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Abstract

We deal with the elastic scattering by a large number M of rigid bodies of arbitrary shapes with
maximum radius a, 0 < a << 1 with constant Lamé coefficients A and pu. We show that, when these
rigid bodies are distributed arbitrarily (not necessarily periodically) in a bounded region €2 of R3 where
their number is M := M(a) := O(a™') and the minimum distance between them is d := d(a) =~ a°
with ¢ in some appropriate range, as a — 0, the generated far-field patterns approximate the far-field
patterns generated by an equivalent (possibly variable) mass density. This mass density is described
by two coefficients: one modeling the local distribution of the small bodies and the other one by their
geometries. In particular, if the distributed bodies have a uniform spherical shape then the equivalent
mass density is isotropic while for general shapes it might be anisotropic. In addition, we can distribute
the small bodies in such a way that the equivalent mass density is negative. Finally, if the background
density p is variable in Q and p = 1 in R® \ Q, then if we remove from  appropriately distributed small
bodies then the equivalent density will be equal to unity in R?, i.e. the obstacle Q characterized by p is
approximately cloaked.

Keywords: Elastic wave scattering, Small-scatterers, Effective mass density.

1 Introduction and statement of the results

1.1 The background

Let By, Bs,..., By be M open, bounded and simply connected sets in R3 with Lipschitz boundaries, con-
taining the origin. We assume that their sizes and Lipschitz constants are uniformly bounded. We set
D,,, := €B,, + % to be the small bodies characterized by the parameter ¢ > 0 and the locations z,, € R?,
m=1,..., M.

Assume that the Lamé coefficients \ and p are constants satisfying g > 0 and 3\ + 2u > 0 and the
mass density p to be a constant that we normalize to a unity. Let U’ be a solution of the Navier equation
(A® +wHU =0 in R3, A® := (uA + (XA + p)V div). We denote by U® the elastic field scattered by the M
small bodies D,, C R? due to the incident field U?. We restrict ourselves to the scattering by rigid bodies.
Hence the total field U? := U’ + U* satisfies the following exterior Dirichlet problem of the elastic waves

(A + WU = 0 in R\ ( Aﬁle) , (1.1)

Ulp, =0,1<m<M (1.2)
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with the Kupradze radiation conditions (K.R.C) 2
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where the two limits are uniform in all the directions & := ‘”“7‘ € S2. Also, we denote U, := —/{;EV(V -U?#)

to be the longitudinal (or the pressure or P) part of the field U* and U, := £.2V x (V x U®) to be
the transversal (or the shear or S) part of the field U® corresponding to the Helmholtz decomposition

U® = U, + Us. The constants kpe = 2 and kg = 2 are known as the longitudinal and transversal
P s

wavenumbers, ¢, := /A + 2u and ¢, := /i are the corresponding phase velocities, respectively and w is the
frequency.

The scattering problem is well posed in the Holder or Sobolev spaces, see [8/9/12/[13] for instance,
and the scattered field U® has the following asymptotic expansion:

s eiHPW|m| 00 (4, 00 (A, 1

Us(z) := 2] Uy (%) + 2] U (x)+0(\x|2)’ |x] = o0 (1.4)

uniformly in all directions # € S®. The longitudinal part of the far-field, i.e. US°(Z) is normal to §? while
the transversal part UZ®(Z) is tangential to S*. We set U™ := (U°,Ug®).

As usual, we use plane incident waves of the form U?(z,0) := af e~ 0% 4 39+ ei®s 0¥ where 0+ is any
direction in S? perpendicular to the incident direction § € S?, «, 3 are arbitrary constants. The functions
U2 (&,0) := Ug®(2) and U(&,0) := U(&) for (&,60) € S* x S? are called the P-part and the S-part of the
far-field pattern respectively.

Definition 1.1. We define

1. a:= | Jnax diam(Dy,) [=e | Jnax diam(By,)],
2. d:= m;n dpmj, whered,,; = dist(Dy,, D;). We assume that 0 < d < dmax, and dmax s given.
1<m <M

3. Wmax as the upper bound of the used frequencies, i.e. w € [0, Wmax]-

4. Q to be a bounded domain in R? containing the small bodies D,,, m=1,..., M.

1.2 The results for a homogeneous elastic background

We assume that D,, = €B,, + zm,m = 1,..., M, with the same diameter a, are non-flat Lipschitz obstacles,
i.e. D,,’s are Lipschitz obstacles and there exist constants ¢,, € (0, 1] such that Bfm% (zm) C Dy, C B% (zm),
where t,, are assumed to be uniformly bounded from below by a positive constant. In [7], we have shown
that there exist two positive constants ag and ¢y depending only on the size of €2, the Lipschitz character of
Bp,m=1,..., M, dyax and wpyax such that if

a<ag and VM — %gco (1.5)

then we have the following asymptotic expansion for the P-part, Uy°(Z,0), and the S-part, U°(&,6), of the
far-field pattern:

M
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where a, 0 < o < 1, is a parameter describing the relative distribution of the small bodies.
The vector coefficients Q,,, m = 1, ..., M, are the solutions of the following linear algebraic system

ColQm = —U'(zm,0 Z ' (2m, 2j) @, (1.8)

j=1

Jj#Em
for m =1,..., M, with I' denoting the Kupradze matrix of the fundamental solution to the Navier equation
with frequency w, C, == [, op. Om(8)ds and o, is the solution matrix of the integral equation of the first

kind
/ (s, 8)0m(s)ds = 1, sy € 0Dy, (1.9)
oD

with I the identity matrix of order 3.

Consider now the special case dyina! < d < dpezal and M < M,a0"° with t,5 > 0, dmin, dmae and
M a0 are positive. Then the asymptotic expansions ([1.6H1.7) can be rewritten as

00/ A - — 1Tz,
Up(#,0) = 47762 Z e Ty,
+O ( 3 s— 5t+3to¢ + a47579t+6toz + a372572t04 + a473573ta + a472575t+2to¢) ], (110)
0 (4, 1 PN a —i¥xzy
Ux(z,0) = 47Tc§(lfx®x)[2e st M Q

+O (a275 4 a37sf5t+3to¢ 4 a47579t+6to¢ =+ a372572to¢ + a473573ta + a472575t+2to¢) ] (111)

As the diameter a tends to zero the error term tends to zero for ¢ and s such that

7—5t 12-9¢t 20—-15t 4

0<t<land0< s < min{2(1—1¢), 1 T 13 ,g—ta}. (1.12)
In 7], we have shown that Q,, ~ a, then we have the upper bound
M
| Z eI Q| < M sup " Q| = O(a'™%). (1.13)
m=1 =L

Hence if the number of obstacles is M := M(a) := O(a™*), s < 1 and ¢ satisfies (1.12)), a — 0, then from

(1.10} [1.11)), we deduce that

U (2,0) — 0, as a — 0, uniformly in terms of § and & in S?. (1.14)

This means that this collection of obstacles has no effect on the homogeneous medium as a — 0.

