Title | **A geometric index reduction method for implicit systems of differential algebraic equations** |

Author(s) | L. D’Alfonso, Gabriela Jeronimo, Francois Ollivier, A. Sedoglavic, P. Solernó |

Type | Article in Journal |

Abstract | This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. |

Keywords | Implicit systems of Differential Algebraic Equations, Index, Kronecker algorithm, Geometric resolution |

ISSN | 0747-7171 |

URL |
http://www.sciencedirect.com/science/article/pii/S0747717111000836 |

Language | English |

Journal | Journal of Symbolic Computation |

Volume | 46 |

Number | 10 |

Pages | 1114 - 1138 |

Year | 2011 |

Edition | 0 |

Translation |
No |

Refereed |
No |