SIMPLE A POSTERIORI ERROR ESTIMATORS FOR THE *h*-VERSION OF THE BOUNDARY ELEMENT METHOD IN 3D

SAMUEL FERRAZ-LEITE AND DIRK PRAETORIUS

ABSTRACT

The h-h/2-strategy is one very basic and well-known technique for the a posteriori error estimation for Galerkin discretizations of energy minimization problems. Let ϕ denote the exact solution. One then considers

$$\eta_H := \|\phi_h - \phi_{h/2}\|$$

to estimate the error $\|\phi - \phi_h\|$, where ϕ_h is a Galerkin solution with respect to a mesh \mathcal{T}_h and $\phi_{h/2}$ is a Galerkin solution for a mesh $\mathcal{T}_{h/2}$ obtained from uniform refinement of \mathcal{T}_h . We stress that η_H is always efficient – even with known efficiency constant $C_{\text{eff}} = 1$, i.e.

$$\eta_H \le \|\phi - \phi_h\|.$$

Reliability of η_H follows immediately from the assumption $\|\phi - \phi_{h/2}\| \le q_S \|\phi - \phi_h\|$ with some saturation constant $q_S \in (0, 1)$. Under this assumption, there holds

$$\|\phi - \phi_h\| \le \frac{1}{\sqrt{1 - q_S^2}} \eta_H.$$

However, for boundary element methods, the energy norm $\|\cdot\|$ is non-local and thus the error estimator η_H does not provide information for a local mesh-refinement. Recent localization techniques from [1] for $\tilde{H}^{-\alpha}$ -norms allow one to replace the energy norm in the case of isotropic mesh-sequences by mesh-size weighted L^2 -norms. In particular, this very basic error estimation strategy can be used to steer an *h*-adaptive mesh-refinement. For instance, for Symm's integral equation, the L^2 -norm based estimator

$$\mu_H := \|\rho^{1/2}(\phi_h - \phi_{h/2})\|_{L^2(\Gamma)}$$

is equivalent to η_H . We thus may use μ_H to steer the mesh and η_H to estimate the error.

Further simplifications of the proposed error estimators η_H and μ_H consist in replacing ϕ_h by some appropriate projection $\Pi_h \phi_{h/2}$, for instance, by use of the L^2 -projection onto the discrete space corresponding to \mathcal{T}_h . Moreover, the error estimator η_H is proven to be equivalent to the averaging estimator in [1, 3] and the two-level estimator from [4].

However, the analytical results only cover the isotropic case, which in 3D doesn't reveal the optimal order of convergence. Numerical examples using a heuristic to steer anisotropic refinements conclude the talk, suggesting that the analysis could be improved to work in the anisotropic case as well.

SAMUEL FERRAZ-LEITE AND DIRK PRAETORIUS

References

- [1] C. Carstensen, D. Praetorius: Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind. *SIAM J.Sci.Comp.* 27 (2006), 1226–1260.
- [2] S. Ferraz-Leite, D. Praetorius: Simple a posteriori error estimators for the h-version of the boundary element method. ASC Report 01/2007, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien, 2007
- [3] C. Erath, S. Ferraz-Leite, S. Funken, D. Praetorius: Energy norm based a posteriori error estimation for boundary element methods in two dimensions. ASC Report 07/2007, Institute for Analysis and Scientific Computing, Vienna University of Technology, Wien, 2007
- [4] P. Mund, E. P. Stephan, J. Weisse: Two-level methods for the single layer potential in R³. Computing 60 (1998), 243–266

VIENNA UNIVERSITY OF TECHNOLOGY, INSTITUTE FOR ANALYSIS AND SCIENTIFIC COMPUTING, WIEDNER HAUPTSTRASSE 8–10, 1040 WIEN, AUSTRIA

 $E\text{-}mail\ address: \texttt{samuel.ferraz-leite@tuwien.ac.at}$

VIENNA UNIVERSITY OF TECHNOLOGY, INSTITUTE FOR ANALYSIS AND SCIENTIFIC COMPUTING, WIEDNER HAUPTSTRASSE 8–10, 1040 WIEN, AUSTRIA

E-mail address: dirk.praetorius@tuwien.ac.at