Let us consider the case when s = 1. We set 2 to be a bounded domain, say of unit volume, containing
the obstacles D,,,m = 1,..., M. Given a positive and continuous function K : R3 — R, we divide § into
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Figure 1: An example on how the obstacles are distributed in Q.
[a~!] subdomains €,,, m = 1, ..., [a~}], each of volume a%, with z,, € €, as its center and contains
[K (zm) + 1] obstacles, see Fig We set Kyap = sup, (K(zy) + 1), hence M = Z;‘;l][K(zm) +1] <
Kmaz[a™1] = O(a™1).

Theorem 1.2. Let the small obstacles be distributed in a bounded domain 2, say of unit volume, with their
number M := M(a) := O(a™") and their minimum distance d := d(a) := O(a'), + <t < {5, asa — 0, as
described above.

1. If the obstacles are distributed arbitrarily in €, i.e. with different capacitances, then there exists a
potential Cy € Ny>1LP(R3) with support in Q such that

lim U™ (&,0) = Ug°(2,0) uniformly in terms of @ and & in S* (1.15)

a—0

where US®(&,0) is the farfield corresponding to the scattering problem

(A® +w? — (K +1)Co)U} =0 in R?, (1.16)
Ullop,, =0,1<m <M (1.17)
with the radiation conditions
. oU ) . oU, )
\zl\lgloo || ( 8|;7|p —ikpUpp) =0, and |a:1\1§loo || ( a‘;f —ikseUps) =0 (1.18)

2. If in addition K |q is in C%7(2), v € (0,1] and the obstacles have the same capacitances C, then
U= (z,0) =U5(z,0) + O(amin{%%’%f‘%}) uniformly in terms of 6 and & in S? (1.19)
where Co = C in Q and Co =0 in R3\ Q.

1.3 The results for variable background elastic mass density

Assume that the Lamé coefficients A\ and p are constants satisfying g > 0 and 3\ + 2 > 0 and the mass
density p to be a measurable and bounded function which is equal to a constant that we normalize to a unity
outside of a bounded domain 2. We set p,q. to be the upper bound of p.



In this case, the total field U; =U"+U , satisfies the following exterior Dirichlet problem of the elastie
waves

e 2 N\t w3y [ M4
(A® 4w p)UpzolnR\< Ule), (1.20)
m=
Ullop,, =0,1<m <M (1.21)
with the Kupradze radiation conditions (K.R.C)
. ou,, . oU,s .
el g~k Upp) =0, and lim Jol(rE = ixee o) =0, (122)
where the two limits are uniform in all the directions & := ﬁ € S? and U, , and U, ; are respectively the

P-part and S-part of the scattered field U; ,
The scattering problem (1.2041.22)) is well posed in the Holder or Sobolev spaces, see [8,9,|12}(13] for
instance, and the scattered field U® has the following asymptotic expansion:
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uniformly in all directions # € S?. The longitudinal part of the far-field, i.e. Up%(#) is normal to S? while
the transversal part U2°(#) is tangential to S*. We set U° := (U0, US%,).

As in the case of constant background mass density, there exist two positive constants ag and cg depending

only on the size of Q, the Lipschitz character of B,,,m =1,..., M, dpax, Wmax, Pmaz a0d Prmae such that if

o Un®)+ 0 ‘2) |z = oo (1.23)

a<ag and VM — % < cp (1.24)

then we have the following asymptotic expansion for the P-part, US,(Z, 0), and the S-part, Up<S(%, 0), of the
far-field pattern:

p(@:0) = Z G (@, 2m) Qpum

+0 <M [cﬂ + d;i—; + dga;} + M(M - 1) [;;; + % + d;’;} + M(M - )2;‘3‘:” . (1.25)
U (,0) = Z G2, (, 2m)Qpim

+O< [a + 3:,)& + dga;} +M(M — 1) [;‘;; + di + d;’;} + M(M - )QJLH . (1.26)

where G, (2, 2,) and G % (%, 2m) are the P-part and S-part of the farfields of the Green’s function G,(x, z),
of the operator A° + w? p in the whole space R3, evaluated in the direction & and the source point zy,.
The vector coefficients Q,,m, m =1, ..., M, are the solutions of the following linear algebraic system

M
C;LlQp,m = _Vp Zma ZG Zm)Z])Qp,]7 (127)

Jj=1
J#Fm
for m =1,..., M, with V,(-,0) := V3(-,0) + U'(-,0) is the total field satisfying
(A° +w?p)V} =0 in R?, (1.28)

and the scattered field V'(-,0) the Kupradze radiation conditions (K.R.C).



Corollary 1.3. Let the small obstacles be distributed in a bounded domain 2, say of unit volume, with thed
number M := M(a) := O(a™"') and their minimum distance d := d(a) := O(a'), + <t < 5, asa — 0, as
described above.

1. If the obstacles are distributed arbitrarily in ), i.e. with different capacitances, then there exists a
potential Cy € Ny>1LP(R?) with support in Q such that

iig%) U (2,0) = UJo(2,0) uniformly in terms of 0 and % in S? (1.29)

where USY (&, 0) is the farfield corresponding to the scattering problem

0,0
(A° +w?p — (K + 1)Co)U! , =0 in R?, (1.30)
Upolop,, =0, 1<m <M (1.31)

with the radiation conditions.

2. If in addition K |q is in C%Y(Q), v € (0,1] and the obstacles have the same capacitances, then
UX(2,0) =Uyy(2,0) + O(amin{%%’%_?’t}) uniformly in terms of 0 and & in S* (1.32)

where Co = C in Q and Co =0 in R3\ Q.

1.4 Applications of the results and a comparison to the literature

The main contribution of this work is to have shown that by removing from a bounded region of an elastic
background, modeled by constant Lamé coefficients A and p and a possibly variable density p, a number
M := M(a) ~ a~! small and rigid bodies of radius a distant from each other of at least d := d(a) ~ a?,
% <t< 1—72, then the ’perforated’ medium behaves, as a — 0, as a new elastic medium modeled by
the same Lamé coefficients A and p but with a mass density-like p — (K + 1)Cow 2. The coefficient K
models the local distribution (or the local number) of the bodies while the coefficient Cp, coming from the
capacitance of the bodies, describes the geometry of the small bodies as well as their elastic directional
diffusion properties (i.e. the anisotropy character). In addition, we provide explicit error estimates between
the far-fields corresponding to the perforated medium and the equivalent one. From this result we can make

the following conclusions:

1. Assume that the removed bodies have spherical shapes. For these shapes the corresponding elastic
capacitance C' is of the form cl3 (i.e. a scalar multiplied by the identity matrix). In section {4 we
describe a more general set of shapes satisfying this property. Hence the equivalent mass density
p— (K + 1)cw™?2 is isotropic while for general shapes it might be anisotropic. To achieve anisotropic
densities, a possible choice of the shapes might be an ellipse.

