · · · ]
j∈NG

=
[
· · ·
∣∣KjG

∣∣ · · · ]
j∈NG

∈ RrΠG×qΠG

and compute a coefficient matrix

YG :=


...

YjG
...


j∈NG

∈ RqΠG×nΠG ,

whose columns form a basis of ker(KG), i.e.,

KGYG = 0, nΠG = rank(YG) = dim(ker(KG)).(122)

This can, e.g., be done by a singular value decomposition (SVD), see [36, Sect. 2.5]. As
we have shown in (88) in the proof of Theorem 5.18,

dim(ker(KG)) = qΠG − rΠG .(123)

Step 5. The number nΠG will be the number of coarse basis functions used on glob G.
Therefore, the global space of coarse dofs given by UΠ := RnΠ with nΠ =

∑
G∈G nΠG.

The coarse basis itself is given by

Ψ̃ : UΠ →W, Ψ̃ :=
[
· · ·
∣∣Ψ̃(G)

∣∣ · · · ]
G∈G ,

where

Ψ̃(G) : RnΠG →W : Ψ̃
(G)
i :=

{
Ψ

(G)
i YiG i ∈ NG ,

0 otherwise.

Theorem C.8. For the construction above the following statements hold:

(i) range(Ψ̃) ⊂ W̃ ,

(ii) the columns of Ψ̃ are linearly independent and dim(range(Ψ̃)) = nΠ,

(iii) W̃ = range(Ψ̃)⊕W∆,
(iv) If all matrices Ψi are constructed via (119) then

〈Sw, z〉 = 0 ∀w ∈ range(Ψ̃), z ∈W∆.

Proof. Part (i). We simply show that range(Ψ̃(G)) ∈ W̃ for an arbitrary but fixed glob

G ∈ G. From the definition of Ψ̃(G) and property (121) we derive that for any glob
G′ ∈ G and any j ∈ NG′ ,

L̄jG′RjG′Ψ̃
(G)
j =

{
L̄jG′RjG′Ψ

(G)
j YjG = δGG′YjG if j ∈ NG ,

0 otherwise.
(124)

From (115) and the above we conclude that∑
j∈N ′G

LjG′RjG′Ψ̃
(G)
j =

∑
j∈N ′G

{
δGG′KjG′YjG if j ∈ NG
0 otherwise

=

{∑
j∈NG

KjGYjG if G′ = G,

0 otherwise,
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but due to (122), this expression always evaluates to zero.
Part (ii). Firstly, we define

Ψ
(G)

:= diag(Ψ
(G)
i )Ni=1 : RqΠG →W, where Ψ

(G)
i := 0 ∈ Rdim(Wi)×0 if i 6∈ NG ,

Ψ := [· · · |Ψ(G)| · · · ]G∈G ,
such that we can write

Ψ̃ = Ψ diag(YG)G∈G .

From (120), we observe that the columns of Ψ are just columns of some matrix Ψi

extended by zero to the remaining subdomains. Hence, Proposition C.7 implies that Ψ

is injective. Since each YG is injective, Ψ̃ is injective as well.
Part (iii). Let Ψ be as above. From Proposition C.7 we obtain that range(Ψ) ∩W∆ =

{0}, which implies that range(Ψ̃)∩W∆ = {0}, so the sum range(Ψ̃) +W∆ is direct and

dim(range(Ψ̃) +W∆) = nΠ + dim(W∆).

From (123) and Proposition 5.17 we obtain that dim(W̃ ) = dim(W∆) + nΠ, therefore

the sum must equal W̃ .
Part (iv). Proposition C.7(iii) implies that for zi ∈W∆i,

〈SiΨ̃i, zi〉 = 〈Si
∑
G∈Gi

Ψ
(G)
i RΠG, zi〉 = 0. �

Based on the direct sum W̃ = range(Ψ̃)⊕W∆, the operator Ĩ S̃−1Ĩ> can be realized
as in Sect. C.2.

Appendix D. Generalized inverse and Schur complement

Throughout this section, V is a finite-dimensional vector space and A : V → V ∗ a
linear operator.

Definition D.1 (generalized inverse). A† : V ∗ → V is a generalized inverse5 of A if

AA†f = f ∀f ∈ range(A).

From this definition, one easily derives

A†Ax = x+ vK for some vK ∈ ker(A) ∀x ∈ V,(125)

as well as the following statement.

Proposition D.2. For linear operators A, C, D : V → V ∗ with with ker(A) ⊂ ker(C)
and range(D) ⊂ range(A), the expression CA†D is invariant under the particular choice
of the generalized inverse A†. Moreover, if D = A then CA†A = C, and if C = A then
AA†D = D.

For the following, let V = V1 × V2 and

A =

[
A11 A12

A21 A22

]
.(126)

Lemma D.3. If A is SPSD then ker(A22) ⊂ ker(A12) and range(A21) ⊂ range(A22).

In particular, A22A
†
22A21 = A21.

