
Computer Algebra in Chemical Kinetics:

Theory and Application

Mark Lazman1 and Gregory Yablonskii2

1 Aspen Technology Inc
Calgary Alberta Canada T2G OP6 Mark.Lazman@aspentech.com

2 Washington Univeresity in St. Louis
St. Louis MO 63130-4899, USA gy@wuche2.wustl.edu

Abstract. In this paper, we present the comprehensive approach to the polynomial elimi-
nation for Mass-Action-Law (MAL) models of chemical kinetics. We discuss the new results
in the theory of the resultant of our equations (i.e. the kinetic polynomial). We provide the
interpretation of kinetic polynomial properties in terms of A-resultants theory and discuss
the symbolic algorithm of kinetic polynomial generation. We formulate the matrix method
of MAL systems numeric solution. . . .

1 Introduction

Differential equations of chemical kinetics in closed lumped system with chemical reactions have
the form

dc/dt = Γ Tw, (1)

where c is a vector of component concentrations, Γ is a stoichiometric matrix, and w is vector
of rates of reaction steps. Classic kinetic problem setup assumes Mass Action Law (MAL) for
elementary reactions. Each element of vector w is a difference of two monomials corresponding to
the forward and reverse elementary reactions

wi = ki

∏
j

c
αij

j − k−i

∏
j

c
βij

j , (2)

where positive integers αij , βij are stoichiometric coefficients and ki, k−i are kinetic constants. Let
γij = βij −αij , then Γ = ((γij)) . Differential equations (1) often have different time scales. In this
case system (1) can be represented as

dx/dt = f(x,y),
εdy/dt = g(x,y), (3)

where x and y are vectors of ”slow” and ”fast” variables and ε is a small parameter. The existence
of different time scales could be the result of the differences in capacities between catalyst surface
and gas volume or different scales of reaction rate constants. In common situations, such as hetero-
geneous catalysis, enzyme kinetics or chain radical reactions, time-scale split results in subdivision
of reaction participants into different groups (surface intermediates and bulk reactants, radical and
molecular reagents, etc.). System

dx/dt = f(x,y), (4)
g(x,y) = 0 (5)

is a zero-order approximation of singularly perturbed problem (3).
This Quasi-Steady-State-Approximation (QSSA) technique is a common method of kinetic

model generation. For general MAL model, algebraic system (5) consists of polynomial equations
in y . Generally, there are no explicit formulas for system (5) zeroes. Chemists always understood
this as a major obstacle in analysis and applied approximations (most common approximation
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is rate-limiting step hypothesis). Approximations result in severe limitations. It is well known at
present that chemical systems with complex reactions can have multiple steady states at isother-
mal conditions. Approximate kinetic models cannot explain these phenomena. On the other hand,
applications, such as dynamic simulation and control, require detailed kinetic models free of un-
necessary simplifications.

We have to know as much as possible about the properties of our algebraic system (5). At the
same time, it is necessary to have effective methods for numerical solution, allowing the reliable
location of all zeroes in specified domain.

Powerful techniques of effective algebraic geometry can be applied to polynomial QSSA systems.
Variable elimination reduces the system to a single polynomial equation in single variable - the
system resultant. Reaction rate is a natural choice for the variable in chemical kinetics. Resultant
in terms of the reaction rate (i.e. kinetic polynomial [1]) is a generalization of the conventional
explicit reaction rate equations. It is a polynomial in terms of the reaction rate. The roots of this
polynomial are values of reaction rate in the zeroes of the QSSA system.

We have developed the kinetic polynomial theory for a class of reaction mechanisms [1] and
implemented it using computer algebra tools [2]. Applications include parameter estimation, model
identifiability studies and asymptotic analysis [1], [3].