2. If we choose the local number of bodies K large enough or the shapes of the reference bodies, B,,,
m = 1,..., M, having a large capacitance (i.e. a relative large radius) so that p — (K + 1)cw™2 < 0,
then we design elastic materials having negative mass densities.

3. Assume that the background medium is modeled by variable mass density p > 1 in Q. If we remove
small bodies from 2 with appropriate K and/ or capacitance Cq so that p — (K + 1)cw™2 = 1, then
the new elastic material will behave every where in R? as the background medium. Hence the new
material will not scatter the sent incident waves, i.e. the region 2 modeled by p will be cloaked.



The ’equivalent’ behavior between a collection of, appropriately dense, small holes and an extended
penetrable obstacle modeled by an additive potential was already observed by Cioranescu and Murat [10}(11]
and also the references therein, where the coefficient K is reduced to zero since locally they have only one
hole. Their analysis is based on the homogenization theory for which they assume that the obstacles are
distributed periodically, see also [5] and [16].

In the results presented here, we do not need such periodicity and no homogenization is used. Instead,
the analysis is based on the invertibility properties of the algebraic system and the precise treatment
of the summation in the dominant terms of -. This analysis was already tested for the acoustic
model in [1]. Compared to [1], here, in addition to the difficulties coming from the vector character of the
Lamé system, we improved the order of the error estimate, i.e. O(a™™7:3:3-31) ingtead of O(a™n{7-3-51})
which , for ¢ := £ for instance, reduce to O(a™m{7:3}) and O(a™{7:15}) respectively.

Let us finally mention that a result similar to , for the acoustic model, is also derived by Ramm in
several of his papers, see for instance [17], but without error estimates. Compared to his results, and as we
said earlier in addition to the vector character of Lame model, we provide the approximation by improved
explicit error estimates without any other assumptions while, as shown in [17]/18] for instance, in addition
to some formal arguments, he needs extra assumptions on the distribution of the obstacles.

The rest of the paper is organized as follows. In section 2, we give the detailed proof of Theorem
In section 3, we describe the one of Corollary [I.3] by discussing the main changes one needs to make in the
proof of Theorem Finally, in section 4, we discuss some invariant properties of the elastic capacitance
to characterize the shapes that have a ’scalar’ capacitance.

2 Proof of Theorem [1.2|

2.1 The fundamental solution

The Kupradze matrix 'Y = (Ffj)ij:l of the fundamental solution to the Navier equation is given by
w 1 1 T
I(z,y) = ;@HSW (z,y)I+ vavx [Pr.o (x%,5) = P w (X, ¥)], (2.1)

ilz=vl

where @ (z,y) = denotes the free space fundamental solution of the Helmholtz equation (A+x2)u =

dm|z—yl
0 in R3. The asymptotic behavior of Kupradze tensor at infinity is given as follows

1 etrpelel
1““’(96’7y)=74 ST Q& e 1"”“”“’—&-4 5
uges || 2

1 ikgw || . R
I-%®%) e m®y 1 O(x|72) (2.2)

x|

with & = ﬁ € §% and I being the identity matrix in R?, see [2] for instance. As mentioned in [4], (2.1) can
also be represented as

w RN i L 42 142 -1
I(z,y) = E;mﬁ (I+1)RE? + w08 |z —y|' T

=0

I i (-1 B

DI e Gy IR T CR Y G} (2.3)
1=0 "

from which we can get the gradient

w 1« (-1 142 | 142 1-3

VI (z,y) = T 4r Z Nl+2) w? (T +Drl? + k%) Jz —y[ Pz —y) @1
1=0

— (W =R e =y P (U =3)|lz —y[ P @ (z —y) + 1@ (x —y) + (x —y) @ T)] (2.4)



Using the formulas (2.3) and ([2.4]) we can have the following estimates, for z,y € Q,z # y, see [7]; 8

1 07 1 CV9

r« < —|—+C r« ——+C 2.5
rels g el mrensg[Rpad]. e

with . ) . )

C7Z:|:2+2:|, CgZ:3<2+2>,
cz c 22
1 . Nq 1 . Nq
O i gfise 1 — (3Ksediam(S2)) n 1 L e 1 — (3Kpediam(Q)) 1
ST 1 — 2rgediam(S) 2Ne—1 cz 1 — kpediam(Q) 2Na—1 |7

[\~]

11— (brediam()™ 1 2 (11— (bepediam(@)™® 1
010:22% <+ (3rsediam(9)) >+w<+ (3 kpediam(€2)) |

8 1 — rgediam(€) 2Na—1 cp \ 4 1 — Lk diam(Q) 2Na—1

and Ng = [2diam(Q) max{ksw, kpe fe?] where we assume the wave number w and the Lamé parameters A
and p to satisfy the condition max{rsw, Kkpe} < ﬁ(ﬂ)
The estimates (2.5 can be written as

¢
v < v < 2.6
| (I7y)‘— 471_|1,7y‘7 |VU (.T,y)|_ 47T|l‘7y|2’ ( )
for different points x,y € ), where
¢ := max{Cy, Cs diam(2), Cs, C1o diam(Q)}. (2.7)

2.2 The relative distribution of the small bodies

The following observation will be useful for the proof of Theorem[1.2] For m =1,..., M fixed, we distinguish
between the obstacles D;, j # m by keeping them into different layers based on thelr distance from D,,. Let
us first assume that K (zm) = 0 for every z,,. Hence each 2,,, has the (same) volume a and contains only one
obstacle D,,. Without loss of generality, we can take the €2,,’s as cubes. Hence we can suppose that these
cubes are arranged in cuboids, for example unit rubics cube, in different layers such that the total cubes upto

the nt" layer consists (2n + 1)? cubes for n =0, ..., [(a% — %)7 ], and €, is located on the center, see Fig
Hence the number of obstacles located in the n'", n # 0 layer will be [(2n —|— 1)3 (2n —1)3] = 24n? + 2
and their distance from D, is more than n (a3 — 7) Observe that, 7a3 < as — & < as.

Now, we come back to the case where K(z,,) # 0. First observe that % < w < 1. Hence with

such €,,,’s, the total cubes located in the n’th layer n consists of at most the double of [(2n+1)3 — (2n—1)3],
i.e. 48n? + 4.

2.3 Solvability of the linear-algebraic system (|1.8])

We start with the following lemma on the uniform bounds of the elastic capacitances, see |7, Lemma 3.1]
and the references there in.

