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Abstract

We consider the discrete system resulting from mixed finite element approxima-
tion of a second-order elliptic boundary value problem with Crouzeix-Raviart non-
conforming elements for the vector valued unknown function and piece-wise constants
for the scalar valued unknown function. Since the mass matrix corresponding to the
vector valued variables is diagonal, these unknowns can be eliminated exactly. Thus,
the problem of designing an efficient algorithm for the solution of the resulting al-
gebraic system is reduced to one of constructing an efficient algorithm for a system
whose matrix is a graph-Laplacian (or weighted graph-Laplacian).

We propose a preconditioner based on an algebraic multilevel iterations (AMLI)
algorithm. The hierarchical two-level transformations and the corresponding 2 � 2
block splittings of the graph-Laplacian needed in an AMLI algorithm are introduced
locally on macroelements. Each macroelement is associated with an edge of a coarser
triangulation. To define the action of the preconditioner we employ polynomial ap-
proximations of the inverses of the pivot blocks in the 2� 2 splittings. Such approxi-
mations are obtained via the best polynomial approximation of x�1 in L1 norm on a
finite interval. Our construction provides sufficient accuracy and moreover, guaran-
tees that each pivot block is approximated by a positive definite matrix polynomial.

One possible application of the constructed efficient preconditioner is in the nu-
merical solution of unsteady Navier-Stokes equations by a projection method. It can
also be used to design efficient solvers for problems corresponding to other mixed
finite element discretizations.
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1 Introduction

Let us consider the elliptic problem in mixed form:u+rp = f in Ω;r � u = 0 in Ω;u � n = 0 on �Ω; (1)

where Ω is a convex polygonal domain in IR2, f is a given smooth vector valued function,n is the outward unit normal vector to the boundary. We refer to the vector valued
unknown function u as a velocity and to the scalar valued unknown p as a pressure. The
preconditioner that we construct is for the finite element (FE) discretization with Crouzeix-
Raviart elements for u and piece-wise constants for p. It is known that such choice of spaces
is stable (see [4]), and such spaces are used as a discretization in a projection method for
Navier-Stokes equations (see e.g. [2]). The Crouzeix-Raviart mass matrix is diagonal and
the velocity unknowns can be eliminated exactly (see e.g. [8]). The matrix A of the reduced
system for the pressure is a weighted graph-Laplacian. We consider 2-D uniform mesh of
right-angled triangles. Then A corresponds to the T-shaped four point stencil shown in
Fig. 1.
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Figure 1: Schur complement four point stencil for the pressure

We propose a preconditioner for the weighted graph-Laplacian system based on alge-
braic multilevel iterations (AMLI) method. The framework for this method was originally
introduced in [1] (see also [10], [6]). AMLI is a recursive generalization of two-level precon-
ditioners that has optimal computational complexity due to a proper Schur complement
stabilization using Chebyshev polynomials. We consider a sequence of nested triangula-
tions T0 � T1 � � � � � Tl of the domain Ω, constructed by recursive uniform refinement of
a given initial mesh. We denote by A(0); A(1) � � �A(l) the corresponding system matrices.
Regarding a hierarchical 2x2 block partitioning of the system matrix A(k) at a refinement
level k,bA(k) = J (k)A(k)J (k)T =

" bA(k)
11

bA(k)
12bA(k)

21
bA(k)

22

# gdegrees of freedom added by refinementgcoarse mesh degrees of freedom

the AMLI preconditioner is defined as follows: C(0) = A(0) at the coarsest mesh level with
index 0,
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C(k) = J (k)�1

" bC(k)
11 0bA(k)
21 Ã(k�1)

# � I bC(k)�1

11
bA(k)

12

0 I �J (k)�T
at successively refined levels k, where bC(k)

11 are symmetric positive definite approximations

of bA(k)
11 that satisfy vT bA(k)

11 v � vT bC(k)
11 v � (1 + b)vT bA(k)

11 v; for all v; (2)

and Ã(k�1)�1

= Q��1

�C(k�1)�1A(k�1)
�C(k�1)�1

, where Q��1 is a properly chosen polyno-

mial of degree � � 1.
It is known that under conditions, detailed in [1], the relative condition number satisfies�(C(l)�1A(l)) � (1 + b)=(1 � 
2), where 
 is the Cauchy-Bunyakowski-Schwarz (CBS)

constant, that characterizes the two-level hierarchical partitionings.
For the case � = 2 the coefficients q0 and q1 of the optimal stabilization polynomialQ1(y) = q0 + q1y, which has to be evaluated in the AMLI W-cycle, are given by (see [1, 5]):q0 =

2� ; q1 =
�1

1� 
2 + b(1� 2�) ; with � =
p

1 + b + b2 � 
2 � b (3)

In this article we propose and justify the use of polynomial approximation of the pivot
blocks inverses ( bA(k)

11 )�1 in the AMLI setting for weighted graph-Laplacians, that yields
good optimal order preconditioned conjugate gradient (PCG) convergence rates.

