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About the Generalized Impedance Boundary Conditions

e Context : scattering problems in the harmonic regime
e GIBCs : correspond to models involving small parameters
— For example, perfect conductor coated with a layer for T E

polarization (order 1),

Ou+Zu=0onT, Z =460+ k*n),

with 0 : width of the layer, s : curvilinear abscissa, k : wave

number, 1 : mean value of the thin coating index along v

We consider the following model of GIBC :

o,u+ pAru + Au = 0 on I,

with p : complex constant, A : complex function.
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Outline of the talk

Typical inverse problem : the obstacle being known, determine A\

and p from the far field u°° associated to one incident wave at fixed

frequency

Nonlinear operator of interest : T : (A, u) — u°

® The forward problem

e Uniqueness for the inverse problem
e Stability for the inverse problem

e Numerical experiments

® Perspectives
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The forward problem

Obstacle D C R3,  :=R3\ D

Incident wave u*(xz) = e**4-®

Governing equations for u® = u — u*:

)
Au® +k2?u® =0

ou® 5 5
+ pAru® + Au® = f
ov

lim ous/0r — iku®|® ds(z) = 0
lm [ o 2 ds(z) = 0,

ou®
v

+ pAru + Aui) I
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The forward problem

e Classical impedance problem p = O:

uniquely solvable in Vo = {H*(Q2 N B(0, R))} provided
A € L°°(T) with Tm()) > 0

e Generalized impedance problem p # O:

uniquely solvable in Vg = {v € Vyg, v|r € H*(T')} provided
A € L°°(T') with Im(A\) > 0, Re() > 0 and Im(p) < 0.

Remark : Arw is defined in H~1(T") by

<AI"U, w>H—1(I‘),H1(I‘) — _/ VI‘U.VI"UJ dS, Yw € Hl(F)
r
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Uniqueness for inverse problem (the obstacle is known)

e Classical impedance problem g = 0 (Colton and Kirsch 81):

uniqueness for piecewise continuous A

Proof : assume T' (A1) = T'(A2) = u°°. Rellich Lemma + unique
continuation = u; = us in 2, then (uy — us)|r = 0 and
3,/(’11,1 — U2)|I‘ = 0.

Byul -+ )\1’11,1 = 8,/11,1 + )\2’U,1 —=0onl

Then (A1 — A2)uy = 0 on I'. For g € T" not on a curve of
discontinuity s.t. (A1 — A2)(xg) # 0, then |(A1 — A2)(x)| > 0 on
B(xg,n) NT.

As a result w3 = 0, dp,uy; = 0 on B(xg,n) N T, and unique

continuation = u; = 0 in Q. This contradicts the fact that u® is a

plane wave. Hence A1 (x) = Az(x) a.e. on T'. B
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Uniqueness for the inverse problem

e Generalized impedance problem p # 0 : non uniqueness

A counterexample in 2D : D = B(0,1),d = (1,0), k =1,
ug : solution of the classical impedance problem with Ag = 2

« := Arug/ug is a smooth function on T’

® (11 F p2 st

|pi| maxr |af <1, Re(p;) > 0, Im(p;) <0

@\ A Aas.t. \ji=Ag—au;onl

— We have on I':

Im(\;) = Im(Xo) — Im(ap;) > Im(Ag) — |p;| maxr || > 0
Ovuo + i Arug + Ajug = (—Ao + apty + Aj)ug =0

As a result, ug® = T'(%,0) is the far field associated to the
generalized impedance problem with both (Aq, 1) and (A2, p2)




Page 8

Uniqueness for the inverse problem

We can restore uniqueness with restrictions : two examples

e )\ and u two complex constants +

Geometric assumption : there exists xg € I'y 7 > 0 such that

I'g := I' N B(xq,n) is portion of a plane, cylinder or sphere and
{x 4+ ~vyv(x), ¢ € Ty, v >0} C Q

® \ piecewise continuous, and g complex constant : Re(\) and
Im(p) are fixed and known, the unknown being Im(A) and Re(u) +

Geometric assumption : both D, A are invariant by reflection against

a plane which does not contain d or by a rotation around an axis
which is not directed by d

e More general conditions in Bourgeois & Haddar (2009, submitted)
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Uniqueness for the inverse problem

Second case : sketch of the proof

o,u + p1Aru + Au = dpu + pusAru + Aau =0on T

If 1 # p2, then

/ |Vru|?ds =
r

/()\2 — )\1)|’U,|2 ds
H2 — M1

Hyp. : Re(A) and Im(u) are fixed and known

Then (A2 — A1) /(p2 — 1) € 1R = v = C on I'; and
)\1 — )\2 — )\

u® 4+ u* =C and 8,,u8—|—8uf/=—C)\ on T
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Uniqueness for the inverse problem

Second case : sketch of the proof (cont.):

Representation formulas for ©® and u* on T :

u?(x)/2 =T (u’)(x) — S(Gu’(x))
u'(z)/2 = =T (u*)(x) + S(dyu(x))
with
S:=~"SL=~TSL, 7 = (v"DL +~~DL)/2
(SL : single layer potential, DL : double layer potential)
We obtain

u'(x) = %(1 —27(1)(x) —28(A)(x)) on T

This is forbidden by the geometric assumption. Il
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Stability for the inverse problem

The classical impedance problem: many results in the
litterature (Labreuche 99, Sincich 06, ...)

Some proprieties of operator T': A € L (T') — u> € L*(S?) :
e Injective (piecewise continuous A)

e Differentiable in the sense of Fréchet
dT’ : h — vp° is defined by

v=(@) = [ ply.Duly, Dh(y) ds(y) Va € 5°

where p(., &) is the solution associated to ®°°(., &).
e dT), injective (piecewise continuous )

= Some simple Lipschitz stability results can be derived in compact
subsets of finite dimensional spaces
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Stability for the inverse problem

The generalized impedance problem:

Some proprieties of operator T : (A, u) € V(I') — u®> € L?(S?) :

e Injective

e Differentiable in the sense of Fréchet
dTy, . : (h,l) — v is defined by

v (&) = (p(., &), lAru(.,d) + u(, d)h) g1 g VE € 52

where p(., &) is the solution associated to ®°(., ).
e dT) , injective

= Some simple Lipschitz stability results can be derived in compact
subsets of finite dimensional spaces
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Numerical experiments in 2D

e Minimize the cost function (classical impedance)

1
F(A) = §||T()\) —udp |72 s

e Artificial data uJp, obtained with a Finite Element Method
® Projection of A along the trace on I' of the FE basis

e Computation of gradient (classical impedance): h; = Re(h),

(dF(A), h) = Re / {(h () + iha(y))u(y)

[ (0. 2)T) = uz,) @da}ds(w)

e H'(T') regularization of gradient
e Obstacle : B(0,1), incident wave d = (—1,0), k =9
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Numerical experiments : classical impedance problem

Initial guess, exact solution, retrieved solutions with 0 and 2% noise
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Numerical experiments : classical impedance problem

4 directions of incident wave, measurements limited to 1/4-th of S*
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Numerical experiments : classical impedance problem

4 directions of incident wave, measurements limited to 1/4-th of S*
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Numerical experiments :

generalized impedance problem

Second example :

Re(A\) =0
Im(p) =0
Im()\) = sin?(0)
Re(p) = 0.5
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Perspectives

e Improve uniqueness results for our GIBC
e Obtain logarithmic stability results for our GIBC without

restriction on the set of parameters

e Other GIBCs, for example involving divr(u(x)Vru)

e Uniqueness from backscattering data : an open problem