Lemma 2.1. Let \7%" and A%® be the minimal and mazimal eigenvalues of the elastic capacitance matrices

etgm etgm
Cpm, form = 1,2,..., M. Denote by C% the capacitance of each scatterer in the acoustic caseﬂ then we
have the following estimate;
$C(Bon) (A +20)C(Bon)
= pC8 < NHR < \MAT < (X4 2,) O = ; 2.8
max diam(Bp,) a crgm cign S (A +21) O, max diam(By,) “ (28)
1<m<M 1<m<M

IRecall that, for m = 1,...,M, C%, := faDm om(s)ds and oy, is the solution of the integral equation of the first kind

ff’Dm 4fr’|'2<fi|ds =1, t € 0D, see [6].




Figure 2: Rubics cube consisting of two layers
form=1,2,..., M.

The constant C'(By,) is the acoustic capacitance of the reference body B, which can be estimated above
and below by the Lipschitz character of B,,, [6]. The following lemma provides us with the needed estimate
on the invertibility of the algebraic system ([1.8]) whose coefficient matrix 'B’ is given by;

-Crt —I%(21,22) —T%(z1,23) =TI (21, 20r)
B .— *Fw.(.z.% Zl) 7.6.'?—1 7]_—“41.(.2.27 23) - —Fw(.Z:Q-, ZM) (29)
—T%(zp,21)  —T%(2u, 22) —T“(zp, 20—1) —C’A_/Il

Lemma 2.2. The matriz B is invertible and the solution vector Q,, m = 1,..., M, of (1.8) satisfies the
estimate:

M -2 M
_ 26 M 0. ¢ (max,,,C%) a™t 02 i
5 1@l < ()t - e Ll P el (210)
m=1 m=1
Zf maXCﬁl a_l < m In addition,
M -1
26Mmaa: C mca -1 1
I CHIE (YRS ARG a0 a0 )l (200)
m=
m=1
3 a __ a — Ca Bm
Since C% = C*(Bp)e = Wﬂmg&n)a, then
maxC? a~ ' < 7r0 (2.12)
m V26 M a0 (A + 2p0)
makes sense if m:i’;*’éix?gﬁ) < \/%Mm: FSVEmE As C,(Byy,) is proportional to the radius of B,,, then (2.12

will be satisfied if w and the Lamé parameters A and p satisfy the condition

v max,,diam(By,)

V26M,0e max,C%(Bp,)

recalling that ¢ is defined in (2.7)). Finally, let us observe that the right hand side of (2.13) depends only
M, naand the Lipschitz character of the reference obstacles B,,’s.

¢\ +2u) < (2.13)



Proof of Lemma . We start by factorizing B as B = —(C~'+B,,) where C := Diag(Cy, Cs, ..., CM)1§
RM>M T is the identity matrix and B,, := —C~! — B. We have B : C3™ — C3M | 50 it is enough to prove
the injectivity in order to prove its invetibility. For this purpose, let X,Y are vectors in C* and consider
the system

(C'+B)X = Y (2.14)

We denote by (-)"“* and (-)"™¢ the real and the imaginary parts of the corresponding complex vector/matrix.
we also set C~! by C;. From (2.14) we derive the following two identities:

(CI + B:Leal)Xreal _ (CI 4 Bzr'lﬂbg)Ximg — Y’T'eal7 (215)
(CI + B:Leal)Ximg + (CI + B;mg)Xreal _ Yimg’ (216)
and then
<<CI + Breal)Xreal7Xreal> _ <(CI + B;mg)Ximg7X7"eal> _ <Yreal’ Xreal>, (2.17)
<(CI + B:Leal)‘X'img7 Ximg> + <(CI + ]_j):’zng))(real7 Ximg> _ <Y—img7 Ximg>. (218)

Summing up (2.17) and (2.18) we obtain
real yreal real real yreal real real yimg img real yimg img

. . , . (2.19)
_ <Yrea 7)(reol > + <Y7.mg7szg>.
The right-hand side in (2.19)) can be estimated as
<Xreal Xreal>1/2<yreal Yreal>1/2 + <Ximg Ximg>1/2<yimg Yimg>1/2
) ) ) ) 2.2
S2<X\'|7xl~|>1/2<y|'|,yH>1/2_ (2.20)
Let us now consider the right hand side in (2.19)). First we have
|< B;eaereal, Xreal>| < HB;eal”Qereall% (2.21)

where ||Breat||2 .= Ef\’/li |(Breal), ;13 and (Breal); ; := R T¥(z;, 2;) if i # j and (BLe);; == 0 for i,j =

=1
1,...,M. Hence from |D |(Breat); il < m, i # j. From the observation before Lemma we
deduce that

M [2a™ 3] ) 2 [2a” 3] 09 _9
r c 26 M, 00C700
3Bty <0 Y a1 - - P < S et
i,j=1 (4m)2n2 (22
(2.22)
or
26M s ¢ _
[Bretls < ———"*=a"" (2.23)

and then

™

2
\/2
V26 Moy ¢ —1) X2 (2.24)

|< B;eaereal) Xreal>‘ + |< B:LealXimg’ szg>| < (
Using Lemma we deduce that

CrXx™e, Xrealy 4 (CrX"™9, X"™9) > (A4 2p) "' (maxCyp) ' X5 2.25
m 2



From (2.19)), (2.20)), (2.24]) and (2.25]), we deduce that 1

V26 M éa 1\ 2 U
“) e m (2.26)
m=1

s

M
S X < (<A+ 20)~ (maxC) "
m=1

if (A +2p) "t (maxC%)~t > M and then the matrix B in algebraic system (|1.8]) is invertible.

d
2.4 The limiting model
From the function K, we define a bounded function K, : R?* — R as follows:
o | K(zm)+1 if T € Qi
Kao(@) := Ka(zm) := { 0 if z¢Q,foranym=1,...,[a"]. (2.27)
Hence each €2, contains [K, (2, )] obstacles and Kinaq := sup,, Ka(zm). B
Let C, be the 3 x 3 matrix having entries as piecewise constant functions such that C.la,, = Cy, for all
m = 1,..., M and vanishes outside (2. Here, C,, are the capacitances of By,’s. From [7], we can observe
that C,, are defined through defined through C,, := C),a, and are independent of a.
We set B
C:= max ||Cnlloo- (2.28)
1<m<M
Consider the Lippmann-Schwinger equation
Vo) + [ K 0)C)Ya )y = U029 (2.29)
Q
and set the Lamé potential
V)(e) = [ T Kl Calo)Ualu)dy, @ € R (230)

The coefficients K, and C, are uniformly bounded. The next lemma concerns the mapping properties of
the Lamé potential. These properties are proved for the scalar Poisson potential in [8], for instance. Similar
arguments are applicable for the Lamé potential as well, so we omit to give the details.

Lemma 2.3. The operator V : L?(Q) — H?(£2) is well defined and it is a bounded operator for any bounded
domain 2 in R3, i.e. there exists a positive constant co such that

V)| a2 < collY L2 (2.31)
We have also the following lemma.

