Multihomogeneous Resultant Formulae for Systems with Scaled Support

I.Z. Emiris, A. Mantzaflaris

RICAM-Report 2012-25
Multihomogeneous Resultant Formulae for Systems with Scaled Support

Ioannis Z. Emiris

Department of Informatics and Telecommunications
University of Athens, Panepistimiopolis 15784, Greece

Angelos Mantzaflaris

GALAAD, INRIA Méditerranée
BP 93, 06902 Sophia Antipolis, France

Abstract

Constructive methods for matrices of multihomogeneous (or multigraded) resultants for unmixed systems have been studied by Weyman, Zelevinsky, Sturmfels, Dickenstein and Emiris. We generalize these constructions to mixed systems, whose Newton polytopes are scaled copies of one polytope, thus taking a step towards systems with arbitrary supports. First, we specify matrices whose determinant equals the resultant and characterize the systems that admit such formulae. Bézout-type determinantal formulae do not exist, but we describe all possible Sylvester-type and hybrid formulae. We establish tight bounds for all corresponding degree vectors, and specify domains that will surely contain such vectors; the latter are new even for the unmixed case. Second, we make use of multiplication tables and strong duality theory to specify resultant matrices explicitly, for a general scaled system, thus including unmixed systems. The encountered matrices are classified; these include a new type of Sylvester-type matrix as well as Bézout-type matrices, known as partial Bezoutians. Our public-domain MAPLE implementation includes efficient storage of complexes in memory, and construction of resultant matrices.

Key words: multihomogeneous system, resultant matrix, Sylvester, Bézout, determinantal formula, MAPLE implementation

1. Introduction

Resultants provide efficient ways for studying and solving polynomial systems by means of their matrices. They are most efficiently expressed by a generically non-singular
matrix, whose determinant is the resultant, or at least a non-trivial multiple of the resultant. For two univariate polynomials there are matrix formulae named after Sylvester and Bézout, whose determinant is equal to the resultant; we refer to them as determinantal formulae. Unfortunately, such determinantal formulae do not generally exist for more variables, except for specific cases; the objective of the present work is to extend the set of systems for which determinantal formulae are known, and compute explicitly resultant matrices for these systems.

We consider the sparse (or toric) resultant, which exploits a priori knowledge on the support of the equations. Matrix formulae are studied for systems where the variables can be partitioned into groups so that every polynomial is homogeneous in each group, i.e. mixed multihomogeneous, or multigraded, systems. This study is an intermediate stage from the theory of homogeneous and unmixed multihomogeneous systems, towards fully exploiting arbitrary sparse structure. Multihomogeneous systems are encountered in several areas, e.g. [3,7,9]. Few foundational works exist, such as [15], where bigraded systems are algebraically analyzed. Our work continues that of [8,16,18], where the unmixed case has been treated, and generalizes their results to systems whose Newton polytopes are scaled copies of one polytope. These are known as generalized unmixed systems, and allow us to take a step towards systems with arbitrary supports. This is the first work that treats mixed multihomogeneous equations, and provides explicit resultant matrices for them.

Sparse resultant matrices are of different types. On the one end of the spectrum are the pure Sylvester-type matrices, filled in by polynomial coefficients; such are Sylvester’s and Macaulay’s matrices. On the other end are the pure Bézout-type matrices, filled in by coefficients of the Bezoutian polynomial. Hybrid matrices are built up by blocks of both pure types.

We examine Weyman complexes (defined below), which generalize the Cayley-Koszul complex and yield the multihomogeneous resultant as the determinant of a complex. These complexes are parameterized by a degree vector \(m \). When the complex has two terms, its determinant is that of a matrix expressing the map between these terms, and equals the resultant. In this case, there is a determinantal formula, and the corresponding vector \(m \) is determinantal. The resultant matrix is then said to be exact, or optimal, in the sense that there is no extraneous factor in the determinant. As is typical in all such approaches, including this paper, the polynomial coefficients are assumed to be sufficiently generic for the resultant, as well as any extraneous factor, to be nonzero.

In [18], the unmixed multihomogeneous systems for which a determinantal formula exists were classified, but no formula was given; see also [12, Sect.13.2]. Identifying explicitly the corresponding morphisms and the vectors \(m \) was the focus of [8]. The main result of [16] was to establish that a determinantal formula of Sylvester type exists (for unmixed systems) precisely when the condition of [18] holds on the cardinalities of the groups of variables and their degrees. In [16, Thm.2] all such formulae are characterized by showing a bijection with the permutations of the variable groups and by defining the corresponding vector \(m \). This includes all known Sylvester-type formulae, in particular, of linear systems, systems of two univariate polynomials, and bi-homogeneous systems of 3 polynomials whose resultant is, respectively, the coefficient determinant, the Sylvester resultant and the classic Dixon formula.

In [16], they characterized all determinantal Cayley-Koszul complexes, which are instances of Weyman complexes when all the higher cohomologies vanish. In [8], this characterization is extended to the whole class of unmixed Weyman complexes. It is also shown
that there exists a determinantal pure Bézout-type resultant formula if and only if there exists such a Sylvester-type formula. Explicit choices of determinantal vectors are given for any matrix type, as well as a choice yielding pure Bézout type formulae, if one exists. The same work provides tight bounds for the coordinates of all possible determinantal vectors and, furthermore, constructs a family of (rectangular) pure Sylvester-type formulae among which lies the smallest such formula. This paper shall extend these results to mixed systems with scaled supports.

Studies exist, e.g. [3], for computing hybrid formulae for the resultant in specific cases. In [1], the Koszul and Čech cohomologies are studied in the mixed multihomogeneous case so as to define the resultant in an analogous way to the one used in Section 2. In [5], hybrid resultant formulae were proposed in the mixed homogeneous case; this work is generalized here to multihomogeneous systems. Similar approaches are applied to Tate complexes [4] to handle mixed systems. In [13], they give an algorithm to compute a straight-line program that evaluates to the mixed multihomogeneous resultant. In the recent work [11], they exploit results on the kernel of group-wise Jacobian matrices, in order to enhance the F5 criterion for computing Gröbner bases of bi-homogeneous systems of bi-degree (1, 1).

The main contributions of this paper are as follows: Firstly, we establish the analog of the bounds given in [8, Sect.3]; in so doing, we simplify their proof in the unmixed case. We characterize the scaled systems that admit a determinantal formula, either pure or hybrid. If pure determinantal formulae exist, we explicitly provide the m-vectors that correspond to them. In the search for determinantal formulae we discover box domains thus improving the wide search for these vectors adopted in [8]. We conjecture that a formula of minimum dimension can be recovered from the centres of such boxes, analogous to the homogeneous case.

Second, we make the differentials in the Weyman complex explicit and provide details of the computation. Note that the actual construction of the matrix, given the terms of the complex, is non-trivial, since one must identify the maps between these terms. Our study has been motivated by [8], where similar ideas were used to deduce matrix matrices for certain examples of unmixed systems. Finally, we deliver a complete, publicly available Maple module for the computation of multihomogeneous resultant matrices. Based on the software of [8], it has been enhanced with new functions, such as the construction of resultant matrices and the efficient storage of complexes in memory.

The rest of the paper is organized as follows. We start with sparse multihomogeneous resultants and Weyman complexes in Section 2 below. Then we analyze the structure of the Weyman complex in Section 3. Section 4 presents bounds on the coordinates of all determinantal vectors and classifies the systems that admit hybrid and pure determinantal formulae; explicit vectors are provided for pure formulae and minimum dimension choices are conjectured. In Section 5 we construct the actual matrices; we present Sylvester- and Bézout-type constructions that also lead to hybrid matrices. We conclude with the presentation of our Maple implementation along with examples of its usage.

Some of the results in the present article have appeared in preliminary form in [10].

2. Resultants via complexes

We define the resultant, and connect it to complexes coming from homological constructions. Consider the product $X := \mathbb{P}^{l_1} \times \cdots \times \mathbb{P}^{l_r}$ of projective spaces over an algebraically closed field \mathbb{F} of characteristic zero, for $r \in \mathbb{N}$. Its dimension equals the number
of affine variables \(n = \sum_{k=1}^{r} l_k \). We consider polynomials over \(X \) of scaled degree: their multidegree is a multiple of a base degree \(\mathbf{d} = (d_1, \ldots, d_r) \in \mathbb{N}^r \), say \(\deg f_i = s_i \mathbf{d} \). We assume \(s_0 \leq \cdots \leq s_n \) and \(\gcd(s_0, \ldots, s_n) = 1 \), so that the data \(\mathbf{l}, \mathbf{d}, \mathbf{s} = (s_0, \ldots, s_n) \in \mathbb{N}^{n+1} \) characterize the system uniquely. We denote by \(S(\mathbf{d}) \) the vector space of multihomogeneous forms of degree \(\mathbf{d} \) defined over \(X \). These are homogeneous of degree \(d_k \) in the variables \(x_k \) for \(k = 1, \ldots, r \). By a slight abuse of notation, we also write \(S(d_k) \subset \mathbb{P}^{l_k} \) for the subspace of homogeneous polynomials in \(l_k \) variables, of degree \(d_k \). A system of type \((\mathbf{l}, \mathbf{d}, \mathbf{s})\) belongs to \(V = S(s_0 \mathbf{d}) \oplus \cdots \oplus S(s_n \mathbf{d}) \). In Algorithm 1 we give a small procedure that generates a polynomial of a given multihomogeneous degree.

Algorithm 1: MakePolynomial

\[
\text{Input: } \mathbf{l}, \mathbf{d} \in \mathbb{N}^r.
\]

\[
\text{Output: } \text{A polynomial } f \in S(\mathbf{d}), \text{ with symbolic coefficients, in variables } (x_1, \ldots, x_r).
\]

\[
f := 1; \\
\text{for } k = 1, \ldots, r \text{ do } \\
f := f \cdot \left(1 + \sum_{i=1}^{l_k} x_{k,i}
ight)^{d_k}; \\
\text{end}
\]

Return \(f \);

Definition 2.1. Consider a generic scaled multihomogeneous system \(f = (f_0, \ldots, f_n) \) defined by the cardinalities \(\mathbf{l} \in \mathbb{N}^r \), base degree \(\mathbf{d} \in \mathbb{N}^r \) and \(\mathbf{s} \in \mathbb{N}^{n+1} \). The multihomogeneous resultant \(\mathcal{R}(f_0, \ldots, f_n) = \mathcal{R}_{\mathbf{l}, \mathbf{d}, \mathbf{s}}(f_0, \ldots, f_n) \) is the unique up to sign, irreducible polynomial of \(\mathbb{Z}[V] \), which vanishes if and only if there exists a common root of \(f_0, \ldots, f_n \) in \(X \).

