Time Integration of the Multi-Configuration Time-Dependent
 Hartree-Fock Equations

Othmar Koch ${ }^{1}$
Joint with Christian Lubich ${ }^{2}$

We describe and analyze an approach to the approximate solution of the timedependent Schrödinger equation for a gas of unbound Fermions interacting by Coulomb forces. Our method of choice to make the original, linear Schrödinger equation tractable for numerical computation, is the multiconfiguration timedependent Hartree-Fock method (MCTDHF). The approximation is defined by equations of motion resulting from the Dirac-Frenkel variational principle,

$$
\begin{align*}
\mathrm{i} \frac{d a_{J}}{d t} & =\mathcal{A}_{V}(\phi) a, \quad \forall J=\left(j_{1}, \ldots, j_{f}\right) \tag{1}\\
\mathrm{i} \frac{\partial \phi_{j}}{\partial t} & =T \phi_{j}+\mathcal{B}_{V}(a, \phi), \quad j=1, \ldots, N \tag{2}
\end{align*}
$$

where the orbitals ϕ_{j} depend on only one degree of freedom each, T is the kinetic energy operator and $\mathcal{A}_{V}(\phi), \mathcal{B}_{V}(a, \phi)$ are nonlinear functions depending on the Coulomb potential V. The wave function is thus approximated by

$$
u(x, t)=\sum_{\left(j_{1}, \ldots, j_{f}\right)} a_{j_{1}, \ldots, j_{f}}(t) \phi_{j_{1}}\left(x_{1}, t\right) \cdots \phi_{j_{f}}\left(x_{f}, t\right), \quad j_{k}=1, \ldots, N
$$

The Pauli exclusion principle implies antisymmetry in the coefficient tensor $a=$ $\left(a_{j_{1}, \ldots, j_{f}}\right)$ under exchange of any two indices. We prove the following result:
Theorem 1. Consider the system (1)-(2). If the initial data for ϕ_{j} is in the Sobolev space H^{2}, then there exists a unique classical solution of the MCTDHF equations satisfying

$$
a_{J} \in C^{2}\left(\left[0, t^{*}\right), \mathbb{C}\right), \quad \phi_{j} \in C^{1}\left(\left[0, t^{*}\right), L^{2}\right) \cap C\left(\left[0, t^{*}\right), H^{2}\right),
$$

where either $t^{*}=\infty$ or the density matrix appearing in the definition of \mathcal{B}_{V} becomes singular for $t=t^{*}$.

Moreover, we analyze the convergence of a time integrator based on the symmetric ('Strang') splitting of the vector field into its component parts $\hat{T}:=$ $-\mathrm{i}(0, T)^{T}, \quad \hat{V}:=-\mathrm{i}\left(\mathcal{A}_{V}, \mathcal{B}_{V}\right)$. The convergence result can be stated as follows:

Theorem 2. Consider the numerical approximation of (1)-(2) given by time semidiscretization based on splitting with step size $\Delta t, u_{j} \mapsto u_{j+1}=\mathcal{S}_{\Delta t} u_{j}, j=$ $0,1, \ldots$. Then the convergence estimates

$$
\begin{align*}
\left\|u_{n}-u\left(t_{n}\right)\right\|_{H^{1}} & \leq \text { const. } \Delta t, \quad \text { for } t_{n}=n \Delta t \tag{3}\\
\left\|u_{n}-u\left(t_{n}\right)\right\|_{L^{2}} & \leq \text { const. }(\Delta t)^{2} \tag{4}
\end{align*}
$$

hold if the exact solution satisfies $u \in H^{2}$ for (3) and $u \in H^{3}$ for (4).

[^0]
[^0]: ${ }^{1}$ Supported by the Austrian Academy of Sciences, APART program.
 ${ }^{2}$ Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen

