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Abstract

The convergence analysis of multigrid methods for boundary element equa-
tions arising from negative-order pseudo-differential operators is quite dif-
ferent from the usual finite element multigrid analysis for elliptic partial
differential equations. In this paper, we study the convergence of geometric
multigrid methods for solving large-scale, data-sparse boundary element
equations arising from the adaptive cross approximation to the single layer
potential equations.
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1 Introduction

The spectral behavior of the matrices obtained from the Galerkin boundary el-
ement discretization of the single layer potential operator is quite different from
the spectral behavior of the stiffness matrices which arise from the finite element
discretization of elliptic boundary value problems: The high frequency modes
belong to small eigenvalues whereas the smooth eigenfunctions correspond to
large eigenvalues ! Therefore, a standard multigrid solver for the correspond-
ing boundary element equation will fail. Rjasanow first proposed and analyzed
an appropriate geometric two-grid method in [26]. Further contribution to the
construction and analysis of geometric multigrid solvers for dense boundary el-
ement equations were made by Petersdorff and Stephan [30] and Bramble, Leyk

∗This work has been supported by the Austrian Science Fund ‘Fonds zur Förderung der
wissenschaftlichen Forschung (FWF)’ under the grant P14953 “Robust Algebraic Multigrid
Methods and their Parallelization”.
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and Pasciak [7]. Based on the approach presented in [7], Langer, Pusch and
Reitzinger [24] proposed and studied algebraic versions.

The boundary element matrices are usually fully populated. In order to
solve really large-scale systems of boundary element equations, we have to
approximate the dense matrices by data-sparse representations. During the
last two decades different data-sparse approximation techniques for boundary
element matrices have been developed [27, 16, 19, 18, 1, 5, 13, 28]. In [23]
Langer and Pusch proposed an Algebraic Multigrid (AMG) method for solving
large-scale data-sparse boundary element equations arising from the the so-
called Adaptive-Cross-Approximation (ACA) to the discrete single layer poten-
tial equations. The ACA technique was proposed by Bebendorf and Rjasanow
[1, 5] and successfully used in many practical applications [21, 11]. A rigor-
ous convergence analysis of AMG methods for data-sparse boundary element
equations is quite difficult.

In this paper we provide uniform convergence rate estimates for data-sparse
geometric multigrid (GMG) methods applied to large-scale data-sparse bound-
ary element equations derived from the ACA to the single layer potential equa-
tion. The ACA matrices can be interpreted as certain perturbation of the dense
boundary element matrices. Therefore, the multigrid convergence theory de-
veloped by Bramble, Goldstein and Pasciak [6] for perturbed bilinear forms
(h-dependent bilinear forms) can be applied, see also [10]. From this theory we
can derive appropriate conditions which must be imposed on the ACA in order
to obtain uniform convergence even for the V -cycle.

The rest of the paper is organized as follows: In Section 2 we summerize
the conditions which yield uniform convergence rates for the multigrid V-cycle
algorithms under weak regularity assumptions. In the third section, we verify
these conditions for discrete single layer potential equations, and proceed further
with perturbations of the bilinear form in Section 4. Moreover, the special
perturbation causing by the ACA to the single layer potential operator is treated
in detail. Section 5 provide some numerical results supporting our theoretical
analysis. Finally, we draw some conclusions and discuss some further research
topics in Section 6.

2 Convergence Results for Multigrid Methods under

Weak Regularity Assumptions

The standard convergence theory for multigrid methods is based on the smooth-
ing and approximation properties, see e.g. [17, 10]. Following [8, 10], the so-
called full regularity and approximation condition can be written in the form

‖(I − Pk−1)v‖2 � λ−1
k A(v, v) ∀ v ∈ Mk, k = 2, . . . , J, (1)

where M1 ⊂ M2 ⊂ · · · ⊂ MJ = M is a nested sequence of finite dimensional
vector spaces, Pk−1 denotes the elliptic projection onto Mk−1, and λk is the
largest eigenvalue of Ak. The operator Ak is defined by the identity

(Akv, w) = A(v, w) ∀ v, w ∈ Mk, (2)

2



where (. , .) is some inner product on M and ‖.‖ denotes the corresponding
norm. A(v, w) is the bilinear form of the underlaying variational problem that
is supposed to be elliptic, bounded and symmetric. In order to avoid the in-
troduction of many generic constants, we use the notation “�” that stands
for “≤ C”, where C is some generic positive constant not depending on the
number of levels J . Condition (1) together with an appropriate smoothing
condition yield uniform multigrid convergence for problems that provides full
elliptic regularity, see [8].

In many practically important cases, the full regularity and approximation
condition (1) cannot be ensured. However, even under weaker conditions im-
posed on the bilinear form A(. , .) and the multigrid smoothers Rk uniform
V-cycle convergence can be shown. In the following, we want to recapitulate
these conditions from [10].

Let us first formulate the conditions imposed on the smoother Rk acting on
the subspace Mk for k = 2, . . . , J . Basically, two suppositions are needed. The
first one reads as

A((I − R̄kAk)v, v) = A((I − RkAk)v, (I − RkAk)v) ≤ A((I − ω

λk
Ak)v, v), (3)

which is equivalent to
ω

λk
(v, v) ≤ (R̄kv, v) (4)

for all v ∈ Mk, where the operator R̄k = Rk +Rt
k −Rt

kAkRk corresponds to the
symmetric arrangement of the pre- and post-smoothing sweeps. That means,
the smoother R̄k acts comparable or better than the Richardson smoother
( ω

λk
I). The second condition

A(Rkv,Rkv) ≤ θ(Rkv, v) v ∈ Mk (5)

ensures a proper scaling of the smoothers Rk for all k = 2, . . . , J , where the
scaling parameter θ ∈ (0, 2).

The second group of conditions needed for a rigorous convergence analysis
is connected with some properties of the bilinear form A(. , .) and the spaces
Mk, k = 1, . . . , J . Let us assume that there exist positive constants Ca, Csc

and ε ∈ (0, 1) not depending on J such that

A(v, v) ≤ Ca

(
A(P1v, v) +

J∑

k=2

λ−1
k ‖AkPkv‖2

)
∀ v ∈ M (6)

and
A(vk, vi) ≤ Csc εi−k‖vk‖A(λ

1/2
i ‖vi‖) ∀ vk ∈ Mk, vi ∈ Mi (7)

for all 1 ≤ k ≤ i ≤ J , where ‖.‖A = (A(. , .))1/2 denotes the energy norm.
Inequality (7) can alternatively be expressed by

‖Aiv‖2 ≤ (Cscε
i−k)2λiA(v, v) ∀ v ∈ Mk. (8)

Condition (6) is nothing but the approximation property. Condition (7) resp. (8)
is some kind of inverse property imposed on the spaces Mk.
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Now we have all ingredients to formulate the main convergence result proved
by Bramble and Pasciak in [9], see also Theorem 5.2 in [10]: Assume that
conditions (4), (5), (6) and (8) hold. Then there exists a positive constant CM

not depending on J such that

A(Ev, v) ≤ (1 − 1

CM
)A(v, v) ∀ v ∈ M, (9)

where E denotes the error reduction operator for the V-cycle algorithm (see
Algorithm 3.1 for the V-cycle and Algorithm 3.2 for the corresponding multigrid
preconditioner in [10]).

3 The Single Layer Potential Operator

In this section we briefly present the application of the convergence theory to
the single layer potential (SLP) operator. Bramble, Leyk and Pasciak [7] re-
formulated the general assumptions for this special class of operators. More
generally, one can note that we are treating a multigrid approach for pseudod-
ifferential operators of order -1, for which the use of weaker scalar products
turned out to be a successful strategy.

