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Abstract

We deal with the elastic scattering by a large number M of rigid bodies of arbitrary shapes with
maximum radius a, 0 < a << 1 with constant Lamé coefficients λ and µ. We show that, when these
rigid bodies are distributed arbitrarily (not necessarily periodically) in a bounded region Ω of R3 where
their number is M := M(a) := O(a−1) and the minimum distance between them is d := d(a) ≈ at

with t in some appropriate range, as a → 0, the generated far-field patterns approximate the far-field
patterns generated by an equivalent (possibly variable) mass density. This mass density is described
by two coefficients: one modeling the local distribution of the small bodies and the other one by their
geometries. In particular, if the distributed bodies have a uniform spherical shape then the equivalent
mass density is isotropic while for general shapes it might be anisotropic. In addition, we can distribute
the small bodies in such a way that the equivalent mass density is negative. Finally, if the background
density ρ is variable in Ω and ρ = 1 in R3 \Ω, then if we remove from Ω appropriately distributed small
bodies then the equivalent density will be equal to unity in R3, i.e. the obstacle Ω characterized by ρ is
approximately cloaked.

Keywords: Elastic wave scattering, Small-scatterers, Effective mass density.

1 Introduction and statement of the results

1.1 The background

Let B1, B2, . . . , BM be M open, bounded and simply connected sets in R3 with Lipschitz boundaries, con-
taining the origin. We assume that their sizes and Lipschitz constants are uniformly bounded. We set
Dm := εBm + zm to be the small bodies characterized by the parameter ε > 0 and the locations zm ∈ R3,
m = 1, . . . ,M .

Assume that the Lamé coefficients λ and µ are constants satisfying µ > 0 and 3λ + 2µ > 0 and the
mass density ρ to be a constant that we normalize to a unity. Let U i be a solution of the Navier equation
(∆e + ω2)U i = 0 in R3, ∆e := (µ∆ + (λ + µ)∇ div). We denote by Us the elastic field scattered by the M
small bodies Dm ⊂ R3 due to the incident field U i. We restrict ourselves to the scattering by rigid bodies.
Hence the total field U t := U i + Us satisfies the following exterior Dirichlet problem of the elastic waves

(∆e + ω2)U t = 0 in R3\
(

M
∪
m=1

D̄m

)
, (1.1)

U t|∂Dm = 0, 1 ≤ m ≤M (1.2)
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2with the Kupradze radiation conditions (K.R.C)

lim
|x|→∞

|x|(∂Up
∂|x|

− iκpωUp) = 0, and lim
|x|→∞

|x|(∂Us
∂|x|

− iκsωUs) = 0, (1.3)

where the two limits are uniform in all the directions x̂ := x
|x| ∈ S2. Also, we denote Up := −κ−2

pω∇(∇ · Us)
to be the longitudinal (or the pressure or P) part of the field Us and Us := κ−2

sω ∇ × (∇ × Us) to be
the transversal (or the shear or S) part of the field Us corresponding to the Helmholtz decomposition
Us = Up + Us. The constants κpω := ω

cp
and κsω := ω

cs
are known as the longitudinal and transversal

wavenumbers, cp :=
√
λ+ 2µ and cs :=

√
µ are the corresponding phase velocities, respectively and ω is the

frequency.
The scattering problem (1.1-1.3) is well posed in the Hölder or Sobolev spaces, see [8,9,12,13] for instance,

and the scattered field Us has the following asymptotic expansion:

Us(x) :=
eiκpω |x|

|x|
U∞p (x̂) +

eiκsω |x|

|x|
U∞s (x̂) +O(

1

|x|2
), |x| → ∞ (1.4)

uniformly in all directions x̂ ∈ S2. The longitudinal part of the far-field, i.e. U∞p (x̂) is normal to S2 while
the transversal part U∞s (x̂) is tangential to S2. We set U∞ := (U∞p , U∞s ).

As usual, we use plane incident waves of the form U i(x, θ) := αθ eiκpω θ·x + βθ⊥ eiκsω θ·x, where θ⊥ is any
direction in S2 perpendicular to the incident direction θ ∈ S2, α, β are arbitrary constants. The functions
U∞p (x̂, θ) := U∞p (x̂) and U∞s (x̂, θ) := U∞s (x̂) for (x̂, θ) ∈ S2 × S2 are called the P-part and the S-part of the
far-field pattern respectively.

Definition 1.1. We define

1. a := max
1≤m≤M

diam(Dm)
[

= ε max
1≤m≤M

diam(Bm)
]
,

2. d := min
m6=j

1≤m,j≤M

dmj , where dmj := dist(Dm, Dj). We assume that 0 < d ≤ dmax, and dmax is given.

3. ωmax as the upper bound of the used frequencies, i.e. ω ∈ [0, ωmax].

4. Ω to be a bounded domain in R3 containing the small bodies Dm, m = 1, . . . ,M .

1.2 The results for a homogeneous elastic background

We assume that Dm = εBm + zm,m = 1, . . . ,M , with the same diameter a, are non-flat Lipschitz obstacles,
i.e. Dm’s are Lipschitz obstacles and there exist constants tm ∈ (0, 1] such that B3

tm
a
2
(zm) ⊂ Dm ⊂ B3

a
2
(zm),

where tm are assumed to be uniformly bounded from below by a positive constant. In [7], we have shown
that there exist two positive constants a0 and c0 depending only on the size of Ω, the Lipschitz character of
Bm,m = 1, . . . ,M , dmax and ωmax such that if

a ≤ a0 and
√
M − 1

a

d
≤ c0 (1.5)

then we have the following asymptotic expansion for the P-part, U∞p (x̂, θ), and the S-part, U∞s (x̂, θ), of the
far-field pattern:

U∞p (x̂, θ) =
1

4π c2p
(x̂⊗ x̂)

[
M∑
m=1

e
−i ωcp x̂·zmQm



3
+O

(
M

[
a2 +

a3

d5−3α
+

a4

d9−6α

]
+M(M − 1)

[
a3

d2α
+

a4

d4−α +
a4

d5−2α

]
+M(M − 1)2 a

4

d3α

)]
, (1.6)

U∞s (x̂, θ) =
1

4π c2s
(I− x̂⊗ x̂)

[
M∑

m=1

e−i ωcs
x̂· zmQm

+O

(
M

[
a2 +

a3

d5−3α
+

a4

d9−6α

]
+M(M − 1)

[
a3

d2α
+

a4

d4−α +
a4

d5−2α

]
+M(M − 1)2 a

4

d3α

)]
, (1.7)

where α, 0 < α ≤ 1, is a parameter describing the relative distribution of the small bodies.
The vector coefficients Qm, m = 1, ...,M, are the solutions of the following linear algebraic system

C−1
m Qm = −U i(zm, θ)−

M∑
j=1
j 6=m

Γω(zm, zj)Qj , (1.8)

for m = 1, ...,M, with Γω denoting the Kupradze matrix of the fundamental solution to the Navier equation
with frequency ω, Cm :=

∫
∂Dm

σm(s)ds and σm is the solution matrix of the integral equation of the first
kind ∫

∂Dm

Γ0(sm, s)σm(s)ds = I, sm ∈ ∂Dm, (1.9)

with I the identity matrix of order 3.

Consider now the special case dmina
t ≤ d ≤ dmaxa

t and M ≤ Mmaxa
−s with t, s > 0, dmin, dmax and

Mmax are positive. Then the asymptotic expansions (1.6-1.7) can be rewritten as

U∞p (x̂, θ) =
1

4π c2p
(x̂⊗ x̂)

[ M∑
m=1

e
−i ωcp x̂·zmQm

+O
(
a2−s + a3−s−5t+3tα + a4−s−9t+6tα + a3−2s−2tα + a4−3s−3tα + a4−2s−5t+2tα

) ]
, (1.10)

U∞s (x̂, θ) =
1

4π c2s
(I− x̂⊗ x̂)

[ M∑
m=1

e−i ωcs
x̂· zmQm

+O
(
a2−s + a3−s−5t+3tα + a4−s−9t+6tα + a3−2s−2tα + a4−3s−3tα + a4−2s−5t+2tα

) ]
. (1.11)

As the diameter a tends to zero the error term tends to zero for t and s such that

0 < t < 1 and 0 < s < min{2(1− t), 7− 5t

4
,

12− 9t

7
,

20− 15t

12
,

4

3
− tα}. (1.12)

In [7], we have shown that Qm ≈ a, then we have the upper bound

|
M∑
m=1

e−iκx̂·zmQm| ≤M sup
m=1,...,M

|Qm| = O(a1−s). (1.13)

Hence if the number of obstacles is M := M(a) := O(a−s), s < 1 and t satisfies (1.12), a → 0, then from
(1.10, 1.11), we deduce that

U∞(x̂, θ)→ 0, as a→ 0, uniformly in terms of θ and x̂ in S2. (1.14)

This means that this collection of obstacles has no effect on the homogeneous medium as a→ 0.

