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Abstract. We consider general non-convex optimal control problems. Many
results for such problems rely on second-order sufficient optimality conditions.
We propose a method to verify whether the second-order sufficient optimality
conditions hold in a neighborhood of a numerical solution. This method is then
applied to abstract optimal control problems. Finally, we consider an optimal
control problem subject to a semi-linear elliptic equation that appears to have
multiple local minima.
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1. Introduction

Let us consider the following model problem. Let U be a Hilbert space. Denote
by Uad the space of admissible controls, where Uad is a closed, convex and non-
empty subset of U . In addition, let f : U → R be a twice continuously Fréchet-
differentiable function. Then we are considering the problem

min
u∈Uad

f(u). (1.1)

The first-order necessary optimality condition for (1.1) reads as follows. Let ū be
a local solution of (1.1). Then the variational inequality

f ′(ū)(u− ū) ≥ 0 ∀u ∈ Uad (1.2)

is satisfied. An equivalent characterization is given by the inclusion

−f ′(ū) ∈ NUad
(ū),
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where NUad
(ū) denotes the normal cone of Uad at ū. We will not consider second-

order necessary conditions here, instead we refer to [3, 4].
A strong second-order sufficient optimality condition is satisfied at ū if the

condition (1.2) as well as the coercivity property

f ′′(ū)[v, v] ≥ α‖v‖2
U ∀v ∈ U (1.3)

hold for some α > 0. This condition ensures that ū is locally optimal, and moreover,
the quadratic growth condition holds: there are constants r, δ > 0 such that

f(u) ≥ f(ū) + δ‖u− ū‖2
U ∀u ∈ Uad : ‖u− ū‖U ≤ r.

Using the well-known concept of strongly active sets, see e.g. [3, 4, 8], the subspace,
where f ′′ has to be positive definite, can be confined.

If the second-order sufficient conditions hold at the local minimum ū one can
prove several properties of the original optimization problem. At first, such a local
solution is stable with respect to perturbations. That is, a small perturbation of
the optimization problem leads only to a small perturbation in the solution. This
stability is a major ingredient for convergence results, since one can interprete
approximated problems as perturbations of the original one. This allows to prove
local fast convergence of optimization methods (SQP, semi-smooth Newton) as well
as convergence rates for finite-element discretizations of optimal control problems.

The importance of sufficient optimality conditions makes it desirable to verify
whether these conditions are satisfied for a given problem. However, in condition
(1.3) coercivity is assumed for the unknown solution. For finite-dimensional prob-
lems, one can compute eigenvalues of the Hessian matrix at some approximation
of the solution since it is possible to compute this Hessian exactly. In infinite-
dimensional problems, the computation of the second derivative is also prone to
discretization errors. Hence, it is difficult to check whether the condition is fulfilled.
This was the starting point for our investigations. We will propose a different con-
dition, which is in fact a condition at a given approximation ūh. Since only known
quantities are involved, there is a chance to check this condition. For the details,
we refer to Section 2. We have to admit that we can only deal with problems
without two-norm discrepancy. The two-norm discrepancy occurs, whenever the
the ingredients of the problem are differentiable with respect to a smaller space
(say L∞) and stronger norm, and coercivity of the second derivative only holds
with respect to weaker norms (say L2), see for instance [5].

The numerical solution of optimization problems in function spaces is often
done by discretization. Let Uh be a finite-dimensional subspace of U with basis
φ1

h . . . φNh

h . Then an example discrete problem, which hopefully can be solved on
a computer, reads as

min
uh∈Uad∩Uh

f(uh)

Given a discrete solution ūh, one can introduce the discrete Hessian matrix asso-
ciated with the discrete problem by

H = (hij)Nh
i,j=1, hi,j = f ′′(ūh)[φi

h, φj
h].
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Then one can compute the eigenvalues of H and check positive definiteness of H.
If H is positive definite at ūh then ūh is a local minimum of the discrete problem.
However, it may happen that ūh is not even close to a local solution of the original
problem. Hence, the information in H is almost worthless in this case. We will
present an example in Section 3, where exactly this situation occurs.

In Section 4, we will extend our approach to optimal control problems with
partial differential equation. Here, we have in mind the following optimization
problem

min g(y) + j(u)

subject to

Ay + d(y) = Bu,

u ∈ Uad.

Here, a large class of semilinear elliptic state equation are covered by the analy-
sis. in particular, steady-state Navier-Stokes equation are included. However, the
differentiability requirements and the coercivity assumption are formulated with
respect to the same spaces and norms. That is, problems with two-norm discrep-
ancy are not covered.

In the article [12], the authors already suggested conditions for the numer-
ical verification of optimality conditions. However, the analysis relied heavily on
H2-regularity of the solutions. We will overcome this restriction using a different
approach for the treatment of the discretization errors.

The plan of the article is as follows. The verifiable condition is developed in
Section 2. In Section 3, we introduce an example that shows that the computation
of eigenvalues of the discrete Hessian cannot be taken as substitute for the con-
dition of Section 2. The analysis concerned with optimal control problems for a
semilinear elliptic equation is done in Section 4. We end the article with a report
about an optimal control problem that admits two local solutions, see Section 5.

2. Coercivity condition for nonlinear programming

Let uh ∈ Uad ∩ Uh be an arbitrary, admissible point. Ideally, uh would be the
solution of a discretized problem or an approximation of it as the outcome of
some iterative method. But we will not rely on this property, which is a major
improvement over [12].

Now, let us present the coercivity condition. At first, we assume that we can
find bounds of certain characteristics of f ′ and f ′′.
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Assumption 2.1. There are constants ε, α,M,R such that the following three in-
equalities hold:

f ′(uh)(u− uh) ≥ −ε‖u− uh‖U ∀u ∈ Uad, (2.1)

f ′′(uh)[v, v] ≥ α‖v‖2
U ∀v ∈ U, (2.2)

|(f ′′(u)− f ′′(uh))[v1, v2]| ≤ M‖u− uh‖U‖v1‖U‖v2‖U ∀u ∈ Uad, (2.3)

‖u− uh‖U ≤ R,

v1, v2 ∈ U.