In recent years, the true renaissance happened in theory [4], algorithms and software implemen-
tation of polynomial elimination [5]. It became a common tool in areas such as computer graphics
and robotics. There is a significant difference, however, between these areas and chemical systems.
While most applications deal with systems consisting of few polynomials, we deal with multiple,
structured polynomial equations. Understanding the general properties of these systems is impor-
tant for constructing effective algorithms. This contribution presents the theoretical results as well
as symbolic and numeric implementation of polynomial elimination for a class of mathematical
models of chemical kinetics.

We provide new insight on the fundamental connection between kinetics and thermodynamics
encapsulated in the structure of the kinetic model. The simple topological object, the circuit, is
responsible for the correspondence between kinetics of complex reaction and chemical equilibrium
of the net reaction. Applying the ”A-philosophy” [4], we have proved that the constant term of our
kinetic polynomial corresponds to the discriminant of the circuit.

We have formulated a simple and effective matrix method for global numeric solution of a class
of MAL models via reduction to the standard matrix eigenproblem.

We have found the class of polynomial systems, the regular systems, that always has non-singular
Macaulay matrices.

2 QSSA Problem

System (5) has the form
Γ Tw = 0, (6)

where Γ is S × J matrix, S is the number of reactions, J is the number of intermediates. Let
r = rkΓ . We assume r < S . In this case, there exists the S × P matrix N such that

0 = Γ TN . (7)

The number P = S−r is the number of reaction routes. Reaction route corresponds to the column
of matrix N . These columns are linearly independent and form the stoichiometric basis. Elements
of matrix N are stoichiometric numbers νsp . Stoichiometric basis is defined up to a non-singular
linear transformation. We can always define stoichiometric basis in terms of integer stoichiometric
numbers. We assume below that all νsp are integers. If we multiply each chemical equation of our
mechanism by the corresponding stoichiometric number from some column of matrix N and add
up the results, we obtain the chemical equation free of intermediates. This equation corresponds
to the net reaction of a selected reaction route.

Vector w solves homogeneous linear system (6) iff it belongs to the space spanned by the
columns of matrix N . There exists such vector W = (W1, ..., WP )T that

w = NW. (8)
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Element of vector W is the rate along the reaction route. Vector w is composed of polynomials
ws(z) in concentrations z = (z1, ..., zJ)T of intermediates. These concentrations satisfy B = J − r
linear balance equations

L(z) = 0. (9)

System (8), (9) of S + B equations in S + B unknowns z,W is equivalent to the original problem
(6).

3 Kinetic Polynomial

3.1 Single-Route Mechanism: the Base Case

Representation (8), (9) has been applied to simplified cases (rate limiting step, vicinity of thermo-
dynamic equilibrium). Only one case, linear mechanism, where system (8), (9) is linear, has been
studied completely. Structured reaction rate equations in terms of reaction graph were obtained
for enzyme and catalytic reaction mechanisms. No further progress in understanding QSSA prob-
lem seemed possible until relatively recent times - there are no explicit formulas for solution of
general system (8), (9). However, MAL produces the polynomial systems (8), (9) and elimination
theory can be applied. We studied the class of systems (8), (9) with P = 1, corresponding to the
single-route mechanism. System has the form

ws(z1, ..., zn) − νsW = 0, s = 1, ..., n (10)

1 −
∑

j

zj = 0, j = 1, ..., n, (11)

where ws(z1, ..., zn) = bsz
αs − b−sz

βs

, zαs

=
∏

j zj
αsj

, zβs

=
∏

j zj
βsj

, αs = (αs1, ..., αsn), βs =
(βs1, ..., βsn). As P = 1 , we have rkΓ = n − 1 , we assume also ||αs|| =

∑
j αsj = ||βs|| = ls.

Stoichiometric numbers νs in (10) are, up to scaling, the co-factors ∆s of elements of any column
of matrix Γ . We assume that W = 0 is not generic root of system (10), (11).