Let us consider the case when s = 1. We set Ω to be a bounded domain, say of unit volume, containing
the obstacles Dm,m = 1, ...,M . Given a positive and continuous function K : R3 → R, we divide Ω into
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Figure 1: An example on how the obstacles are distributed in Ω.

[a−1] subdomains Ωm, m = 1, ..., [a−1], each of volume a [K(zm)+1]
K(zm)+1 , with zm ∈ Ωm as its center and contains

[K(zm) + 1] obstacles, see Fig 1.2. We set Kmax := supzm(K(zm) + 1), hence M =
∑[a−1]
j=1 [K(zm) + 1] ≤

Kmax[a−1] = O(a−1).

Theorem 1.2. Let the small obstacles be distributed in a bounded domain Ω, say of unit volume, with their
number M := M(a) := O(a−1) and their minimum distance d := d(a) := O(at), 1

3 ≤ t < 7
12 , as a → 0, as

described above.

1. If the obstacles are distributed arbitrarily in Ω, i.e. with different capacitances, then there exists a
potential C0 ∈ ∩p≥1L

p(R3) with support in Ω such that

lim
a→0

U∞(x̂, θ) = U∞0 (x̂, θ) uniformly in terms of θ and x̂ in S2 (1.15)

where U∞0 (x̂, θ) is the farfield corresponding to the scattering problem

(∆e + ω2 − (K + 1)C0)U t0 = 0 in R3, (1.16)

U t0|∂Dm = 0, 1 ≤ m ≤M (1.17)

with the radiation conditions

lim
|x|→∞

|x|(∂U0,p

∂|x|
− iκpωU0,p) = 0, and lim

|x|→∞
|x|(∂U0,s

∂|x|
− iκsωU0,s) = 0 (1.18)

2. If in addition K |Ω is in C0,γ(Ω), γ ∈ (0, 1] and the obstacles have the same capacitances C, then

U∞(x̂, θ) = U∞0 (x̂, θ) +O(amin{γ, 13 ,
3
2−3t}) uniformly in terms of θ and x̂ in S2 (1.19)

where C0 = C in Ω and C0 = 0 in R3 \ Ω.

1.3 The results for variable background elastic mass density

Assume that the Lamé coefficients λ and µ are constants satisfying µ > 0 and 3λ + 2µ > 0 and the mass
density ρ to be a measurable and bounded function which is equal to a constant that we normalize to a unity
outside of a bounded domain Ω. We set ρmax to be the upper bound of ρ.



5In this case, the total field U tρ := U i + Usρ satisfies the following exterior Dirichlet problem of the elastic
waves

(∆e + ω2ρ)U tρ = 0 in R3\
(

M
∪
m=1

D̄m

)
, (1.20)

U tρ|∂Dm = 0, 1 ≤ m ≤M (1.21)

with the Kupradze radiation conditions (K.R.C)

lim
|x|→∞

|x|(∂Uρ,p
∂|x|

− iκpωUρ,p) = 0, and lim
|x|→∞

|x|(∂Uρ,s
∂|x|

− iκsωUρ,s) = 0, (1.22)

where the two limits are uniform in all the directions x̂ := x
|x| ∈ S2 and Uρ,p and Uρ,s are respectively the

P-part and S-part of the scattered field Usρ,p
The scattering problem (1.20-1.22) is well posed in the Hölder or Sobolev spaces, see [8, 9, 12, 13] for

instance, and the scattered field Us has the following asymptotic expansion:

Usρ (x) :=
eiκpω |x|

|x|
U∞ρ,p(x̂) +

eiκsω |x|

|x|
U∞ρ,s(x̂) +O(

1

|x|2
), |x| → ∞ (1.23)

uniformly in all directions x̂ ∈ S2. The longitudinal part of the far-field, i.e. U∞ρ,p(x̂) is normal to S2 while
the transversal part U∞s (x̂) is tangential to S2. We set U∞ρ := (U∞ρ,p, U

∞
ρ,s).

As in the case of constant background mass density, there exist two positive constants a0 and c0 depending
only on the size of Ω, the Lipschitz character of Bm,m = 1, . . . ,M , dmax, ωmax, ρmax and ρmax such that if

a ≤ a0 and
√
M − 1

a

d
≤ c0 (1.24)

then we have the following asymptotic expansion for the P-part, U∞ρ,p(x̂, θ), and the S-part, U∞ρ,s(x̂, θ), of the
far-field pattern:

U∞ρ,p(x̂, θ) = V∞ρ,p(x̂, θ) +

[
M∑
m=1

G∞ρ,p(x̂, zm)Qρ,m

+O

(
M

[
a2 +

a3

d5−3α
+

a4

d9−6α

]
+M(M − 1)

[
a3

d2α
+

a4

d4−α +
a4

d5−2α

]
+M(M − 1)2 a

4

d3α

)]
, (1.25)

U∞ρ,s(x̂, θ) = V∞ρ,s(x̂, θ) +

[
M∑
m=1

G∞ρ,s(x̂, zm)Qρ,m

+O

(
M

[
a2 +

a3

d5−3α
+

a4

d9−6α

]
+M(M − 1)

[
a3

d2α
+

a4

d4−α +
a4

d5−2α

]
+M(M − 1)2 a

4

d3α

)]
, (1.26)

where G∞ρ,p(x̂, zm) and G∞ρ,s(x̂, zm) are the P-part and S-part of the farfields of the Green’s function Gρ(x, z),
of the operator ∆e + ω2ρ in the whole space R3, evaluated in the direction x̂ and the source point zm.

The vector coefficients Qρ,m, m = 1, ...,M, are the solutions of the following linear algebraic system

C−1
m Qρ,m = −Vρ(zm, θ)−

M∑
j=1
j 6=m

Gρ(zm, zj)Qρ,j , (1.27)

for m = 1, ...,M, with Vρ(·, θ) := V sρ (·, θ) + U i(·, θ) is the total field satisfying

(∆e + ω2ρ)V tρ = 0 in R3, (1.28)

and the scattered field V sρ (·, θ) the Kupradze radiation conditions (K.R.C).



6Corollary 1.3. Let the small obstacles be distributed in a bounded domain Ω, say of unit volume, with their
number M := M(a) := O(a−1) and their minimum distance d := d(a) := O(at), 1

3 ≤ t < 7
12 , as a → 0, as

described above.

1. If the obstacles are distributed arbitrarily in Ω, i.e. with different capacitances, then there exists a
potential C0 ∈ ∩p≥1L

p(R3) with support in Ω such that

lim
a→0

U∞ρ (x̂, θ) = U∞ρ,0(x̂, θ) uniformly in terms of θ and x̂ in S2 (1.29)

where U∞ρ,0(x̂, θ) is the farfield corresponding to the scattering problem

(∆e + ω2ρ− (K + 1)C0)U t
ρ,0 = 0 in R3, (1.30)

U tρ,0|∂Dm = 0, 1 ≤ m ≤M (1.31)

with the radiation conditions.

2. If in addition K |Ω is in C0,γ(Ω), γ ∈ (0, 1] and the obstacles have the same capacitances, then

U∞ρ (x̂, θ) = U∞ρ,0(x̂, θ) +O(amin{γ, 13 ,
3
2−3t}) uniformly in terms of θ and x̂ in S2 (1.32)

where C0 = C in Ω and C0 = 0 in R3 \ Ω.

1.4 Applications of the results and a comparison to the literature

The main contribution of this work is to have shown that by removing from a bounded region of an elastic
background, modeled by constant Lamé coefficients λ and µ and a possibly variable density ρ, a number
M := M(a) ∼ a−1 small and rigid bodies of radius a distant from each other of at least d := d(a) ∼ at,
1
3 ≤ t ≤ 7

12 , then the ’perforated’ medium behaves, as a → 0, as a new elastic medium modeled by
the same Lamé coefficients λ and µ but with a mass density-like ρ − (K + 1)C0ω

−2. The coefficient K
models the local distribution (or the local number) of the bodies while the coefficient C0, coming from the
capacitance of the bodies, describes the geometry of the small bodies as well as their elastic directional
diffusion properties (i.e. the anisotropy character). In addition, we provide explicit error estimates between
the far-fields corresponding to the perforated medium and the equivalent one. From this result we can make
the following conclusions:

1. Assume that the removed bodies have spherical shapes. For these shapes the corresponding elastic
capacitance C is of the form cI3 (i.e. a scalar multiplied by the identity matrix). In section 4, we
describe a more general set of shapes satisfying this property. Hence the equivalent mass density
ρ − (K + 1)cω−2 is isotropic while for general shapes it might be anisotropic. To achieve anisotropic
densities, a possible choice of the shapes might be an ellipse.