This polynomial exists for any data \(\mathbf{l}, \mathbf{d}, \mathbf{s} \), since it is an instance of the sparse resultant. It is itself multihomogeneous in the coefficients of each \(f_i \), with degree given by the multihomogeneous Bézout bound:

Lemma 2.2. The resultant polynomial is homogeneous in the coefficients of each \(f_i \), \(i = 0, \ldots, n \), with degree

\[
\deg f_i \mathcal{R} = \left(\frac{n}{l_1, \ldots, l_r} \right) d_i^{l_1} \cdots d_r^{l_r} s_0 \cdots s_n. \tag{1}
\]

Proof. The degree \(\deg f_i \mathcal{R} \) of \(\mathcal{R}(f) \) with respect to \(f_i \) is the coefficient of \(y_i^{l_1} \cdots y_r^{l_r} \) in the new polynomial:

\[
\prod_{j \neq i} (s_j d_1 y_1 + \cdots + s_j d_r y_r) = \prod_{j \neq i} s_j (d_1 y_1 + \cdots + d_r y_r) = \frac{s_0 s_1 \cdots s_n}{s_i} (d_1 y_1 + \cdots + d_r y_r)^n.
\]

In [16, Sect.4] the coefficient of \(y_i^{l_1} \cdots y_r^{l_r} \) in \((d_1 y_1 + \cdots + d_r y_r)^n \) is shown to be equal to

\[
\left(\frac{n}{l_1, \ldots, l_r} \right) d_i^{l_1} \cdots d_r^{l_r},
\]

4
thus proving the formula in the unmixed case. Hence the coefficient of $y_1^{l_1} \cdots y_r^{l_r}$ in our case is this number multiplied by $\frac{s_0s_1 \cdots s_n}{s_i}$. □

This yields the total degree of the resultant, that is, $\sum_{i=0}^{n} \deg f_i \mathcal{R}$.

The rest of the section gives details on the underlying theory. The vanishing of the multihomogeneous resultant can be expressed as the failure of a complex of sheaves to be exact. This allows to construct a class of complexes of finite-dimensional vector spaces whose determinant is the resultant polynomial. This definition of the resultant was introduced by Cayley [12, App. A], [17].

For $u \in \mathbb{Z}^r$, $H^q(X, \mathcal{O}_X(u))$ denotes the q-th cohomology of X with coefficients in the sheaf $\mathcal{O}_X(u)$. Throughout this paper we write for simplicity $H^q(u)$, even though we also keep the reference to the space whenever it is different than X, for example $H^0(P^l_k, u_k)$.

To a polynomial system $f = (f_0, \ldots, f_n)$ over V, we associate a finite complex of sheaves K_\bullet on X:

$$0 \to K_{n+1} \to \cdots \xrightarrow{\delta_2} K_1 \xrightarrow{\delta_1} K_0 \xrightarrow{\delta_0} \cdots \to K_{-n} \to 0 \quad (2)$$

This complex (whose terms are defined in Definition 2.3 below) is known to be exact if and only if f_0, \ldots, f_n share no zeros in X; it is hence generically exact. When passing from the complex of sheaves to a complex of vector spaces there exists a degree of freedom, expressed by a vector $m = (m_1, \ldots, m_r) \in \mathbb{Z}^r$. For every given f we specialize the differentials $\delta_i : K_i \to K_{i-1}, i = 1 - n, \ldots, n + 1$ by evaluating at f to get a complex of finite-dimensional vector spaces. The main property is that the complex is exact if and only if $\mathcal{R}(f_0, \ldots, f_n) \neq 0$ [17, Prop.1.2].

The main construction that we study is this complex, which we define in our setting. It extends the unmixed case, where for given p the direct sum collapses to $\binom{n+1}{p}$ copies of a single cohomology group.

Definition 2.3. For $m \in \mathbb{Z}^r$, $\nu = -n, \ldots, n + 1$ and $p = 0, \ldots, n + 1$ set

$$K_{\nu,p} = \bigoplus_{0 \leq i_1 < \cdots < i_p \leq n} H^{\nu-p} \left(m - \sum_{\theta=1}^{p} s_{i_\theta} d \right) \quad (3)$$

where the direct sum is over all possible indices $i_1 < \cdots < i_p$. The *Weyman complex* $K_\bullet = K_\bullet(l, d, s, m)$ is generically exact and has terms $K_\nu = \bigoplus_{p=0}^{n+1} K_{\nu,p}$.

This generalizes the classic *Cayley-Koszul* complex. The determinant of the complex can be expressed as a quotient of products of minors from the δ_i. It is invariant under different choices of $m \in \mathbb{Z}^r$ and equals the multihomogeneous resultant $\mathcal{R}(f_0, \ldots, f_n)$.

3. Combinatorics of K_\bullet

We present a combinatorial description of the terms in our complex, applicable to the unmixed case as well. This allows to write concrete algorithms to compute this structure on a computer. For details on the co-homological tools that we use, see [12]. Throughout the paper we denote $[u, v] := \{u, u + 1, \ldots, v\}$.

5
By the Künneth formula, we have the decomposition

$$H^q(\alpha) = \bigoplus_{j_k \in \{0, l_k\}} \prod_{i=1}^r H^{j_i}(\mathbb{P}^{l_i}, \alpha_k),$$

(4)

where $q = p - \nu$ and the direct sum runs over all integer sums $j_1 + \cdots + j_r = q, j_k \in \{0, l_k\}$. In particular, $H^0(\mathbb{P}^{l_k}, \alpha_k)$ is isomorphic to $S(\alpha_k)$, the graded piece of \mathbb{P}^{l_k} in degree α_k or, equivalently, the space of all homogeneous polynomials in $l_k + 1$ variables with total degree α_k, where $\alpha = m - zd \in \mathbb{Z}^r$ for $z \in \mathbb{Z}$.

Looking at the term decomposition given in (3), we see that the cohomology groups that appear include some extra pieces of information: the vector m and a set of p indices, pointing to polynomials in our input system. This structure together with the Künneth decomposition, is the building block for producing later the corresponding resultant matrices. Table 1 shows the data structure used to represent a cohomology group, together with its combinatorial structure, in memory. The dimension formula is discussed later on (cf. (7)).

By Serre duality, for any $\alpha \in \mathbb{Z}^r$, we know that

$$H^q(\alpha) \simeq H^{n-q}(-l - 1 - \alpha)^*,$$

(5)

where * denotes dual, and $1 \in \mathbb{N}^r$ a vector full of ones. Therefore $H^j(\alpha_k)^* \simeq H^{l_k - j}(-\alpha_k - 1 - l_k)$.

Furthermore, we identify $H^j(\mathbb{P}^{l_k}, \alpha_k)$ as the dual space $S(-\alpha_k - l_k - 1)^*$. This is the space of linear functions $\Lambda : S(\alpha_k) \to \mathbb{F}$. Sometimes we use the negative symmetric powers to interpret dual spaces, see also [18, p.576]. This notion of duality is naturally extended to the direct sum of cohomologies: the dual of a direct sum is the direct sum of the duals of the summands. The next proposition (Bott’s formula) implies that this dual space is non-trivial if and only if $-\alpha_k - l_k - 1 \geq 0$.

Proposition 3.1. [2] For any $\alpha \in \mathbb{Z}^r$ and $k \in \{1, \ldots, r\}$,

(a) $H^j(\mathbb{P}^{l_k}, \alpha_k) = 0$, $\forall j \neq 0, l_k$,

(b) $H^l(\mathbb{P}^{l_k}, \alpha_k) \neq 0 \iff \alpha_k < -l_k$, $\dim H^l(\mathbb{P}^{l_k}, \alpha_k) = \binom{-\alpha_k - 1}{l_k}$.

(c) $H^0(\mathbb{P}^{l_k}, \alpha_k) \neq 0 \iff \alpha_k \geq 0$, $\dim H^0(\mathbb{P}^{l_k}, \alpha_k) = \binom{\alpha_k + l_k}{l_k}$.

TABLE 1. Data structure representing $H^n(X, \alpha)$. There are three data members: **groups**, **elements**, **degree** and two member functions: **exponent** and **dim**. By **COHOMOLOGY(G, E, \alpha)** we construct a cohomology with data members G, E, α.

<table>
<thead>
<tr>
<th>COHOMOLOGY</th>
<th>groups</th>
<th>list ${k_1, \ldots, k_l}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>elements</td>
<td>list ${i_1, \ldots, i_p}$</td>
</tr>
<tr>
<td></td>
<td>degree</td>
<td>vector $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_r)$</td>
</tr>
<tr>
<td></td>
<td>exponent</td>
<td>return $q := l_k + \cdots + l_k$</td>
</tr>
<tr>
<td></td>
<td>dim</td>
<td>return $\prod_{k \in \text{groups}} \frac{-\alpha_k - 1}{l_k} \cdot \prod_{k \in \text{groups}} \frac{\alpha_k + l_k}{l_k}$</td>
</tr>
</tbody>
</table>
Definition 3.2. Given \(l, d \in \mathbb{N}^r \) and \(s \in \mathbb{N}^{r+1} \), define the critical degree vector \(\rho \in \mathbb{N}^r \) by
\[
\rho_k := d_k \sum_{\theta=0}^n \theta - l_k - 1, \quad \text{for all } k = 1, \ldots, r.
\]

The Künneth formula (4) states that \(H^q(\alpha) \) is a sum of products. We can give a finer description:

Lemma 3.3. If \(H^q(\alpha) \) is nonzero, then it is equal to a product \(H^{j_1}(\mathbb{P}^{l_1}, \alpha_1) \otimes \cdots \otimes H^{j_r}(\mathbb{P}^{l_r}, \alpha_r) \) for some integers \(j_1, \ldots, j_r \) with \(j_k \in \{0, l_k\} \), \(\sum_{k=1}^r j_k = q \).

Proof. By Proposition 3.1(a), only \(H^0(\mathbb{P}^{l_k}, \alpha_k) \) or \(H^{l_k}(\mathbb{P}^{l_k}, \alpha_k) \) may be nonzero. By Proposition 3.1(b,c) at most one of them appears.

The above lemma allows us to write Algorithm 2 for computing the structure of a given \(H^q(\alpha) \). The algorithm either returns the decomposition of \(q \) as a sum of \(l_k \)'s or reports that the cohomology is zero. Also, this lemma justifies the data structure used in Table 1: a cohomology group is represented by a single list of indices \(\{k_1, \ldots, k_t\} \subseteq [1, r] \) such that \(q = \sum_{i=1}^t l_{k_i} = p - \nu \) and a list \(\{i_1, \ldots, i_p\} \subseteq [0, n] \) which corresponds to a collection of polynomials (or equivalently, to a basis element in the exterior algebra).

Algorithm 2: CohStructure

Input: \(l \in \mathbb{N}^r \), exponent \(q \in \mathbb{N} \) and degree \(\alpha \in \mathbb{Z}^r \).
Output: \(\{k_1, \ldots, k_t\} \) with \(q = l_{k_1} + \cdots + l_{k_t} \) or \(\emptyset \) if \(H^q(\alpha) = 0 \).

1. \(S := 0; \)
2. \(C := \{\}; \)
3. for \(k = 1, \ldots, r \) do
 1. if \(\alpha_k < -l_k \) then
 1.1. \(S := S + l_k \);
 1.2. \(C := C \cup \{k\}; \)
 2. else if \(\alpha_k < 0 \) then
 2.1. return \(\emptyset \);
 3. end if
4. if \(q = S \) then return \(C \); else return \(\emptyset \); end if

Combining Lemma 3.3 with Definition 2.3 and (4) we get
\[
K_{\nu,p} = \bigoplus_{0 \leq i_1 < \cdots < i_p \leq n} \prod_{k=1}^r H^{j_k}(\mathbb{P}^{l_k}, m_k - \sum_{\theta=1}^p s_{i_\theta} d_k)
\]
for some integer sums \(j_1 + \cdots + j_r = p - \nu \) and \(j_k \in \{0, l_k\} \) such that all the terms in the product do not vanish. Algorithm 3 computes the term-summand \(K_{\nu,p} \).

At this point, we are able to compute the whole complex (2). A term of the complex is returned by Algorithm 4, according to Definition 2.3, and the chain of terms is computed in Algorithm 5.