System (10), (11) has (real positive) parameters bi, b−i , the reaction weights. Reaction weight
is a rate of corresponding elementary reaction at unit concentrations of its intermediates. Stoichio-
metric numbers ν1, ..., νs have the following property∑

s

νs(βs − αs) = 0. (12)

Let us call the system (10), (11) with assumptions listed above, the Base Case. This system has
the resultant with respect to W [1], [2], i.e. the polynomial

R(W ) = BLWL + ... + B1W + B0, (13)

vanishing iff W is the root of system (10), (11). We call (13) the kinetic polynomial. In [1], [2] the
resultant was defined as

R(W ) =
∏
j

(b1z
α1

(j) − b−1z
β1

(j) − ν1W ), ν1 �= 0, (14)

where z(j) are the roots of the system (at fixed W ), that consists of all equations of system (10),
(11) except the first one (by Lemma 14.2 [2], this system has finite number of roots). As we see
below, formula (14), up to a constant multiplier, corresponds to the Poisson formula.

3.2 Regular Systems

System of algebraic equations in Cn

Pi(z1, ..., zn) + Qi(z1, ..., zn) = 0, i = 1, ..., n (15)

where Pi is homogeneous polynomial and degPi > degQi is regular if system Pi(z1, ..., zn) = 0 has
only one root at point 0. By Lemma 8.1 [2], regular systems have a finite number of roots in Cn

and they have no roots on the hyperplane at infinity.
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3.3 Cayley Trick, Circuit and Equilibrium

Thermodynamic equilibrium condition requires all reactions to be at equilibrium

ws(z1, ..., zn) = 0, s = 1, ..., n (16)

i.e. W = 0 at equilibrium conditions. Equilibrium constraint can be expressed as
∏

s bνs
s =

∏
s bνs−s.

It is intuitively clear that the structure of resultant (13) should reflect this condition. Let us call the
binomial s =

∏n
s bνs

s −∏n
s bνs−s , the cyclic characteristic. Note, that we can always set the directions

of elementary reactions so that all stoichiometric coefficients are non-negative. We assume below
that νs > 0, s = 1, ..., n and GCD(ν1, ..., νn) = 1.

Theorem 1 Constant term B0 in (13) is the non-zero multiple of the cyclic characteristic.

Proof Along with the system (10), (11), consider its projectivization. The latter, obtained by re-
placing each polynomial f(z1, ..., zn, W ) with the homogeneous polynomial Zl

0f(z1, ..., zn, W ), l =
degf , has the form

bsZ
αs − b−sZ

βs − Z ls
0 νsW = 0, s = 1, ..., n

Z0 −
∑

j

Zj = 0, j = 1, ..., n, (17)

Now, consider system (10), (11) as an overdetermined system of n + 1 equations in n variables zi .
In the homogeneous setting (17) the system (10), (11) having a root is equivalent to homogeneous
system (17) having the non-trivial root in Cn+1 . This requires the vanishing of the classic resultant
R(f0, ..., fn) . The latter satisfies Poisson formula [4]

R(f0, ..., fn) = R(f̃0, ..., f̃n)
∏

(f0; f1, ..., fn), (18)

where R(f̃0, ..., f̃n) is the resultant of leading homogeneous parts of the original polynomials
f1, ..., fn and

∏
(f0; f1, ..., fn) is the product of values of original polynomial f0 at all common

roots of polynomials f1, ..., fn .
By Lemma 2, system (10) has a finite number of roots at fixed W . We can set in (18) f0 =

1 − ∑
j zj and fs = ws(z1, ..., zn) − νsW .

It follows from Lemma 1 that

B0 = R(w1, ..., wn), (19)

(i.e. B0 is the classic resultant of homogeneous polynomials ws ). By Lemma 3, the non-trivial
solution of system (16) cannot have zero coordinates. Thus, we may consider the non-homogeneous
setting of the problem (16)

ws(x1, ..., xn−1) = 0, s = 1, ..., n, (20)

where xi = zi/zn . Lemma 4 allows us to interpret the resultant of system (20) as the discriminant
∆A of the polynomial f with additional variables (y1, ..., yn−1) . By Lemma 5, ∆A is the discrim-
inant of the circuit. We can apply now the Proposition 1.8 from [4, p.274]: ∆A(f) is a non-zero
multiple of

(
∏

ω∈A+
mmω

ω )
∏

ω∈A− a−mω
ω − (

∏
ω∈A− m−mω

ω )
∏

ω∈A+
amω

ω .
In our case, A+ = (ν1, ..., νn) and aω = bω, A− = (−ν1, ...,−νn) and aω = −b−ω. Thus
B0 ∼ (−1)n

∏
s νs

νs(
∏n

s=1 bνs
s − ∏n

s=1 bνs−s).
Finally, integers mω from Proposition 1.8 [4] are normalized up to a sign by requiring that all

mω be integers with the greatest common divisor equal to 1, i.e. GCD(ν1, ..., νn) = 1 .
The proof of Theorem 1 explains why cyclic characteristic appears in the constant term of our

resultant (13). It happens due to the circuit.

Lemma 1 System (16) has a unique generic zero 0 in Cn .



Computer Algebra in Chemical Kinetics 317

Proof Let (z∗1 , ..., z∗n) be a root. Two cases are possible:
∑

z∗i �= 0 (i), and
∑

z∗i = 0 (ii). In case (i)
we can rescale variables as yi = z∗i /

∑
z∗i and y1, ..., yn solves the problem (10), (11) with W = 0

i.e. we found a contradiction. Case (ii) contradicts Lemma 14.2 from [2].

Lemma 2 System (10) has a finite number of roots at fixed W .

Proof By Lemma 1, system (10) is regular (see 3.2).

Lemma 3 If νj = 0, j = 1, ..., k and νi �= 0, i = k + 1, ..., n then non-trivial zero of system
(16) has no more than k zero coordinates

Proof is omitted due to space limitations.

Lemma 4 (Cayley trick for system (20))

R(w1, ..., wn) = ∆A(wn(x) +
n−1∑
i=1

yiwi(x)), (21)

where ∆A is the A-discriminant (see [4, p. 271]) of polynomial

f = wn(x) +
n−1∑
i=1

yiwi(x), (22)

where x1, ..., xn−1, y1, ..., yn−1 ∈ (C∗)2n−2.

Proof Let x∗ = (x∗
1, ..., x

∗
n−1)T be a common root of (w1, ..., wn). Condition ∂f/∂xk can be written

as

γnkw+
n +

n−1∑
i=1

yiγikw+
i = 0, (23)

where w+
i = bi

∏n−1
j=1 (x∗

j )
αij = b−i

∏n−1
j=1 (x∗

j )
βij .

We can always solve system (23) for y. The solution is y∗
j = νjw

+
n /(νnw+

j ) �= 0 j = 1, ..., n−1.
Conversely, if (x∗, y∗) is a point, where polynomial (22) vanishes with all its partial derivatives,
then ws(x∗) = 0, s = 1, ..., n .

Lemma 5 Let A be a finite subset in the integral lattice Z2n−2 whose elements ω are associated with
the monomials xω1

1 , ..., x
ωn−1
n−1 yωn

1 , ..., x
ω2n−2
n−1 of polynomial (22) with indefinite coefficients. Then

A ⊂ Z2n−2 is a circuit and it generates Z2n−2 as an affine lattice.

Proof Subset A is a circuit if A is affinely dependent but any proper subset of A is affinely
independent [4]. We have:

1. Due to (12), unique up to scaling vector of 2n integers m = (ν1,−ν1, ..., νn,−νn) , has the
property∑

ω mω · ω = 0,
∑

ω mω = 0.
2. νs �= 0, s = 1, ..., n.
3. #(A) = 2n , i.e. A generates Z2n−2 as affine lattice.