Let us comment on the three inequalities involved in the assumption. The first
one (2.1) measures in some sense the residuum in the variational inequality (1.2).
The second inequality is a coercivity assumption on f ′′ at uh. The essential dif-
ference to (1.3) is that the point, where we have to check for coercivity of f ′′, is
known.

Moreover, these conditions are analogous to the pre-requisites of convergence
theorems of Newton’s method: smallness of initial residual, bounded invertibility,
and local Lipschitz estimates. See also the comments below.

Let us now take another admissible point u ∈ Uad. With the help of As-
sumption 2.1, we can estimate the difference between f(u) and f(uh) using Taylor
expansion as

f(u)− f(uh) ≥ f ′(uh)(u− uh) +
1
2
f ′′(uh)(u− uh)2

+
∫ 1

0

∫ s

0

(f ′′(uh + t(u− uh))− f ′′(uh)) (u− uh)2dtds

≥ −ε‖u− uh‖U +
α

2
‖u− uh‖2

U − M

6
‖u− uh‖3

U .

(2.4)

In addition to Assumption 2.1, we need a further qualification, which relates
the constants appearing there to each other.

Assumption 2.2. There exists a real number r+ with R > r+ > 0 such that

−εr+ +
α

2
r2
+ − M

6
r3
+ > 0, (2.5)

α−Mr+ > 0 (2.6)

is satisfied.

The Assumptions 2.1 and 2.2 allow us to prove the main result of this section.

Theorem 2.3. Let Assumptions 2.1 and 2.2 be satisfied. Then there exists a solution
ū of the original problem (1.1) with

‖ū− uh‖H < r+.

Furthermore, the second-order sufficient optimality condition (1.3) is satisfied at
ū.
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Proof. Let us consider the optimization problem (1.1) but restricted to the closed
ball centered at uh with radius r+,

min
u∈B̄(uh,r+)∩Uad

f(u).

Due to (2.6), the function f is convex on B̄(uh, r+). Hence, the auxiliary problem
admits a global minimum ū with ‖ū−uh‖H ≤ r+. Moreover, the second derivative
of f is positive definite at ū by (2.2) and (2.6).

By (2.5), ū cannot lie on the boundary of B(uh, r+), since the value of f
is there larger than in uh. That is, ū is also the global minimum of f over the
intersection of Uad with the open ball at uh with radius r+. Hence, ū is a local
solution of the original problem (1.1). �

The consequences of this result are threefold: at first we obtain existence
of a solution of the original problem in the specified neighborhood. Secondly, we
can estimate the distance to the solution. And third, we can prove that this yet
unknown solution fulfills the second-order optimality condition.

The inequality (2.5) is an assumption on the objective functional. We can
replace it by an assumption on the first derivative f ′, and can prove an result
analogous to Theorem 2.3.

Assumption 2.4. There exists a real number r̃+ with R > r̃+ > 0 such that

−ε + αr̃+ − M

2
r̃2
+ > 0 (2.7)

is satisfied.

Theorem 2.5. Let the assumptions 2.1 and 2.4 be satisfied. Then there exists a
solution ū of the original problem (1.1) with

‖ū− uh‖H < r̃+.

Furthermore, the second-order sufficient optimality condition (1.3) is satisfied.

Proof. At first, we have to show that Assumption 2.4 implies the convexity of f
is a neighborhood of uh. Let us define a polynomial p by p(r) = −ε + αr̃ − M

2 r̃2.
We already know p(0) < 0 and p(r̃+) > 0. Hence, there is a r̃0 ∈ (0, r̃+) such that

p(r̃0) = 0. The root r̃0 is given by r̃1 = α
M

(
1−

√
1− 2Mε

α2

)
. Moreover, it holds

α − Mr̃0 = α
√

1− 2Mε
α2 > 0. Hence, there is a r̃1 ∈ (r̃1, r̃+) such that (2.6) and

(2.7) are satisfied for r̃1. This implies the convexity of f on the ball centered at
uh with radius r̃1.

As in the proof of the previous Theorem 2.3, we obtain then the existence of
a global solution ū of the problem

min
u∈B̄(uh,r̃1)∩Uad

f(u).
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It remains to show that ū is not on the boundary of B̄(uh, r̃1). Let us take an
arbitray u ∈ Uad with ‖u− uh‖U = r̃1. Using (2.7), we obtain

f ′(u)(uh − u) = f ′(uh)(uh − u) + f ′′(uh)(uh − u, u− uh)

+
∫ 1

0

(f ′′(uh + t(u− uh))− f ′′(uh)) (uh − u, u− uh)dt

≤
(

ε− α‖u− uh‖U +
M

2
‖u− uh‖2

U

)
‖u− uh‖U < 0.

Hence, the necessary optimality conditions of (1.2) are not fulfilled for any control
on the boundary of B̄(uh, r̃1). Thus, the solution ū satisfies ‖ū− uh‖U < r̃1 ≤ r̃+.
Furthermore, it is a local solution of the original problem (1.1). �

A close inspection of the proof reveals that we can show an improved error
estimate:

Corollary 2.6. Let the assumptions of the previous theorem be fulfilled. Then it
holds

‖ū− uh‖U ≤ α

M

(
1−

√
1− 2Mε

α2

)
.

Proof. If Assumption 2.4 is satisfied with some r̃+, then it will be satisfied for all

r between α
M

(
1−

√
1− 2Mε

α2

)
, which is the first root of the polynomial in (2.7),

and r̃+. Then Theorem 2.5 yields the claim. �

The Theorems 2.3 and 2.5 state that the yet unknown solution ū satisfies the
second-order sufficient optimality condition. This implies that it is possible apply
deeper results, which rely on this conditions. For instance, we can apply results for
the fast local convergence of optimization methods. That is, if the initial guess is
close enough to the solution then the iterates will converge with a high convergence
rate towards the solution ū.