As far as dimension is concerned, we have directly
\[
\dim H^q(\alpha) = \prod_{k=1}^r \dim H^{j_k}(\mathbb{P}^{l_k}, \alpha_k),
\]
Algorithm 3: Summand

Input: $l, d \in \mathbb{N}^r$, $s \in \mathbb{N}^{n+1}$, $m \in \mathbb{Z}^r$, $\nu \in [-n, n + 1]$, and $p \in [0, n]$.
Output: The summand $K_{\nu, p}$ as a list of COHOMOLOGY, or \emptyset if null.

$S := \emptyset$;
foreach $\{i_1, \ldots, i_p\} \subseteq [0, n]$ do
 $C := \text{CohStructure}(l, d, s, p - \nu, m - \sum_{\theta=1}^{p}s_{i_\theta}d)$;
 if $C \neq \emptyset$ then
 $S := S \cup \{\text{COHOMOLOGY}(C, \{i_1, \ldots, i_p\}, m - \sum_{\theta=1}^{p}s_{i_\theta}d)\}$;
 end
end
return S;

Algorithm 4: Term

Input: $l, d \in \mathbb{N}^r$, $s \in \mathbb{N}^{n+1}$, $m \in \mathbb{Z}^r$ and $\nu \in [-n, n + 1]$.
Output: The term K_{ν} as a list of summands $K_{\nu, p}$, or \emptyset if null.

$T := \emptyset$;
for $p = 0, \ldots, n + 1$ do
 $S := \text{Summand}(l, d, s, m, p, \nu)$;
 if $S \neq \emptyset$ then
 $T := T \cup \{S\}$;
 end
end
return T;

Algorithm 5: MakeComplex

Input: $l, d \in \mathbb{N}^r$, $s \in \mathbb{N}^{n+1}$ and $m \in \mathbb{Z}^r$.
Output: The complex $K = K(m)$ as a list of terms K_{ν}.

$K := \emptyset$;
$\nu := n + 1$;
$T := \emptyset$;
while $T = \emptyset$ and $\nu \geq -n$ do
 $T := \text{Term}(l, d, s, m, \nu)$;
 $\nu := \nu - 1$;
end
while $T \neq \emptyset$ and $\nu \geq -n$ do
 $K := K \cup \{T\}$;
 $T := \text{Term}(l, d, s, m, \nu)$;
 $\nu := \nu - 1$;
end
return K;

with $H^q(\alpha)$ as in (4). Using Proposition 3.1(b,c), we enrich the data structure of Table 1 with a member function that computes this dimension. The dimension of $K_{\nu, p}$ follows by taking the sum over all $\alpha = m - \sum_{\theta=1}^{p}s_{i_\theta}d$, for all combinations $\{i_1 < \cdots < i_p\} \subseteq \{0, \ldots, n\}$.

8
Given $p \in [0, n+1]$, the set of possible sums of p coordinates out of vector s is

$$S_p := \left\{ \sum_{\theta=1}^{p} s_i^{\theta} : 0 \leq i_1 < \cdots < i_p \leq n \right\}$$

and by convention $S_0 = \{0\}$. By Proposition 3.1, the set of integers z such that both $H^0(\mathbb{P}^d, m_k - zd_k)$ and $H^1(\mathbb{P}^d, m_k - zd_k)$ vanish is:

$$P_k := \left[\frac{m_k}{d_k}, \frac{m_k + l_k}{d_k} \right] \cap \mathbb{Z}. \quad (9)$$

Proof. Assuming $H^1(X, m - zd) \neq 0 \iff z \in Q$ and $j = q(z)$; also the system is unmixed if and only if $S_p = \{p\}$. Clearly $1 \leq |S_p| \leq \binom{n+1}{p}$, the former inequality being strict for $s \neq 1 \in \mathbb{N}^{n+1}$ and $p \neq 0, n+1$.

The following lemma generalizes [18, Prop.2.4].

Lemma 3.4. Let $\nu \in \mathbb{Z}$, $p \in \{0, \ldots, n+1\}$ and $K_{\nu,p}$ given by Definition 2.3; then $K_{\nu,p} \neq 0 \iff \nu \in \{p - q(z) : z \in Q_p\}$.

Proof. Assuming $K_{\nu,p} \neq 0$, there exists a nonzero summand $H^{0,\nu}(m - zd) \neq 0$. By Lemma 3.3 it is equal to $H^{1,0}(\mathbb{P}^d, m_1 - zd_1) \otimes \cdots \otimes H^{1,0}(\mathbb{P}^d, m_r - zd_r) \neq 0$, $j_k \in \{0, l_k\}$ and

$$p - \nu = \sum_{k=1}^{r} j_k = \sum_{P_k \in z} l_k \Rightarrow \nu = p - \sum_{P_k \in z} l_k.$$

Conversely, if $\nu \in \{p - q(z) : z \in Q_p\}$ then $Q_p \neq \emptyset$. Now $z \in Q_p$ implies $z \notin P$, which means $H^{0,\nu}(m - zd) \neq 0$, the latter being a summand of $K_{\nu,p}$. \hfill \Box

One instance of the complexity of the mixed case is that in the unmixed case, given $p \in [0, n+1]$, there exists at most one integer ν such that $K_{\nu,p} \neq 0$. All formulae (including determinantal ones) come in dual pairs, thus generalizing [8, Prop.4.4].

Lemma 3.5. Assume $m, m' \in \mathbb{Z}^n$ satisfy $m + m' = \rho$, where ρ is the critical degree vector. Then, $K_{\nu}(m)$ is dual to $K_{1-\nu}(m')$ for all $\nu \in \mathbb{Z}$. In particular, m is determinantal if and only if m' is determinantal, yielding matrices of the same size, namely $\dim(K_0(m)) = \dim(K_1(m'))$.

Proof. Based on the equality $m + m' = \rho$ we deduce that for all $J \subseteq [0, n+1]$, it holds that $m' - \sum_{i \in J} s_i d = -l - 1 - (m + \sum_{i \notin J} s_i d)$. Therefore, for all $q = 0, \ldots, n$, Serre’s duality (5) implies that $H^q(\mathbb{P}^d, m - \sum_{i \in J} s_i d)$ and $H^{n-q}(\mathbb{P}^d, m - \sum_{i \notin J} s_i d)$ are dual.
Let \(\#J = p \) and \(\nu = p - q \); since \((n + 1 - p) - (n - q) = 1 - (p - q) = 1 - \nu \), we deduce that \(K_{\nu,p}(m) \) is dual to \(K_{1-\nu, n+1-p}(m') \) for all \(p \in \{0, n + 1\} \) which leads to \(K_{\nu}(m') \cong K_{1-\nu}(m') \) for all \(\nu \in \mathbb{Z} \), as desired. In particular, \(K_{-1}(m) \cong K_2^*(m') \) and \(K_0(m) \cong K_1^*(m') \), the latter giving the matrix dimension in the case of determinantal formulae. \(\square \)

4. Determinantal formulae

This section focuses on formulae that yield square matrices expressing the resultant without extraneous factors and prescribes the corresponding determinantal \(m \)-vectors.

Determinantal formulae occur only if there is exactly one nonzero differential, so the complex consists of two consecutive nonzero terms. The determinant of the complex is the determinant of this differential. We now specify this differential; for the unmixed case see [18, Lem.3.3].

Lemma 4.1. If \(m \in \mathbb{Z}^r \) is determinantal then the nonzero part of the complex is \(\delta_1 : K_1 \rightarrow K_0 \).

Proof. The condition that \(m \) is determinantal is equivalent to the fact that \(N := \{p - q(z) : z \in Q, p \in [0, n + 1]\} \) consists of two consecutive integers.

Let \(z_1 = \min Q < z_2 = \max Q \), since \(\#Q \geq 2 \). There exist \(p_1, p_2 \) with \(p_1 < p_2 \) such that \(z_1 = \sum_{k=1}^{p_1} s_k \) and \(z_2 = \sum_{k=1}^{p_2} s_k \), where the indices are sub-sequences of \([0, n]\), of length \(p_1 \) and \(p_2 \) resp. The \(p_1 \) integers

\[
0, s_0, s_0 + s_1, \ldots, s_0 + \cdots + s_{p_1-2} \in \mathbb{Z}
\]

are distinct, smaller than \(z_1 \), hence belong to \(\bigcup_{P_k < z_1} P_k \). Also, it is clear that, for all \(k \in [1, r] \), \(\#P_k \leq \lfloor l_k/d_k \rfloor \leq l_k \) thus

\[
p_1 \leq \# \bigcup_{P_k < z_1} P_k \leq \sum_{P_k < z_1} \#P_k \leq q(z_1). \tag{12}
\]

This means \(p_1 - q(z_1) \leq 0 \). Similarly, the \(n+1-p_2 \) integers \(s_n + \cdots + s_0, \ldots, s_n + \cdots + s_{n-p_2} \) are distinct, larger than \(z_2 \), hence belong to \(\bigcup_{P_k > z_2} P_k \), so:

\[
n - p_2 + 1 \leq \# \bigcup_{P_k > z_2} P_k \leq \sum_{P_k > z_2} \#P_k \leq \sum_{P_k > z_2} l_k. \tag{13}
\]

This means \(n + 1 - p_2 \leq n - q(z_2) \), thus \(p_2 - q(z_2) \geq 1 \). Hence there exists a positive integer in \(N \); from (12) we must have a non-positive integer in \(N \). Since \(\#N = 2 \) and the integers of \(N \) are consecutive we deduce that \(N = \{0, 1\} \). \(\square \)

Corollary 4.2. If \(m \in \mathbb{Z}^r \) is determinantal, then equality holds in (12). In particular, for \(k \in [1, r] \) s.t. either \(P_k < z_1 \) or \(P_k > z_2 \), we have \(\#P_k = l_k \) and any two such \(P_k \) are disjoint.

Proof. Lemma 4.1 combined with Lemma 3.4 imply \(p_1 - q(z_1) \geq 0 \), and (12) implies \(p_1 - q(z_1) \leq 0 \), hence we deduce \(p_1 - q(z_1) = 0 \). Now equality in (12) gives \(\sum_{P_k < z_1} \#P_k = q(z_1) = \sum_{P_k < z_1} l_k \); combining with \(\#P_k \leq l_k \) we deduce \(\#P_k = l_k \) for all \(k \) in this sum. Similarly for \(n + 1 - p_2 = \sum_{P_k > z_2} l_k = n - q(z_2) \). \(\square \)
4.1. Bounds for determinantal vectors

We generalize the bounds in [8, Sect.3] to the mixed case, for the coordinates of all determinantal \(m \)-vectors. We follow a simpler and more direct approach based on a global view of determinantal complexes.

Lemma 4.3. If a vector \(m \in \mathbb{Z}^r \) is determinantal then the corresponding \(\bigcup P_k \) is contained in \([0, \sum s_i] \).

Proof. It is enough to establish that \(P_k > 0 \) and \(P_k < \sum s_i \) for all \(k \in [1, r] \). Proof by contradiction: Let \(m \) be a determinantal vector, and \(P = \bigcup P_k \). Let \(z_1, z_2 \) as in the proof of Lemma 4.1. If \(z_1 < P_k < z_2 \) it is clear that \(0 \leq z_1 < P_k < z_2 \leq \sum s_i \Rightarrow P_k \subseteq [0, \sum s_i] \).

If \(z_2 < P_k \), Corollary 4.2 implies \(\# \bigcup P_{k>z_2} P_k = \# R \), where \(R := \{ s_n + \cdots + s_0, \ldots, s_n + \cdots + s_{n-p_2} \} \). By the definition of \(z_2 \), \(R \subseteq \bigcup P_{k>z_2} P_k \), thus \(\bigcup P_{k>z_2} P_k = R \subseteq [0, \sum s_i] \).