5If, additionally, A†AA† = A† then A† is called reflexive generalized inverse, but we do not need
this property.
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Proof. Suppose that there exists an element v2 ∈ ker(A22) \ {0} with A12v2 6= 0. Then
there exists v1 ∈ V1 with 〈A12v2, v1〉 < 0. From the assumption on A we get for any
β ∈ R+,

0 ≤
〈
A

[
v1

βv2

]
,

[
v1

βv2

]〉
= 〈A11v1, v1〉︸ ︷︷ ︸

≥0

+2β 〈A12v2, v1〉︸ ︷︷ ︸
<0

,

which is a contradiction. From functional analysis we know that range(A>) = ker(A)◦

where W ◦ := {ψ ∈ V ∗ : 〈ψ,w〉 = 0 ∀w ∈ W (for W ⊂ V }) is the annihilator (see,
e.g., [80, p. 23]). This shows range(A22)◦ ⊂ range(A21)◦ which implies the second
assertion. �

Definition D.4. Let A, V1, V2 be as in (126). Then the generalized Schur complement
(eliminating the components in V2) is given by

S1 := A11 −A12A
†
22A21

where A†22 is a generalized inverse of A22. If ker(A22) ⊂ ker(A12) and range(A21) ⊂
range(A22), this definition is independent of the particular choice of A†22.

Lemma D.5. Let A, V1, V2 be as in (126) and assume that A is SPSD. Then the
generalized Schur complement S1 has the following properties:

〈S1v1, v1〉 ≤ 〈Av, v〉 ∀v =

[
v1

v2

]
∈ V,(127)

〈S1v1, v1〉 = 〈Av, v〉 ∀v =

[
v1

−A†22A21v1 + vK2

]
, v1 ∈ V1, v

K
2 ∈ ker(A22).(128)

Proof. Minimization of the quadratic functional 〈Av, v〉 with respect to v2 for fixed v1

leads to the first-order condition

A22v2 +A21v1 = 0.(129)

By Lemma D.3, A21v1 ∈ range(A22), and so all solutions of (129) have the form

v2 = −A†22A21v1 + vK2 , with vK2 ∈ ker(A22).

The Hessian is given by A22 and by assumption positive semi-definite, so all these
solutions are minimizers. We verify (128):

〈Av, v〉 = 〈A11v1, v1〉+ 〈−A12A
†
22A21v1, v1〉+ 〈A12v

K
2 , v1〉+ 〈A21v1,−A†22A21v1〉

+ 〈A21v1, v
K
2 〉+ 〈A22(A†22A21v1 + vK2 ), A†22A21v1 + vK2 〉 = 〈S1v1, v1〉,

where we have used Lemma D.3 and Definition D.1. Now (127) follows. �

The next lemma shows that the Schur complement S1 : V1 → V ∗1 is independent of
the particular choice of the complementary space V2.

Lemma D.6. Let A : V → V ∗ be SPSD and let V = V1 ⊕ V2 = V1 ⊕ V ′2 be two (direct)
space splittings. Let S1, S′1 be the generalized Schur complements corresponding to the
first and second splitting, respectively. Then S1 = S′1.

Proof. For v ∈ V let (v1, v2), (v1, v
′
2) be the components corresponding to the first

and second splitting, respectively. From the properties of the direct sum, we see that
there exists mappings T1, T2 with T2 non-singular such that v′2 = T1v1 + T2v2 and

v2 = T−1
2 (v′2− T1v1). Let A11, A12, A21, A22 be the components of A corresponding to
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the first space splitting, such that the components corresponding to the second splitting
are given by[

A11 −A12T
−1
2 T1 − T>1 T

−>
2 A21 A12T

−1
2 − T>1 T

−>
2 A22T

−1
2

T−>2 A21 + T−>2 A22T
−1
2 T1 T−>2 A22T

−1
2

]
.

Computing the generalized Schur complement eliminating the second component (v′2)
and using Lemma D.3, one can easily verify that S′1 = S1. �

Appendix E. Counterexample: B(A+B + C)−1A(A+B + C)−1B 6≤ A

We set

A = I, B =

[
2.5 · 10−5 0.0275

0.0275 838.6

]
, C =

[
7.2 −29
−29 225

]
Clearly, A, B, and C are SPD, as the diagonal entries are strictly positive and

det(B) = 0.0134025, det(C) = 779.

However,

σ(A−B(A+B + C)−1A(A+B + C)−1B) = {−9.26834, 1}
σ(10A−B(A+B + C)−1A(A+B + C)−1B) = {−0.248337, 10}

So, for this particular example,

B(A+B + C)−1A(A+B + C)−1B 6≤ A

B(A+B + C)−1A(A+B + C)−1B 6≤ 10A.

However, from Lemma 5.10 we obtain

B(A+B + C)−1A(A+B + C)−1B ≤ B(A+B + C)−1(A+ C)(A+B + C)−1B

≤ B : (A+ C) ≤ B.

So it is really the inequality with A on the right-hand side that fails to hold in general.
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