Let us show exemplarily the fast convergence of Newton’s method for gener-
alized equations in the sense of [1, 7] if started at uh. The key idea here is to write
the variational inequality (1.2) as the inclusion

−f ′(ū) ∈ NUad
(u).

Then the generalized Newton method solves for uk+1 the problem

− (f ′′(uk)(u− uk) + f ′(uk)) ∈ NUad
(u), (2.8)

which is the first-order necessary optimality condition of

min
u∈Uad

1
2
f ′′(uk)(u− uk)2 + f ′(uk)(u− uk).

That is, only the objective function is linearized but not the constraint u ∈ Uad.
It turns out, that the conditions of Theorem 2.5 are sufficient to ensure local
quadratic convergence of the simple iteration (2.8) for the initial choice u0 = uh.
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Theorem 2.7. Let the assumptions of Theorem 2.5 be satisfied. Set u0 := uh. Then
the sequence of iterates generated by the procedure (2.8) converges quadratically to
ū.

Proof. Let us assume first, that the equation (2.8) is solvable for some k. The
iterate uk+1 satisfies the variational inequality

(f ′′(uk)(uk+1 − uk) + f ′(uk), u− uk+1) ≥ 0 ∀u ∈ Uad. (2.9)

Setting k = 0, u0 = u = uh, and using (2.1), we obtain the following estimate of
the initial step

‖u1 − u0‖U ≤ ε

α
.

Let us denote by αk the smallest eigenvalue of f ′′(uk). Then it holds α0 = α and
αk+1 ≥ αk −M‖uk − uk+1‖U . Setting u := uk in (2.9), we find applying (2.9) for
uk

f ′′(uk)(uk − uk+1)2 ≤ f ′(uk)(uk − uk+1)

= (f ′(uk−1) + f ′′(uk−1)(uk − uk−1), uk − uk+1)

+
∫ 1

0

(f ′′(uk−1 + t(uk − uk−1))− f ′′(uk−1)) (uk − uk−1, uk − uk+1)dt.

Setting k − 1 for k in (2.9), we find the optimality relation for uk, which implies
that the first part of the right-hand side is non-positive. Applying Assumption 2.1,
we obtain

f ′′(uk)(uk − uk+1)2 ≤
M

2
‖uk − uk−1‖2

U‖uk − uk+1‖U ,

which gives

‖uk − uk+1‖U ≤ M

2αk
‖uk − uk−1‖2

U ≤ M

2(αk−1 −M‖uk − uk−1‖U )
‖uk − uk−1‖2

U .

Now, we can proceed as in Ortega’s proof of the Newton-Kantorovich theorem
[10], see also [6]. The technique applied there delivers (a) existence of solutions
of (2.9) for all k, and (b) quadratic convergence. Moreover, the convergence re-
gion of Newton’s method given by [10] is the ball at uh with the radius given by
Corollary 2.6. �

The similarities to the convergence proof of Newton-Kantorovich type is ob-
vious. That is, the assumptions above can be interpreted as assumptions in the
context of Newtons’ method and vice-versa. This observation allows also to apply
heuristic techniques to estimate the constants appearing in Assumption 2.1 during
the procedure of Newton’s method. For a detailed explanation of these techniques
we refer to the monograph of Deuflhard [6].
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3. On coercivity of f ′′ and positive definiteness of the discrete
Hessian

The computation of the constants appearing in the Assumption 2.1 above is a
difficult task, it is especially hard to find a lower bound for the smallest eigenvalue
α of f ′′. Here, it would be advantageous if one could compute α as an eigenvalue
of the discrete problem, which fulfills

f ′′(ũh)(v, v) ≥ α‖v‖2
U ∀v ∈ Uh

for a finite-dimensional subspace Uh ⊂ U . This method is widely employed in nu-
merical experiments to indicate optimality of computed solution. However, despite
being attractive from a computational point of view, this method is not save in
general and may lead to wrong conclusions.

We will now construct an example with numerical solution ũh that has the
following properties:

• f ′(ũh) = 0,
• f ′′(ũh)(vh, vh) ≥ α‖vh‖2

U ∀vh ∈ Uh with α > 0,
• ũh is not close to a local minimum of the original problem.

That means in particular, that all eigenvalues of the discrete Hessian matrix are
positive. Hence, ũh is a local minimum of the discretized problem. Unfortunately, it
appears that ũh is not even in the neighborhood of a local minimum of the original
problem. Thus, the positive definiteness of the discrete Hessian is misleading.

Minimizing a fourth-order polynomial

We will consider now a special objective function. Let be given u1 6= u2 from the
Hilbert space U . Then we want to minimize

f(u) =
1
2
‖u− u1‖2

U‖u− u2‖2
U . (3.1)

Of course, both u1 and u2 are global minima of this problem. Now, let us have a
look on the derivatives of f . The first derivative is given by

f ′(u) = (u− u1)‖u− u2‖2
U + (u− u2)‖u− u1‖2

U . (3.2)

And it turns out that ũ := 1
2 (u1 +u2) is a stationary point. If U is one-dimensional

then ũ is a local maximum of f . For higher dimensional U , ũ is actually a saddle
point as we will see. Hence, let us assume in the sequel that the dimension of U is
greater than one.

The second derivative of f is given as bilinear form by

f ′′(u)(v1, v2) =
(
‖u− u1‖2

U + ‖u− u2‖2
U

)
(v1, v2)

+ 2(u− u2, v1)(u− u1, v2) + 2(u− u1, v1)(u− u2, v2). (3.3)

Formally, one can decompose f ′′ into D+2V V T , where D is a positive multiple of
the identity and V V T is a two-rank perturbation. This simplifies the computation
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of eigenvalues of f ′′. Let us set u = ũ and v1 = v2 = v in (3.3). We obtain

f ′′(ũ)(v, v) =
1
2
‖u1 − u2‖2

U‖v‖2
U − (v, u1 − u2)2. (3.4)

Let us decompose the space U as the direct sum: span{u1 − u2} ⊕ {u1 − u2}⊥.
Then we can write v = v1 + v2 with (v2, u1 − u2) = 0, which gives

f ′′(ũ)(v, v) =
1
2
‖u1 − u2‖2

U (‖v1‖2
U + ‖v2‖2

U )− (v1, u1 − u2)2. (3.5)

For v1 ∈ span{u1 − u2} it holds (v1, u1 − u2)2 = ‖u1 − u2‖2
U‖v1‖2

U , which implies

f ′′(ũ)(v, v) =
1
2
‖u1 − u2‖2

U (‖v2‖2
U − ‖v1‖2

U ).

