Identification of generalized impedance boundary conditions in inverse scattering problems

L. Bourgeois, N. Chaulet and H. Haddar

INRIA/DEFI Project (Palaiseau, France)

AIP, Vienna, 23/07/2009

About the Generalized Impedance Boundary Conditions

- Context : scattering problems in the harmonic regime
- GIBCs : correspond to models involving small parameters \rightarrow For example, perfect conductor coated with a layer for TE polarization (order 1),

$\partial_{\nu}u + Zu = 0 \text{ on } \Gamma, \quad Z = \delta(\partial_{ss} + k^2 n),$

with δ : width of the layer, s: curvilinear abscissa, k: wave number, n: mean value of the thin coating index along ν

We consider the following model of GIBC :

 $\partial_
u u + \mu \Delta_{\Gamma} u + \lambda u = 0 \, \, \mathrm{on} \, \, \Gamma,$

with μ : complex constant, λ : complex function.

Outline of the talk

 $\frac{\text{Typical inverse problem}}{\text{and }\mu} \text{ from the far field } u^{\infty} \text{ associated to one incident wave at fixed} \\ \text{frequency} \end{cases}$

Nonlinear operator of interest : $T: (\lambda, \mu) \longrightarrow u^{\infty}$

- The forward problem
- Uniqueness for the inverse problem
- Stability for the inverse problem
- Numerical experiments
- Perspectives

The forward problem

Obstacle $D \subset \mathbb{R}^3$, $\Omega := \mathbb{R}^3 \setminus \overline{D}$ Incident wave $u^{i}(x) = e^{ik \, d.x}$ Governing equations for $u^s = u - u^i$: Ω. in on Γ , with $f:=-\left(rac{\partial u^i}{\partial
u}+\mu \Delta_{\Gamma} u^i+\lambda u^i
ight)ert_{\Gamma}$

The forward problem

• Classical impedance problem $\mu = 0$:

uniquely solvable in $V_{0R} = \{H^1(\Omega \cap B(0, R))\}$ provided $\lambda \in L^{\infty}(\Gamma)$ with $\operatorname{Im}(\lambda) \geq 0$

• Generalized impedance problem $\mu \neq 0$:

uniquely solvable in $V_R = \{v \in V_{0R}, v|_{\Gamma} \in H^1(\Gamma)\}$ provided $\lambda \in L^{\infty}(\Gamma)$ with $\operatorname{Im}(\lambda) \geq 0$, $\operatorname{Re}(\mu) > 0$ and $\operatorname{Im}(\mu) \leq 0$.

<u>Remark</u> : $\Delta_{\Gamma} v$ is defined in $H^{-1}(\Gamma)$ by

$$egin{aligned} & \left< \Delta_{\Gamma} v, w
ight>_{H^{-1}(\Gamma), H^{1}(\Gamma)} = - \int_{\Gamma}
abla_{\Gamma} v.
abla_{\Gamma} w \, ds, \quad orall w \in H^{1}(\Gamma) \end{aligned}$$

Uniqueness for inverse problem (the obstacle is known)

• Classical impedance problem $\mu = 0$ (Colton and Kirsch 81): uniqueness for piecewise continuous λ

<u>Proof</u>: assume $T(\lambda_1) = T(\lambda_2) = u^{\infty}$. Rellich Lemma + unique continuation $\Rightarrow u_1 = u_2$ in Ω , then $(u_1 - u_2)|_{\Gamma} = 0$ and $\partial_{\nu}(u_1 - u_2)|_{\Gamma} = 0$.