Similarly, \(\bigcup P_{k<z_1} P_k = \{ 0, s_0, s_0 + s_1, \ldots, s_0 + \cdots + s_{p_1-2} \} \subseteq [0, \sum s_i] \), which proves the lemma for \(P_k < z_1 \). \(\square \)

The bound below is proved in [8, Cor.3.9] for the unmixed case. They also show with an example that this bound is tight with respect to individual coordinates. We give an independent, significantly simplified proof, which extends that result to the scaled case.

Theorem 4.4. For determinantal \(m \in \mathbb{Z}^r \), for all \(k \) we have

\[
\max\{-d_k, -l_k\} \leq m_k \leq d_k \sum s_i - 1 + \min\{d_k - l_k, 0\}.
\]

Proof. Observe that by Lemma 4.1 there are no \(k \in [1, r] \) such that \(P_k < 0 \) or \(P_k > \sum s_i \).

Combining this fact with Lemma 4.3, we get

\[
m_k/d_k \geq -1 \quad \text{and} \quad (m_k + l_k)/d_k < 1 + \sum s_i
\]

for all \(k \in [1, r] \). Furthermore, the sets \(P_k, k \in [1, r] \) can be partitioned into two (not necessarily non-empty) classes, by considering the integers \(z_1, z_2 \) of Lemma 4.1:

- \(P_k < z_1 \) or \(P_k > z_2 \), with cardinalities \(\# P_k = l_k \).
- \(z_1 < P_k < z_2 \), without cardinality restrictions (possibly empty).

Taking into account that \(P_k = \left(\frac{m_k}{d_k}, \frac{m_k + l_k}{d_k} \right] \cap \mathbb{Z} \) we get

\[
(m_k + l_k)/d_k \geq 0 \quad \text{and} \quad m_k/d_k < \sum s_i
\]

for all \(k \in [1, r] \). \(\square \)

Our implementation conducts a search in the box defined by the above bounds. For each \(m \) in the box, the dimension of \(K_2 \) and \(K_{-1} \) is calculated; if both are zero the vector is determinantal (see Algorithm 6). Computing dimensions in this brute-force algorithm is time consuming; the following lemma provides a cheap necessary condition to check before calculating them.
Lemma 4.6. If that yield determinantal formulae and we conjecture that minimum dimension formulae call such data determinantal necessary and sufficient conditions for the data \(l \).

Proof. Suppose \(m \in \mathbb{Z}^r \) admits a determinantal vector \(s \) where \(l \) and \(s \) are integers. Let \(K := \text{Term}(l, d, s, m) \).

K := \{ \text{Term}(l, d, s, m) \}

foreach \(m \in \mathbb{Z}^r \) in the box \((L, U)\) do

\(K_2 := \text{Term}(l, d, s, m, 2) \);

\(K_{-1} := \text{Term}(l, d, s, m, -1) \);

if \(K_2 = \emptyset \) and \(K_{-1} = \emptyset \) then // \(m \) is determinantal

\(M := M \cup \{ m \} \);

end

end

return \(M \);

Lemma 4.5. If \(m \in \mathbb{Z}^r \) is determinantal then there exist indices \(k, k' \in [1, r] \) such that \(m_k < d_k (s_{k-1} + s_k) \) and \(m_{k'} \geq d_{k'} \sum_{i=0}^{n-2} s_i - l_{k'} \).

Proof. If for all \(k, m_k/d_k \geq s_0 + s_k \) then \(q(s_{k-1} + s_k) = 0 \) by (10), so for \(p = 2 \) we have \(p - q(s_{k-1} + s_k) = 2 - 0 = 2 \) which contradicts the fact that \(m \) is determinantal.

Similarly, if for all \(k, (m_k + l_k)/d_k < \sum_{i=0}^{n-2} s_i \) then \(q(\sum_{i=0}^{n-2} s_i) = n \) and for \(p = n - 1 \) we have \(p - q(\sum_{i=0}^{n-2} s_i) = (n - 1) - n = -1 \), which is again infeasible. □

4.2. Characterization and explicit vectors

A formula is determinantal if and only if \(K_2 = K_{-1} = 0 \). In this section we provide necessary and sufficient conditions for the data \(l, d, s \) to admit a determinantal formula; we call such data determinantal. Also, we derive multidimensional integer intervals (boxes) that yield determinantal formulae and we conjecture that minimum dimension formulae appear near the centres of these intervals.

Lemma 4.6. If \(m \in \mathbb{Z}^r \) is a determinantal vector for the data \(l, d, s \), then this data admits a determinantal vector \(m' \in \mathbb{Z}^r \) with \(P_k \cap P_{k'} = \emptyset \) for all \(k, k' \in [1, r] \).

Proof. Suppose \(m_i/d_i \leq m_j/d_j \). Let \(P_i(m) \cap P_j(m) = [u, v] \subset \mathbb{Z} \). Set \(m'_i = m_j + t d_j \) where \(t \in \mathbb{Z} \) is the minimum shift so that \(P_i(m') \cap P_j(m') = \emptyset \). Also, \(m' \) satisfies Theorem 4.4. For all \(k \neq j \), let \(m'_k = m_k \).

Any vector in \(\mathbb{Z}^r \) defines a non-trivial complex, since \(Q \neq \emptyset \). In particular, \(m' \) is determinantal because \(P(m) \subseteq P(m') \), i.e. no new terms are introduced, but possibly some terms vanish. Repeat until all \(P_k \cap P_{k'} = \emptyset \). □

Let \(\sigma : [1, r] \to [1, r] \) be any permutation. One can identify at most \(r! \) classes of determinantal complexes, indexed by the permutations of \(\{1, \ldots, r\} \). This classification arises if we look at the nonzero terms that can occur in the complex, provided that the sets \(P_k \) satisfy

\[P_{\sigma(1)} \leq P_{\sigma(2)} \leq \cdots \leq P_{\sigma(r)} \]
where we set $P_i \leq P_j \iff m_i/d_i \leq m_j/d_j$. Any given \mathbf{m} defines these sets, as well as an ordering between them. This fact allows us to classify determinantal \mathbf{m}-vectors and the underlying complexes.

For this configuration, expressed by σ, the only nonzero summands of $K_{\nu}\nu+q$ can be $K_{\rho\nu+q}$ where q takes values in the set $\{0, l_{\sigma(1)}, l_{\sigma(1)} + l_{\sigma(2)}, \ldots, n\}$. To see this, observe that $q(z) = \sum_{p_k \leq z} l_k, z \in \mathbb{N}$ cannot attain more than $r + 1$ distinct values; so if the relative ordering of the P_k is fixed as above, then these are the only possible values of q.

This leads us to the following description of K_2 and K_{-1}:

$$K_{2}^r = \bigoplus_{k=1}^{r} K_{2,2} + \sum_{i=1}^{k-1} l_{\sigma(i)}, \quad K_{-1}^r = \bigoplus_{k=1}^{r} K_{-1,1} - 1 + \sum_{i=1}^{k} l_{\sigma(i)}$$

As a side remark, note that the proof of Lemma 3.5 implies that the dual of $K_{\nu}^r(\mathbf{m})$ is $K_{-\nu}^r(\mathbf{p} - \mathbf{m})$ where τ is the permutation s.t. $\tau(i) := r + 1 - \sigma(i)$.

Let $\pi[k] := \sum_{\pi(i) \leq \pi(k)} l_i$. If $\pi = \text{Id}$ this is $\text{Id}[k] = l_1 + \cdots + l_k$. We now characterize determinantal data:

Theorem 4.7. The data $\mathbf{l}, \mathbf{d}, \mathbf{s}$ admit a determinantal formula if and only if there exists $\pi : [1, r] \to [1, r]$ s.t.

$$d_k \sum_{n-\pi[k]+2}^{n} s_i - l_k < d_k \sum_{0}^{\pi[k]+1} s_i, \forall k.$$

Proof. We assume without loss of generality that $\pi = \text{Id}$. This is not restrictive, since if $\pi \neq \text{Id}$ then we can re-number the variable groups such that $k' := \pi^{-1}(k)$. Hence if we set $L_k := \sum_{0}^{\pi[k]+1} s_i = \min S_{\text{Id}[k]+2}$ and $R_k := \sum_{n-\text{Id}[k]+2}^{n} s_i = \max S_{\text{Id}[k]-1}$ then the relations become:

$$d_k R_k - l_k < d_k L_k, \forall k.$$

Throughout this proof, whenever we use non-positive indices $j \leq 0$ for l_j or $\text{Id}[j]$, these quantities will be zero, and the results in this case are straightforward to verify. Also, note that the dual complex is given by the “reversed” permutation, and in particular, $K_{-1}^r \approx K_2$, therefore any results on the nullity of K_{-1} can be directly used to prove the nullity of K_2.

(\Leftarrow) Assume that the inequalities hold. Then for all k there exists an integer m_k such that

$$d_k R_k - l_k \leq m_k \leq d_k L_k - 1.$$

Let $\mathbf{m} = (m_1, \ldots, m_r)$. We shall prove that this vector gives a determinantal formula; it suffices to show that for all $k \in [1, r]$, $K_{2,2+\text{Id}[k]-1} = K_{-1,1+\text{Id}[k]} = 0$, since in (16) we have $\sigma = \pi^{-1} = \text{Id}$.

• If $l_k \geq 3$, we have

$$\text{Id}[k] - 1 = \text{Id}[k-1] + l_k - 1 \geq \text{Id}[k-1] + 2.$$

Thus $L_k \leq R_k$, since $s_i \geq 1$; also our hypothesis (17) translates into the inclusion

$$[L_k, R_k] \subseteq \left(\frac{m_k}{d_k}, \frac{m_k + l_k}{d_k}\right) = P_k.$$

Now, by (18) we derive

$$\min S_{\text{Id}[k]+2} = L_k \leq \min S_{\text{Id}[k]-1} \quad \text{and} \quad \max S_{\text{Id}[k]-1} = R_k \geq \max S_{\text{Id}[k]+2}$$
so (19) implies $S_{1d[k-1]+2} \subseteq P_k$ as well as $S_{1d[k]-1} \subseteq P_k$ and thus $K_{2,2+1d[k-1]} = 0$, $K_{-1,-1+1d[k]} = 0$ by Proposition 3.1.

- If $l_k \leq 2$, it is $\text{Id}[k] - 1 = \text{Id}[k-1] + l_k - 1 \leq \text{Id}[k-1] + 1$. In this case we will prove $K_{2,2+1d[k-1]} = 0$, $K_{-1,-1+1d[k]} = 0$ using Lemma 3.4.

Let $z \in Q_p$ for $p = -1 + \text{Id}[k]$. From $R_k \leq (m_k + l_k)/d_k$, it is clear that $P_k \neq z$, thus $q(z) \leq \text{Id}[k-1]$. Also,

$$\text{Id}[k-2] + 2 = \text{Id}[k] - l_k - 1 - l_k + 2 \leq \text{Id}[k-1].$$

where the last inequality is taken under the assumption $\max\{l_k, l_{k-1}\} \geq 2$. We treat the case $l_k = l_{k-1} = 1$ separately. Hence

$$z \geq \min S_{-1+1d[k]} \geq \min S_{2+1d[k-2]} = L_{k-1} > m_{k-1}/d_{k-1}.$$

This implies $P_{k-1} < z \Rightarrow q(z) \geq \text{Id}[k-1]$. We conclude that $q(z) = \text{Id}[k-1]$ and thus

$$p - q(z) = (-1 + \text{Id}[k]) - \text{Id}[k-1] = -1 + l_k \in [0, 1].$$

By Lemma 3.4 we see that $K_{-1,-1+1d[k]} = 0$, since $p - q(z) \neq -1$.