Thus, for the direction of negative curvature v = s(u1 − u2) we have

f ′′(ũ)(v, v) = −1
2
‖u1 − u2‖2

U‖v‖2
U .

With similar arguments, one finds the inequality

f ′′(u)(v, v) ≥ λ1(u)‖v‖2
U

with

λ1(u) = ‖u− u1‖2
U + ‖u− u2‖2

U − 2‖u− u1‖U‖u− u2‖U + 2(u− u1, u− u2).
(3.6)

Let us denote by Uh a finite-dimensional subspace of U . The orthogonal projection
from U onto Uh is denoted by Πh. Let us recall the expression for f ′′(ũ), cf. 3.4,

f ′′(ũ)(v, v) =
1
2
‖u1 − u2‖2

U‖v‖2
U − (v, u1 − u2)2.

We will now derive conditions such that f ′′(ũ)[vh, vh] > 0 is fulfilled for all vh 6= 0
from the finite-dimensional space Uh. Let us consider for a moment directions vh

with ‖vh‖U = 1. The supremum of (vh, u1 − u2) over all such vh is attained at
vh = Πh(u1−u2)

‖Πh(u1−u2)‖U
, which implies for ‖vh‖U = 1

f ′′(ũ)(vh, vh) =
1
2
‖u1 − u2‖2

U − (vh, u1 − u2)2

≥ 1
2
‖u1 − u2‖2

U − ‖Πh(u1 − u2)‖2
U .

Using ‖u1 − u2‖2
U = ‖(I − Πh)(u1 − u2)‖2

U + ‖Πh(u1 − u2)‖2
U , we find that f ′′(ũ)

is positive definite on Uh if

‖(I −Πh)(u1 − u2)‖U ≥ ‖Πh(u1 − u2)‖U

holds. That is, if the L2-norm of the projection Πh(u1−u2) captures less than one
half of the L2-norm of u1 − u2, then the bilinear form f ′′(ũ) is positive definite
on Uh despite being indefinite on whole U . Or in other words, if the discretization
is too coarse to approximate the direction of negative curvature ṽ = u1 − u2 the
bilinear form is positive definite on Uh.
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Let us demonstrate that such a situation may occur for a concrete optimiza-
tion problem. Let us define U to be the set of square integrable functions on
I = (0, 1), U := L2(0, 1). Take an integer number N , set h := 1/N . The interval
I is subdivided into N subintervals Ij of equal length h, j = 1 . . . N . The discrete
subspace Uh is chosen as the space of piecewise constant function on the intervals
Ij . Let us denote by Πh the L2-projector onto Uh, Πh : L2(I) → Uh. The functions
u1, u2 we will choose such that

1. ũ = (u1 + u2)/2 is in Uh for all h,
2. the direction of negative curvature ṽ is ’hard to approximate’ with functions

from Uh.
Let ε > 0 be a small number. We define

u1(x) = x−1/2+ε, u2(x) = −u1(x).

Then obviously we have u1 + u2 = 0 ∈ Uh. Moreover, it holds u1 ∈ L2(I) and
u1 6∈ H1(I). The latter property is the reason, why u1 can only be approximated
with low convergence rates with respect to h.

Lemma 3.1. For the above choice of Uh and u1 it holds

‖u1 −Πhu1‖U ≥ g(ε)hε

with g(ε) = |2ε−1|√
2ε|2ε+1| .

Proof. Let us only consider the approximation of u1 by a function w that is con-
stant on the first subinterval (0, h) and equal to u on (h, 1),

w(x) =

{
w0 if x ∈ (0, h)
u1(x) if x ∈ [h, 1)

with w0 in R. It is clear that ‖u1−Πhu1‖U ≥ ‖u1−w‖U holds. A short computation
yields that w0 = h−1/2+ε

1/2+ε minimizes ‖u1−w‖2
U over all choices of w0, which in turn

gives ∫ h

0

(u(x)− w0)2dx = h2ε (ε− 1/2)2

2ε(ε + 1/2)2
,

and the claim is proven. �

Let us remark, that the previous lemma not only gives an arbitrary small
convergence rate for ε → 0+ but also states that the constant explodes for ε
tending to zero.

In Table 1 we computed the ”critical values” of h0. If the mesh size h is larger
than h0, then one gets a wrong indication by the eigenvalues of the discrete Hessian:
The smallest eigenvalue of the Hessian of the discretized problem is positive, but
the computed solution is only a saddle point of the original problem. Consequently,
the usual strategy to look at the smallest eigenvalue of the Hessian fails for this
simple problem. The last line of Table 1 shows that this wrong indication can
occur even for very small discretization parameters.
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ε h0

0.05 1/18 = 0.056
0.04 1/106 = 0.0094
0.03 1/1917 = 5.2 · 10−4

0.02 1/619660 = 1.6 · 10−6

Table 1. Critical mesh sizes

4. Application to an abstract optimal control problem

Let us consider now a more complicated optimization problem. We will introduce
an additional constraint, which will mimic a partial differential equation. We in-
vestigate the minimization of the functional

J(y, u) := g(y) + j(u) (4.1)

subject to

Ay + d(y) = Bu, (4.2)

u ∈ Uad. (4.3)

Here, y denotes the state of the system, u the control. Let Uad be a closed, convex,
non-empty subset of the Hilbert space U .