Let us consider a bounded Lipschitz domain Ω ⊂ R
3 with the boundary

Γ = ∂Ω. The bilinear form induced by the single layer potential operator is
given by the relation

V (u, v) =

∫

Γ

∫

Γ
E(x, y)u(x)v(y)dsxdsy (10)

with the fundamental solution E(x, y) = (4π‖x−y‖)−1 of the Laplace operator.
It is well known that the bilinear form V (. , .) is elliptic, bounded and symmetric
on H−1/2(Γ)×H−1/2(Γ), where H−1/2(Γ) denotes the usual Sobolev space with
negative fractional index, see e.g. [29]. Let us construct a nested sequence of
finite dimensional vector spaces

M1 ⊂ M2 ⊂ · · · ⊂ MJ = M ⊂ H−1/2(Γ).

In our numerical experiments presented in Section 5, we simply use piecewise
constant approximations of the Neumann data on a sequence of triangulations
that is obtained from a uniform (green) refinement of an initial triangulation
of the surface Γ. Furthermore, we define discrete operators Vk : Mk 7→ Mk by
the identity

(Vku, v)−1 = V (u, v) ∀u, v ∈ Mk, (11)

where (. , .)−1 denotes some inner product in the Hilbert space H−1(Γ) that is
sometimes called the minus one inner product.

Following [7], we define the the smoothing operator Rk : Mk 7→ Mk by the
identity

(Rku, v)−1,k =
1

λ̄k
(u, v)−1, ∀u, v ∈ Mk, (12)
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where (. , .)−1,k denotes a discrete minus one inner product on Mk and λ̄k is an

upper bound for the largest eigenvalue λ̂k = supv∈Mk

V (v,v)
(v,v)

−1,k
. The smoothing

conditions (4) and (5) can now be rewritten in the form

ω

λk
‖v‖2

−1 ≤ (Rkv, v)−1, ∀ v ∈ Mk, (13)

and
V (Rkv,Rkv) ≤ θ(Rkv, v)−1, ∀ v ∈ Mk, (14)

respectively, where ω is some positive relaxation parameter that has to be less
than 1 and θ ∈ (0, 2). Note, that (13) would actually be demanded for R̄k.
However, since Rk is symmetric this is automatically implied.

The conditions (6) and (8) imposed on the bilinear form must now be given
in terms of the minus one inner product. Thus, condition (6) must be substi-
tuted by SLP approximation property

V (v, v) ≤ Ca

(
V (P1v, v) +

J∑

k=2

λ−1
k ‖VkPkv‖2

−1

)
, ∀ v ∈ M, (15)

and the inverse property (8) by the inequalities

‖Viv‖2
−1 ≤ (Cscε

i−k)2λiV (v, v), ∀ v ∈ Mk, 1 ≤ k ≤ i ≤ J, (16)

with positive constants ε < 1, Ca and Csc not depending on the number of
levels.

If the conditions (13), (14), (15) and (16) are fulfilled, then uniform error
reduction of the form

V (Ev, v) ≤ (1 − 1

C
)V (v, v), ∀v ∈ M, (17)

follows from the general result stated in Section 2, where E again denotes the
error reduction operator of the symmetric V -cycle, and C is a positive constant
which is independent of the number J of levels.

The verification of the conditions (13), (14), (15) and (16) for the stan-
dard Galerkin approximation of the single layer potential operator was done
by Bramble, Leyk and Pasciak [7], see also Section 13 in [10]. However, the
standard Galerkin approximation of boundary integral operators leads to fully
populated matrices. Therefore, the complexity of the multigrid methods based
on dense matrices is far from being linear with respect to the number of un-
knowns. The main objective of this paper is to extend the convergence results
to data-sparse versions obtained by the adaptive cross approximation (ACA) of
the single layer potential operator. The ACA leads to perturbed bilinear forms
to which the perturbation theory of [10] is applicable.