To complete the proof, suppose $l_k = l_{k-1} = 1$ and $p = \text{Id}[k] - 1$. We get $\text{Id}[k] - 1 = \text{Id}[k-2] + 1$ and therefore $z > P_{k-2} \Rightarrow q(z) \geq \text{Id}[k-2]$. Recall that $q(z)$ is also upper bounded by $\text{Id}[k-1]$. We derive that for $z \in Q_p$, it holds $p - 1 \leq q(z) \leq p$, therefore $p - q(z) \in [0, 1]$, and again by Lemma 3.4, $K_{-1,-1+1d[k]} = 0$.

As already pointed out, by using duality one can see that, for $z' \in Q_{2+1d[k-1]}$, it holds $p - q(z') \neq 2$, therefore $K_{2,2+1d[k-1]} = 0$.

(\Rightarrow) Suppose that $m \in \mathbb{Z}$ is determinantal, namely $K_2(m) = K_{-1}(m) = 0$. Lemma 4.6 implies that we may assume that the sets P_j are pairwise disjoint. By a permutation of the variable groups we also assume that the P_j sets induced by m satisfy

$$P_1 \leq P_2 \leq \cdots \leq P_r.$$

The sets P_j are distributed along $I := [0, \sum_{i=0}^n s_i]$ (Lemma 4.3), thus $I \setminus \cup P_j$ is split into at most $r + 1$ connected components. If $p = \text{Id}[k] - 1$, then the members of S_p cannot be P_{k+1}; otherwise, $p - q < 0$, which contradicts the fact that we always have $p - q \in [0, 1]$ for a determinantal formula. In particular, for $R_k \in S_p$ defined as previously, we get $R_k < P_{k+1}$, i.e. we have the implications (similarly for $P_{k-1} \leq L_k$, $p = \text{Id}[k-1] + 2$):

$$R_k \in \cup_{j} P_j \Rightarrow R_k \in \cup_{j} P_j \quad \text{and} \quad L_k \in \cup_{j} P_j \Rightarrow L_k \in \cup_{j} P_j.$$

(21)

Suppose $m_k < d_k R_k - l_k$, or equivalently $m_k + l_k < d_k R_k$. Then $R_k \notin \cup_{j} P_j$, hence by (21) we must have $R_k \notin \cup_{j} P_j$ which leads to $z = R_k \notin Q_p$, $p = \text{Id}[k] - 1$. This implies

$$q(z) \geq \text{Id}[k] \Rightarrow p - q(z) \leq \text{Id}[k] - 1 - \text{Id}[k] = -1 \Rightarrow K_{-1} \neq 0,$$

which is a contradiction. In the same spirit, if $m_k \geq d_k L_k$, we are led to $z' = L_k \in Q_p$, $p = \text{Id}[k-1] + 2$, then

$$q(z') \leq \text{Id}[k-1] \Rightarrow p - q(z') \geq p - \text{Id}[k-1] = 2 \Rightarrow K_{2} \neq 0,$$

which again contradicts our hypothesis on m.

We conclude that any coordinate m_k of m must satisfy $d_k R_k - l_k \leq m_k < d_k L_k$, hence the existence of m implies the inequality relations we had to prove. \square

14
Corollary 4.8. For any permutation $\pi : [1, r] \to [1, r]$, the vectors $m \in \mathbb{Z}^r$ contained in the box
\begin{equation}
d_k \sum_{n=\pi[k]+1}^n s_i - l_k \leq m_k \leq d_k \sum_{0}^{\pi[k]-1} s_i - 1
\end{equation}
for $k = 1, \ldots, r$ are determinantal.

Proof. Follows from the previous Theorem 4.7, proof direction (\Leftarrow). \qed

We have verified computationally the above theorem for systems of equations with $n \leq 10$ variables, partitioned into up to $r = 5$ groups, and of total degrees up to $\sum d_k = 18$. The findings indicate that apart from the $m -$vectors of Corollary 4.8, there are in some cases additional determinantal vectors, having certain coordinates outside the intervals.

It would be good to have a characterization that does not depend on the permutations of $[1, r]$; this would further reduce the time needed to check if some given data is determinantal. One can see that if $r \leq 2$ an equivalent condition is $d_k \sum_{n=k+1}^n s_i - l_k < d_k (s_0 + s_1)$ for all $k \in [1, r]$; see [5, Lem.5.3] for the case $r = 1$. It turns out that for any $r \in \mathbb{N}$ this condition is necessary for the existence of determinantal vectors, but not always sufficient: the smallest counterexample is $l = (1, 2, 2), d = (1, 1, 1), s = (1, 1, 1, 1, 2, 3)$: this data is not determinantal, although the condition holds. In our implementation this condition is used as a filter when checking if some data is determinantal. One can find examples of data with any even number of nonempty boxes, but by Theorem 4.7 there exists at least one that is nonempty.

If $r = 1$ then a minimum dimension formula lies in the centre of an interval [5]. We conjecture that a similar explicit choice also exists for $r > 1$. Experimental results indicate that minimum dimension formulae tend to appear near the centers of the nonempty boxes:

Conjecture 4.9. If the data l, d, s is determinantal then determinantal degree vectors of minimum matrix dimension lie close to the centre of the nonempty boxes of Corollary 4.8.

We conclude this section by treating the homogeneous case, as an example.

Example 4.10. The case $r = 1$, arbitrary degree, has been studied in [5]. We shall formulate the problem in our setting and provide independent proofs. Let $n, d \in \mathbb{Z}$, $s \in \mathbb{Z}^{n+1}_>$. This data define a scaled homogeneous system in \mathbb{P}^n; given $m \in \mathbb{Z}$, we obtain $P = (\frac{m}{n}, \frac{m+n}{n}) \cap \mathbb{Z}$. In this case there exist only zero and nth cohomologies; zero cohomologies can exist only for $\nu \geq 0$ and nth cohomologies can exist only for $\nu \leq 1$.
Thus in principle both of them exist for \(\nu \in \{0, 1\} \). Hence,

\[
K_\nu = \begin{cases}
K_{\nu, \nu}, & 1 < \nu \leq n + 1 \\
K_{\nu, \nu} \oplus K_{\nu, n+\nu}, & 0 \leq \nu \leq 1 \\
K_{\nu, n+\nu}, & -n \leq \nu < 0
\end{cases}
\]

i.e. the complex is of the form:

\[
0 \to K_{n+1,n+1} \to \cdots \to K_{1,1} \oplus K_{1,n+1} \to K_{0,0} \oplus K_{0,n} \to K_{1,n-1} \to \cdots \to K_{-n,0} \to 0
\]

We can explicitly give all determinantal integers in this case:

\[
K_2 = 0 \iff K_{2,2} = 0 \iff Q_2 = \emptyset \iff S_2 \subseteq P,
\]

thus

\[
\min S_2 > \frac{m}{d} \iff s_0 + s_1 > \frac{m}{d} \iff m < (s_0 + s_1)d.
\]

Similarly \(K_{-1} = 0 \iff Q_{n-1} = \emptyset \iff S_{n-1} \subseteq P \) and thus

\[
\max S_{n-1} \leq \frac{m+n}{d} \iff m \geq d \sum_{i=2}^{n} s_i - n.
\]

Consequently, a determinantal formula exists if \(d \sum_{i=2}^{n} s_i - n < (s_0 + s_1)d \), also verified by Theorem 4.7. In this case the integers contained in the interval

\[
\left(d \sum_{i=2}^{n} s_i - n - 1, d(s_0 + s_1) \right)
\]

are the only determinantal vectors, also verifying Corollary 4.8. Notice that the sum of the two endpoints is exactly the critical degree \(\rho \).

In [5, Cor.4.2, Prop.5.6] it is proved that the minimum-dimension determinantal formula is attained at \(m = \lfloor \rho/2 \rfloor \) and \(m = \lceil \rho/2 \rceil \), i.e. the centre(s) of this interval. For an illustration see Example 5.5.

\(\square \)

4.3. Pure formulae

A determinantal formula is pure if it is of the form \(K_{1,a} \to K_{0,b} \) for \(a, b \in [0, n+1] \) with \(a > b \). These formulae are either Sylvester- or Bézout-type, named after the matrices for the resultant of two univariate polynomials.

In the unmixed case both kinds of pure formulae exist exactly when for all \(k \in [1, r] \) it holds that \(\min\{l_k, d_k\} = 1 \) [8,16]. The following theorem extends this characterization to the scaled case, by showing that only pure Sylvester formulae are possible and the only data that admit such formulae are univariate and bivariate–bihomogeneous systems.

Theorem 4.11. If \(s \neq 1 \) a pure Sylvester formula exists if and only if \(r \leq 2 \) and \(l = (1) \) or \(l = (1, 1) \). If \(l_1 = n = 1 \) the degree vectors are given by

\[
m = d_1 \sum_{i=0}^{1} s_i - 1 \quad \text{and} \quad m' = -1,
\]
whereas if \(l = (1,1) \) the vectors are given by
\[
m = \left(-1, d_2 \sum_{0}^{2} s_i - 1 \right) \quad \text{and} \quad m' = \left(d_1 \sum_{0}^{2} s_i - 1, -1 \right).
\]
Also, no pure Bézout-type formulae exist for \(s \neq 1 \).

Notice the duality \(m + m' = \rho \).

Proof. It is enough to see that if a pure formula is determinantal the following inequalities hold
\[
n \leq \# \bigcup_{p \neq a,b} S_p \leq \# \bigcup_{i} P_k \leq n
\]
which implies that equalities hold. The inequality on the left follows from the fact that every \(S_p, p \in [0, n+1) \) contains at least one distinct integer since the sequence \(0, s_0, s_0 + s_1, \ldots, \sum_0^s s_i \) is strictly increasing. For the right inequality, note that the vanishing of all \(K_{\nu,p} \) with \(p \neq a, b \) implies \(Q_p = \emptyset \) (see Lemma 3.4). Thus \(\bigcup_{p \neq a,b} S_p \subseteq \bigcup_{k=1}^r P_k \) so the cardinality is bounded by \(\# \bigcup_{i} P_k \leq \sum_{i}^r \# P_k \leq \sum_{i}^r l_k = n \). Consequently \(\# \bigcup_{p \neq a,b} S_p = n \).

Suppose \(n > 2 \); the fact \(\# (S_1 \cup S_2) > 2 \) for \(\{i,j\} \neq \{0,1\} \) implies \(\bigcup_{p \neq a,b} S_p = S_1 \cup S_j \) for some \(i,j \), i.e. \(\# \{a,b\} = n \), contradiction. Thus \(n \leq 2 \).

Take \(n = 2 \). Since \(\# (S_0 \cup S_0) = 2 \), the above condition is satisfied for \(a = 2, b = 1 \): it is enough to set \(\bigcup_{i} P_k = S_0 \cup S_1 = \{0, \sum_{0}^s s_i \} \), thus the integers of \(\bigcup_{i} P_k \) are not consecutive, so \(r > 1 \) and \(l = (1,1) \). Similarly, if \(n = l = 1 \) two formulae are possible; for \(\bigcup_{i} P_k = S_0 = \{0\} \) \((a = 2, b = 1) \) or \(\bigcup_{i} P_k = S_1 = \{s_0 + s_1 \} \) \((a = 1, b = 0) \).