Lemma 2.4. There exists one and only one solution Y of the Lippmann-Schwinger equation and it
satisfies the estimate

Y[z < CIU a2y and VY |Le@) < C U || (g (2.32)

where being a large bounded domain which contains ).



Proof of Lemma 12

Using the Lemma [2.3] we see that I +V : L?(Q2) — L?(Q) is Fredholm with index zero and then we
can apply the Fredholm alternative to I +V : L?(Q2) — L?()). The uniqueness is a consequence of the
uniqueness of the scattering problem corresponding to the model

(A® +w?I - K,C,)Y =0, inR? (2.33)

where Y := Y? 4+ Y* and Y satisfies the Kupradze radiation conditions and Y is an incident field.

The estimate can be derived, as it is done in [1] for the acoustic case, by coupling the invertibility
of I +V : L?(Q) — L?(Q) and the W?P— interior estimates of the solutions of the system (A€ + w?I —
K,C,)Y =0.

0

2.4.1 Case when the obstacles are arbitrarily distributed

The capacitances of the obstacles Bj, i.e. C; are bounded by their Lipschitz constants, see [6], and we
assumed that these Lipschitz constants are uniformly bounded. Hence C, is bounded in L?(Q) and then
there exists a function Cy in L?(Q) (actually in every LP()) such that C, converges weakly to Cg in L?().
Now, since K is continuous hence K, converges to (K + 1) in L°(2) and hence in L?(£2). Then we can
show that K,C, converges to (K + 1)Cq in L?(9).

Since KC, is bounded in L*°(2), then from the invertibility of the Lippmann-Schwinger equation and
the mapping properties of the Lamé potential, see Lemma we deduce that ||Uf||g2(q) is bounded and
in particular, up to a sub-sequence, U! tends to U in L*(Q2). From the convergence of K,C, to (K + 1)Cq
and the one of U} to U¥ and , we derive the following equation satisfied by U{(z)

t%@)+l}Kawﬂwuwx%@ﬂ%@My:—U%aminﬂ.

This is the Lippmann-Schwinger equation corresponding to the scattering problem (A¢+w?—(K+1)Co)U¢ =
0in R3, Ul = Us + U?, and U*® satisfies the Kupradze radiation conditions. As the corresponding farfields

are of the form )
Usp(,0) = / T 2E® E)e e (K +1)Co(y)US(y)dy
Q 7TCp

and the ones of U! are of the form

oo (4 Loy iy ¢
U5 00) = | @@ D S K C Uiy

we deduce that

Upyp(2,0) = Ugs,(2,0) = o(1), a — 0, uniformly in terms of 2,0 € S2.

2.4.2 Case when K is Holder continuous

If we assume that K € C%7(Q), v € (0,1], then we have the estimate ||(K +1) — K|l < Ca¥,a << 1,
Since the capacitances of the obstacles are assumed to be equal, we set Cy to be a constant in €2 and Cy = 0
in R? \ . Recall that Uy and U, are solutions of the Lippmann-Schwinger equations

%+Am+nwww%m%@@:w

and
m+/mwmm%@%@@=w
Q



From the estimate ||[(K + 1) — Kul[p~(0) < Ca”, a << 1, we derive the estimate 13

Us®(2,0) — U (2,60) = O(a”), a << 1, uniformly in terms of #,0 € S?. (2.34)

2.5 The approximation by the algebraic system
For each m = 1,..., M, we rewrite the equation (2.29)) as follows

M
Udlzm) + Z I (2, 2;)CUq(25)a
=1
Fm
= Uz, 0) + Y T%(zm, 2)CiUa(z)a = D T (2m, ) Ka(2)CiUa(2;) Vol ()
=1 =1
jm Fm
o] )
+ Z I (2m, 2j) Ka(27)C3Ua(25) Vol (§25) — /Qrw(zmay)Ka(y)Ca(y)Ua(y)dy' (2.35)
j=1
Jj#m

Let us estimate the following quantities:

[a™1]
A= Y T (e, 2) Ko (2)Cs () Vol() - / T (zn ) Ko (4) Ca () U (4)dy

Q
J#EmM
and
M B [a™"] B
B:=Y T(zm,2)CUa(z)a = > T¥(2m, 2j)Ka(2;)C;Ua(2;)Vol(;).
=1 =1
Fm Fm

2.5.1 Estimate of A
[a™"]

By the decomposition of 2,  := U,_, °, we have

la” "]

/Q P (o, 9) Ko () Cap) Uap)ly = / T (2. 9) K (4)Ca () Ua () dy. (2.36)
=1 i

Hence, A::/Q T (2m, ) Ka(y)Ca(y)Ua(y)dy

m

[a™]
+ Z lrw(zm>Zj)Ka(Zj)C’jUa(Zj)VOl(Qj) - /Q Iw(zmvy)Ka(y)Ca(y)Ua(y)dy . (237)
Jm :
For [ # m, we have
[ T Kal0) Cal) Uy = T e ) Ko () )Vl ()

— K.(2)C) / T (2 0)Ua () — T (2 2)Ua(2)] dy. - (2.38)



We set f(zm,y) = T'“(2m, y)Ua(y) then every component f;(zm,y) of f(zm,y) satisfies 14

fi(zmsy) = fi(zmy 21) = (Y — 20) R} (2m, y)

where

) 1
Ri(zmy) = / Vo fi (o — By — 1)) dB

/ L% (2t — By — 7)) Vs (y — Bly — )] dB

/ Z VT2, oy — Ay — 20)] Uas(y — Bly — 20)) dB

o[ SO, o — 80 — 0) (VUi — By — )] 45 (2.39)
(it
From ([2.6)) and from Section we derive for [ # m
é w é
|F({jj(z7my_ﬂ(y_zl))| < 3 and ‘vyri,j(zmvy_ﬂ(y_zl)” < N2
Am 47 n? a;’)

where ¢ depends only on w and some universal constants. Then

Ri(zmy)| < —° (n1 [ 0ty - 00— pias + | |vaa<y—ﬁ<y—zl>>|dﬂ). (2.40)

21 na3

Then, for I # m, ([2.38) and (2.40) and observing that C; is a constant matrix in €, imply the estimate

‘/Q va a(y)ca(y)Ua(y)dy_Fw(zmazl) (Zl)Cl (ZI)VOZ(Ql)‘
l
cC’l zl
< Okl [ Ualy - By - 2)) 4] Iy~ =ldy

cC, 1
+ R [T 19,000~ 8ty 20)1d5] by =l
o1 nad o LJo

e I e niji]clas-m $C g3, (2.41)

for a suitable constant c;.
Regarding the integral fQ “(2m, ¥)Ca(y)Ua(y)dy we do the following estimates:

| / (i, >Ka<y>ca<y>Ua<y>dy]oo
2.32 c2Ka(2m)Cm fg “(2m»Y)|oody
. 1
= 1
g arcefalem) mUB(Zmﬂ“) Fn=il T g By om — 9 )