2. If we choose the local number of bodies K large enough or the shapes of the reference bodies, Bm,
m = 1, ...,M , having a large capacitance (i.e. a relative large radius) so that ρ − (K + 1)cω−2 < 0,
then we design elastic materials having negative mass densities.

3. Assume that the background medium is modeled by variable mass density ρ > 1 in Ω. If we remove
small bodies from Ω with appropriate K and/ or capacitance C0 so that ρ − (K + 1)cω−2 = 1, then
the new elastic material will behave every where in R3 as the background medium. Hence the new
material will not scatter the sent incident waves, i.e. the region Ω modeled by ρ will be cloaked.



7The ’equivalent’ behavior between a collection of, appropriately dense, small holes and an extended
penetrable obstacle modeled by an additive potential was already observed by Cioranescu and Murat [10,11]
and also the references therein, where the coefficient K is reduced to zero since locally they have only one
hole. Their analysis is based on the homogenization theory for which they assume that the obstacles are
distributed periodically, see also [5] and [16].

In the results presented here, we do not need such periodicity and no homogenization is used. Instead,
the analysis is based on the invertibility properties of the algebraic system (1.8) and the precise treatment
of the summation in the dominant terms of (1.6)-(1.7). This analysis was already tested for the acoustic
model in [1]. Compared to [1], here, in addition to the difficulties coming from the vector character of the

Lamé system, we improved the order of the error estimate, i.e. O(amin{γ, 13 ,
3
2−3t}) instead of O(amin{γ, 13−

4
5 t})

which , for t := 1
3 for instance, reduce to O(amin{γ, 13}) and O(amin{γ, 1

15 }) respectively.
Let us finally mention that a result similar to (1.29), for the acoustic model, is also derived by Ramm in

several of his papers, see for instance [17], but without error estimates. Compared to his results, and as we
said earlier in addition to the vector character of Lame model, we provide the approximation by improved
explicit error estimates without any other assumptions while, as shown in [17, 18] for instance, in addition
to some formal arguments, he needs extra assumptions on the distribution of the obstacles.

The rest of the paper is organized as follows. In section 2, we give the detailed proof of Theorem 1.2.
In section 3, we describe the one of Corollary 1.3 by discussing the main changes one needs to make in the
proof of Theorem 1.2. Finally, in section 4, we discuss some invariant properties of the elastic capacitance
to characterize the shapes that have a ’scalar’ capacitance.

2 Proof of Theorem 1.2

2.1 The fundamental solution

The Kupradze matrix Γω = (Γωij)
3
i,j=1 of the fundamental solution to the Navier equation is given by

Γω(x, y) =
1

µ
Φκsω (x, y)I +

1

ω2
∇x∇>x [Φκsω

(x, y)− Φκpω
(x, y)], (2.1)

where Φκ(x, y) = eiκ|x−y|

4π|x−y| denotes the free space fundamental solution of the Helmholtz equation (∆+κ2)u =

0 in R3. The asymptotic behavior of Kupradze tensor at infinity is given as follows

Γω(x, y) =
1

4π c2p
x̂⊗ x̂ e

iκpω |x|

|x|
e−iκpω x̂· y +

1

4π c2s
(I− x̂⊗ x̂)

eiκsω |x|

|x|
e−iκsω x̂· y + O(|x|−2) (2.2)

with x̂ = x
|x| ∈ S2 and I being the identity matrix in R3, see [2] for instance. As mentioned in [4], (2.1) can

also be represented as

Γω(x, y) =
1

4π

∞∑
l=0

il

l!(l + 2)

1

ω2

(
(l + 1)κl+2

sω + κl+2
pω
)
|x− y|l−1I

− 1

4π

∞∑
l=0

il

l!(l + 2)

(l − 1)

ω2

(
κl+2
sω − κl+2

pω
)
|x− y|l−3(x− y)⊗ (x− y), (2.3)

from which we can get the gradient

∇yΓω(x, y) = − 1

4π

∞∑
l=0

il

l!(l + 2)

(l − 1)

ω2

[(
(l + 1)κl+2

sω + κl+2
pω
)
|x− y|l−3(x− y)⊗ I

−
(
κl+2
sω − κl+2

pω
)
|x− y|l−3

(
(l − 3)|x− y|−2 ⊗3 (x− y) + I⊗ (x− y) + (x− y)⊗ I

)]
.(2.4)



8Using the formulas (2.3) and (2.4) we can have the following estimates, for x, y ∈ Ω, x 6= y, see [7];

|Γω(x, y)| ≤ 1

4π

[
C7

| x− y|
+ C8

]
, |∇yΓω(x, y)| ≤ 1

4π

[
C9

| x− y|2
+ C10

]
, (2.5)

with

C7 :=

[
1

c2s
+

2

c2p

]
, C9 := 3

(
1

c2s
+

1

c2p

)
,

C8 := 2
κsω

c2s

(
1−

(
1
2κsωdiam(Ω)

)NΩ

1− 1
2κsωdiam(Ω)

+
1

2NΩ−1

)
+
κpω

c2p

(
1−

(
1
2κpωdiam(Ω)

)NΩ

1− 1
2κpωdiam(Ω)

+
1

2NΩ−1

)
,

C10 := 2
ω2

c4s

(
1

8
+

1−
(

1
2κsωdiam(Ω)

)NΩ

1− 1
2κsωdiam(Ω)

+
1

2NΩ−1

)
+
ω2

c4p

(
1

4
+

1−
(

1
2κpωdiam(Ω)

)NΩ

1− 1
2κpωdiam(Ω)

+
1

2NΩ−1

)
,

and NΩ = [2diam(Ω) max{κsω , κpω}e2] where we assume the wave number ω and the Lamé parameters λ
and µ to satisfy the condition max{κsω , κpω} < 2

diam(Ω) .

The estimates (2.5) can be written as

|Γω(x, y)| ≤ c̊

4π| x− y|
, |∇yΓω(x, y)| ≤ c̊

4π| x− y|2
, (2.6)

for different points x, y ∈ Ω, where

c̊ := max{C7, C8 diam(Ω), C8, C10 diam(Ω)}. (2.7)

2.2 The relative distribution of the small bodies

The following observation will be useful for the proof of Theorem 1.2. For m = 1, . . . ,M fixed, we distinguish
between the obstacles Dj , j 6= m by keeping them into different layers based on their distance from Dm. Let
us first assume that K(zm) = 0 for every zm. Hence each Ωm has the (same) volume a and contains only one
obstacle Dm. Without loss of generality, we can take the Ωm’s as cubes. Hence we can suppose that these
cubes are arranged in cuboids, for example unit rubics cube, in different layers such that the total cubes upto

the nth layer consists (2n+ 1)3 cubes for n = 0, . . . , [
(
a

1
3 − a

2

)−1

], and Ωm is located on the center, see Fig

1.2. Hence the number of obstacles located in the nth, n 6= 0 layer will be [(2n+ 1)3 − (2n− 1)3] = 24n2 + 2

and their distance from Dm is more than n
(
a

1
3 − a

2

)
. Observe that, 1

2a
1
3 ≤

(
a

1
3 − a

2

)
≤ a

1
3 .

Now, we come back to the case where K(zm) 6= 0. First observe that 1
2 ≤

[K(zm)+1]
K(zm)+1 ≤ 1. Hence with

such Ωm’s, the total cubes located in the n’th layer n consists of at most the double of [(2n+1)3− (2n−1)3],
i.e. 48n2 + 4.

2.3 Solvability of the linear-algebraic system (1.8)

We start with the following lemma on the uniform bounds of the elastic capacitances, see [7, Lemma 3.1]
and the references there in.

Lemma 2.1. Let λmineigm
and λmaxeigm

be the minimal and maximal eigenvalues of the elastic capacitance matrices

C̄m, for m = 1, 2, . . . ,M . Denote by Cam the capacitance of each scatterer in the acoustic case,1 then we
have the following estimate;

µC(Bm)

max
1≤m≤M

diam(Bm)
a = µCam ≤ λmineigm ≤ λmaxeigm ≤ (λ+ 2µ)Cam =

(λ+ 2µ)C(Bm)

max
1≤m≤M

diam(Bm)
a, (2.8)

1Recall that, for m = 1, . . . ,M , Cam :=
∫
∂Dm

σm(s)ds and σm is the solution of the integral equation of the first kind∫
∂Dm

σm(s)
4π|t−s|ds = 1, t ∈ ∂Dm, see [6].
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Figure 2: Rubics cube consisting of two layers

for m = 1, 2, . . . ,M .