4 Data-Sparse Multigrid based on ACA to V (. , .)

If we apply the ACA to the SLP bilinear form V (. , .) on M , then we obtain a
perturbed bilinear form Ṽ (. , .) that is closely related to the original form V (. , .)
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somehow. Let us now define perturbed forms at each level k = 1, . . . , J by the
Galerkin projection

Ṽk(u, v) = Ṽ (u, v), ∀u, v ∈ Mk. (18)

Then it is possible to verify conditions (15) and (16) for Ṽ (. , .) under some addi-
tional assumptions. Alternatively, one can use different forms Ṽk(u, v) obtained
by the ACA at each level and not by Galerkin projection of ṼJ(u, v) = Ṽ (u, v),
see Section 10 in [10] for this approach.

4.1 Multigrid Convergence Analysis for Perturbed Forms Ṽ (. , .)

In [10], Bramble and Zhang provide conditions yielding the approximation prop-
erty (15) and the inverse property (16) for the perturbed case.

First of all, Ṽ (. , .) has to be uniformly equivalent to V (. , .) on M , i.e. there
exist positive constants c1 and c2 independent of number of levels J such that

c1V (v, v) ≤ Ṽ (v, v) ≤ c2V (v, v) ∀ v ∈ M. (19)

In order to measure the approximation quality of the perturbed bilinear form,
we require that there exists a positive constant Cp and an arbitrarily small
constant β > 0 such that

|V (v, w) − Ṽ (v, w)| ≤ Cpλ
−β/2
J ‖v‖V ‖w‖V , ∀ v, w ∈ M, (20)

where ‖.‖V = (V (. , .))0.5 again denotes the energy norm and λJ is the largest
eigenvalue of VJ .

If condition (15) holds for V (. , .) and if the perturbation is uniform in the
sense of (19), then the approximation condition

Ṽ (v, v) ≤ C̃a

(
Ṽ (P̃1v, v) +

J∑

k=2

λ̃−1
k ‖ṼkP̃kv‖2

−1

)
, ∀ v ∈ M (21)

is fulfilled for the perturbed form Ṽ (. , .) with some positive constant C̃a not
depending on J .

If condition (16) holds for V (. , .) and if in addition to conditions (19) and
(20) inequality

C (v, v)−1 ≤ V (v, v), ∀ v ∈ M, (22)

is fulfilled with some positive constant C not depending on J , then the inverse
property

‖Ṽiv‖2
−1 ≤ (C̃scε̃

i−k)2λ̃iṼ (v, v) ∀ v ∈ Mk (23)

is valid for the perturbed form too, where ε̃ ∈ (0, 1) and C̃sc is a positive constant
not depending on J . Assumption (22) is true, because V (v, v) is equivalent to
‖v‖2

−1/2. Moreover, constants γ1 ≤ γ2 ≤ 1 have to exist, so that the largest
eigenvalues of Vk are related by

γ1λk+1 ≤ λk ≤ γ2λk+1, k = 1, . . . , J − 1, (24)
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which can be shown for single layer potentials on a sequence of nested meshes.
In the next subsection we will verify the conditions (19) and (20) for the

ACA. Together with the smoothing properties, which are obviously valid for
the perturbed case, we can then conclude uniform convergence of the V -cycle
multigrid algorithm. In the case of separately defined bilinear forms Ṽk(. , .) at
each level k, we can ensure similar convergence results provided that conditions
(19) and (20) are valid at each level k, cf. Sections 7 and 10 in [10].