Assumption 4.1. Let Y be a Banach space. Let A : Y → Y ′ and B : U → Y ′ be
linear operators. Moreover, we assume A to be coercive, i.e. it holds 〈Ay, y〉Y ′,Y ≥
δ‖y‖2

Y for some δ > 0 and all y ∈ Y .
The functions d, g, j are twice Fréchet-differentiable as functions from Y to

Y ′, Y to R, and U to R, respectively. Moreover, we assume for simplicity that d
is monotone with d(0) = 0.

Thus, the state equation (4.2) has to hold in Y ′. Under the assumptions
above, this equation is uniquely solvable for each control u. Let us denote the
solution mapping by S, i.e. y = S(u) is the solution of (4.2). Since d is monotone,
the linearized equation

Ay + d′(ỹ)y = Bu

is solvable, where we set ỹ = S(ũ). In addition, there exists an upper bound of the
norm of its solution operator S′(ũ),

‖S′(u)‖L(Y ′,Y ) = ‖(A + d′(y))−1‖L(Y ′,Y ) ≤ cA ∀u ∈ U, y = S(u).

In view of this estimate, we can directly give a Lipschitz estimate for solutions of
(4.2)

‖S(u1)− S(u2)‖Y ≤ cA‖B‖ · ‖u1 − u2‖U . (4.4)
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Assumption 4.2. Let us take R > 0 and uh ∈ Uad. Then we assume that there
exist constants cg′ , cd′ , cd′′ , cg′′ , cj′′ depending on R such that the local Lipschitz
estimates

‖d′(y)− d′(yh)‖L(Y,Y ′) ≤ cd′‖y − yh‖Y

‖g′(y)− g′(yh)‖Y ′ ≤ cg′‖y − yh‖Y

‖d′′(y)− d′′(yh)‖L(Y×Y,Y ′) ≤ cd′′‖y − yh‖Y

‖g′′(y)− g′′(yh)‖(Y×Y )′ ≤ cg′′‖y − yh‖Y

‖j′′(u)− j′′(uh)‖(U×U)′ ≤ cj′′‖u− uh‖Y

hold for all u ∈ Uad with ‖u− uh‖U < R and y = S(u).

The problem class covered by Assumptions 4.1 and 4.2 is wide enough to
cover distributed or boundary control problems for semiliner elliptic equations.
Moreover, the case of the steady-state Navier-Stokes equations fits also in the
assumption. However, we have to admit that optimal control problems with two-
norm discrepancy are not included.

Let us define the reduced cost functional φ : U → R by

φ(u) := g(S(u)) + j(u).

The conditions in Section 2, i.e. Assumptions 2.1, 2.2, and 2.4, have now to be
interpreted as conditions on the reduced cost functional. The reduced functional
of course inherits the structure of the optimal control problem (4.1)–(4.3). So we
will express the conditions on φ in terms of the original problem.

Let (ū, ȳ) be an admissible pair for (4.1)–(4.3). If ū is locally optimal, then
there exists an adjoint state p̄ ∈ Y such that it holds

A∗p̄ + d′(ȳ)∗p̄ = g′(ȳ)

and
(j′(ū) + B∗p̄, u− ū) ≥ 0 ∀u ∈ Uad.

Let now (uh, yh, ph) be some triple consisting of approximations of a locally
optimal control, state, and adjoint. Suppose uh is an admissible control. Let us
assume that we can control the residuals of the optimality system.

Assumption 4.3. There are positive constants εu, εy, εp such that it holds

(j′(uh) + B∗ph, u− uh) ≥ −εu‖u− uh‖U ∀u ∈ Uad, (4.5)

‖Ayh + d(yh)−Buh‖Y ′ ≤ εy, (4.6)

‖A∗ph + d′(yh)∗ph − g′(yh)‖Y ′ ≤ εp. (4.7)

This assumption corresponds to (2.1) in Assumption 2.1 of Section 2. We
will now investigate the error in the variational inequality (2.1), i.e. we want to
estimate ε in

φ′(uh)(u− uh) ≥ −ε‖u− uh‖U ∀u ∈ Uad.
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To characterize the derivative φ′ in terms of the original problem let us introduce
two auxiliary functions yh and ph as the solutions of

Ayh + d(yh) = uh,

A∗ph + d′(yh)∗ph = g′(yh).
(4.8)

We have the following error estimates for these states and adjoints:

Lemma 4.4. Let yh and ph be given by (4.8). Then it holds

‖yh − yh‖Y ≤ cAεy, (4.9)

‖ph − ph‖Y ≤ cA

(
(cg′ + cd′‖ph‖Y )‖yh − yh‖Y + εp

)
. (4.10)

Proof. The difference ph − ph solves the equation

A∗(ph − ph) + d′(yh)∗(ph − ph) = g′(yh)− g′(yh)

− (A∗ph + d′(yh)∗ph − g′(yh)) + (d′(yh)∗ − d′(yh)∗)ph,

which immediately gives (4.10) using the notations of Assumption 4.2. The differ-
ence yh − yh can be treated similarly, and one obtains ‖yh − yh‖Y ≤ cAεy. �

Observe, that yh and ph can be written as yh = S(uh) and ph = S′(uh)∗g′(yh).
Hence, we can rewrite the first derivative φ′ as

φ′(uh)(u− uh) = (j′(uh) + B ∗ S′(uh)∗g′(yh), u− uh)

= (j′(uh) + B∗ph, u− uh).

Lemma 4.5. The following inequality is satisfied for all admissible controls u ∈ Uad

φ′(uh)(u− uh) ≥ −ε‖u− uh‖U ,

where ε is given by
ε := εu + ‖B‖ · ‖ph − ph‖Y

Proof. The claim follows immediately from

φ′(uh)(u− uh) = (j′(uh) + B∗ph, u− uh) = (j′(uh) + B∗ph + B∗(ph − ph), u− uh)

≥ −
(
εu + ‖B‖ · ‖ph − ph‖Y

)
‖u− uh‖U .

�

At next, we need a coercivity condition on the second derivative of the La-
grangian involving known quantities only.