1 as
here, — € LY(B(2m, 7)), 7 < =
( ere, Po— € L (B(zm,r)),r < 5 )

< L2K,(2n)Cnm ( (S fy 5% d8+%Vol(Qm\B(Zm’T)))



1 4 ¢ A 15
— (27r7“2 + - [a — 777“3]> =cCnKy  (2m)
T 3 4
=:m(r,a)
< 46;02Ka(zm)c_'m Im(r¢, a),
here r¢ is the value of r where Im(r, a) attains maximum
1
3
Olm(r,a) = 0= 4nr — . ——mr=0=1r.= <4ﬂ'a)
Im(re,a) = 2w (%W)g as + (%)§ a3 — %W (gw)é a3
2 1 1
RO O R 1CONE
1
< 8T(CC2KmaxC (%) 8 a5, (2.42)

From (2.37)), we can have

‘A|oo < |/ Zm7 (y)ca(y)Ua(y)dy|oo

[a™] )
+ ; [IF (2 2j) Ko (2;)C;Uq(2)Vol(;) _/Qj
jm

which we can estimate by

[2a” 5]
Ao < D 2[2n+1)° = (20— 1)°] |:|Fw(zm7Zj)Ka(Zj)CjUa(Zj)VOZ(Qj)

- [ G KO 1 [ T

and then ) )
|Aloo < e3CKpmazla® + a?].

Finally
|A| < C4CKmaaca% .

2.5.2 Estimate of B

Ka(y)Caly)

F“’(zmy)Ka(y)Ca(y)Ua(y)dyloo] :

Ua(y)dy|oo-

M [a” "]
Z I(zm, 2j)C3Ua(zj)a — Z I (2m, 2j) Ka(2)C;Ua(2;) Vol (£2;)
=1 =1
Jm j#m
[Ka(ZWL)] [ail] [K (ZJ)] 71] _
= Z T (2, 21)CiUa(21)a + Z Z “(2m, 21)C1Uq(21)a — Z I (2m, 2j) Ka(2)C;Ua(2;)Vol(£;)
=1 1 =1
S Jim et Jm
o [Ka(zm)] '] [Ka(z)]
=Cma > Tm 2)Ua(z)+ Y Cial( D T¥(zm, 2)Ua(21)) = T (2m, ) [Ka(2)]Ua(25)]
iZm Jim 2eh,

21€EQm



since Vol(;) = alfelzill and ¢ = Cj, for 1 =1,..., K,(z;). We write, 16

Ka(zg)
) [Ka(zm)]
El = Y TGz, 2)Uu(2) (2.43)
1z
21€EQm
and
) [Ka(zj)]
E) = [( Y T(zm,2)Ua(21)) = T%(2m, 2))[Ka(2)Ua(2;)]
leglj
[Ka(z5)]
- Z (T (z2m, 2)Ua(21) — T (2m, 2)Ua(2;)). (2.44)
zllgSle

We need to estimate Cy,aEY and Z[;Zl} CjaEj.
jFm

Now by writing f/(zm,y) := I'“(2m,y)Ua(y). For z; € Q;, j # m, using Taylor series, we can write

f'(zm, z) = f'(2m> 21) = (25 — 20) R (2m; 25, 21),

with
1
R (zm; zj,21) = /0 Vyf'(2m,zj = B(zj — 1)) dB. (2.45)

By doing the computations similar to the ones we have performed in (2.39{2.40) and by using Lemma
we obtain
[a™'] ~ . )
| Z Cjab]| < caCKypaz03 (2.46)
j=1
i#m
One can easily see that,
_ . ¢co(Kmaw — 1)Ca  éca(Kpmar — 1)C R

CnaFEl| < - =
|CmaBi] < 47 d 47

(2.47)

Substitution of (2.36]) in (2.35) and using the estimates (2.41]) and (2.42)) associated to A and the estimates
(2.46)) and (2.47) associated to B gives us

M

Ua(zm) + 3 T2, 2)C0a(z)a = Ut(zn,0) + O (C4Kmaxa%) +0 (Walt> (2.48)
=
We rewrite the algebraic system as
M
Uagm + Z T (2, 2;)C3Uq ja = U'(z) (2.49)

j=1
j#m



where we set Uy, := —C;, Q. recalling that C,, = C, a. 17

Taking the difference between (2.48)) and (2.49) produces the algebraic system

M
(Uam = Ualzm)) + 30 (o, 5)C5 (Uag = Ualz))a = O (Chnaa(ad +a'7)).
j=1
j#Em

Comparing this system with (1.8) and by using Lemma we obtain the estimate

f: Usim = Ua(zm)) = O (CKpaaM(ab +a'™1)). (2.50)

m=1

For the special case d = a’, M = O(a™") with ¢ > 0, we have the following approximation of the far-field
from the Foldy-Lax asymptotic expansion (1.6]) and from the definitions U, ,, := C;,'Q,, and C,, := Cy,a,
form=1,...,M:

M

AncQUR(8,0)-& = Y e " HCU, ;- da (2.51)
j=1
+O (a+a2—5t+3toz +a3—9t+6to¢ +a1—2t0¢ +a1—3ta +a2—5t+2to¢) .

Consider the far-field of type:

1

US.@60) = pzleed) [ ETKL )LV +
P

w

(I-&®i) /Q e =TV Ko (y)Caly)Ua(y)dy.

corresponding to the scattering problem ([2.33)) and set

. 1 . . i
UE, p(#,0) =1 2($®f”)/e " Ko (y)Ca(y)Ualy)dy (2.52)
7TCp Q
and )
Ul8.0) = g =293) [ 570K, 0)CL)Va(w)ay (25)

Taking the difference between and ( - we have:

ar AU, (&,0) — U (#,0)) - &

M
- /2 VR () Ca(9)Ualy) - iy — 3 5 CyU, 5 - da
S B
j=1
+O (a+a2—5t+3ta+a3—9t+6ta+a1—2ta+ 1—3ta+a2—5t+2ta)

[a™'] “Ka(2)))

S0 ) s CUCROCAIITIES i DI
="
z
+O (a+a2—5t+3to¢ +a3—9t+6t(x +a1—2to¢ +a1—3toz +a2—5t+2t(1)

I
jilng
N
Q
\

ST () & e T (z) - 2 dy



W [ o KaG))
+ Z Cja Z (eﬂgz'zj Ud(zj) & —e "o ™™ Ua(zl)> + Z e " (Uy(z) —Uay) - &
j=1 =1 =1
Z1 €8 21 €8
1O (a+a2513t0 | g3=0t+Bta | g1=2ta 4 g1=3ta 4 2=5i+2ta)
[a™"]