4.2 Verification of the Multigrid Convergence Conditions for

the Adaptive Cross Approximation

The adaptive cross approximation of the single layer potential operator V on
M results in a data-sparse matrix Ṽh that can be represented in the form of
a sum of the sparse near field matrix Vnear

h the entries of which are evaluated
exactly and NB far field blocks that are described by low-rank matrices with
rank rki:

Ṽh = Vnear
h +

NB∑

i=1

rki∑

j=1

ui
jv

i>
j . (25)

The perturbed bilinear form Ṽ (. , .) is now defined by the identity

Ṽ (v, w) = (Ṽhv, w), ∀ v, w ↔ v, w ∈ M, (26)

where v and w are the vectors of coefficients with respect to the basis chosen
in M . The bilinear form (. , .) now denotes the usual Euclidean inner product
in R

Nh . As usual the discretization parameter h = hJ is chosen in such a way
that the number of (boundary) unknowns Nh at the finest level J is of the order
O(h−d) = O(h−2) for the case Ω ⊂ R

3 considered here.
The accuracy provided by the ACA algorithm is usually measured in the

Frobenius norm. More precisely, we can ensure the error estimate

‖Vh − Ṽh‖F ≤ ε‖Vh‖F (27)

for any given fixed positive ε, see [5], where Vh denotes the dense boundary
element matrix defined by the identity

(Vhv, w) = V (v, w) ∀v, w ↔ v, w ∈ M. (28)

As we will see later, it is convenient and useful to have estimates in the spectral
norm ‖.‖2. Using the well-known norm equivalence inequalities

‖A‖2 ≤ ‖A‖F ≤
√

n‖A‖2, (29)

which are valid for real matrices A of the dimension n × n, we immediately
obtain the error estimate

‖Vh − Ṽh‖2 ≤ ε
√

Nh‖Vh‖2 (30)

in the spectral norm from the corresponding estimate (27) in the Frobenius
norm.
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4.2.1 Spectral Equivalence of V (. , .) and Ṽ (. , .) on M

The spectral equivalence inequalities (19) can be rewritten in the corresponding
matrix formulation

c1(Vhv, v) ≤ (Ṽhv, v) ≤ c2(Vhv, v) ∀ v ∈ R
Nh , (31)

or briefly
c1Vh ≤ Ṽh ≤ c2Vh.

Let us remark that the discretized single layer potential Vh as well as its ACA
approximation Ṽh are symmetric and positive definite matrices (with the right
scaling in 2D, cf. [29]). In particular, the matrices are invertible.

The following two lemmas provide the spectral equivalence inequalities for
which we looking.

Lemma 4.1. Let V (. , .) be the single layer potential and Ṽ (. , .) the ACA in-
duced perturbed bilinear forms. Then we obtain the inequality

Ṽ (v, v) ≤ (1 + ε
√

Nhκ(Vh))V (v, v) ∀ v ∈ M,

where κ(Vh) denotes the spectral condition number of the discretized single layer
potential operator Vh.

Proof. Due to the definitions V (v, v) = (Vhv, v) and Ṽ (v, v) = (Ṽhv, v) it is suffi-
cient to find an appropriate constant c2 for the corresponding matrix inequality.
For the estimate of Ṽh ≤ c2Vh, we investigate the equivalent upper inequality

V−1/2
h ṼhV−1/2

h ≤ c2Ih that provides the same spectral constant c2. Thus, we

have ‖V−1/2
h ṼhV−1/2

h ‖2 = ‖V−1/2
h ṼhV−1/2

h −Ih+Ih‖2 ≤ 1+‖Ih−V−1/2
h ṼhV−1

h ‖2.

The last norm expression can be estimated further with ‖Ih−V−1/2
h ṼhV−1/2

h ‖2 ≤
‖Vh − Ṽh‖2‖V−1/2

h ‖2
2 ≤ ε

√
Nh‖Vh‖2‖V−1

h ‖2 = ε
√

Nhκ(Vh), which proves the
lemma.

Lemma 4.2. Let V (. , .) be the single layer potential and Ṽ (. , .) the ACA in-
duced perturbed bilinear forms. If ε < 1/

√
Nhκ(Vh), then we obtain the inequal-

ity
(1 − ε

√
Nhκ(Vh))V (v, v) ≤ Ṽ (v, v) ∀ v ∈ M.