All stated \(m \)-vectors follow easily in both cases from \((m_k + l_k)/d_k = 0 \) and \((m_k + l_k)/d_k = \sum_{0}^s s_i \). A pure Bézout determinantal formula comes from \(K_{1,n+1} \rightarrow K_{0,0} \). Now \(\bigcup_{i} P_k \) contains \(S_1 \cup \cdots \cup S_n \) hence \(\# \bigcup_{i} P_k > n \). Thus it cannot exist for \(s \neq 1 \). \(\square \)

All pure formulae above are of Sylvester-type, and we will see their construction in Section 5. If \(n = 1 \), both formulae correspond to the classical Sylvester matrix.

If \(s = 1 \) pure determinantal formulae are possible for arbitrary \(n, r \) and a pure formula exists if and only if for all \(k, l_k = 1 \) or \(d_k = 1 \) \[8, \text{Th. 4.5}\]; if a pure Sylvester formula exists for \(a, b = a - 1 \) then another exists for \(a = 1, b = 0 \) \[8, \text{p. 15}\]. Observe in the proof above that this is not the case if \(s \neq 1, n = 2 \), thus the construction of the corresponding matrices for \(a \neq 1 \) now becomes important and highly nontrivial, in contrast to \[8\].

5. **Explicit matrix construction**

In this section we provide algorithms for the construction of the resultant matrix expressed as the matrix of the differential \(\delta_1 \) in the natural monomial basis. In doing so, we classify the different morphisms that may be encountered.

Before we continue, let us justify the necessity of our matrices, using \(l = d = (1,1) \) and \(s = (1,1,2) \) as an example, that is, the system of two bi-linear and one bi-quadratic equation (see also Example 6.1). It turns out that a (hybrid) resultant matrix of minimum dimension for this system has size \(4 \times 4 \), and its determinant equals the resultant of the system. The standard Bézout-Dixon construction gives a \(6 \times 6 \) matrix, but its determinant is identically zero, hence it does not express the resultant of the system.

The matrices constructed are unique up to row and column operations, reflecting the fact that monomial bases may be considered with a variety of different orderings.
The cases of pure Sylvester or pure Bézout matrix can be seen as a special case of the (generally hybrid, consisting of several blocks) matrix we construct in this section.

The general procedure for the construction of a resultant matrix, given a vector \(m \) and a system \((f_0, \ldots, f_n) \) of type \((l, d, s) \), is shown in Algorithm 7. In order to construct a resultant matrix we must find the matrix of the linear map \(\delta_1 : K_1 \to K_0 \) in some basis, typically the natural monomial basis, provided that \(K_{-1} = 0 \). In this case we have a generically surjective map with a maximal minor divisible by the sparse resultant. If additionally \(K_2 = 0 \) then \(\dim K_1 = \dim K_0 \) and the determinant of the square matrix is equal to the resultant, i.e. the formula is determinantal. We consider restrictions \(\delta_{a,b} : K_{1,a} \to K_{0,b} \) for any direct summand \(K_{1,a}, K_{0,b} \) of \(K_1, K_0 \) respectively. Every such restriction yields a block of the final matrix of size defined by the corresponding dimensions. Throughout this section the symbols \(a \) and \(b \) will refer to these indices.

Algorithm 7: MakeMatrix

Input: \(l, d \in \mathbb{N}, s \in \mathbb{N}^{n+1}, m \in \mathbb{Z}^r \) and \(f = (f_0, \ldots, f_n) \in V \).

Output: The matrix \(M \) of the map \(K_1 \to K_0 \).

\[
K_1 := \text{Term}(l, d, s, m, 1) ;
K_0 := \text{Term}(l, d, s, m, 0) ;
M := \text{Matrix}(\dim K_1, \dim K_0) ;
u := 1 ; \quad v := 1 ;
\]

foreach \(K_{1,a} \in K_0 \) **do**

\[
\text{rows} := \dim K_{1,a} ;
\]

foreach \(K_{0,b} \in K_0 \) **do**

\[
\text{cols} := \dim K_{0,b} ;
\]

if \(a - 1 < b \) then

\[
M(u..u + \text{rows} - 1, v..v + \text{cols} - 1) := 0 ;
\]

else if \(a - 1 = b \) then

\[
M(u..u + \text{rows} - 1, v..v + \text{cols} - 1) := \text{SYLMAT}(f, m, K_{1,a}, K_{0,b}) ;
\]

else

\[
M(u..u + \text{rows} - 1, v..v + \text{cols} - 1) := \text{BEZOUTMAT}(f, m, K_{1,a}, K_{0,b}) ;
\]

end

\[
v := v + \text{cols} ;
\]

end

\[
u := u + \text{rows} ;
\]

end

return \(M \);

5.1. Sylvester blocks

The Sylvester-type formulae that we consider generalize the classical univariate Sylvester matrix and the multigraded Sylvester matrices of [16] by introducing multiplication matrices with block structure. Even though these Koszul morphisms are known to correspond to some Sylvester blocks since [18] (see Proposition 5.1 below), the exact interpretation of the morphisms into matrix formulae had not been made explicit until now.

By [18, Prop.2.5, Prop.2.6] we have the following
Proposition 5.1. [18] If $a - 1 < b$ then $\delta_{a,b} = 0$. Moreover, if $a - 1 = b$ then $\delta_{a,b}$ is a Sylvester map.

If $a = 1$ and $b = 0$ then every coordinate of m is non-negative and there are only zero cohomologies involved in $K_{1,1} = \bigoplus H^0(m - s_i d)$ and $K_{0,0} = H^0(m)$. This map is a well known Sylvester map expressing the multiplication $(g_0,\ldots,g_n) \mapsto \sum_{i=0}^n g_i f_i$. The entries of the matrix are indexed by the exponents of the basis monomials of $\bigoplus S(m - s_i d)$ and $S(m)$ as well as the chosen polynomial f_i. The entry indexed $(i, \alpha), \beta$ can be computed as:

\[
\text{coef}(f_i, x^{\beta - \alpha}) = \begin{cases}
0, & \text{if } J \not\subseteq I, \\
(-1)^{k+1} \text{coef}(f_{i_k}, x) , & \text{if } I \setminus J = \{i_k\},
\end{cases}
\]

where x^α and x^β run through the corresponding monomial bases. The entry $(i, \alpha), \beta$ is zero if the support of f_k does not contain $\beta - \alpha$. Also, by Serre duality a block $K_{1,n+1} \to K_{0,n}$ corresponds to the dual of $K_{1,1} \to K_{0,0}$, i.e. to the degree vector $\rho - m$, and yields the same matrix transposed.

The following theorem constructs corresponding Sylvester-type matrix in the general case.

Theorem 5.2. The entry of the transposed matrix of $\delta_{a,b} : K_{1,a} \to K_{0,a-1}$ in row (I, α) and column (J, β) is

\[
\begin{cases}
0, & \text{if } J \not\subseteq I, \\
(-1)^{k+1} \text{coef}(f_{i_k}, x^u) , & \text{if } I \setminus J = \{i_k\},
\end{cases}
\]

where $I = \{i_1 < i_2 < \cdots < i_u\}$ and $J = \{j_1 < j_2 < \cdots < j_{a-1}\}$, $I, J \subseteq \{0,\ldots,n\}$. Moreover, $\alpha, \beta \in \mathbb{N}^n$ run through the exponents of monomial bases of $H^{a-1}(m - d \sum_{\theta \in \Theta} s_{i_\theta})$, $H^{a-1}(m - d \sum_{\theta \in \Theta} s_{i_\theta})$, and $u \in \mathbb{N}^n$, with $u_i = |\beta_i - \alpha_i|$.

Proof. Consider a basis of $\bigwedge^a V$, $\{e_{i_1,i_2,\ldots,i_a} : 0 \leq i_1 < i_2 < \cdots < i_a \leq n\}$ and similarly for $\bigwedge^{a-1} V$, where e_0,\ldots,e_n is a basis for V. This differential expresses a classic Koszul map

\[
\partial_a(e_{i_1},\ldots,e_{i_a}) = \sum_{k=0}^n (-1)^{k+1} f_{i_k} e_{i_1,\ldots,i_{k-1},i_{k+1},\ldots,i_a}
\]

and by [18, Prop.2.6], this is identified as multiplication by f_{i_k}, when passing to the complex of modules.

Now fix two sets $I \subseteq J$ with $I \setminus J = \{i_k\}$, corresponding to a choice of basis elements e_I, e_J of the exterior algebra; then the part of the Koszul map from e_I to e_J gives

\[
(-1)^{k+1} M(f_{i_k}) : H^{a-1}(m - d \sum_{\theta \in I} s_\theta) \to H^{a-1}(m - d \sum_{\theta \in J} s_\theta)
\]

This multiplication map is a product of homogeneous multiplication operators in the symmetric power basis. This includes operators between negative symmetric powers, where multiplication is expressed by applying the element of the dual space to f_{i_k}.

To see this, consider basis elements w^α, w^β that index a row and column resp. of the matrix of $M(f_{i_k})$. Here the part w_k of w associated with the k-th variable group is either $x_k^{\alpha_k}$ or a dual element indexed by α_k. We identify dual elements with the negative symmetric powers, thus this can be thought as $x_k^{\alpha_k}$. This defines $\tilde{\alpha}, \tilde{\beta} \in \mathbb{Z}^n$; the generalized multihomogeneous multiplication by f_{i_k} as in [18, p.577] is, in terms
of multidegrees, incrementing $|\bar{x}|$ by s_id_k to obtain $|\bar{\beta}|$, and hence the corresponding matrix has entry $\text{coef}(f_{i_k}, x^u)$, where $u_t = |\beta_t - \alpha_t|, t \in [1,n]$. The absolute value is needed because for multiplication in dual spaces, the degrees satisfy $-|\alpha| + s_id_k = -|\beta| \Rightarrow s_id_k = |\alpha| - |\beta| = -(|\beta| - |\alpha|)$. \qed

In [8, Sect.7.1], an example is studied that admits a Sylvester formula with $a = 2, b = 1$. The matrix derived by such a complex is described by Theorem 5.2 and is discussed in the following:

Example 5.3. Consider the unmixed case $l = (1, 1), d = (1, 1)$, as in [8, Sect.7.1]. This is a system of three bi-linear forms in two affine variables. The vector $m = (2, -1)$ gives $K_1 = K_{1,2} = H^1(0, -3)(2)$ and $K_0 = K_{0,1} = H^1(1, -2)(5)$. The Sylvester map represented here is

$$\delta_1 : (g_0, g_1, g_2) \mapsto (-g_0f_1 - g_1f_2, g_0f_2 - g_2f_1, g_1f_0 + g_2f_1)$$

and is similar to the one in [6]. By Theorem 5.2, it yields the following (transposed) matrix, given in 2×2 block format:

$$\begin{pmatrix}
-M(f_1) & M(f_0) & 0 \\
-M(f_2) & 0 & M(f_0) \\
0 & -M(f_2) & M(f_1)
\end{pmatrix}$$

If $g = c_0 + c_1x_1 + c_2x_2 + c_3x_1x_2$ the matrix of the multiplication map

$$M(g) : S(0) \otimes S(1)^* \ni w \mapsto wg \in S(1) \otimes S(0)^*$$

in the natural monomial basis is

$$\begin{pmatrix}
c_2 & c_3 \\
c_0 & c_1
\end{pmatrix}$$

as one can easily verify by hand calculations or using our MAPLE implementation (Section 6). \qed

5.2. Bézout blocks

A Bézout-type block comes from a map of the form $\delta_{a,b} : K_{1,a} \to K_{b,b}$ with $a - 1 > b$. In the case $a = n + 1, b = 0$ this is a map corresponding to the Bezoutian of the system, whereas in other cases some Bézout-like matrices occur, from square subsystems obtained by hiding certain variables.