The constant C(Bm) is the acoustic capacitance of the reference body Bm which can be estimated above
and below by the Lipschitz character of Bm, [6]. The following lemma provides us with the needed estimate
on the invertibility of the algebraic system (1.8) whose coefficient matrix ’B’ is given by;

B :=


−C̄−1

1 −Γω(z1, z2) −Γω(z1, z3) · · · −Γω(z1, zM )
−Γω(z2, z1) −C̄−1

2 −Γω(z2, z3) · · · −Γω(z2, zM )
· · · · · · · · · · · · · · ·

−Γω(zM , z1) −Γω(zM , z2) · · · −Γω(zM , zM−1) −C̄−1
M

 (2.9)

Lemma 2.2. The matrix B is invertible and the solution vector Qm m = 1, ...,M, of (1.8) satisfies the
estimate:

M∑
m=1

‖Qm‖22 ≤
(

(λ+ 2µ)−1 −
√

26Mmax c̊ (maxmC
a
m) a−1

π

)−2

(Cam)
2
M∑
m=1

‖U i(zm)‖22, (2.10)

if maxCam a−1 < π√
26Mmax c̊(λ+2µ)

. In addition,

M∑
m=1

‖Qm‖1 ≤
(

(λ+ 2µ)−1 −
√

26Mmax c̊ (maxmC
a
m) a−1

π

)−1

maxCam M
M

max
m=1
‖U i(zm)‖2. (2.11)

Since Cam = Ca(Bm)ε = Ca(Bm)
maxmdiam(Bm)a, then

max
m
Cam a−1 <

π√
26Mmax c̊(λ+ 2µ)

(2.12)

makes sense if maxmC
a(Bm)

maxmdiam(Bm) <
π√

26Mmax c̊(λ+2µ)
. As Cm(Bm) is proportional to the radius of Bm, then (2.12)

will be satisfied if ω and the Lamé parameters λ and µ satisfy the condition

c̊(λ+ 2µ) <
π√

26Mmax

maxmdiam(Bm)

maxmCa(Bm)
(2.13)

recalling that c̊ is defined in (2.7). Finally, let us observe that the right hand side of (2.13) depends only
Mmaxand the Lipschitz character of the reference obstacles Bm’s.



10Proof of Lemma 2.2. We start by factorizing B as B = −(C−1+Bn) where C := Diag(C̄1, C̄2, . . . , C̄M ) ∈
RM×M , I is the identity matrix and Bn := −C−1 −B. We have B : C3M → C3M , so it is enough to prove
the injectivity in order to prove its invetibility. For this purpose, let X,Y are vectors in C3M and consider
the system

(C−1 + Bn)X = Y. (2.14)

We denote by (·)real and (·)img the real and the imaginary parts of the corresponding complex vector/matrix.
we also set C−1 by CI . From (2.14) we derive the following two identities:

(CI + Breal
n )Xreal − (CI + Bimg

n )Ximg = Y real, (2.15)

(CI + Breal
n )Ximg + (CI + Bimg

n )Xreal = Y img, (2.16)

and then

〈 (CI + Breal
n )Xreal, Xreal〉 − 〈 (CI + Bimg

n )Ximg, Xreal〉 = 〈Y real, Xreal〉, (2.17)

〈 (CI + Breal
n )Ximg, Ximg〉 + 〈 (CI + Bimg

n )Xreal, Ximg〉 = 〈Y img, Ximg〉. (2.18)

Summing up (2.17) and (2.18) we obtain

〈Creal
I Xreal, Xreal〉 + 〈Breal

n Xreal, Xreal〉 + 〈Creal
I Ximg, Ximg〉 + 〈Breal

n Ximg, Ximg〉
= 〈Y real, Xreal〉+ 〈Y img, Ximg〉.

(2.19)

The right-hand side in (2.19) can be estimated as

〈Xreal, Xreal〉1/ 2〈Y real, Y real〉1/ 2 + 〈Ximg, Ximg〉1/ 2〈Y img, Y img〉1/ 2

≤ 2〈X |·|, X |·|〉1/ 2〈Y |·|, Y |·|〉1/ 2.
(2.20)

Let us now consider the right hand side in (2.19). First we have

|〈 Brealn Xreal, Xreal〉| ≤ ‖Brealn ‖2|Xreal|22 (2.21)

where ‖Brealn ‖22 :=
∑M
i, j=1 |(Brealn )i,j |22 and (Brealn )i,j := < Γω(zi, zj) if i 6= j and (Brealn )i,i := 0 for i, j =

1, ...,M . Hence from (2.3) |(Brealn )i,j |2 ≤ c̊
4π|zi−zj | , i 6= j. From the observation before Lemma 2.1, we

deduce that

M∑
i,j=1

(Brealn )2
i,j ≤M

[2a−
1
3 ]∑

n=1

2[(2n+ 1)3 − (2n− 1)3]
c̊2

(4π)2n2

(
a

1
3

2

)2 ≤ 13̊c2M
a−

2
3

π2

[2a−
1
3 ]∑

n=1

1 =
26Mmaxc̊

2a−2

π2

(2.22)

or

‖Brealn ‖2 ≤
√

26Mmax c̊

π
a−1 (2.23)

and then

|〈 Brealn Xreal, Xreal〉|+ |〈 Brealn Ximg, Ximg〉| ≤
(√

26Mmax c̊

π
a−1

)2

|X|22 (2.24)

Using Lemma 2.1, we deduce that

〈CIX
real, Xreal〉 + 〈CIX

img, Ximg〉 ≥ (λ+ 2µ)−1(maxCam)−1|X|22 (2.25)



11From (2.19), (2.20), (2.24) and (2.25), we deduce that

M∑
m=1

|Xm|2 ≤
(

(λ+ 2µ)−1(maxCam)−1 −
√

26Mmax c̊ a
−1

π

)−2 M∑
m=1

|Ym|2 (2.26)

if (λ+ 2µ)−1(maxCam)−1 >
√

26Mmax c̊ a
−1

π and then the matrix B in algebraic system (1.8) is invertible.

2.4 The limiting model

From the function K, we define a bounded function Ka : R3 → R as follows:

Ka(x) := Ka(zm) :=

{
K(zm) + 1 if x ∈ Ωm

0 if x /∈ Ωm for any m = 1, . . . , [a−1].
(2.27)

Hence each Ωm contains [Ka(zm)] obstacles and Kmax := supzm Ka(zm).
Let Ca be the 3× 3 matrix having entries as piecewise constant functions such that Ca|Ωm = C̄m for all

m = 1, . . . ,M and vanishes outside Ω. Here, C̄m are the capacitances of Bm’s. From [7], we can observe
that C̄m are defined through defined through Cm := C̄ma, and are independent of a.

We set
C := max

1≤m≤M
‖C̄m‖∞. (2.28)

Consider the Lippmann-Schwinger equation

Ya(z) +

∫
Ω

Γω(z, y)Ka(y)Ca(y)Ya(y)dy = −U i(z, θ), z ∈ Ω (2.29)

and set the Lamé potential

V (Y )(x) :=

∫
Ω

Γω(x, y)Ka(y)Ca(y)Ua(y)dy, x ∈ R3. (2.30)

The coefficients Ka and Ca are uniformly bounded. The next lemma concerns the mapping properties of
the Lamé potential. These properties are proved for the scalar Poisson potential in [8], for instance. Similar
arguments are applicable for the Lamé potential as well, so we omit to give the details.

Lemma 2.3. The operator V : L2(Ω)→ H2(Ω) is well defined and it is a bounded operator for any bounded
domain Ω in R3, i.e. there exists a positive constant c0 such that

‖V (Y )‖H2(Ω) ≤ c0‖Y ‖L2(Ω). (2.31)

We have also the following lemma.

Lemma 2.4. There exists one and only one solution Y of the Lippmann-Schwinger equation (2.29) and it
satisfies the estimate

‖Y ‖L∞(Ω) ≤ C‖U i‖H2(Ω) and ‖∇Y ‖L∞(Ω) ≤ C ′‖U i‖H2(Ω̃), (2.32)

where Ω̃ being a large bounded domain which contains Ω̄.



12Proof of Lemma 2.4
Using the Lemma 2.3, we see that I + V : L2(Ω) 7−→ L2(Ω) is Fredholm with index zero and then we

can apply the Fredholm alternative to I + V : L2(Ω) 7−→ L2(Ω). The uniqueness is a consequence of the
uniqueness of the scattering problem corresponding to the model

(∆e + ω2I −KaCa)Y = 0, in R3 (2.33)

where Y := Y i + Y s and Y s satisfies the Kupradze radiation conditions and Y i is an incident field.
The estimate (2.32) can be derived, as it is done in [1] for the acoustic case, by coupling the invertibility

of I + V : L2(Ω) 7−→ L2(Ω) and the W 2,p− interior estimates of the solutions of the system (∆e + ω2I −
KaCa)Y = 0.