Assumption 4.6. There is a constant δ > 0 such that

j′′(uh)(v, v) + g′′(yh)(z, z) + d′′(yh)(z, z)ph ≥ δ‖v‖2 (4.11)

holds for all v = u − uh, u ∈ Uad with z being the solution of the linearized
equation.

Az + d′(yh)z = Bv. (4.12)
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This condition is especially fulfilled for convex j and g and under the sign
condition d′′(yh)ph > 0. We will now derive an lower bound for the eigenvalues of
φ′′ analogously to (2.2).

Lemma 4.7. Let v = u− uh, u ∈ Uad be given. Then it holds

φ′′(uh)(v, v) ≥ α‖v‖2
U

with α given by

α = δ −
(
cg′′ + ‖ph − ph‖Y (cd′′ + ‖d′′(yh)‖) + cd′′‖ph‖Y

)
‖yh − yh‖Y (cA‖B‖)2

−
(
‖g′′(yh)‖(Y×Y )′ + ‖ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

)
(2cA‖B‖)(cAcd′‖yh−yh‖Y cA‖B‖).

Proof. We can write the second derivative of φ as

φ′′(uh)(v, v) = j′′(uh)(v, v) + g′′(yh)(zh, zh) + d′′(yh)(zh, zh)ph, (4.13)

where zh solves
Azh + d′(yh)zh = Bv. (4.14)

Let us denote by z the solution of (4.12). A-priori bounds of z and zh can be
calculated as above, and we obtain

‖z‖Y , ‖zh‖Y ≤ cA‖B‖ · ‖v‖U .

The difference zh − z solves A(zh − z) + d′(yh)(zh − z) = (d′(yh)− d′(yh))z, hence
it holds

‖zh − z‖Y ≤ cAcd′‖yh − yh‖Y cA‖B‖‖v‖U .

Let us introduce the abbreviations sh := g′′(yh) + d′′(yh)(·, ·)ph, sh := g′′(yh) +
d′′(yh)(·, ·)ph; sh, sh : Y × Y → R. Then we write

sh(zh, zh) = sh(z, z) + (sh − sh)(zh, zh) + sh((zh, zh)− (z, z)).

Here, the first addend appears in the coercivity assumption (4.11). The second
addend is estimated as

‖sh − sh‖(Y×Y )′ ≤
(
cg′′ + ‖ph − ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

+
(
‖ph‖Y + ‖ph − ph‖Y

)
cd′′

)
‖yh − yh‖Y .

For the third one we obtain

‖sh((zh, zh)− (z, z))‖(Y×Y )′

≤
(
‖g′′(yh)‖(Y×Y )′ + ‖ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

)
‖zh + z‖Y ‖zh − z‖Y .

Putting everything together we finally find

φ′′(uh)(v, v) ≥ α‖v‖2
U

with α equal to

δ−
(
cg′′ + ‖ph − ph‖Y (cd′′ + ‖d′′(yh)‖L(Y×Y,Y ′)) + cd′′‖ph‖Y

)
‖yh−yh‖Y (cA‖B‖)2

−
(
‖g′′(yh)‖(Y×Y )′ + ‖ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

)
(2cA‖B‖)(cAcd′‖yh−yh‖Y cA‖B‖).
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�

According to Lemma 4.4, that the negative terms in the estimate of α are
of the order of εy, εp. That is, there is hope that α is positive for small residuals
in the optimality system. That will be true in particular, if (uh, yh, ph) solves a
very fine discretized problem and a second-order sufficient optimality condition is
fulfilled for the original problem (4.1)–(4.3).

Corollary 4.8. If Assumption 4.6 holds with the linearized equation (4.14) instead
of (4.12), then the statement of Lemma 4.7 is valid with

α = δ−
(
cg′′ + ‖ph − ph‖Y (cd′′ + ‖d′′(yh)‖) + cd′′‖ph‖Y

)
‖yh−yh‖Y (cA‖B‖)2.

Finally, we have to compute the Lipschitz constant of φ′′ as equivalent to
inequality (2.3) in Section 2.

Lemma 4.9. There is a constant M > 0 such that it holds for all u ∈ Uad with
‖u− uh‖U < R

|(φ′′(u)− φ′′(uh))(v1, v2)| ≤ M‖u− uh‖U‖v1‖U‖v2‖U ∀v1, v2 ∈ U.

An upper bound of M is given in the course of the proof.

Proof. Let y and p be the solutions of the state and adjoint equations associated
with u, i.e. they satisfy

Ay + d(y) = u,

A∗p + d′(y)∗p = g′(y).

Then it holds

(φ′′(u)− φ′′(uh))(v1, v2) = (j′′(u)− j′′(uh))(v1, v2) + (g′′(y)− g′′(yh))(z1, z2)

+ (pd′′(y)− phd′′(yh))(z1, z2),

where the zi, i = 1, 2, are the solutions of the linearized equations Azi +d′(yh)zi =
Bvi. Using Lipschitz continuity of the solution mapping, cf. (4.4), we obtain

‖y − yh‖Y ≤ cA‖B‖ · ‖u− uh‖ ≤ cA‖B‖R,

‖y − yh‖Y ≤ cA(‖B‖ · ‖u− uh‖+ εy) ≤ cA(‖B‖R + εy).
(4.15)

Similarly to (4.10), the difference of the adjoint states is estimated by

‖p− ph‖Y ≤ cA(cg′ + cd′(‖ph − ph‖Y + ‖ph‖Y ))‖y − yh‖Y

≤ cA(cg′ + cd′(‖ph − ph‖Y + ‖ph‖Y ))cA‖B‖R.
(4.16)

Employing the splitting

pd′′(y)− phd′′(yh) = (p− ph)d′′(y) + ph(d′′(p)− d′′(yh))

= (p− ph) (d′′(yh) + d′′(y)− d′′(yh))

+ (ph + ph − ph)(d′′(y)− d′′(yh))
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we can estimate

‖d′′(y)(·, ·)p− d′′(yh)(·, ·)ph‖(Y×Y )′ ≤ ‖p− ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