3.4 Coefficients of the Resultant

For sufficiently small |W | the following formula is valid (see [1], [2])

dlnR(W )/dW = −
n∑

k=1

νk

Mk∑
jk=1

1/(wk(zjk(W )) − νkW ), (24)

where zjk(W ) is a zero of the subsystem obtained from (10), (11) by removing equation (10) with
index k . These subsystems have a finite number of zeroes in the assumptions of the Base case. Let
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dk = dklnR(W )/dW k|W=0, (25)

Then

Bk = (1/k!)
k∑

j=1

Bk−jdj/(j − 1)!, k = 1, ..., L. (26)

First coefficient is defined by formula B1/B0 = −∑n
k=1 νk

∑Mk

jk=1 1/wk(zjk (0)).

3.5 Symbolic Algorithm

A different set of formulas for computing ds directly from the coefficients of system (10), (11) was
obtained in [2, chapter 14] from the multidimensional residues theory. This method requires the
calculation of such polynomial matrix A = (ajk(z))n

j,k=1 that homogeneous polynomials ajk(z)
satisfy the linear relations

zL+1
j =

n∑
k=1

ajk(z)wk(z), j = 1, ..., n, (27)

where L = l1 + ... + ln − n . Such a sequence of polynomials ajk exists according to Macaulay
theorem [6]. We can calculate the coefficients Bk in two steps. First part of algorithm calculates
matrix A as follows

1. Find the Groebner basis G for the ideal generated by polynomials w1(z), ..., wn(z) . 1 Simul-
taneously we are generating the linear representation of the Groebner basis polynomials in terms
of the original polynomials gi =

∑n
j=1 Xij(z1, ..., zn)wj , i = 1, ..., dim(G); Xij are polynomials.

2. Reduce the monomials zL+1
j , j = 1, ..., n modulo G. Simultaneously we are generating the

linear representation zL+1
j =

∑dimG
i=1 hik(z1, ..., zn)gi ; hik are polynomials.

3. ajk(z) =
∑dimG

i=1 hikXij

Second part of the algorithm finds ds by explicit formulas and calculates Bi by (26) (see [2,
chapter 19] for details of REDUCE implementation).

3.6 Example

The kinetic polynomial corresponding to the two-stage mechanism
A2 + 2Z ⇀↽ 2AZ
B + Z ⇀↽ BZ
of heterogeneous catalytic reaction A2 + 2B ⇀↽ 2AB is
R(W ) = 4(b1 − b−1)W 2 − (4b−1b−2 + 4b1b2 + (b2 + b−2)2)W + b1b

2
2 − b−1b

2
−2

Stoichiometric numbers here are ν1 = 1 and ν2 = 2 , so the constant term is the cyclic
characteristic (see Theorem 1).

4 Root count

Let ls = max(||αs||, ||βs||) be the reaction order of sth stage. Let N be the number of isolated
roots of our system.

Proposition 1 N ≤ ∏n
s=1 ls.

Proof This estimate follows from Bezout theorem applied to system (8), (9).
Estimate of Proposition 1 can be improved. Consider first the single-route system. Let us call

the reaction ”µ”, such that lµ = min(l1, ..., ln) and νµ �= 0 the minor reaction.

Proposition 2 N ≤ Lµ =
∏n

s�=µ ls.

1 Although we have applied the pure lexicographic ordering, the type of ordering could be selected different
way
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Proof This estimate follows from Bezout theorem applied to the reduced form of system (10),(11)

νµwi(z) − νiwµ(z) = 0, i �= µ,

1 −
∑

i

zi = 0, (28)

W − wµ(z)/νµ = 0. (29)

The estimate of Proposition 2 is non-trivial if reaction order of minor reaction exceeds 1.
For multi-route mechanism we can consider the following procedure.
1. Arrange the reactions of the mechanism in the order of non-increasing li ≥ li+1, i =

1, ..., n − 1 .
2. Select a stoichiometric basis. Move all reactions, which do not have non-zero stoichiometric

numbers to the ”buffer” subset.
3. Find the reaction step with the smallest li and the non-zero stoichiometric coefficient νij �= 0

. Make the path ”j” the rightmost (i.e. swap columns j and P ).
4. Eliminate all elements of the row ”i” to the left of νiP .
5. Consider the next reaction index ”i − 1”. If all νi−1,j , j < P are zero , add this reaction

to the ”buffer” subset. Otherwise, swap columns j and P − 1 , and perform step 4. Repeat step
5 for remaining reactions. As a result of this procedure, the original stoichiometric basis will be
transformed to

Nµ =




∗ ∗ ∗
× × ×
0 × ×
0 0 ×
0 • •




top l1 ≥ l2
µ lµ ≥ . . .

base
...