2.4.1 Case when the obstacles are arbitrarily distributed

The capacitances of the obstacles Bj , i.e. Cj are bounded by their Lipschitz constants, see [6], and we
assumed that these Lipschitz constants are uniformly bounded. Hence Ca is bounded in L2(Ω) and then
there exists a function C0 in L2(Ω) (actually in every Lp(Ω)) such that Ca converges weakly to C0 in L2(Ω).
Now, since K is continuous hence Ka converges to (K + 1) in L∞(Ω) and hence in L2(Ω). Then we can
show that KaCa converges to (K + 1)C0 in L2(Ω).

Since KCa is bounded in L∞(Ω), then from the invertibility of the Lippmann-Schwinger equation and
the mapping properties of the Lamé potential, see Lemma 2.4, we deduce that ‖U ta‖H2(Ω) is bounded and
in particular, up to a sub-sequence, U ta tends to U t0 in L2(Ω). From the convergence of KaCa to (K + 1)C0

and the one of U ta to U t0 and (2.29), we derive the following equation satisfied by U t0(x)

U t0(x) +

∫
Ω

(Ka)(y)Γω(x, y)C0(y)U t0(y)dy = −U i(x, θ) in Ω.

This is the Lippmann-Schwinger equation corresponding to the scattering problem (∆e+ω2−(K+1)C0)U t0 =
0 in R3, U t0 = Us0 + U i, and Us satisfies the Kupradze radiation conditions. As the corresponding farfields
are of the form

U∞0,p(x̂, θ) =

∫
Ω

1

4π c2p
(x̂⊗ x̂)e

−i ωcp x̂·y(K + 1)C0(y)U t0(y)dy

and the ones of U ta are of the form

U∞a,p(x̂, θ) =

∫
Ω

1

4π c2p
(x̂⊗ x̂)e

−i ωcp x̂·yKaCa(y)U ta(y)dy

we deduce that

U∞a,p(x̂, θ)− U∞0,p(x̂, θ) = o(1), a→ 0, uniformly in terms of x̂, θ ∈ S2.

2.4.2 Case when K is Hölder continuous

If we assume that K ∈ C0,γ(Ω), γ ∈ (0, 1], then we have the estimate ‖(K + 1)−Ka‖L∞(Ω) ≤ Caγ , a << 1.
Since the capacitances of the obstacles are assumed to be equal, we set C0 to be a constant in Ω and C0 = 0
in R3 \ Ω. Recall that U0 and Ua are solutions of the Lippmann-Schwinger equations

U0 +

∫
Ω

(K + 1)Γω(x, y)C0(y)U t0(y)dy = U i

and

Ua +

∫
Ω

KaΓω(x, y)C0(y)U ta(y)dy = U i.



13From the estimate ‖(K + 1)−Ka‖L∞(Ω) ≤ Caγ , a << 1, we derive the estimate

U∞0 (x̂, θ)− U∞a (x̂, θ) = O(aγ), a << 1, uniformly in terms of x̂, θ ∈ S2. (2.34)

2.5 The approximation by the algebraic system

For each m = 1, . . . ,M , we rewrite the equation (2.29) as follows

Ua(zm) +

M∑
j=1
j 6=m

Γω(zm, zj)C̄jUa(zj)a

= U i(zm, θ) +

M∑
j=1
j 6=m

Γω(zm, zj)C̄jUa(zj)a−
[a−1]∑
j=1
j 6=m

Γω(zm, zj)Ka(zj)C̄jUa(zj)V ol(Ωj)

+

[a−1]∑
j=1
j 6=m

Γω(zm, zj)Ka(zj)C̄jUa(zj)V ol(Ωj)−
∫

Ω

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy. (2.35)

Let us estimate the following quantities:

A :=

[a−1]∑
j=1
j 6=m

Γω(zm, zj)Ka(zj)C̄jUa(zj)V ol(Ωj)−
∫

Ω

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy

and

B :=

M∑
j=1
j 6=m

Γω(zm, zj)C̄jUa(zj)a−
[a−1]∑
j=1
j 6=m

Γω(zm, zj)Ka(zj)C̄jUa(zj)V ol(Ωj).

2.5.1 Estimate of A

By the decomposition of Ω, Ω := ∪[a−1]
l=1 , we have

∫
Ω

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy =

[a−1]∑
l=1

∫
Ωl

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy. (2.36)

Hence, A :=

∫
Ωm

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy

+

[a−1]∑
j=1
j 6=m

[
Γω(zm, zj)Ka(zj)C̄jUa(zj)V ol(Ωj)−

∫
Ωj

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy

]
. (2.37)

For l 6= m, we have∫
Ωl

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy − Γω(zm, zl)Ka(zl)C̄lUa(zl)V ol(Ωl)

= Ka(zl)C̄l

∫
Ωl

[Γω(zm, y)Ua(y)− Γω(zm, zl)Ua(zl)] dy. (2.38)



14We set f(zm, y) = Γω(zm, y)Ua(y) then every component fi(zm, y) of f(zm, y) satisfies

fi(zm, y)− fi(zm, zl) = (y − zl)Ril(zm, y)

where

Ril(zm, y) =

∫ 1

0

∇yfi(zm, y − β(y − zl)) dβ

=

∫ 1

0

3∑
j=1

∇y
[
Γωi,j(zm, y − β(y − zl))Ua,j(y − β(y − zl))

]
dβ

=

∫ 1

0

3∑
j=1

[
∇yΓωi,j(zm, y − β(y − zl))

]
Ua,j(y − β(y − zl)) dβ

+

∫ 1

0

3∑
j=1

Γωi,j(zm, y − β(y − zl)) [∇yUa,j(y − β(y − zl))] dβ. (2.39)

From (2.6) and from Section 2.2, we derive for l 6= m

|Γωi,j(zm, y − β(y − zl))| ≤
c̊

4π na
1
3

2

, and |∇yΓωi,j(zm, y − β(y − zl))| ≤
c̊

4π n2

(
a

1
3

2

)2

where c̊ depends only on ω and some universal constants. Then

|Rl(zm, y)| ≤ c̊

2π na
1
3

(
1

na
1
3

∫ 1

0

|Ua(y − β(y − zl))|dβ +

∫ 1

0

|∇yUa(y − β(y − zl))|dβ
)
. (2.40)

Then, for l 6= m, (2.38) and (2.40) and observing that C̄l is a constant matrix in Ωl, imply the estimate

∣∣∣ ∫
Ωl

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy − Γω(zm, zl) Ka(zl)C̄lUa(zl)V ol(Ωl)
∣∣∣

≤ c̊C̄lKa(zl)

π n2a
2
3

∫
Ωl

[ ∫ 1

0
|Ua(y − β(y − zl))| dβ

]
|y − zl|dy

+
c̊C̄lKa(zl)

2π na
1
3

∫
Ωl

[∫ 1

0

|∇yUa(y − β(y − zl))|dβ
]
|y − zl|dy

≤
(2.32) c1

[Ka(zl)]C̄l

n2a
2
3

a
4
3
≤

(2.28) c1
KmaxC
n2 a

2
3 , (2.41)

for a suitable constant c1.
Regarding the integral

∫
Ωm

Γω(zm, y)Ca(y)Ua(y)dy we do the following estimates:∣∣∣ ∫
Ωm

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy
∣∣∣
∞

≤
(2.32) c2Ka(zm)C̄m

∫
Ωm
|Γω(zm, y)|∞dy

≤
(2.6)

c̊
4π c2Ka(zm)C̄m

( ∫
B(zm,r)

1
|zm−y| dy +

∫
Ωm\B(zm,r)

1

|zm − y|
dy
)

(
here,

1

|zm − y|
∈ L1(B(zm, r)), r <

a
1
3

2

)
≤ c̊c2

4πKa(zm)C̄m

(
σ(S3−1)

∫ r
0

1
ss

3−1 ds+
1

r
V ol(Ωm \B(zm, r))

)
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=

(
2πr2 +

1

r

[
a− 4

3
πr3

])
︸ ︷︷ ︸

=:lm(r,a)

c̊
4π c2C̄mKa (zm)

≤ c̊
4π c2Ka(zm)C̄m lm(rc, a),

here rc is the value of r where lm(r, a) attains maximum.