 $\partial_{
u} u_1 + \lambda_1 u_1 = \partial_{
u} u_1 + \lambda_2 u_1 = 0 ext{ on } \Gamma$

Then $(\lambda_1 - \lambda_2)u_1 = 0$ on Γ . For $x_0 \in \Gamma$ not on a curve of discontinuity s.t. $(\lambda_1 - \lambda_2)(x_0) \neq 0$, then $|(\lambda_1 - \lambda_2)(x)| > 0$ on $B(x_0, \eta) \cap \Gamma$. As a result $u_1 = 0$, $\partial_{\nu} u_1 = 0$ on $B(x_0, \eta) \cap \Gamma$, and unique continuation $\Rightarrow u_1 = 0$ in Ω . This contradicts the fact that u^i is a plane wave. Hence $\lambda_1(x) = \lambda_2(x)$ a.e. on Γ .

• Generalized impedance problem $\mu \neq 0$: non uniqueness

A counterexample in 2D : D = B(0, 1), d = (1, 0), k = 1, u_0 : solution of the classical impedance problem with $\lambda_0 = i$ $\alpha := \Delta_{\Gamma} u_0/u_0$ is a smooth function on Γ • $\mu_1 \neq \mu_2$ s.t. $|\mu_i| \max_{\Gamma} |\alpha| \leq 1, \quad \operatorname{Re}(\mu_i) > 0, \operatorname{Im}(\mu_i) \leq 0$ • $\lambda_1 \neq \lambda_2$ s.t. $\lambda_i := \lambda_0 - \alpha \mu_i$ on Γ \rightarrow We have on Γ : $\operatorname{Im}(\lambda_i) = \operatorname{Im}(\lambda_0) - \operatorname{Im}(\alpha \mu_i) \geq \operatorname{Im}(\lambda_0) - |\mu_i| \max_{\Gamma} |\alpha| \geq 0$ $\partial_{\nu} u_0 + \mu_i \Delta_{\Gamma} u_0 + \lambda_i u_0 = (-\lambda_0 + \alpha \mu_i + \lambda_i) u_0 = 0$

As a result, $u_0^{\infty} = T(i, 0)$ is the far field associated to the generalized impedance problem with both (λ_1, μ_1) and (λ_2, μ_2)

We can restore uniqueness with restrictions : two examples

• λ and μ two complex constants +

Geometric assumption : there exists $x_0 \in \Gamma$, $\eta > 0$ such that $\overline{\Gamma_0} := \Gamma \cap B(x_0, \eta)$ is portion of a plane, cylinder or sphere and $\{x + \gamma \nu(x), x \in \Gamma_0, \gamma > 0\} \subset \Omega$

• λ piecewise continuous, and μ complex constant : $\operatorname{Re}(\lambda)$ and $\operatorname{Im}(\mu)$ are fixed and known, the unknown being $\operatorname{Im}(\lambda)$ and $\operatorname{Re}(\mu)$ + <u>Geometric assumption</u> : both D, λ are invariant by reflection against a plane which does not contain d or by a rotation around an axis which is not directed by d

• More general conditions in Bourgeois & Haddar (2009, submitted)

Second case : sketch of the proof

 $\partial_{\nu} u + \mu_1 \Delta_{\Gamma} u + \lambda_1 u = \partial_{\nu} u + \mu_2 \Delta_{\Gamma} u + \lambda_2 u = 0 \text{ on } \Gamma$

If $\mu_1 \neq \mu_2$, then

$$\int_{\Gamma} |
abla_{\Gamma} u|^2 \, ds = rac{1}{\mu_2 - \mu_1} \int_{\Gamma} (\lambda_2 - \lambda_1) |u|^2 \, ds$$

<u>Hyp.</u>: $\operatorname{Re}(\lambda)$ and $\operatorname{Im}(\mu)$ are fixed and known Then $(\lambda_2 - \lambda_1)/(\mu_2 - \mu_1) \in i\mathbb{R} \Rightarrow u = C$ on Γ , and $\lambda_1 = \lambda_2 = \lambda$. $u^s + u^i = C$ and $\partial_{\nu} u^s + \partial u^i_{\nu} = -C\lambda$ on Γ

Second case : sketch of the proof (cont.):