The rest of the paper is organized as follows. In Section 2 we present the general idea of
constructing approximation of a matrix inverse, using the best polynomial approximation
of x�1 in L1 norm on a finite interval. In Section 3 we show how this idea is applied for the
pivot block inverses in AMLI method for weighted graph-Laplacians. Section 4 is devoted
to analysis of the numerical results of applying PCG method with the constructed precon-
ditioner, as well as a comparison with the case when conjugate gradient (CG) iterations
are used for solving the pivot block systems in the AMLI algorithm. Concluding remarks
and brief summary of the results are found in Section 5.

2 Polynomial approximation of a matrix inverse

Let H be n�n symmetric positive definite (SPD) matrix with a set of eigenvalue-eigenvector
pairs f�i; v̄igni=1; 0 < �1 � � � � � �n. We construct a polynomial approximation (precon-
ditioner) C�1 of H�1 (i.e. preconditioner C of H) such that C�1 = P�(H); P� 2 P� , and�(C�1H) is close to 1.

Theorem 2.1. Let P�(x) 2 P� , and 0 < m � P�(x)x � M for all x in an intervalS; [�1; �n] � S. Then mvTv � vTP�(H)Hv �MvTv; 8v 2 Rn .
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Proof. For all v 2 Rn , v =
nXi=1

�iv̄i, we have:

(P�(H)Hv; v) = (P�(H)H nXi=1

�iv̄i; nXi=1

�iv̄i) =

nXi=1

P�(�i)�i�2i� M nXi=1

�2i = M(v; v):
The left inequality follows in the same way.

We would like to have P�(H)H � I, i.e. P�(x)x � 1; 8x 2 S.
Let us assume that jP�(x)� 1=xj < �; 8x 2 S � (0;+1). Then

1� �x < P�(x)x < 1 + �x; 8x 2 S:
If we know some estimate of the spectrum of H, i.e., �min � �i � �max ; i = 1; : : : ; n, we
can take S = [�min ; �max ] and get 1 � ��max < P�(x)x < 1 + ��max . In general, if � is
small enough, or equivalently, the degree � of the polynomial is large enough, we haveP�(x)x > 0 for all x 2 S, P�(H)H is SPD, and�(P�(H)H) < 1 + ��max

1� ��max

:
We define P�(x) to be the best polynomial approximation of x�1 in L1 norm on the

finite interval [�min; �max], i.e.



1x � P�



1;[�max ;�min ]

= minP2P� 



1x � P



1;[�max ;�min ]

= E(�):
It is known (see e.g. [9, 7]), that for � � 1P�(x) =

1x �1 +
2(��)��

(� � ��1)2
R�+1(2�x� a)

� ;
where � =

1�max � �min

; a =
�max + �min�max � �min

; � = a +
pa2 � 1;R�+1(x) = �T�+1(x) + 2T�(x) + ��1T��1(x);

and T�(x) 2 P� is the Chebyshev polynomial of degree �. The error of best polynomial
approximation E(�) is E(�) =

8����
(� � ��1)2

:
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A three term recurrence for P�(x) then exists (see [7]), that let us use the following
algorithm for computing P�(H):P0(H) =

�(1 + Æ)
(1� Æ)2

I; P1(H) = � � �
1� Æ�2 A +

2�
(1� Æ)2

I;Pk+1(H) = [(1 + Æ)I � �A]Pk(H)� ÆPk�1(H) + �I;
where � =

4

(
p�max +

p�min )2
; Æ =

�p�max �p�minp�max +
p�min

�2 :
3 AMLI with polynomial approximation of the pivot

blocks inverses for weighted graph-Laplacians

We examine the case of two space dimensions and uniform mesh of right-angled triangles
for the discretization of (1). Each refined mesh is obtained by dividing the current triangles
in four congruent ones by connecting the midpoints of the sides. We define the hierarchical
two-level transformation and corresponding 2� 2 splitting of the related graph-Laplacian
for the reduced pressure system locally for macroelements associated with the edges of the
coarse triangulation. We define A(k)e using a weight parameter t 2 (0; 1) so that the con-
tribution of the links between the interior nodes among the (macroelement) edge matrices
of the current coarse triangle are distributed correctly. Following the numbering from Fig.
2, we introduce the local (macroelement) matrix A(k)e , corresponding to a hypotenuse, in
the form:

A(k)e = A(k)e;H =

2666666666666666666664

t+1 �2t t� 1

2

t� 1

2�2t 2tt� 1

2

5� t
2

�2t� 1

2

5� t
2

�2t+1 �2t t� 1

2

t� 1

2�2t 2t�2
t� 1

2

5� t
2�2

t� 1

2

5� t
2

3777777777777777777775
:

The local (macroelement) matrix A(k)e = A(k)e;C , corresponding to a cathetus, is introduced
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Figure 2: Macroelement of two adjacent coarse triangles with a common hypotenuse

in a similar way. Then we define the (macroelement) local transformation matrix J (k)e as:

J (k)e =

266666666664
1 
 d d
1 d 
 d
1 d d 


1 
 d d
1 d 
 d
1 d d 
r r r r r r r r

377777777775 ;
where 
, d are parameters. As shown in [3] this two-level hierarchical partitioning complies
with the conditions of the main theorem in AMLI theory (see [1]) when r =

p
2=2 and the

AMLI stabilization polynomial degree � equals 2 or 3. An estimate for the CBS constant
2 � 0:58 for 
 = 1, d = �0:1 is derived there too.
We now examine P�( bA(k)

11 ), where P�(x) is the best polynomial approximation of x�1

on the interval S = [�min ; �max ] that contains all eigenvalues of bA(k)
11 . The hierarchical

construction insures that the minimal and maximal eigenvalues of the pivot block do not
depend on the problem size (see e.g. [3]). Therefore it is enough to calculate them for a
rather coarse mesh and use the obtained values for all k. All results presented in this paper
are for S = [1:3; 10:55]. In Fig. 3 the behavior of the error P�(x) � 1=x for polynomial
degrees � 2 f2; 3; 4g can be seen. In all cases, there are � + 2 alternations that comply
with approximation theory.

Using Theorem 2.1, one can verify thatvT bA(k)
11 v � (1 + E(�)�max )vT (P�( bA(k)

11 ))�1v � (1 + E(�)�max )

(1� E(�)�max )
vT bA(k)

11 v:
We define bC(k)

11 = (1 + E(�)�max )(P�( bA(k)
11 ))�1, and thenb = (1 + E(�)�max )=(1� E(�)�max )� 1: (4)
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Figure 3: The error P�(x)� 1=x for polynomial degrees � 2 f2; 3; 4g
4 Numerical results

The presented numerical tests show the convergence behavior of the PCG method to solve
the weighted graph-Laplacian system for the case of Dirichlet boundary conditions in the
unit square Ω = (0; 1)� (0; 1), on a uniform grid with characteristic mesh size h. The tests
concern the AMLI W-cycle with polynomial approximation for the pivot blocks inverses,
as well as a comparison of such preconditioner with an AMLI W-cycle, which uses some
CG iterations for the pivot block systems instead.

In the presentation of the numerical results we have used the following notation: � is
the PCG stopping criteria; n`, ` = 1; : : : ; 5, denotes the total number of degrees of freedom
on the finest grid n` = 4`�1�2048. Thus, the largest number of fine grid degrees of freedom
that we have used in the numerical experiments is n5 = 524288. For all the numerical tests
the coarsest grid size is h = 1=16, which corresponds to n0 = 512 degrees of freedom. In
Tables 1–4 the number of PCG iterations needed to reduce the energy norm of the error
by a factor � are given.