∂rlm(r, a) = 0⇒ 4πr − a

r2
− 8

3
πr = 0⇒ rc =

(
3

4
πa

) 1
3

lm(rc, a) = 2π
(

3
4π
) 2

3 a
2
3 +

(
4

3π

) 1
3 a

2
3 − 4

3π
(

3
4π
) 2

3 a
2
3

=
[

2
3π

(
3
4π
) 2

3 +
(

4
3π

) 1
3

]
a

2
3 = 3

2

(
4

3π

) 1
3 a

2
3

≤ 3
8π c̊c2KmaxC

(
4

3π

) 1
3 a

2
3 . (2.42)

From (2.37), we can have

|A|∞ ≤ |
∫

Ωm

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy|∞

+

[a−1]∑
j=1
j 6=m

[
|Γω(zm, zj)Ka(zj)C̄jUa(zj)V ol(Ωj)−

∫
Ωj

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy|∞

]
.

which we can estimate by

|A|∞ ≤
[2a−

1
3 ]∑

n=1

2[(2n+ 1)3 − (2n− 1)3]

[
|Γω(zm, zj)Ka(zj)C̄jUa(zj)V ol(Ωj)

−
∫

Ωj

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy|∞
]

+ |
∫

Ωm

Γω(zm, y)Ka(y)Ca(y)Ua(y)dy|∞.

and then
|A|∞ ≤ c3CKmax[a

2
3 + a

1
3 ].

Finally
|A| ≤ c4CKmaxa

1
3 .

2.5.2 Estimate of B

M∑
j=1
j 6=m

Γω(zm, zj)C̄jUa(zj)a−
[a−1]∑
j=1
j 6=m

Γω(zm, zj)Ka(zj)C̄jUa(zj)V ol(Ωj)

=

[Ka(zm)]∑
l=1
l 6=m
zl∈Ωm

Γω(zm, zl)C̄lUa(zl)a+

[a−1]∑
j=1
j 6=m

[Ka(zj)]∑
l=1
zl∈Ωj

Γω(zm, zl)C̄lUa(zl)a−
[a−1]∑
j=1
j 6=m

Γω(zm, zj)Ka(zj)C̄jUa(zj)V ol(Ωj)

= C̄ma

[Ka(zm)]∑
l=1
l 6=m
zl∈Ωm

Γω(zm, zl)Ua(zl) +

[a−1]∑
j=1
j 6=m

C̄ja
[( [Ka(zj)]∑

l=1
zl∈Ωj

Γω(zm, zl)Ua(zl)
)
− Γω(zm, zj)[Ka(zj)]Ua(zj)

]
,



16since V ol(Ωj) = a
[Ka(zj)]
Ka(zj)

and C̄l = C̄j , for l = 1, ..., Ka(zj). We write,

Ej1 :=

[Ka(zm)]∑
l=1
l 6=m
zl∈Ωm

Γω(zm, zl)Ua(zl) (2.43)

and

Ej2 :=
[( [Ka(zj)]∑

l=1
zl∈Ωj

Γω(zm, zl)Ua(zl)
)
− Γω(zm, zj)[Ka(zj)]Ua(zj)

]

=

[Ka(zj)]∑
l=1
zl∈Ωj

(
Γω(zm, zl)Ua(zl)− Γω(zm, zj)Ua(zj)

)
. (2.44)

We need to estimate C̄maE
j
1 and

∑[a−1]
j=1
j 6=m

C̄jaE
j
2.

Now by writing f ′(zm, y) := Γω(zm, y)Ua(y). For zl ∈ Ωj , j 6= m, using Taylor series, we can write

f ′(zm, zj)− f ′(zm, zl) = (zj − zl)R′(zm; zj , zl),

with

R′(zm; zj , zl) =

∫ 1

0

∇yf ′(zm, zj − β(zj − zl)) dβ. (2.45)

By doing the computations similar to the ones we have performed in (2.39-2.40) and by using Lemma 2.4,
we obtain

|
[a−1]∑
j=1
j 6=m

C̄jaE
j
2| ≤ c4CKmaxa

1
3 (2.46)

One can easily see that,

|C̄maEj1| ≤
c̊c2(Kmax − 1)C

4π

a

d
=
c̊c2(Kmax − 1)C

4π
a1−t. (2.47)

Substitution of (2.36) in (2.35) and using the estimates (2.41) and (2.42) associated to A and the estimates
(2.46) and (2.47) associated to B gives us

Ua(zm) +

M∑
j=1
j 6=m

Γω(zm, zj)C̄jUa(zj)a = U i(zm, θ) +O
(
c4Kmaxa

1
3

)
+O

(
c̊c2(Kmax − 1)C

4π
a1−t

)
.(2.48)

We rewrite the algebraic system (1.8) as

Ua,m +

M∑
j=1
j 6=m

Γω(zm, zj)C̄jUa,ja = U i(zm) (2.49)



17where we set Ua,m := −C−1
m Qm, recalling that Cm = C̄m a.

Taking the difference between (2.48) and (2.49) produces the algebraic system

(Ua,m − Ua(zm)) +

M∑
j=1
j 6=m

Γω(zm, zj)C̄j(Ua,j − Ua(zj))a = O
(
CKmax(a

1
3 + a1−t)

)
.

Comparing this system with (1.8) and by using Lemma 2.2, we obtain the estimate

M∑
m=1

(Ua,m − Ua(zm)) = O
(
CKmaxM(a

1
3 + a1−t)

)
. (2.50)

For the special case d = at, M = O(a−1) with t > 0, we have the following approximation of the far-field
from the Foldy-Lax asymptotic expansion (1.6) and from the definitions Ua,m := C−1

m Qm and Cm := C̄ma,
for m = 1, . . . ,M :

4πc2pU
∞
p (x̂, θ) · x̂ =

M∑
j=1

e−iκx̂·zj C̄jUa,j · x̂ a (2.51)

+O
(
a+a2−5t+3tα+a3−9t+6tα+a1−2tα+a1−3tα+a2−5t+2tα

)
.

Consider the far-field of type:

U∞Ca(x̂, θ) =
1

4πc2p
(x̂⊗ x̂)

∫
Ω

e
−i ωcp x̂·yKa(y)Ca(y)Ua(y)dy +

1

4πc2s
(I − x̂⊗ x̂)

∫
Ω

e−i
ω
cs
x̂·yKa(y)Ca(y)Ua(y)dy.

corresponding to the scattering problem (2.33) and set

U∞Ca,p(x̂, θ) :=
1

4πc2p
(x̂⊗ x̂)

∫
Ω

e
−i ωcp x̂·yKa(y)Ca(y)Ua(y)dy (2.52)

and

U∞Ca,s(x̂, θ) :=
1

4πc2s
(I − x̂⊗ x̂)

∫
Ω

e−i
ω
cs
x̂·yKa(y)Ca(y)Ua(y)dy (2.53)

Taking the difference between (2.52) and (2.51) we have:

4πc2p(U
∞
Ca,p(x̂, θ)− U

∞
p (x̂, θ)) · x̂

=

∫
Ω

e−iκx̂·yKa(y)Ca(y)Ua(y) · x̂dy −
M∑
j=1

e−iκx̂·zj C̄jUa,j · x̂a

+O
(
a+a2−5t+3tα+a3−9t+6tα+a1−2tα+a1−3tα+a2−5t+2tα

)
=

[a−1]∑
j=1

∫
Ωj

e
−i ωcp x̂·yKa(y)Ca(y)Ua(y) · x̂dy −

[a−1]∑
j=1

[Ka(zj)]∑
l=1
zl∈Ωj

e
−i ωcp x̂·zlC̄lUa,l · x̂a

+O
(
a+a2−5t+3tα+a3−9t+6tα+a1−2tα+a1−3tα+a2−5t+2tα

)
=

[a−1]∑
j=1

Ka(zj)C̄j

∫
Ωj

[
e
−i ωcp x̂·yUa(y) · x̂− e−i

ω
cp
x̂·zjUa(zj) · x̂

]
dy
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+

[a−1]∑
j=1

C̄ja

[Ka(zj)]∑
l=1
zl∈Ωj

(
e
−i ωcp x̂·zjUa(zj) · x̂− e

−i ωcp x̂·zlUa(zl)
)

+

[Ka(zj)]∑
l=1
zl∈Ωj

e
−i ωcp x̂·zl (Ua(zl)− Ua,l) · x̂


+O

(
a+a2−5t+3tα+a3−9t+6tα+a1−2tα+a1−3tα+a2−5t+2tα

)
=

[a−1]∑
j=1

∫
Ωj

Ka(zj)C̄j

[
e
−i ωcp x̂·yUa(y) · x̂− e−i

ω
cp
x̂·zjUa(zj) · x̂

]
dy

+

[a−1]∑
j=1

C̄ja

[Ka(zj)]∑
l=1
zl∈Ωj

(
e
−i ωcp x̂·zjUa(zj) · x̂− e

−i ωcp x̂·zlUa(zl) · x̂
)

+

M∑
j=1

e
−i ωcp x̂·zj C̄ja [Ua(zj)− Ua,j ] · x̂

+O
(
a+a2−5t+3tα+a3−9t+6tα+a1−2tα+a1−3tα+a2−5t+2tα

)
=

(2.50)