Representation formulas for u^s and u^i on Γ :

$$\left\{egin{array}{l} u^s(x)/2 = \mathcal{T}(u^s)(x) - \mathcal{S}(\partial_
u u^s(x)) \ u^i(x)/2 = -\mathcal{T}(u^i)(x) + \mathcal{S}(\partial_
u u^i(x)) \end{array}
ight.$$

with

 $S := \gamma^{-}SL = \gamma^{+}SL, \quad T = (\gamma^{+}DL + \gamma^{-}DL)/2$ (SL : single layer potential, DL : double layer potential) We obtain

$$u^i(x) = rac{C}{2}(1-2\mathcal{T}(1)(x)-2\mathcal{S}(\lambda)(x)) ext{ on } \Gamma$$

This is forbidden by the geometric assumption. \blacksquare

Stability for the inverse problem

 $\frac{\text{The classical impedance problem}: \text{ many results in the}}{\text{litterature (Labreuche 99, Sincich 06, ...)}}$

Some proprieties of operator $T: \lambda \in L^{\infty}_{+}(\Gamma) \to u^{\infty} \in L^{2}(S^{2})$:

- Injective (piecewise continuous λ)
- Differentiable in the sense of Fréchet

 $dT_{\lambda}:h
ightarrow v_{h}^{\infty}$ is defined by

 $v_h^\infty(\hat{x}) = \int_\Gamma p(y,\hat{x}) u(y,d) h(y) \, ds(y) \quad orall \hat{x} \in S^2$

where $p(., \hat{x})$ is the solution associated to $\Phi^{\infty}(., \hat{x})$.

• dT_{λ} injective (piecewise continuous λ)

 \Rightarrow Some simple Lipschitz stability results can be derived in compact subsets of finite dimensional spaces

Stability for the inverse problem

The generalized impedance problem:

Some proprieties of operator $T: (\lambda, \mu) \in V(\Gamma) \to u^{\infty} \in L^{2}(S^{2})$:

- Injective
- Differentiable in the sense of Fréchet

 $dT_{\lambda,\mu}:(h,l)
ightarrow v_{h,l}^\infty$ is defined by

 $v^\infty_{h,l}(\hat{x}) = ig\langle p(.,\hat{x}), l\Delta_\Gamma u(.,d) + u(.,d)h ig
angle_{H^1,H^{-1}} \quad orall \hat{x} \in S^2$

where $p(., \hat{x})$ is the solution associated to $\Phi^{\infty}(., \hat{x})$.

• $dT_{\lambda,\mu}$ injective

 \Rightarrow Some simple Lipschitz stability results can be derived in compact subsets of finite dimensional spaces

Numerical experiments in 2D

• Minimize the cost function (classical impedance)

$$F(\lambda)=rac{1}{2}||T(\lambda)-u_{\mathrm{obs}}^{\infty}||^2_{L^2(S^1)}$$

- Artificial data u_{obs}^{∞} obtained with a Finite Element Method
- Projection of λ along the trace on Γ of the FE basis
- Computation of gradient (classical impedance): $h_1 = \operatorname{Re}(h)$, $h_2 = \operatorname{Im}(h)$

$$(dF(\lambda),h) = \operatorname{Re} \int_{\Gamma} \{(h_1(y)+ih_2(y))u(y) \ \int_{S^1} p(y,\hat{x}) \overline{(T(\lambda)-u_{\mathrm{obs}}^\infty)(\hat{x})} d\hat{x} \} ds(y)$$

- $H^1(\Gamma)$ regularization of gradient
- Obstacle : B(0, 1), incident wave d = (-1, 0), k = 9

Perspectives

- Improve uniqueness results for our GIBC
- Obtain logarithmic stability results for our GIBC without restriction on the set of parameters
- Other GIBCs, for example involving $\operatorname{div}_{\Gamma}(\mu(x)\nabla_{\Gamma}u)$
- Uniqueness from backscattering data : an open problem