[ffl] [Ka(z5)]
Y Ca Y (M) b - e T () )+Ze B0 Ua(2y) ~ Uag)
j=1 =1
21 €8
+0 (a+a2 5t+3ta+a3 9t+6ta +a1 2toz+ 1 3ta+ 2 5t+2to¢)
o] ,
2_50 Z Ka(z])Cj {e_lppw yUa(y) :fc—e_lir Z]U (Z]) x] dy
7=1 Q;
e Kl . 1
00 Y (TEIUL) - () - 2) + O (€K paslad + a7
j=1 =1
21 €85
+0 (a+a275t+3m +a379t+6toz +a172to¢ +a173ta +a275t+2ta) . (254)

Now, let us estimate the difference ZE‘C;I] Ka(zj)cj fQj [6_i%i'yUa(y) — e U“(Zj)} dy. Write, f1(y) =
e " *YU,(y). Using Taylor series, we can write

f1(y) = fi(z)) = (y — 2) R; (y),

with
1
(Rj(y)ky = Vy(f)ri(y — By — z;)) dp
0
! i (y—Bly-))
= [ ],
0 k
1
= [ [mue m ] - - ) d
0
1
b [ B 9 U -l ), dB. (2.55)
0
We have Vye_iii'y = —ii:%e_iii‘y then

1 1
Bk < (2 [ W5 sDleds + [ 19,0080 5)wds). (250
p Jo 0
Using we get the estimate

{e_i%i'y(y)Ua(y) L i Ua(zj)} dy| < (2.57)

oo



19

[a™!] 1
+ ) Ka(2)C; </ |y—zj|/ IVyUa(y—ﬁ(y—Zj))loodﬂdy>
j=1 Qj 0
[a’l] — 1 w w 1
< K.(zj)Cjciaas ( + C5> < KimazCer ( + 05) as.
— Cp Cp
j=1
In the similar way, using (2.50)), we have,
[a™!] _ [Ka(#)] L L )
Y Ga Y (CTETIUL) - )| € 0 (KuwClad +ai)). (@258)
O E, .

Using the estimates (2.57) and (2.58) in (2.54]), we obtain

1
T UE (0,0) - UR(50) -4 = 0 (Kma%m (j ¥ cs)) £ O(C(C + DCK s (ad +a)
P P
+O (a+a275t+3to¢ +a379t+6ta +a172t0¢ +a173ta +a275t+2ta)
- 0 (ag Loglet  gB9ttat | 1-3at | a275t+2m) ' (2.59)

Since Vol(9) is of order a(% + £)3, and d is of the order a’, we should have t > . Hence

1
250 1-t>0:3-9t46ta>0;  1-3ta>0; 25t +2a>0;

Hence for % <t <1, we have

1
ta<§; 2 -5t 4+ 2ta > 0; 3 — 9t + 6ta > 0.

Equating 2 — 5t + 2ta = 3 — 9t + 6ta, we find that at =t — 1 and then 2 — 5t +2ta = 3— 9t +6ta = 3 — 3t
and 1 — 3at = i — 3t. In addition, since at < %7 then ¢t < 1—72 Hence, the error is

fo'e) - 00 [ A ~ 1 3 _3¢ 1 7
— & o= —<t< —. .
T U& ,(@.0) = U2@,0)] -5 = 0(ad+ad™), Z<t< (2.60)
2.6 End of the proof of Theorem (1.2
Combining the estimates (2.60) and (2.34), we deduce that
o0 (4, 00 (4, s min{y, 1, -3¢ 1 7
gres [U°(2,0) — UgS,(2,0)] - & = O(a™1r 5 273 g << 1, 3St< (2.61)

uniformly in terms of #,0 € S2.



3 Justification of Corollary 20

For an obstacle D, of radius €, S(¢)(s) := [, [“(s,t ( )dt and D (8) = [op, 81;3VE; ) (t)dt. Similarly,

we set Sg(¢ = Jop, Go(s,t)p(t)dt and DG = faD ay(t) (t)dt. We see that Wy(x,z2) =
Gylz,z) — I“"(x z) satlsﬁes

(A +wHW, = w?(1 - p)I'¥, in R3 (3.1)
with the Kupradze radiation conditions. Since I'“(-,2), z € R? is bounded in LP(Q), for p < 3, by interior

estimates, we deduce that W (-, 2), z € R? is bounded in W?2P(Q), for p < 3, and hence, in particular, the
normal traces are bounded in L?(0D,). Then we can show that the norms of the operators

Sa — S : (L*D,))* — (HY(0D.))? (3.2)

and
D — D : (L*(0D.))* — (L*(8D,))* (3.3)

are of the order O(e) at least.

1. Using these properties and arguing as in 7], we derive the asymptotic expansions —. Indeed,
apart from the computations done in [7], the main arguments needed to extend those results to the
case of variable density is the Fredholm alternative for the corresponding integral operators and the
application of the Neumann series expansions. After splitting G, as G, =T'¥ + (G, — I'¥), these two
arguments are applicable as soon as we have —.

2. The justification of the invertibility of the algebraic system depends only on (1) the distribution
of small bodies and (2) the background medium through the singularities of the fundamental solution
(of the form |T*(s,t)| < c|s — t|~1). However, this type of singularity is true for general background
elastic mediaﬂ Then the same arguments can be used to justify the invertibiliy of the algebraic system
(1.27). Using the above mentioned decomposition of the Green’s function G, the properties of the
Lippmann Schwinger integral equation are also valid replacing I'* by G, and hence the results in
section are valid. Finally, and again using the decomposition of G, the computations in section
2.5 can be carried out using G,.

4 The elastic capacitance

We start with the following lemma on the symmetry structure of the elastic capacitance.

Lemma 4.1. Let C := (f(’)D Ji’j(t)dt)g’,j:l be the elastic capacitance of a bounded and Lischitz regular set
D and C* be its adjoint. Then
C=C" (4.1)
Proof of Lemma . We know that the matrix o := (Ji’jﬁ”j:l solves the invertible integral equation
Jop To(s,t)o(t)dt = I3, or precisely [, To(s,t)o(t)dt = e;, where o; := (0;;)3_, and e; is the i*" column
of Is. Let a be any constant vector in R3, then the vector ¢ a satisfies

/ To(s,t) (o(t) a) dt = a.
oD

We set ¢@ := [, To(s,t) (o(t) a)dt. Then ¢® satisfies the problem A¢p® = 0, in D and ¢* = a on dD. In
addition, we have the jump relation 9, ¢* —9,_p® = o(t) a on dD where d,u := \(V-u)v +u(Vu+Vu ' )v
is the elastic conormal derivative. Hence

Oy ® — Oy dt = / o(t) adt = C a.
oD oD

20f course, it can be justify using the decomposition G, =T + (Gp, — T'*) with the singularity of I' and the smoothness
of G, —I'¥



Now, let a and b be arbitrary constant vectors in R®. To both a and b, we correspond ¢® and ¢’ as above:
Using the Green formulas inside and outside of D, we deduce that

(Ca,b) =/ Our9” = (1)) - °(t) dt = / (Ov19” = 8u—®) - p%dt = (C b,a) = (a,C D)
oD aD
recalling that every quantity here is real valued.
|

The next lemma describes the elastic capacitance of a given bounded and Lipschitz regular domain with
the one of its image by a unitary transform.