Consider the Bezoutian, or Morley form [14], of f_0, \ldots, f_n. This is a polynomial of multidegree (ρ, ρ) in $F[x, y]$ and can be decomposed as

$$\Delta := \sum_{u_1=0}^{\rho_1} \cdots \sum_{u_r=0}^{\rho_r} \Delta_{u}(\bar{x}) \cdot \bar{y}$$

(23)

where $\Delta_u(\bar{x}) \in S$ has deg $\Delta_u(\bar{x}) = \rho - u$. Here $\bar{x} = (x_1, \ldots, x_r)$ denotes the set of homogeneous variable groups and $\bar{y} = (y_1, \ldots, y_r)$ a set of new variables with the same cardinalities, i.e. $|\bar{y}| = l_k + 1$.

The Bezoutian gives a linear map

$$\bigwedge^{n+1}V \rightarrow \bigoplus_{m_k \leq \rho_k} S(\rho - m) \otimes S(m).$$

(24)
where the space on the left is the \((n+1)\)-th exterior algebra of \(V = S(s_0d) + \cdots + S(s_rd)\) and the direct sum runs over all vectors \(m \in \mathbb{Z}^r\) with \(m_k \leq \rho_k\) for all \(k \in [1,r]\). In particular, the graded piece of \(\Delta\) in degree \((\rho - m, m)\) in \((\hat{x}, \hat{y})\) is

\[
\Delta_{\rho - m, m} := \sum_{u_k = m_k} \Delta_u(\hat{x}) \cdot \hat{y}^u
\]

for all monomials \(\hat{y}^u\) of degree \(m\) and coefficients in \(\mathbb{F}[\hat{x}]\) of degree \(\rho - m\). It yields a map

\[
S(\rho - m)^* \rightarrow S(m)
\]

known as the Bezoutian in degree \(m\) of \(f_0, \ldots, f_n\). The differential of \(K_{1,n+1} \rightarrow K_{0,0}\) can be chosen to be exactly this map, since evidently \(K_{0,0} = H^0(m) \simeq S(m)\) and

\[
K_{1,n+1} = H^0 \left(m - \sum_{0}^{n} s_j d \right) \simeq S \left(-m + \sum_{0}^{n} s_j d + l + 1 \right)^*
\]

according to Serre duality (see Section 3). Thus, substituting the critical degree vector (cf. Definition 3.2), we get \(K_{1,n+1} = S(\rho - m)^*\).

The polynomial \(\Delta\) defined in (23) has \(n+r\) homogeneous variables and its homogeneous parts can be computed using a determinant construction in [1], which we adopt here. We recursively consider, for \(k = 1, \ldots, r\) the uniquely defined polynomials \(f_{i,j}^{(1)}\), where \(0 \leq j \leq l_k\), as follows:

\[
f_i = x_{1,0} f_{i,0}^{(1)} + \cdots + x_{1,1} f_{i,1}^{(1)} + f_{i,j}^{(1)} \in \mathbb{F}[x_{1,1}, \ldots, x_{1,l_1}] [x_2, \ldots, x_r],
\]

for all \(i = 1, \ldots, n\). To define \(f_{i,j}^{(k)}\), for \(2 \leq k \leq r\) and \(0 \leq j \leq l_j\), we decompose \(f_{i,j}^{(k-1)}\) as in (26) with respect to the group \(x_j\):

\[
f_{i,j}^{(k-1)} = x_{k,1} f_{i,1}^{(k)} + \cdots + x_{k,l_k} f_{i,l_k}^{(k)} \in \mathbb{F}[x_{1,1}, \ldots, x_{k-1,l_k-1}] [x_{k,j}, \ldots, x_{k,l_k}] [x_{k+1,1}, \ldots, x_r].
\]

Overall we obtain a decomposition

\[
f_i = \sum_{j=0}^{l_1-1} x_{1,j} f_{i,j}^{(1)} + \sum_{j=0}^{l_1-2} x_{1,j} f_{i,j}^{(2)} + \cdots + \prod_{t=1}^{k-1} x_{t,l_t} \sum_{j=1}^{l_k-1} x_{k,j} f_{i,j}^{(k)} + \cdots
\]

\[
\cdots + \prod_{t=1}^{r-1} x_{t,l_t} \sum_{j=1}^{l_t-1} x_{r,j} f_{i,j}^{(r)} + \prod_{t=1}^{r-1} x_{t,l_t} f_{i,t_r}^{(r)} \in \mathbb{F}[x_{1,1}, \ldots, x_{r,l_r}],
\]

of the polynomial \(f_i\), for all \(i = 1, \ldots, n\). The order of the variable groups, from left to right, corresponds to choosing the permutation \(\pi = \text{Id}\). The \((n+1) \times (n+1)\) determinant

\[
\mathcal{D} = \begin{vmatrix}
0 & 0 & \cdots & f_{0,0}^{(1)} & \cdots & f_{0,l_1-1}^{(1)} & \cdots & f_{0,l_k-1}^{(k)} & \cdots & f_{0,l_r}^{(r)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & f_{0,0}^{(1)} & \cdots & f_{0,l_1-1}^{(1)} & \cdots & f_{0,l_k-1}^{(k)} & \cdots & f_{0,l_r}^{(r)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & f_{n,0}^{(1)} & \cdots & f_{n,l_1-1}^{(1)} & \cdots & f_{n,l_k-1}^{(k)} & \cdots & f_{n,l_r}^{(r)}
\end{vmatrix},
\]

(27)
The difference Bezoutians \(F \) as a polynomial in \(x \) affine Bezoutian. Let \(\alpha \), \(\beta \), \(\gamma \). Note that in the case of Bezoutian blocks, it holds if define a partial Bezoutian polynomial with respect to \(x \) the variable group \(t \). As a result the totality of variables is \(x = (x_1, \ldots, x_r) \) and \(y = (y_1, \ldots, y_r) \).

We set \(w_t, t = 1, \ldots, n-1 \) the conjunction of the first \(t \) variables of \(y \) and the last \(n-t \) variables of \(x \).

If \(a = n+1, b = 0 \) the affine Bezoutian construction follows from the expansion of
\[
\begin{vmatrix}
 f_0(x) & f_0(w_1) & \cdots & f_0(w_{n-1}) & f_0(y) \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 f_n(x) & f_n(w_1) & \cdots & f_n(w_{n-1}) & f_n(y)
\end{vmatrix}
/ \prod_{k=1}^{r} \prod_{j=1}^{l_k} (x_{k,j} - y_{k,j})
\]
(28)

as a polynomial in \(\mathbb{F}[y] \) with coefficients in \(\mathbb{F}[x] \). Hence the entry of the Bezoutian matrix indexed by \(\alpha, \beta \) can be computed as the coefficient of \(x^\alpha y^\beta \) of this polynomial.

We propose generalizations of this construction for arbitrary \(a, b \) that are called partial Bezoutians, as in [8]. It is clear that \(a - 1 = q(z_1) \) and \(b = q(z_2) \), for \(z_1 \in Q_y \) and \(z_2 \in Q_b \). The difference \(a - b - 1 = \sum_{\theta=1}^{s} l_{k\theta} \) where \(k_1, \ldots, k_t \) is a sub-sequence of \([1, r]\), since if \(P_k < b \) then \(P_k < a \) thus
\[q(a) - q(b) = \sum_{P_k < a} l_k - \sum_{P_k < b} l_k = \sum_{b < P_k < a} l_k. \]

These indices suggest the variable groups that we should substitute in the partial Bezoutian. Note that in the case of Bezoutian blocks, it holds \(a - b - 1 > 0 \) thus some substitutions will actually take place. Let \(i_1, \ldots, i_{a-b} \) be a sub-sequence of \([0, n]\). We can define a partial Bezoutian polynomial with respect to \(f_{i_1}, \ldots, f_{i_{a-b}} \) and \(y_{k_1}, \ldots, y_{k_t} \) as
\[
\begin{vmatrix}
 f_{i_1}(x) & \cdots & f_{i_1}(w) \\
 \vdots & \ddots & \vdots \\
 f_{i_{a-b}}(x) & \cdots & f_{i_{a-b}}(w)
\end{vmatrix}
/ \prod_{\theta=1}^{s} \prod_{j=1}^{l_{i\theta}} (x_{i\theta,j} - y_{i\theta,j}).
\]
(29)

In this Bezoutian, only the indicated \(y \)-variable substitutions take place, in successive columns: the variable vector \(w \) differs from \(x \) at \(x_{k_1}, \ldots, x_{k_t} \), these have been substituted gradually with \(y_{k_1}, \ldots, y_{k_t} \). Note that \(w \) generalizes the vectors \(w \) defined earlier, in the sense that the variables of only specific groups are substituted. The total number of substituted variables is \(a - b - 1 \), so this is indeed a Bézout-type determinant.

For given \(a \) and \(b \), there exist \(\binom{n+b}{a-b} \) partial Bezoutian polynomials. The columns of the final matrix are indexed by the \(x \)-part of their support, and the rows are indexed by the \(y \)-part as well as the chosen polynomials \(f_{i_1}, \ldots, f_{i_{a-b}} \).

Example 5.5. Consider the unmixed data \(l = 2, d = 2, s = (1,1,1) \). Determinantal formulae are \(m \in [0,3] \), which is just \(m = 0 \), \(m = 1 \) and their duals (i.e. transpose matrices). Notice how these formulae correspond to the decompositions of \(\rho = 3 = \)
3 + 0 = 2 + 1. In both cases the complex is of block type $K_{1,3} \to K_{0,0} \oplus K_{0,2}$. The Sylvester part $K_{1,3} \to K_{0,2}$ can be retrieved as in Example 5.3. For $m = 0$ the Bézout part is $H^2(−6) \simeq S(3)^* \to H^0(0) \simeq S(0)$, whose 5×1 matrix is in terms of brackets

\[
\begin{pmatrix}
\end{pmatrix}^T.
\]

A bracket $[ijk]$ is defined as

\[
[ijk] := \det \begin{bmatrix}
a_i & a_j & a_k \\
b_i & b_j & b_k \\
c_i & c_j & c_k
\end{bmatrix},
\]

where a_i, b_i, c_i denote coefficients of f_0, f_1, f_2 respectively, for instance $f_2 = c_0 + c_1x_2 + c_2x_2^2 + c_3x_1 + c_4x_1x_2 + c_5x_1^2$. Now, for $m = 1$ we have Bézout part $H^2(−5) \simeq S(2)^* \to H^0(1) \simeq S(1)$, which yields the 5×3 matrix

\[
\begin{pmatrix}
\end{pmatrix}^T.
\]

6. Implementation

We have implemented the search for formulae and construction of the corresponding resultant matrices in a Maple module. Our code is based on that of [8, Sect. 8] and extends it to the scaled case. We also introduce new features, including construction of the matrices of Section 5; hence we deliver a full package for multihomogeneous resultants, publicly available at www-sop.inria.fr/galaad/amantzaf/soft.html.

Our implementation has three main parts; given data (l, d, s) it discovers all possible determinantal formula; this part had been implemented for the unmixed case in [8]. Moreover, for a specific m-vector the corresponding resultant complex is computed and saved in memory in an efficient representation. As a final step the results of Section 5 are being used to output the resultant matrix coming from this complex. The main routines of our software are illustrated in Table 2, with pointers to the respective pseudo-codes or results in the paper. For the sake of backwards compatibility, we also keep the FindSyl and FindBez routines from [8], that compute certain explicit m-vectors for unmixed systems.