µ + P − 1 lµ+P−1

buffer

(30)

In terms of the basis Nµ we have

Proposition 3 N ≤ Lµ =
∏n

i�=µ,...,µ+P−1 li

This root count corresponds to the system (8), (9) in reduced form

wI(z) −NIN−1
II wII(z) = 0,

wIII(z) −NIIIN−1
II wII(z) = 0, (31)

L(z) = 0,

W −N−1
II wII(z) = 0, (32)

where indices I, II, II correspond to the ”top”, ”base”, and ”buffer” blocks of matrix (30). Propo-
sitions 2, 3 show that at least P reactions can be omitted from Bezout count of Proposition 1.

5 Numeric solution

While symbolic algorithms (for instance, methods based on Groebner bases) are important in the
analysis of our systems, they do not allow effective numerical implementation. The obstacle is the
approximate, floating-point setup of practical problems. Matrix methods [5] represent an attractive
alternative for the numeric solution of polynomial systems. We consider below the matrix algorithm
for solution of our systems based on classic Macaulay matrices.

5.1 Macaulay matrices

Classic homogeneous elimination theory deals with homogeneous forms in several variables. Let
f0, ..., fk be k + 1 homogeneous forms in k + 1 variables z0, ..., zk of order l0, ..., lk . Let M =
l0 + ... + ln − n . Let us multiply form fj by some monomial zω, ||ω|| = M− lj . We can associate
the result of this multiplication with the M-vector fω

j in the basis that consists of all monomials
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of degree M . We can collect all possible fω
j (row) vectors into the matrix, namely the Macaulay

matrix M0 . Macaulay defined the resultant R as the GCD of all M -minors of matrix M0 .
Furthermore, he proved that the resultant is a multiple of the determinant of the square M×M
matrix M1 . This matrix can be obtained as follows.

Let us partition all monomials of degree M to k + 1 sets, so that each monomial in the set
j divides z

lj
j but it does not divide zli

i , i < j, j = 1, ..., k . Let Hω
j = zω/z

lj
j where zω is

a monomial of the set j . Multiplication of monomials Hω
j by forms fj , j = 0, ..., k results in

the system of M linear homogeneous equations in M unknowns (monomials zω ): M1z
ω = 0

. Matrix M1 is generically non-singular. Vanishing of D = detM1 is a necessary condition for
non-trivial solution of the homogeneous system. Original system of non-homogeneous polynomials
fj(z1, ..., zk) = 0, j = 0, ..., k can be transformed to the homogeneous system by projectivization
(see 3.3).

Classic theory has been developed for forms, while we are dealing with their specializations,
where many (most) coefficients are zero. It is important to have the criteria of applicability of
general theory to our systems. For instance, classic theory does not allow recovering resultant
from matrix M0 if rkM0 < M . We show below that regular systems possess the necessary non-
singularity properties.

5.2 Regular system case

Theorem 2 Let the system fi(z1, ..., zn) = 0, i = 1, ..., n , where fj are homogeneous polynomials
of degree lj in Cn , has a unique root in the origin. Let M0 be the Macaulay matrix corresponding
to this system. Then rkM0 = M , where M = l1 + ... + ln − n + 1 .