[a−1]∑
j=1

Ka(zj)C̄j

∫
Ωj

[
e
−i ωcp x̂·yUa(y) · x̂− e−i

ω
cp
x̂·zjUa(zj) · x̂

]
dy

+

[a−1]∑
j=1

C̄ja

[Ka(zj)]∑
l=1
zl∈Ωj

(
e
−i ωcp x̂·zjUa(zj) · x̂− e

−i ωcp x̂·zlUa(zl) · x̂
)

+O
(
C2Kmax(a

1
3 + a1−t)

)
+O

(
a+a2−5t+3tα+a3−9t+6tα+a1−2tα+a1−3tα+a2−5t+2tα

)
. (2.54)

Now, let us estimate the difference
∑[a−1]
j=1 Ka(zj)C̄j

∫
Ωj

[
e
−i ωcp x̂·yUa(y)− e−i

ω
cp
x̂·zjUa(zj)

]
dy. Write, f1(y) =

e
−i ωcp x̂·yUa(y). Using Taylor series, we can write

f1(y)− f1(zj) = (y − zj)Rj(y),

with

(Rj(y))k,l =

∫ 1

0

∇y(f1)k,l(y − β(y − zj)) dβ

=

∫ 1

0

[
∇y
[
e
−i ωcp x̂·(y−β(y−zj))Ua(y − β(y − zj))

]]
k
dβ

=

∫ 1

0

[
∇ye

−i ωcp x̂·(y−β(y−zj))
]
k
Ua(y − β(y − zj)) dβ

+

∫ 1

0

e
−i ωcp x̂·(y−β(y−zj)) [∇yUa(y − β(y − zj))]k dβ. (2.55)

We have ∇ye
−i ωcp x̂·y = −i ωcp x̂e

−i ωcp x̂·y then

|Rj(y)|∞ ≤
(
ω

cp

∫ 1

0

|Ua(y − β(y − zj))|∞ dβ +

∫ 1

0

|∇yUa(y − β(y − zj))|∞ dβ

)
. (2.56)

Using (2.56) we get the estimate∣∣∣∣∣∣
[a−1]∑
j=1

Ka(zj)C̄j

∫
Ωj

[
e
−i ωcp x̂·y(y)Ua(y)− e−i

ω
cp
x̂·zjUa(zj)

]
dy

∣∣∣∣∣∣
∞

≤ (2.57)

[a−1]∑
j=1

Ka(zj)C̄j

(
ω

cp

∫
Ωj

|y − zj |∞
∫ 1

0

|Ua(y − β(y − zj))| dβ dy

)
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+

[a−1]∑
j=1

Ka(zj)C̄j

(∫
Ωj

|y − zj |
∫ 1

0

|∇yUa(y − β(y − zj))|∞ dβ dy

)

≤
[a−1]∑
j=1

Ka(zj)C̄jc1 a a
1
3

(
ω

cp
+ c5

)
≤ KmaxCc1

(
ω

cp
+ c5

)
a

1
3 .

In the similar way, using (2.50), we have,∣∣∣∣∣∣∣
[a−1]∑
j=1

C̄ja

[Ka(zj)]∑
l=1
zl∈Ωj

(
e
−i ωcp x̂·zjUa(zj)− e

−i ωcp x̂·zlUa(zl)
)∣∣∣∣∣∣∣
∞

≤ O
(
KmaxC(a

1
3 + a1−t)

)
. (2.58)

Using the estimates (2.57) and (2.58) in (2.54), we obtain

1

4πc2p
U∞Ca,p(x̂, θ)− U

∞
p (x̂, θ) · x̂ = O

(
Kmaxa

1
3 Cc1

(
ω

cp
+ c5

))
+O(C(C + 1)CKmax(a

1
3 + a1−t))

+O
(
a+a2−5t+3tα+a3−9t+6tα+a1−2tα+a1−3tα+a2−5t+2tα

)
= O

(
a

1
3 + a1−t + a3−9t+6αt+a1−3αt + a2−5t+2tα

)
. (2.59)

Since V ol(Ω) is of order a−1(a2 + d
2 )3, and d is of the order at, we should have t ≥ 1

3 . Hence

t ≥ 1

3
; 1− t > 0; 3− 9t+ 6tα > 0; 1− 3tα > 0; 2− 5t+ 2tα > 0;

Hence for 1
3 ≤ t < 1, we have

tα <
1

3
; 2− 5t+ 2tα > 0; 3− 9t+ 6tα > 0.

Equating 2−5t+2tα = 3−9t+6tα, we find that αt = t− 1
4 and then 2−5t+2tα = 3−9t+6tα = 3

2 −3t
and 1− 3αt = 1

4 − 3t. In addition, since αt ≤ 1
3 , then t ≤ 7

12 . Hence, the error is

1

4πc2p

[
U∞Ca,p(x̂, θ)− U

∞
p (x̂, θ)

]
· x̂ = O

(
a

1
3 + a

3
2−3t

)
,

1

3
≤ t ≤ 7

12
. (2.60)

2.6 End of the proof of Theorem 1.2

Combining the estimates (2.60) and (2.34), we deduce that

1

4πc2p

[
U∞p (x̂, θ)− U∞0,p(x̂, θ)

]
· x̂ = O(amin{γ, 1

3 ,
3
2−3t}), a << 1,

1

3
≤ t ≤ 7

12
(2.61)

uniformly in terms of x̂, θ ∈ S2.



203 Justification of Corollary 1.3

For an obstacle Dε of radius ε, S(φ)(s) :=
∫
∂Dε

Γω(s, t)φ(t)dt and D(φ)(s) :=
∫
∂Dε

∂Γω(s,t)
∂ν(t) φ(t)dt. Similarly,

we set SG(φ)(s) :=
∫
∂Dε

Gρ(s, t)φ(t)dt and DG(φ)(s) :=
∫
∂Dε

∂Gρ(s,t)
∂ν(t) φ(t)dt. We see that Wκ(x, z) :=

Gρ(x, z)− Γω(x, z) satisfies
(∆ + ω2)Wκ = ω2(1− ρ)Γω, in R3 (3.1)

with the Kupradze radiation conditions. Since Γω(·, z), z ∈ R3 is bounded in Lp(Ω), for p < 3, by interior
estimates, we deduce that W (·, z), z ∈ R3 is bounded in W 2,p(Ω), for p < 3, and hence, in particular, the
normal traces are bounded in L2(∂Dε). Then we can show that the norms of the operators

SG − S : (L2(∂Dε))
3 → (H1(∂Dε))

3 (3.2)

and
DG −D : (L2(∂Dε))

3 → (L2(∂Dε))
3 (3.3)

are of the order O(ε) at least.

1. Using these properties and arguing as in [7], we derive the asymptotic expansions (1.25)-(1.26). Indeed,
apart from the computations done in [7], the main arguments needed to extend those results to the
case of variable density is the Fredholm alternative for the corresponding integral operators and the
application of the Neumann series expansions. After splitting Gρ as Gρ = Γω + (Gρ − Γω), these two
arguments are applicable as soon as we have (3.2)-(3.3).

2. The justification of the invertibility of the algebraic system (1.8) depends only on (1) the distribution
of small bodies and (2) the background medium through the singularities of the fundamental solution
(of the form |Γω(s, t)| ≤ c|s − t|−1). However, this type of singularity is true for general background
elastic media 2. Then the same arguments can be used to justify the invertibiliy of the algebraic system
(1.27). Using the above mentioned decomposition of the Green’s function Gρ, the properties of the
Lippmann Schwinger integral equation are also valid replacing Γω by Gρ, and hence the results in
section 2.4 are valid. Finally, and again using the decomposition of Gρ, the computations in section
2.5 can be carried out using Gρ.

4 The elastic capacitance

We start with the following lemma on the symmetry structure of the elastic capacitance.

Lemma 4.1. Let C := (
∫
∂D

σi,j(t)dt)
3
i,j=1 be the elastic capacitance of a bounded and Lischitz regular set

D and C∗ be its adjoint. Then
C = C∗. (4.1)

Proof of Lemma 4.1. We know that the matrix σ := (σi,j)
3
i,j=1 solves the invertible integral equation∫

∂D
Γ0(s, t)σ(t)dt = I3, or precisely

∫
∂D

Γ0(s, t)σi(t)dt = ei, where σi := (σi,j)
3
j=1 and ei is the ith column

of I3. Let a be any constant vector in R3, then the vector σ a satisfies∫
∂D

Γ0(s, t) (σ(t) a) dt = a.