Proof. Again we are concentrating on the corresponding matrix inequality,

which in this case reads as Ṽ−1/2
h VhṼ−1/2

h ≤ 1/c1Ih. We consider an estimate

for the matrix V1/2
h Ṽ−1

h V1/2
h which has exactly the same eigenvalues (similarity

transformation). Now we have the identity ‖V1/2
h Ṽ−1

h V1/2
h ‖2 = ‖(Ih − (Ih −

V−1/2
h ṼhV−1/2

h ))−1‖2. The inversion with the help of the Neumann series gives

the estimate ‖
∞∑

i=0
(Ih−V−1/2

h ṼhV−1/2
h )i‖2 ≤ 1

1−‖Ih−V−1/2

h
eVhV−1/2

h ‖2

≤ 1
1−ε

√
Nhκ(Vh)

which completes the proof.

For sufficiently small ε, Lemma 4.1 and Lemma 4.2 ensure that the spectral
equivalence inequalities (19) are valid. Moreover, we are able to make the
spectral constants c1 and c2 arbitrarily close to 1 by decreasing the parameter
ε. A similar result can be found in [4].
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4.2.2 Approximation Ṽ (. , .) of V (. , .)

In order to verify the condition (20) for the ACA approximation of the dis-
cretized single layer potential we first have to assert several norm estimates.

The real method of interpolation provides estimates for some interpolation
spaces between two Hilbert spaces. More precisely, if we consider H 1(Γ) ⊂
H1/2(Γ) ⊂ L2(Γ) one can establish the estimate

‖uh‖1/2 ≤ c‖uh‖1/2
0 ‖uh‖1/2

1 ∀uh ∈ M ⊂ H1(Γ). (32)

The inverse inequality

‖uh‖1 ≤ ch−1‖uh‖0 ∀uh ∈ M (33)

gives an estimate of H1-norm by the L2-norm of a function from M, where h
denotes the usual typical mesh size of the fine grid space M. Later we need a
lower estimate for the H−1/2-norm of a function from M that can be found as
follows:

‖uh‖−1/2 = sup
v∈H1/2(Γ)

(uh, v)0
‖v‖1/2

≥ ‖uh‖2
0

‖uh‖1/2
(34)

≥ c
‖uh‖2

0

h−1/2‖uh‖0

= ch1/2‖uh‖0.

Let us bear in mind that, in the case of pseudo-differential operators of order
minus one, we are treating the whole multigrid analysis with respect to a weaker
scalar product, namely the H−1 inner product (. , .)−1. For the introduced
operators Vk : Mk → Mk defined by (11) we have the corresponding maximal
eigenvalues

λk = sup
v∈Mk

(Vkv, v)−1

‖v‖2
−1

. (35)

Furthermore, let us remember that the Euclidean vector norm and the L2-norm
are related by

‖u‖2
0 = (Mhu, u) ' hd‖u‖2

R
Nh

, (36)

where Mh denotes the mass matrix and d is the dimension of the parameterized
boundary Γ of the computational domain Ω.
A relation between the matrix norm and the operator norm of the induced
mappings is obtained by the following estimate

‖Vh‖2 = sup
(Vhvh,vh)
(vh,vh) � sup V (vh,vh)

h−d(vh ,vh)0

� sup (VJ vh,vh)−1

h−d(vh,vh)−1

= hd‖VJ‖.
(37)
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Now we can state the approximation estimate (20) for the ACA representation
of the single layer potential, i.e.

|V (vh, wh) − Ṽ (vh, wh)| � ‖Vh − Ṽh‖2‖vh‖R
Nh ‖wh‖R

Nh

� ε
√

Nh‖Vh‖2h
−d‖vh‖0‖uh‖0

� ε
√

Nh‖Vh‖2h
−d−1‖vh‖−1/2‖uh‖−1/2

� εh−d/2−1‖VJ‖‖vh‖−1/2‖uh‖−1/2.