The proposed construction for the system under consideration guarantees that the
matrices bC(k)

11 are SPD for degree � � 2. For the experiments summarized in Table 1 we
use the value of b as in (4) to calculate the coefficients (3). The convergence behavior
for � = 3 and � = 4 is much better than for � = 2 and in these cases the method
stabilizes earlier. This is an expected result, since the estimate and the related value of b is
considerably bigger for � = 2. It is important to note that b is a measurement of how wellbC(k)

11 approximates bA(k)
11 and it also affects to a large extend the stabilization properties of

the polynomial Q��1.
The proposed AMLI preconditioner uses the same polynomials for the pivot block

systems at each PCG iteration, thus ensuring the linearity of the process and preserving
the orthogonality of the search directions. We compare it with the case of an AMLI PCG
method that uses some CG iterations for approximate solution of the pivot block systems.
There are several specific aspects of such experiments. CG automatically adapts to find the
best approximation for a given right-hand side but this means that the matrix polynomial
action that corresponds to the specified number of inner CG iterations varies at each PCG
iteration. This destroys the linearity of the AMLI method process - an effect that could
be taken care of by using generalized conjugate gradient (GCG) method instead of PCG
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Number of PCG iterations� b � ` = 1 ` = 2 ` = 3 ` = 4 ` = 5

2 9:166
10�3 8 12 13 13 13
10�6 14 26 28 28 28
10�9 21 40 43 43 44

3 1:303
10�3 5 6 6 6 6
10�6 10 11 11 11 11
10�9 15 17 17 17 17

4 0:467
10�3 4 5 6 5 6
10�6 8 11 11 11 11
10�9 12 16 16 16 16

Table 1: W-cycle preconditioner with polynomial approximation of degree � for [ bA(k)
11 ]�1.

Number of PCG iterations� b � ` = 1 ` = 2 ` = 3 ` = 4 ` = 5

3 1:303
10�3 6 9 10 10 10
10�6 14 � � � 29
10�9 23 � � 48 �

4 0:467
10�3 5 6 7 7 7
10�6 10 21 25 25 15
10�9 16 44 � 45 24

Table 2: W-cycle preconditioner. The approximate action of [ bA(k)
11 ]�1 is computed by

applying � CG iterations. The symbol � means that more than 300 PCG iterations were
needed to achieve the prescribed error reduction �.
at the price of more memory and CPU usage. For the results, presented in Table 2, we
assume that we can use for the case of � CG pivot block iterations the same estimate forb as in the case of polynomial of degree � pivot blocks inverses. The symbol � used in the
tables means that the PCG method did not converge within a limit of 300 iterations. As
can be seen, the settings presented in Table 2 do not obtain good results, no stabilization
effect is visible and in some cases the process does not converge at all.

The experiments presented in Tables 3 and 4 are motivated by observations that we
have made from many different numerical tests (see also [5, 6]). As it turns out, a value
of b = 0 for the proposed AMLI method does not slow down the convergence, but on the
contrary, even leads to better stabilization numbers when polynomial pivot approximations
are used. The results in Table 4 show a better behavior of the preconditioner than the
results in Table 2. Nevertheless, the polynomial approximation of [ bA(k)

11 ]�1 results in much
better (more stable) algorithm.
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Number of PCG iterations� � ` = 1 ` = 2 ` = 3 ` = 4 ` = 5

2
10�3 8 8 8 8 8
10�6 14 15 15 15 15
10�9 21 22 22 22 22

3
10�3 5 5 5 6 6
10�6 10 10 11 11 11
10�9 15 16 16 16 16

4
10�3 4 5 5 5 5
10�6 8 9 9 9 9
10�9 12 13 13 13 13

Table 3: W-cycle preconditioner (b = 0) with polynomial approximation of degree � for

[ bA(k)
11 ]�1.

Number of PCG iterations� � ` = 1 ` = 2 ` = 3 ` = 4 ` = 5

3
10�3 6 6 11 8 �
10�6 14 34 36 22 19
10�9 23 71 79 78 36

4
10�3 5 6 6 6 7
10�6 10 18 12 12 10
10�9 16 31 32 19 18

Table 4: W-cycle preconditioner (b = 0). The approximate action of [ bA(k)
11 ]�1 is computed

by applying � CG iterations. The symbol � means that more than 300 PCG iterations
were needed to achieve the prescribed error reduction �.
5 Concluding remarks

The proposed construction for a polynomial matrix approximation leads to a considerable
improvement of the conditioning of the system, while providing sufficient accuracy and
positive definiteness. Applying such approximation to the pivot blocks inverses in the
AMLI preconditioner for weighted graph-Laplacians yields a theoretically justified linear
PCG algorithm of optimal computational complexity with experimentally confirmed good
convergence rates. The studied approach is applicable in a rather general setting of hier-
archical multilevel methods where the spectrum of pivot blocks is uniformly bounded with
respect to the number of the refinement levels.
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