+ cd′′
(
‖p− ph‖Y ‖y − yh‖Y + (‖ph‖Y + ‖ph − ph‖Y )‖y − yh‖Y

)
And the claim of the Lemma holds with

M ≥ cj′′ + (cA‖B‖)2
(
cg′′‖y − yh‖Y + ‖p− ph‖Y ‖d′′(yh)‖L(Y×Y,Y ′)

+ cd′′
(
‖p− ph‖Y ‖y − yh‖Y + (‖ph‖Y + ‖ph − ph‖Y )‖y − yh‖Y

) )
,

where for ‖y−yh‖Y , ‖y−yh‖Y , ‖p−ph‖Y the corresponding upper bounds (4.15)–
(4.16) has to be used. �

The Lemmata 4.5, 4.7, and 4.9 give the possibility to estimate the constants
ε, α,M that are needed to proceed with the results of Section 2.

Theorem 4.10. Let the constants given by Lemmata 4.5, 4.7, and 4.9 fulfill the
Assumption 2.4. Then there exists a local solution ū of the optimal control problem
(4.1)–(4.3), which satisfies

‖ū− uh‖U ≤ α

√
1− 2Mε

α2
.

Moreover, the second-order sufficient condition holds at ū.

5. An optimal control problem with two local minima

Now, let us apply the technique described above to the following optimal control
problem: Minimize

1
2
‖y − yd‖2

L2(Ω) +
1
2
‖u− u1‖2

L2(Ω)‖u− u2‖2
L2(Ω) (5.1)

subject to the semilinear state equation

−∆y(x) + y(x)3 = u(x) in Ω

y(x) = 0 on Γ
(5.2)

and the control constraints

ua(x) ≤ u(x) ≤ ub(x) a.e. on Ω. (5.3)

Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with Lipschitz(?) boundary Γ.
Furthermore, functions yd, ua, ub ∈ L2(Ω), ua(x) ≤ ub(x) a.e. on Ω, are given.

At first, let us choose the function spaces. We set Y := H1
0 (Ω) with ‖y‖Y :=

‖∇y‖L2(Ω) and U = L2(Ω), ‖u‖U = ‖u‖L2(Ω). The right-hand side operator B is
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the embedding operator L2(Ω) → H−1(Ω). Its norm is bounded as ‖B‖L(U,Y ′) ≤
I2. Using the notation of the previous section, we define

d(y) := y3,

g(y) :=
1
2
‖y − yd‖2

L2(Ω),

j(u) :=
ν

2
‖u− u1‖2

L2(Ω)‖u− u2‖2
L2(Ω)

Due to the embedding H1(Ω) → L4(Ω), the function d is differentiable from Y =
H1

0 (Ω) to Y ′. Let us denote upper bounds of the embedding constants H1
0 (Ω) →

Lp(Ω) by Ip, p < ∞. They can be computed by eigenvalue estimates for the
Laplacian. Furthermore, formulas for Ip are given in [11].

We computed (uh, yh, ph) as the solution of the discretized optimal control
problem. The discretization was carried out using P2-elements for the state and
P1-elements for the control.

In Section 4, many constants have to be computed. Let us report, how we
computed them for the particular example.

Solution estimates. By monotonicity of the semilinearity d(y) we have,

‖S(u1)− S(u2)‖Y ≤ I2‖u1 − u2‖U .

Since d′(y) is non-negative, it holds,

‖(A + d′(y))−1‖Y ′,Y ≤ 1 =: cA.

Lipschitz estimates. Let u ∈ U be taken with ‖u − uh‖U ≤ R. Then we have
‖y − yh‖Y := ‖S(u) − S(uh)‖Y ≤ I2R. Some of the Lipschitz constants, will
depend on R. After an easy computation, one finds

‖(d′(y)− d′(yh))z‖Y ′ ≤ I4
4 (‖yh‖Y + I2R)‖y − yh‖Y ‖z‖Y

=: cd′(R)‖y − yh‖Y ‖z‖Y

‖g′(y)− g′(yh)‖Y ′ ≤ I2
2‖y − yh‖Y

‖d′′(y)− d′′(yh)‖L(Y×Y,Y ′) ≤ I4
4‖y − yh‖Y

‖g′′(y)− g′′(yh)‖ = 0.

The function j coincides with the function f analyzed in Section 3, its derivative
was derived in (3.3). Let us now write

(j′′(u)−j′′(uh))(v1, v2) =
(
‖u− u1‖2

U + ‖u− u2‖2
U − ‖uh − u1‖2

U − ‖uh − u2‖2
U

)
(v1, v2)

+ 2(u− u2, v1)(u− u1, v2) + 2(u− u1, v1)(u− u2, v2)

− 2(uh − u2, v1)(uh − u1, v2)− 2(uh − u1, v1)(uh − u2, v2).

Using the identity

‖u− u1‖2
U − ‖uh − u1‖2

U = (u− uh, 2(uh − u1) + (u− uh)),
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we find for ‖u− uh‖U ≤ R∣∣‖u− u1‖2
U − ‖uh − u1‖2

U

∣∣ ≤ (2‖uh − u1‖U + R)‖u− uh‖U .

Analogously, we get

(u− u2, vi)(u− u1, vj)− (uh − u2, vi)(uh − u1, vj)

=
(
(u− u2, vi)− (uh − u2, vi)

)
(uh − u1, vj) + (u− u2, vi)(u− uh, vj)

= (u− uh, vi)(uh − u1, vj) + (u− uh + uh − u2, vi)(u− uh, vj),

which implies the estimate

|(u− u2, vi)(u− u1, vj)− (uh − u2, vi)(uh − u1, vj)‖
≤ (‖uh − u1‖U + ‖uh − u2‖U + R)‖u− uh‖U‖vi‖U‖vj‖U .

Hence, we obtain the following value of cj′′ :

cj′′(R) := 6(‖uh − u1‖U + ‖uh − u2‖U + R).