The computation of all the m-vectors can be done by searching the box defined in Theorem 4.4 and using the filter in Lemma 4.5. For every candidate, we check whether the terms K_2 and K_{-1} vanish to decide if it is determinantal(cf. Algorithm 6).

For a vector m, the resultant complex can be computed in an efficient data structure that captures its combinatorial information and allows us to compute the corresponding matrix. More specifically, a nonzero cohomology summand $K_{\nu,p}$ is represented as a list of objects of type Cohomology, (Table 1. Also a term K_{ν} is a list of $K_{\nu,p}$’s and a complex a list of terms K_{ν} (cf. Algorithms 4, 5).
Table 2. The main routines of our MAPLE module.

<table>
<thead>
<tr>
<th>routine</th>
<th>function</th>
<th>implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MakeSystem</td>
<td>output (n + 1) polynomials of type ((l, d, s))</td>
<td>based on Alg. 1</td>
</tr>
<tr>
<td>mBEZOUT</td>
<td>compute the m-Bézout bound</td>
<td>based on Lem. 2.2</td>
</tr>
<tr>
<td>AllDetVecs</td>
<td>enumerate all determinantal (m)-vectors</td>
<td>based on Alg. 6</td>
</tr>
<tr>
<td>DetBoxes</td>
<td>compute determinantal domains</td>
<td>based on Cor. 4.8</td>
</tr>
<tr>
<td>FindSyl</td>
<td>output Sylvester type vectors (unmixed case)</td>
<td>based on [8, Th. 5.4]</td>
</tr>
<tr>
<td>FindBez</td>
<td>find all pure Bézout-type vectors (unmixed case)</td>
<td>based on [8, Th. 6.7]</td>
</tr>
<tr>
<td>MakeComplex</td>
<td>compute the complex of an (m)-vector</td>
<td>based on Alg. 5</td>
</tr>
<tr>
<td>PrintBlocks</td>
<td>print complex as (\oplus_\alpha K_{1,a} \rightarrow \oplus_\beta K_{0,b})</td>
<td>based on Alg. 4</td>
</tr>
<tr>
<td>PrintCohs</td>
<td>print complex as (\oplus^p u \rightarrow \oplus^q v)</td>
<td>based on Alg. 3</td>
</tr>
<tr>
<td>MakeMatrix</td>
<td>construct matrix (K_1 \rightarrow K_0)</td>
<td>based on Alg. 7</td>
</tr>
<tr>
<td>SylvMat</td>
<td>construct Sylvester matrix (K_{1,p} \rightarrow K_{0,p-1})</td>
<td>based on Th. 5.1</td>
</tr>
<tr>
<td>BezoutMat</td>
<td>construct Bézout matrix (K_{1,a} \rightarrow K_{0,b})</td>
<td>based on Sect. 5.2</td>
</tr>
<tr>
<td>data structure</td>
<td>“COHOMOLOGY”, for (H^q(u))</td>
<td>see Table 1</td>
</tr>
</tbody>
</table>

The construction of a matrix takes place block by block (cf. Algorithm 7). We iterate over all morphisms \(\delta_{a,b} \) and after identifying each of them the corresponding routine constructs a Sylvester or Bézout block. Note that these morphisms are not contained in the representation of the complex, but they are retrieved from the terms \(K_{1,a} \) and \(K_{0,b} \).

Example 6.1. We show how our results apply to a concrete example and demonstrate the use of the MAPLE package on it. The system we consider admits a standard Bézout-Dixon construction of size \(6 \times 6 \). But its determinant is identically zero, due to the sparsity of the supports, hence it neither expresses the multihomogeneous resultant, nor provides any information on the roots. Instead our method constructs a non-singular \(4 \times 4 \) hybrid matrix.

Let \(l = d = (1,1) \) and \(s = (1,1,2) \).

> read "mhres.mpl":
> with(mhres):
> l:=vector([1,1]): d:=l: s:= vector([1,1,2]):
> f:= MakeSystem(l,d,s);
> \(f_0 = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_1 x_2 \)
> \(f_1 = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2 \)
> \(f_2 = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_1 x_2 + c_4 x_1^2 + c_5 x_1 x_2^2 +
> c_6 x_2^2 + c_7 x_1 x_2^2 + c_8 x_1^2 x_2^2 \)

We check that this data is determinantal, using Theorem 4.7:
> has_deter(l, d, s);
> \(\text{true} \)
Below we apply a search for all possible determinantal vectors, by examining all vectors in the domain defined in Theorem 4.4. The condition used here is that the dimension of \(K_2 \) and \(K_{-1} \) is zero, which is both necessary and sufficient.

```plaintext
> AllDetVecs( l, d, s) ;
[[2, 0, 4], [0, 2, 4], [3, 0, 6], [2, 1, 6], [2, -1, 6], [1, 2, 6], [1, 1, 6],
 [1, 0, 6], [0, 3, 6], [0, 1, 6], [-1, 2, 6], [3, 1, 8], [1, 3, 8], [1, -1, 8],
 [-1, 1, 8], [3, -1, 10], [-1, 3, 10]]
```

The vectors are listed with matrix dimension as third coordinate. The search returned 17 vectors; the fact that the number of vectors is odd reveals that there exists a self-dual vector. The critical degree is \(\rho = (2, 2) \), thus \(m = (1, 1) \) yields the self-dual formula. Since the remaining 16 vectors come in dual pairs, we only mention one formula for each pair; finally, the first 3 formulae listed have a symmetric formula, due to the symmetries present to our data, so it suffices to list 6 distinct formulae.

Using Theorem 4.7 we can compute directly determinantal boxes:

```plaintext
> DetBoxes( l, d, s) ;
[[−1, 1], [1, 3]], [[1, 3], [−1, 1]]
```

Note that the determinantal vectors are exactly the vectors in these boxes. These intersect at \(m = (1, 1) \) which yields the self-dual formula. In this example minimum dimension formulae correspond to the centres of the intervals, at \(m = (2, 0) \) and \(m = (0, 2) \) as noted in Conjecture 4.9.

A pure Sylvester matrix comes from the vector (cf. Theorem 4.11)

```plaintext
> m:= vector([d[1]*convert(op(s),'+')-1, -1]);
m = (3, -1)
```

We compute the complex:

```plaintext
> K:= MakeComplex(l,d,s,m):
> PrintBlocks(K); PrintCohs(K);
\[ K_{1,2} \rightarrow K_{0,1} \]
\[ H^1(1, -3) \oplus H^1(0, -4) \rightarrow H^1(2, -2)^2 \oplus H^1(1, -3) \]
```

The dual vector \((-1, 3)\) yields the same matrix transposed. The block type of the matrix is deduced by the first command, whereas \texttt{PrintCohs} returns the full description of the complex. The dimension is given by the multihomogeneous Bézout bound, see Lemma 2.2, which is equal to:

```plaintext
> mBezout( l, d, s) ;
mBezout( 1, d, s) ;
10
```

It corresponds to a “twisted” Sylvester matrix:
\[
\begin{pmatrix}
-b_1 & -b_3 & 0 & a_1 & a_3 & 0 & 0 & 0 & 0 & 0 \\
-b_0 & -b_2 & 0 & a_0 & a_2 & 0 & 0 & 0 & 0 & 0 \\
0 & -b_1 & -b_3 & 0 & a_1 & a_3 & 0 & 0 & 0 & 0 \\
0 & -b_0 & -b_2 & 0 & a_0 & a_2 & 0 & 0 & 0 & 0 \\
-c_4 & -c_5 & -c_8 & 0 & 0 & 0 & a_1 & 0 & a_3 & 0 \\
-c_1 & -c_3 & -c_7 & 0 & 0 & 0 & a_0 & a_1 & a_2 & a_3 \\
-c_0 & -c_2 & -c_6 & 0 & 0 & 0 & a_0 & 0 & a_2 & 0 \\
0 & 0 & 0 & -c_4 & -c_5 & -c_8 & b_1 & 0 & b_3 & 0 \\
0 & 0 & 0 & -c_1 & -c_3 & -c_7 & b_0 & b_1 & b_2 & b_3 \\
0 & 0 & 0 & -c_0 & -c_2 & -c_6 & 0 & b_0 & 0 & b_2 \\
\end{pmatrix}
\]

The rest of the matrices are presented in block format; the same notation is used for both the map and its matrix. The dimension of these maps depend on \(m \), which we omit to write. Also, \(B(x_k) \) stands for the partial Bézoutian with respect to variables \(x_k \).

For \(m = (3, 1) \) (and the symmetric \(m = (1, 3) \)) we get \(K_{1,1} \oplus K_{1,2} \to K_{0,0} \), or

\[
H^0(2, 0)^2 \oplus H^1(0, -2)^2 \to H^0(3, 1)
\]

\[
\begin{bmatrix}
M(f_0) \\
M(f_1) \\
B(x_2)
\end{bmatrix}
\]

For \(m = (3, 0) \) (and its symmetric \(m = (0, 3) \)), \(K_{1,2} \to K_{0,0} \oplus K_{0,1} \):

\[
H^1(1, -2) \oplus H^1(0, -3)^2 \to H^0(3, 0) \oplus H^1(1, -2)^2
\]

\[
\begin{bmatrix}
B(x_2) & 0 & M(f_0) \\
& & -M(f_1)
\end{bmatrix}
\]

For \(m = (2, 1) \) (which is symmetric to \(m = (1, 2) \)), we compute \(K_{1,1} \oplus K_{1,3} \to K_{0,0} \), or

\[
H^1(1, 0)^2 \oplus H^2(-2, -3) \to H^0(2, 1)
\]

\[
\begin{bmatrix}
M(f_1) \\
M(f_2)
\end{bmatrix}
\Delta_{(0,1),(2,1)}^T
\]

If \(m = (1, 1) \), we get \(K_{1,1} \oplus K_{1,3} \to K_{0,0} \oplus K_{0,2} \), yielding

\[
H^0(0, 0)^2 \oplus H^2(-3, -3) \to H^0(1, 1) \oplus H^2(-2, -2)^2
\]

26
\[
\begin{pmatrix}
 f_0 & 0 \\
 f_1 & 0 \\
 \Delta_{(1,1),(1,1)} & M(f_0) - M(f_1)
\end{pmatrix}
\]

We write here \(f_i \) instead of \(M(f_i) \), since this matrix is just the \(1 \times 4 \) vector of coefficients of \(f_i \).

For \(m = (2,0) \), we get \(K_{1,2} \oplus K_{1,3} \to K_{0,0} \oplus K_{0,1} \), or

\[
H^1(0, -2) \oplus H^2(-2, -4) \to H^0(2, 0) \oplus H^1(0, -2)
\]

\[
\begin{pmatrix}
 B(x_2) & 0 \\
 \Delta_{(2,0),(0,2)} & B(x_1)
\end{pmatrix}
\]

This is the minimum dimension determinantal complex, yielding a \(4 \times 4 \) matrix.

\[\square \]

Acknowledgements

We thank Laurent Busé for his help with Example 5.3. Both authors were partly supported by the Marie-Curie IT Network SAGA, [FP7/2007-2013] grant agreement PITN-GA-2008-214584. Part of this work was completed by the second author in fulfillment of the M.Sc. degree in the Department of Informatics and Telecommunications of the University of Athens.

References