Proof By Macaulay theorem [7], there exist such homogeneous polynomials aki(z) that deg aki(z) =
M− lj and

mk ≡
n∑

i=1

aki(z)fi(z), (33)

where mk is any monomial zω, ||ω|| = M . Then mk ≡ ∑Q
q=1 yk

q Bq , where Bq =< bq,m > is a
homogeneous polynomial of degree M ; m = (m1, ..., mM) and each vector bq can be associated
with the column of matrix MT

0 . Each column of this matrix is a vector of coefficients of polynomial
zωfi, ||ω|| = M− li in the monomial basis m . Thus,

mk ≡
Q∑

q=1

yk
q

M∑
i=1

bqimi =
M∑
i=1

(
Q∑

q=1

bqiy
k
q )mi (34)

It follows from (34) that vector yk = (yk
1 , ..., yk

Q)T should satisfy the linear system MT
0 yk = ek

where ek is the standard basis vector. We have the following matrix equation

EM = MT
0 Y (35)

where Y is the matrix composed of Q vectors yk and EM is the identity matrix. From (35)
rkEM = M ≤ rkMT

0 ≤ M and rkM0 = M.
Consider the system of polynomial equations fi(z1, ..., zn) = 0, i = 1, ..., n. Let us add to it

an equation u− φ(z1, ..., zn) = 0 where φ(z1, ..., zn) is a homogeneous polynomial of degree lu and
u is an additional variable. Let us call the augmented system, the u-extension. Projectivization of
the u-extension of the regular system (see 3.2) is the system in variables Z = (Z0, ..., Zn)

Pi(Z1, ..., ZN) + Z li−degQi

0 Qi(Z0, ..., Zn) = 0,

Z lu
0 u − φ(Z1, ..., Zn) = 0, (36)

Lemma 6 System (36) does not have roots in CPn at generic values of parameter u .
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Proof Let system (36) has zero with Z0 �= 0 . It means that in original (affine) coordinates our
regular system has a continuum of zeroes on the hypersurface u = φ(z) , which is impossible (see
3.2). Otherwise, if Z0 = 0 , then the only root of system (36) is 0.

Proposition 4 Macaulay matrix M0 of system (36) has full column rank.

Proof Proposition follows from Lemma 6 and Theorem 2.
For our QSSA system we have the following

Proposition 5 In the assumptions of the Base case, the Macaulay matrix M0 of the projectiviza-
tion of the u-extension of system (28) has the full column rank.

Proof By Lemma 14.2 (see [2, p.141]), the specialization of system (28) at bµ = 0, b−µ = 0 is
regular system.

We can extend the proposition 5 to multi-route systems.

Proposition 6 If the system that consists of leftmost terms of all equations (31) has a unique
zero in the origin, then matrix M0 of the projectivization of the u-extension of system (31) has full
column rank.

5.3 The matrix method

Macaulay resultant matrix M1 has Ln =
∏n−1

i=1 li rows corresponding to the last equation of the
system (with respect to the construction described in 5.1). For instance, in the case of u-extension
of the reduced form (see (28), (31)), there are Lµ rows corresponding to the u-equation (u-rows).
According to definition of Macaulay matrix M1 , each coefficient u is located in a unique column
and row. Coefficient u will be the leftmost in the u-row if we order the monomials lexicographically
(Z0 	 Z1 	 . . . 	 Zn). Reordering rows and columns of the matrix M1 , we can obtain the following
”wedge” configuration with number Lµ of u-rows

MW
1 =




• • • • . . . •
• • • • . . . •
u ∗ ∗ ∗ . . . ∗
0 u ∗ ∗ . . . ∗
0 0 u ∗ . . . ∗


 (37)

Proposition 4 guarantees the existence of the non-zero M - minor of matrix M0 for regular system.
We can build this minor row by row, starting with linearly independent u-rows of some matrix
M1 (37) and sequentially inserting rows from matrix M0 that are linearly independent on the
previously inserted rows (or doing nothing if initial matrix (37) was non-singular). Thus, we can
always build the non-singular matrix with number L ≥ Ln of u-rows, having the same format as
matrix (37).