(38)

Hold in mind, that Nh = O(h−d) and λJ = ‖VJ‖ = O(h−1). Together with the
above estimate and the norm equivalence

‖uh‖2
−1/2 ' V (uh, uh) ≡ ‖uh‖2

V , uh ∈ M, (39)

we finally obtain the approximation result, which is given as

|V (vh, wh) − Ṽ (vh, wh)| � εh−(d+β)/2−2λ
−β/2
J ‖vh‖V · ‖wh‖V (40)

with an arbitrarily positive constant β.
In order to get rid of the mesh parameter h, we can choose an appropriate ε
that exactly cancels out the dependency. For instance in the case Ω ⊂ R

3 the
boundary Γ is characterized by a 2-dimensional manifold, i.e. d = 2. Therefore,
we would have ε ∼ h3+β/2. As shown in [2] the effort for constructing an ACA
approximation of a single layer potential behaves like O(N 1+α

h ε−α), with an
arbitrarily small positive α.

We have shown that the ACA accuracy parameter ε can be chosen in such a
way that the conditions (19) and (20) are fulfilled for ACA matrices originating
from the discretized single layer potential operator. Therefore, we can state our
main theorem.

Theorem 4.3. Let the bilinear form V (. , .) be defined by the single layer po-
tential operator V and let Vh be the discrete analog defined by (28). Moreover,
let Ṽh be a corresponding data-sparse approximation provided by the ACA -
algorithm and Ṽ (. , .) its induced bilinearform. Assume further (27) and appro-
priately defined smoothers satisfying (12)–(14). If the ACA accuracy ε = εaca

is of order h(d+β)/2+2 (with d the dimension of Γ = ∂Ω the boundary of the
computational domain and β an arbitrarily small positive number), then

Ṽ (Ẽv, v) ≤ (1 − 1

C
)Ṽ (v, v), ∀ v ∈ M, (41)

where Ẽ denotes the error reduction operator on the finest grid and C is a
generic constant not depending on the number of levels.

Corollary 4.4. In order to reduce the initial error via a multigrid V-cycle or
a V-cycle preconditioned conjugate gradient method by the factor εit = εmg =

εcg ∈ (0, 1), we need O(N 1+γ
h log ε−1

it ) arithmetical operations, where γ is an
arbitrarily small positive number. The memory demand is of almost optimal
order O(N 1+γ

h ) too.
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Proof. The complexity for constructing the ACA matrix can be estimated by
O(N1+α

h ε−α
aca) [5]. Summing up the arithmetical cost and the memory demand

over all levels gives the same complexity [23]. The choice εaca = h(d+β)/2+2 and
Theorem 4.3 yield the complexity estimate for the total cost of arithmetical
operations.

5 Numerical Studies

The solution of the interior Dirichlet problem for the Laplace equation

−∆u(x) = 0, x ∈ Ω ⊂ R
3,

u(x) = g(x), x ∈ Γ = ∂Ω,
(42)

can be represented by the so-called representation formula

u(y) =

∫

Γ
E(x, y)

∂u

∂n
(x) −

∫

Γ

∂E

∂nx
(x, y)g(x) y ∈ Ω. (43)

The missing Neumann data v = ∂u/∂n on Γ can be found from the SLP equa-
tion

V v = (
1

2
I + K)g, (44)

where

(Kg)(y) =

∫

Γ

∂E

∂nx
(x, y)g(x)dsx (45)

denotes the double layer potential operator. The Galerkin discretization with
piecewise constant basis functions {ϕj

k}k=1,...,Nj
on a regular sequence of trian-

gulation of Γ obtained by dividing a given triangle into four smaller triangles
(green refinement) results in a sequence of systems with dense matrices Vj de-

fined by (Vj)kl = V (ϕj
k, ϕ

j
l ) at each level j = 1, 2, . . . , J . To ensure efficiency

with respect to memory consumption and computational time we use data-
sparse ACA Ṽj to the dense matrices Vj at each level j = 1, 2, . . . , J . Alterna-

tively, we can use the Galerkin projection of ṼJ to obtain data-sparse matrices
Ṽj on each auxiliary grid level j = J−1, J−2, . . . , 1 as was done in the algebraic
version [23]. We mention that the ACA was also used for approximating the
discrete single double potential operator when calculating the right-hand side
f̃J of the system