We set ϕa :=
∫
∂D

Γ0(s, t) (σ(t) a) dt. Then ϕa satisfies the problem ∆eϕa = 0, in D and ϕa = a on ∂D. In

addition, we have the jump relation ∂ν+ϕ
a−∂ν−ϕa = σ(t) a on ∂D where ∂νu := λ(∇·u)ν+µ(∇u+∇u>)ν

is the elastic conormal derivative. Hence∫
∂D

∂ν+ϕ
a − ∂ν−ϕa dt =

∫
∂D

σ(t) adt = C a.

2Of course, it can be justify using the decomposition Gρ = Γω + (Gρ − Γω) with the singularity of Γω and the smoothness
of Gρ − Γω



21Now, let a and b be arbitrary constant vectors in R3. To both a and b, we correspond ϕa and ϕb as above.
Using the Green formulas inside and outside of D, we deduce that

(C a, b) =

∫
∂D

(∂ν+ϕ
a − ∂ν−ϕa(t)) · ϕb(t) dt =

∫
∂D

(
∂ν+ϕ

b − ∂ν−ϕb
)
· ϕadt = (C b, a) = (a,C b)

recalling that every quantity here is real valued.

The next lemma describes the elastic capacitance of a given bounded and Lipschitz regular domain with
the one of its image by a unitary transform.

Lemma 4.2. Let R = (rlm) be a unitary transform in Rd, D be bounded Lipschitz domain in Rd, d = 2, 3
and D̃ = R(D). Let C and C̃ be the corresponding elastic capacitance matrices due to the denisty matrices
σ and σ̃, as defined in (1.9), respectively. Then we have C̃ = R C R−1.

Proof of Lemma 4.2. First recall the relation Γ0 ◦ R(ξ, η) = RΓ0(ξ, η)R−1, see [3, Lemma 6.11]. From
(1.9), we have that ∫

∂D̃
Γ0(ξ̃, η̃)σ̃(η̃)dη̃ = I, η̃ ∈ ∂D̃

⇒
∫
∂D

(
Γ0 ◦ R

)
(ξ, η) (σ̃ ◦ R) (η)dη = I, η ∈ ∂D

⇒
∫
∂D
RΓ0(ξ, η)R−1σ̃ ◦ R(η)dη = I, η ∈ ∂D

⇒
∫
∂D

Γ0(ξ, η)R−1 (σ̃ ◦ R) (η)dη = R−1, η ∈ ∂D
⇒

∫
∂D

Γ0(ξ, η)R−1 (σ̃ ◦ R) (η)Rdη = I, η ∈ ∂D. (4.2)

Now from the uniqueness of solutions of (1.9), we deduce that R−1 (σ̃ ◦ R) (·)R = σ(·) and then

(σ̃ ◦ R) (·) = Rσ(·)R−1. (4.3)

From the definition of the capacitance, see (1.9), and (4.3), we have

C̃ =

∫
∂D̃

σ̃(η̃)dη̃ =

∫
∂D

(σ̃ ◦ R) (η)dη =

∫
∂D

Rσ(η)R−1dη = RCR−1. (4.4)

Proposition 4.3. Let R = (rlm) be a unitary transform in Rd, d = 2, 3, and let D be a bounded Lipschitz
domain in Rd, d = 2, 3, and D̃ = R(D). Let C and C̃ be the corresponding elastic capacitance matrices due
to the denisty matrices σ and σ̃, as defined in (1.9), respectively.

1. 2D-case. If the shape of D is rotationally invariant for any rotation by one angle θ 6= 0, π, then C is
a scalar multiplied by the identity matrix.

2. 3D-case. If the shape of D is rotationally invariant for any two of the rotations around the x, y or
z axis by one angle θ 6= 0, π and α 6= 0, π respectively, then C is a scalar multiplied by the identity
matrix.

Proof of Proposition 4.3. In 2D case, the rotation matrix by an angle θ is given by

R =

(
cos θ − sin θ
sin θ cos θ

)
. (4.5)

As the shape is invariant by this rotation then C̃ = C. Since R is unitary then R−1 = R> and then (4.4)
implies

C = C̃ = RCR>



22
=

(
cos θ − sin θ
sin θ cos θ

)(
C11 C12

C21 C22

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
C11 cos θ − C12 sin θ C11 sin θ + C12 cos θ
C21 cos θ − C22 sin θ C21 sin θ + C22 cos θ

)
(4.6)

=

(
C11 cos2 θ + C22 sin2 θ − (C12 + C21) sin θ cos θ C12 cos2 θ − C21 sin2 θ + (C11 − C22) sin θ cos θ
C21 cos2 θ − C12 sin2 θ + (C11 − C22) sin θ cos θ C11 sin2 θ + C22 cos2 θ + (C12 + C21) sin θ cos θ

)
.

We deduce from (4.6) and the symmetry of matrix C the following relations:

C11 = C11 cos2 θ + C22 sin2 θ − 2C12 sin θ cos θ (4.7)

C22 = C11 sin2 θ + C22 cos2 θ + 2C12 sin θ cos θ (4.8)

C12 = C12 cos2 θ − C12 sin2 θ + (C11 − C22) sin θ cos θ. (4.9)

We rewrite (4.7) and (4.9) respectively as

(C11 − C22) sin2 θ + 2C12 sin θ cos θ = 0 (4.10)

(C11 − C22) cos θ sin θ − 2C12 sin2 θ = 0 (4.11)

Taking sin θ as a multiplicative factor in (4.10) and (4.11) we see that if θ 6= 0, π, i.e. sin θ 6= 0, then we have

C11 = C22 and C12 = C21 = 0. (4.12)

Let us now consider the 3D case. First, let us assume that the shape is invariant under the rotation
about the x− axis and an angle θ 6= 0, π. This rotation matrix is given by

R =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (4.13)

Since R is unitary, R−1 = R>, then (4.4) gives us;

C = C̃ = RCR>

=

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 C11 C12 C13

C21 C22 C23

C31 C32 C33

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ


=

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 C11 C12 cos θ − C13 sin θ C12 sin θ + C13 cos θ
C21 C22 cos θ − C23 sin θ C22 sin θ + C23 cos θ
C31 C32 cos θ − C33 sin θ C32 sin θ + C33 cos θ

 (4.14)

=

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 ,

where



T11 := C11;
T12 := C12 cos θ − C13 sin θ;
T13 := C12 sin θ + C13 cos θ;
T21 := C21 cos θ − C31 sin θ;
T22 := C22 cos2 θ + C33 sin2 θ − (C22 + C33) sin θ cos θ;
T23 := C23 cos2 θ − C32 sin2 θ + (C22 − C33) sin θ cos θ;
T31 := C21 sin θ + C31 cos θ;
T32 := C32 cos2 θ − C23 sin2 θ + (C22 − C33) sin θ cos θ;
T33 := C22 sin2 θ + C33 cos2 θ + (C23 + C32) sin θ cos θ;

(4.15)



23We observe the equality of the 2× 2 matrices:(
C22 C23

C32 C33

)
=

(
T22 T23

T32 T33

)
(4.16)

=

(
C22 cos2 θ + C33 sin2 θ − (C22 + C33) sin θ cos θ C23 cos2 θ − C32 sin2 θ + (C22 − C33) sin θ cos θ
C32 cos2 θ − C23 sin2 θ + (C22 − C33) sin θ cos θ C22 sin2 θ + C33 cos2 θ + (C23 + C32) sin θ cos θ

)
.

These are similar to the matrices we obtained in the 2D case. Hence we deduce, as in the 2D case, that

C22 = C33 and C23 = C32 = 0. (4.17)

To show that C is scalar multiplied by the identity matrix we need to prove that C11 = C22, for instance,
and C13 = C31 = 0. For this purpose, we use another rotation. Taking the rotation around the z-axis 3 by
one angle α 6= 0, π and proceeding as we did for the rotation about the x-axis, we show that

C11 = C33 and C13 = C31 = 0. (4.18)

From the above analysis, we have the following remark:

Remark 4.4. 1. For the spherical shapes, in particular, the capacitance is a scalar multiplied by the
identity matrix.

2. Ellipsoidal shapes are invariant only under rotations with angle π (or trivially 0). For these shapes,
the capacitance might not be a scalar multiplied by the identity matrix but a diagonal matrix instead.
To justify this property, the arguments in [3] can be useful.
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Seminar, Vol. II (Paris, 1979/1980), pp. 9838, 38990, Res. Notes in Math., 60, Pitman, Boston, Mass.-
London, 1982.

[11] D. Cioranescu and F. Murat. A strange term coming from nowhere Topics in the Mathematical
Modelling of Composite Materials. Progress in Nonlinear Differential Equations and Their Applications
Volume 31, 1997, pp 45-93

[12] V. D. Kupradze. Potential methods in the theory of elasticity. Israel Program for Scientific Translations,
Jerusalem, 1965.
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