Residual estimates. Now, let us explain how we obtained bounds for the residuals
in Assumption 4.3. If one could compute a function q such that the inequality

(j′(uh) + B∗ph + q, u− uh) ≥ 0

holds for all admissible controls u ∈ Uad, then the lower bound in (4.5) is realized
by εu = ‖q‖U . The computation of such a function q is described for instance in [9].

There are quite a few possibilities to estimate the residuals in the state and
the adjoint equation. For instance, one can apply standard a-posteriori error esti-
mators of residual type. We used another possibility, as described in [11].

Let σ ∈ H(div) be given, i.e. σ ∈ L2(Ω) with div(σ) ∈ L2(Ω). Then we can
estimate
‖ −∆yh + d(yh)−Buh‖H−1 ≤ ‖ −∆yh − div(σ)‖H−1 + ‖div(σ) + d(yh)−Buh‖H−1

≤ ‖∇yh − σ‖L2 + I2‖div(σ) + d(yh)−Buh‖L2 .

In our computations, we used the Raviart-Thomas elements RT1 to discretize the
space H(div). In a post-processing step, we computed σh as minimizer of

‖∇yh − σ‖2
L2 + I2

2‖div(σ) + d(yh)−Buh‖2
L2 .

A similar technique was applied to compute the adjoint residual (4.7).

Coercivity check. The lower coercivity bound δ as in Assumption 4.6 was com-
puted as δ = λ1(uh), where λ1(u) is defined by (3.6). Since it holds

g′′(yh)(z, z) + d′′(yh)(z, z)ph =
∫

Ω

(g′′(yh(x)) + d′′(yh(x))ph(x))(z(x))2dx,

we checked the sign of g′′(yh) + d′′(yh)ph. If the sign was positive, δ was chosen
as above, and we could use the estimate given by Corollary 4.8. Otherwise, the
computation were repeated on a finer mesh.
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Computation of r+. As one can see above, some of the constants depend on the
safety radius R. That implies that the constants ε, α,M depend on R as well.
Let us report, how we computed the value r̃+, cf. Assumption 2.4. By a bisection
method, we computed an interval [r1, r2] that contains the smallest positive root
of the polynomial

p(r) = −ε(r + ρ) + α(r + ρ)− 1
2
M(r + ρ)r2

with small ρ = 10−5. Then r̃+ was chosen as the right border of the interval,
r̃+ = r2. That is, all the assumptions are fulfilled for r̃+ and R := r̃+ + ρ. If the
bisection method was not able to find r such that p(r) was positive, the whole
computation was restarted on a finer mesh.

Data. The domain Ω was chosen as Ω = (0, 3)2 \ [1, 2]2. Hence, Ω is not convex.
This implies that the solution of the elliptic equation does not belong to H2(Ω)
in general. Thus, the theory as developed in [12] cannot be applied. Furthermore,
we took

yd(x1, x2) = 0.02 · sin(πx1) sin(πx2)

and
u1(x) = 0.1, u2(x) = 0.4,

ua(x) = 0.394, ub(x) = 0.099.

Solution method and results. The mesh was chosen as a uniform triangulation of
the domain with 25.600 triangles, which yields a mesh size of about h = 0.035.
We solved the discretized optimal control problem by the SQP-method with semi-
smooth Newton’s method for the inner problems. As initial guesses we used y0

h = 0
and p0

h = for state and adjoint. Starting the SQP-method at u0
h = 0 yields the

solution depicted in Figure 1.

Figure 1. First solution: control ū1
h, state ȳ1

h, adjoint state p̄1
h

For a different starting point, we obtained a different solution. Choosing
u0 = 0.5 yields the solution triple shown in Figure 2.

The results of the numerical verification technique are as follows. The radius
r̃1
+ = 5.773 · 10−4 satisfies Assumption 2.4 and thus the requirements of Theo-

rem 4.10. Hence, there exists a local solution ū1 of (5.1)–(5.3) in the neighborhood
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Figure 2. Second solution: control ū2
h, state ȳ2

h, adjoint state p̄2
h

of u1
h with the error estimate

‖ū1 − ū1
h‖U ≤ 5.773 · 10−4.

Moreover, the second derivative of the reduced cost functional is positive definite
and it holds

φ′′(ū1)(v, v) ≥ 0.7202‖v‖2
U ∀v ∈ U.

Similarly, we found the radius r̃2
+ = 2.727 · 10−3 for the second discrete solution,

which gives the existence of a locally optimal control ū2 with

‖ū2 − ū2
h‖U ≤ 2.727 · 10−3

and
φ′′(ū2)(v, v) ≥ 0.5991‖v‖2

U ∀v ∈ U.

Since ‖u1
h − u2

h‖U is much larger than r̃1
+ + r̃2

+, the controls ū1 and ū2 are clearly
separated. Consequently, the optimal control problem (5.1)–(5.3) with the data as
given above has at least to locally optimal controls.

Convergence rates. We computed solutions for different mesh sizes. The coarsest
mesh was obtained by a uniform triangulation with 400 triangles. The meshes were
then refined using a grading strategy [2] to cope with the re-entrant corners.

The convergence behaviour of the SQP-method did not change: depending
on the initial guess the obtained solutions were either near ū1 or ū2. In Table 2 we
listed the error bounds r1

+ and r2
+.

h r1
+ r2

+

0.28284 2.7311 · 10−3 1.2382 · 10−2

0.18284 1.2450 · 10−3 5.7057 · 10−3

0.09913 5.8972 · 10−4 2.7202 · 10−3

0.05134 2.8629 · 10−4 1.3268 · 10−3

0.02609 1.4096 · 10−4 6.6074 · 10−4

0.01315 6.9948 · 10−5 3.3381 · 10−4

Table 2. Error bounds for different meshes
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As one can see, the error bounds r1
+ and r2

+ decrease like h. For a uniform
discretization of the non-convex domain Ω one would expect lower convergence
rates. The optimal convergence rate is then recovered using mesh-grading in the
vicinity of the re-entrant corners.
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