Let D(u) be the determinant of this matrix. Condition

D(u) = 0 (38)

is necessary for the existence of the non-trivial zero of system (36). The non-trivial zero Z =
(Z0, ..., Zn) ∈ CPn is associated with the zero z = (z1, ..., zn) ∈ Cn of the original system as
z → Z = (1, z1, ..., zn). As D(u) is not identically zero, condition (38) is equivalent to the existence
of the non-zero vector v = (v1, ..., vM)T such that

MW
1 v = 0. (39)

Proposition 7 Problem (39) can be reduced to the algebraic eigenproblem of size L .

We can represent the matrix MW
1 as a sum of two M×M matrices MW

1 = A + uB , where

B =
(

0 0
EL 0

)
; EL is an identity matrix of size L (i.e. we are dealing with the (regular) pencil of
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matrices). As matrix MW
1 is generically non-singular, we can always find a constant c: detA1 �=

0, A1 = A + cB . Let ω = u − c , then BW
1 = A1 + ωB, A−1

1 MW
1 = EM + A−1

1 B.
Let us partition matrix A−1

1 into the blocks compatible with the blocks of matrix B :

A−1
1 =

(
K1 K2

K3 K4

)
where K2 is L × L matrix. Then

A−1
1 B =

(
K2 0
K4 0

)
Introducing λ = −1/ω , and, partitioning the vector v as v = (x,y)T , we

can split (39) as

K2x = λx, (40)
y = (1/λ)K4x. (41)

Problem (40) is an algebraic eigenproblem of the size L. To find u, satisfying system (39), we
have to solve eigenproblem (40) and substitute the result into the formula u = c−1/λ . Note, that
regular systems cannot have infinite zeros, so spurious infinite solutions, corresponding λ = 0 can
be ignored. Replacing vector v in (39) with the vector of monomials m = (m1, ..., mM)T ordered as
columns of matrix (37), we can interpret each equation of system (39) as a corresponding equation
of system (36) Fj multiplied by some monomial of degree l− degfj i.e. MW

1 m = 0 is the necessary
condition for m to be associated with the zero of the original system.

It follows from (40), (41) that vector v is unique up to a constant factor if the eigenvalue is
not (geometrically) multiple. In this case, we can recover all coordinates of the zero of the system
by dividing the elements of vector v , corresponding to monomials Zl−1

0 Z1, ..., Z
l−1
0 Zn , by the

element corresponding to monomial Zl
0. If all eigenvalues of interest have geometric multiplicity

one (which is usually the case), we can find all the roots. As we rely on necessary conditions, the
practical algorithm must implement the verification of calculated roots.

5.4 Example

The K2 matrix for two-stage mechanism (see 3.6) is(
(b−2 + b2)2 + 4b1b2 + 2b2(b1 + b−1) 2(b1 − b−1)(b−2 + b2)

(b−2 + b2)(b2 + 2b−1) 2b2(b1 − b−1)

)

2(b1b22−b−1b2−2)

6 Implementation

We have tested the numeric algorithm, following from Proposition 7, on a MATLAB prototype.
Method allowed robust calculation of all zeroes of polynomial systems corresponding to the QSSA
models, including those with multiple steady states, as shown in Fig. 1. All 8 steady states were
found for the model

2k1z
2 − 2k−1x

2 − k4xy + k−4zu − k2x + k−3z = 0,

2k2z
2 − 2k−2y

2 − k4xy + k−4zu − k5yu = 0,

k4xy − k−4zu − k5yu − 2k6u
2 = 0,

x + y + z + u − 1 = 0 (42)

of hydrogen catalytic oxidation (see [2]). Corresponding Macaulay matrix M1 is presented in Fig. 2.
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Fig. 1. All steady states of hydrogen oxidation model: the y (adsorbed hydrogen) vs k1 plot; k−1 =
0.001, k−2 = 0.0005, k−3 = 0.636, k−4 = 0.01, k2 = 3.91, k3 = 1, k4 = 25 k5 = 1 k6 =
0.0002
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Fig. 2. Macaulay matrix of model (42)
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