Lemma 4.2. Let R = (rlm)~be a unitary transform in R, D be bounded Lipschitz domain in R?, d = 2,3
and D = R(D). Let C and C be the corresponding elastic capacitance matrices due to the denisty matrices
o and &, as defined in (1.9), respectively. Then we have C =R C R~L.

Proof of Lemma , First recall the relation T'® o R(&,n) = RIY(&,n)R™1L, see |3, Lemma 6.11]. From
(11.9), we have that

Jop TO(E, M) (7)) dil — 1, ijcdD
= Jop T°0R) (&) (G0oR)(n) =1, nedD
= [op RTUEMRIGoR()dy =1, nedD
= fop TR (GoR) (dn =R, nedD
= [opTE R (GoR) (MRdy =1, neaD. (4.2)

Now from the uniqueness of solutions of (1.9), we deduce that R™! (6 o R) ()R = o(-) and then
(GoR)() = Ro(-)R™ . (4.3)

From the definition of the capacitance, see , and (| ., we have

C= / G()di = / (GoR)(n)dn= | Ro(nR 'dyp=RCR. (4.4)
oD oD oD

|

Proposition 4.3. Let R = (11n) be a unitary transform in R?, d = 2,3, and let D be a bounded Lipschitz
domain in R?, d = 2,3, and D = R(D). Let C and C be the corresponding elastic capacitance matrices due
to the denisty matrices o and &, as defined in (1.9), respectively.

1. 2D-case. If the shape of D is rotationally invariant for any rotation by one angle 8 # 0,7, then C is
a scalar multiplied by the identity matriz.

2. 3D-case. If the shape of D is rotationally invariant for any two of the rotations around the x,y or
z axis by one angle 0 # 0,7 and o # 0,7 respectively, then C is a scalar multiplied by the identity
matrix.

Proof of Proposition[{.3 In 2D case, the rotation matrix by an angle 6 is given by

R = (Cf)sa ‘SM). (4.5)

sinf  cosf

As the shape is invariant by this rotation then C' = C. Since R is unitary then R~ = RT and then (14.4)
implies

C =C=RCR"



cosf) —sinf Ci1 Chs cosf) sinf 22
sinf  cosf Cy1 Oy —sinf cosf
( (4.6)

cosf —sinb Ci1c080 — Ciasinf@  Cqysinf + Ciocos b
C31c080 — Coasinf (a1 sinf + Cay cos O

C11 cos? 0 + Coysin? 6 — (C1a + Cy1)sinfcos® Chacos? O — Coy sin? 6 + (C11 — Ca2)sinf cos b
o Cy1cos? 0 — Crasin® 6 4 (C1 — Cyo)sinfcosf Oy sin? @ + Cg cos? @ + (Cra + Cop)sinfcosh |-

- sinf  cosf
We deduce from and the symmetry of matrix C' the following relations:
Cy1 = Cqq cos 0 + Cyg sin? 6 — 2015 sin § cos § (4.7)
Cls = Cqy 8in? 0 + Cos cos? 0 + 205 sin 6 cos 0 (4.8)
Cha = C1ac08® 0 — Chasin® 0 + (C1; — Cao) sin b cos 6.
We rewrite and respectively as

(C11 — C22) sin? @ + 2C5sinf cosh = 0 (4.10)

(C11 — Co) cosfsinf — 2C 5 sin? 0 = 0 (4.11)

Taking sin 6 as a multiplicative factor in and we see that if 0 # 0,7, i.e. sinf # 0, then we have
C11 = Cy and C19 = Oy = 0. (4.12)

Let us now consider the 3D case. First, let us assume that the shape is invariant under the rotation
about the z — axis and an angle 6 # 0, 7. This rotation matrix is given by

1 0 0
R = 0 cosf —sinf (4.13)
0 sinf cosf

Since R is unitary, R~' = R, then (4.4) gives us;

C=C = RCRT

1 0 0 Ci1 Cia Cis 1 0 0
= 0 cosf) —sinf Cy1 Co (Cos 0 cosf sinf
0 sinf cos 6 031 032 033 0 —sinf cosf
1 0 0 Ci1 Cizcosl — Cqzsinf  Cigosinf + Cizcosf
= 0 cosf —sinf Co1 Cygco80 — Co3sinf  Cagsinf + Cos cosl (4.14)
0 sinf cosf C31 C39co80 — (C33sinf  (Csosinf + Cs3cosd
Ty Te Ti3
= To1r Top Tos |,
T31 T32 T33
Ty, = Cig;
T12 = 012 0089—013 SiIIe;
T3 := C(Ci2sinf + Cy3cosb;
T21 = 021 cost — 031 sin 97
where The = Coo cos? 6 + Cs3 sin2 0 — (022 + 033) sin 6 cos 6, (415)
Thy = Ca3c08260 — Cyosin 6 + (Coo — C33) sin f cos 6;
T31 := Co1s8inf + C3q1cosb;
T390 = (3o cos? 6 — (s sin? 0 + (022 — 033) sin 6 cos 6,
T3 = Copsin®f + Cs3cos?0 + (Cag + C32) sin f cos b;




We observe the equality of the 2 x 2 matrices: 23

022 023 T22 T23
= 4.16
( Cs2 Css T3o Ts3 (4.16)
~( Caacos? 6 + Cs3 sin? @ — (Cap + C33)sinfcos Cozcos? — Csysin® O 4 (Cag — C3) sin b cos f
T\ C53c0820 — Cossin? 6 + (Ca2 — Cs3)sinflcosf  Cag sin? 0 + Cs3 cos? 0 + (Ca3 + Cs2)sinfcosf ) -
These are similar to the matrices we obtained in the 2D case. Hence we deduce, as in the 2D case, that

CQQ = ng and 023 = 032 =0. (417)

To show that C' is scalar multiplied by the identity matrix we need to prove that C1; = Cass, for instance,
and C13 = C3; = 0. For this purpose, we use another rotation. Taking the rotation around the z-axis E| by
one angle « # 0, w and proceeding as we did for the rotation about the z-axis, we show that

011 = 033 and Clg = C31 =0. (418)

d

From the above analysis, we have the following remark:

Remark 4.4. 1. For the spherical shapes, in particular, the capacitance is a scalar multiplied by the
identity matriz.

2. Ellipsoidal shapes are invariant only under rotations with angle 7 (or trivially 0). For these shapes,
the capacitance might not be a scalar multiplied by the identity matrix but a diagonal matriz instead.
To justify this property, the arguments in [3] can be useful.
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