ṼJvJ = f̃J (46)

on the finest grid. More precisely, we are using the ACA technique implemented
in the software package AHMED developed by M. Bebendorf [3].

We now solve system (46) via the conjugate gradient method preconditioned
by a symmetric V-cycle with one pre-smoothing and one post-smoothing step
[20]. We mention that the dense matrices Vj as well as their data-sparse repre-

sentations ṼJ are symmetric and positive definite. Of course, it is possible to
use multigrid as a solver, but in our experiments presented below it was used as
a preconditioner within the conjugate gradient method. All calculations were
done with a relative accuracy of εcg = 10−6.
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Figure 1: L-shaped Domain

For our numerical experiments, we take a 3D L-shaped computational do-
main Ω as is shown in Figure 1. The surface Γ of Ω is provided with an initial
triangulation consisting of 1792 triangles, see also Figure 1. In Table 1, we
present the effort for constructing the ACA system matrix with the accuracy
εaca = 10−3 and the admissibility parameter η = 1.2.

3D L-Shape System Matrix Ṽh Matrix-Hierarchy

Number of Assembling Memory Assembling Memory
Unknowns [sec] [MB] [sec] [MB]

7168 77 16 15 2.5
28672 402 76 95 19

114688 1914 373 468 95

Table 1: Assembling Ṽh and Setup Times.

One can observe an almost linear increase in the computational time. Fur-
thermore, the corresponding demand for memory also grows almost like O(Nh).
The major part of setting up the multigrid hierarchy is spent for the system
matrix, both the assembling time and the memory demand.

In Table 2 we are considering the numerical behavior of the preconditioned
conjugate gradient (PCG) algorithm. The last column presents the time for

3D L-Shape

Number of Number of PCG Time per Iteration
Unknowns Grids Iteration [sec]

7168 2 7 0.25
28672 3 8 1.0

114688 4 7 5.1

Table 2: Numerical features for the PCG solver.

one single PCG iteration. Obviously, the increase is almost linear. In order to
confirm the quality of our multigrid preconditioner we recognize the constant
number of iterations even for a large number of degrees of freedom.
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6 Conclusions and Remarks

Starting from the abstract theoretical results of [10] we provided a rigorous con-
vergence analysis for multigrid methods applied to the solution of data-sparse
approximated single layer potential equations. Considering the adaptive cross
approximated system matrix as a perturbed Galerkin matrix some additional
conditions given in [10] have to be fulfilled in order to obtain uniform conver-
gence. It turned out that the accuracy of the adaptive cross approximation on
the different refinement levels can be controlled in such a way that the conditions
for uniform convergence are fulfilled. Taking into account a proper accuracy
on each level, the h-dependency of the convergence rate can be avoided. The
analysis given in this paper carries over to hypersingular integral equations
connected with the interior and exterior Neumann problems. Efficient precon-
ditioners for the discrete data-sparse approximated single layer potential and
hypersingular operators are needed in the primal and dual boundary element
domain decomposition methods [22, 12, 25].

In general, it is much more difficult to establish theoretical convergence re-
sults for an algebraic multigrid methods, see e.g. [15, 14] for some recent results
connected with finite element discretizations of second–order boundary value
problems. However, in some cases the algebraic multigrid approach recovers
the geometric version, e.g. for uniform refinement in 2D, see [24].
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