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Preface

This lecture course was prepared for the SPECIAL RADON SEMESTER
organized in October—December 2005 by J. Radon Institute of Computational
and Applied Mathematics (RICAM) in Linz, Austria.

The main purpose of the course is to present (at least for certain classes of
partial differential equations) a mathematically justified and practically efficient
answer to the question:

How to verify the accuracy of approximate solutions computed by various
numerical methods ?

During the last decade, this question has been intensively investigated by the
functional methods of the theory of partial differential equations. As a result a
new (functional) approach to the a posteriori error control of differential
equations has been formed. In the present course of lectures, | tried to present
the main ideas and results of this approach in the most transparent form and
discuss it using several classical problems (diffusion problem, linear elasticity,
Stokes problem) as basic examples.
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The material is based on earlier lectures on a posteriori estimates and adaptive
methods (University of Houston (2002), USA; Summer Schools of the
University of Jyvaskyl3, Finland (2003, 2005); St.-Petersburg Polytechnical
University). Also, | used some publications appeared in 2000-2004. However, in
many parts the course is quite new and reflects the latest achievements in the
area. A list of the literature is given at the end of the text, but certain key
publications are also cited in the respective places related to the topic discussed.

| am grateful to RICAM and especially to Prof. U. Langer for the kind support.
Also, | thank Prof. D. Braess, Prof. R. Lazarov, Dr. J. Valdman, and
Dr. S. Tomar for the interest and discussions.

Sergey Repin Linz, December 2005
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Lecture 1.
INTRODUCTION. ERROR ANALYSIS IN THE MATHEMATICAL
MODELING

RICAM, Special Radon Semester, Linz, 2005.




Lecture plan

m Errors arising in mathematical modeling;
m Basic mathematical knowledge

= Notation
m Functional spaces and inequalities;
m Generalized solutions.

m A priori error estimates for elliptic type PDE’s

ial Radon Semester, Linz, 2005.




We begin with two assertions that present a motivation of this lecture
course.

I. In the vast majority of cases, exact solutions of differential
equations are unknown. We have no other way to use differential
equations in the mathematical modeling, but to compute their
approximate solutions and analyze them.

Il. Approximate solutions contain errors of various nature.

From I and 11, it follows that

I1l. Error analysis of the approximate solutions to differential
equations is one of the key questions in the Mathematical
Modeling.
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Errors in mathematical modeling

g1 — error of a mathematical model used

€, — approximation error arising when a
differential model is replaced by a
discrete one;

€3 — numerical errors arising when solving a
discrete problem.
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Let U be a physical value that characterizes some process and
u be a respective value obtained from the mathematical
model. Then the quantity

g1 =|U —u|

is an error of the mathematical model.

|
Mathematical model always presents an " abridged”
version of a physical object.

Therefore, £, > 0.
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TYPICAL SOURCES OF MODELING ERRORS

(a) ”Second order” phenomena are neglected
in a mathematical model.

(b) Problem data are defined with an uncertainty.

(c) Dimension reduction is used to simplify a model.

RICAM, Special Radon Semester, Linz, 2005.




Let u, be a solution on a mesh of the size h. Then, uy
encompasses the approximation error

€2 = |u— uyl.

Classical error control theory is mainly focused on
approximation errors.
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Finite—dimensional problems are also solved approximately, so that
instead of u, we obtain u;. The quantity

€3 = |up — uf |

shows an error of the numerical algorithm performed with a
concrete computer. This error includes

m roundoff errors,

m errors arising in iteration processes and in numerical
integration,

m errors caused by possible defects in computer codes.
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Roundoff errors

Numbers in a computer are presented in a floating point format:
i i i .
x:f(l+—22+.. + k)q, is < (.
q

These numbers form the set Rqu C R.
g is the base of the representation,
L € [¢1,0] is the power.

Rqu is not closed with respect to the operations +, —
]
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The set Ry X R

o [
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Example

k=3, a_<;+0+0>*25, b_<;+0+0>*21

b= 0+1+0)*22: <0+0+;>*23:(0+0+0)*24

a+ b =alll

|
Definition. The smallest floating point number which being added to 1
gives q quantity different from 1 is called the machine accuracy.
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Numerical integration

n/2

a n ~1 N(s
/ f(x)dx = > cif(x)h =Y cif(x)h + cnja1f(Xn/241)h +...
b i=1 i=1

0.3 -
0.25 |-
0.2
0.15
0.1
0.05 -
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Errors in computer simulation

Uh

Physical object/process

4
g1 — ’ Error of a model ‘
(3

Differential model Au=f
4
g — ’Approximation error‘
(3

Discrete model Alup, = f,
)
€3 — ’ Computational error‘
U

Numerical solution APui =, + e
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Two principal relations

I. Computations on the basis of a reliable (certified) model. Here
€1 is assumed to be small and u; gives a desired information on U.

Uil < e+ [ETE] 0

Il. Verification of a mathematical model. Here physical data U and
numerical data uj are compared to judge on the quality of a
mathematical model

lesll < U —uill +[ez 425 (12)
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Thus, two major problems of mathematical modeling, namely,

m reliable computer simulation,

m verification of mathematical models by comparing physical
and mathematical experiments,

require efficient methods able to provide
COMPUTABLE AND REALISTIC

estimates of .
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What is v and what is || - ||?

If we start a more precise investigation, then it is necessary to answer the
question

What is a solution to a boundary—value problem?
Example.

0?u  0%u
5 t+t575 =0, u = ug on 0.

ox;  Oxg

Does such a function u exists and unique? It is not a trivial question, so
that about one hundred years passed before mathematicians have found
an appropriate concept for PDE's.
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Without proper understanding of a mathematical model no real modeling
can be performed. Indeed,

|
If we are not sure that a solution u exists then what we try to
approximate numerically?

|
If we do not know to which class of functions u belongs to, then
we cannot properly define the measure for the accuracy of
computed approximations.

Thus, we need to recall a
CONCISE MATHEMATICAL BACKGROUND
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Vectors and tensors

R"™ contains real n-vectors. M"*™ contains n x m matrices and M*"
contains n X n symmetric matrices (tensors) with real entries.

n
a-b=>ab;ecR, abeR" (scalar product of vectors),
i=1
a®b = {ajbj} € M"*" (tensor product of vectors),
n
oc:e= ) ojci€R, o,e € M"" (scalar product of tensors).
ij=1

la] :==+/a-a, lo| .= +Vo : o,

Unit matrix is denoted by I. If 7 € M"*", then 70 = 7 — 1T is the
deviator of 7.
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Spaces of functions

Let 2 be an open bounded domain in R” with Lipschitz continuous
boundary.

CX(Q) - k times continuously differentiable functions.

C'B(Q) — k times continuously differentiable functions vanishing at the
boundary 09Q.

C5°(R2) — k smooth functions with compact supports in Q.

LP(Q2) — summable functions with finite norm

1/p
lgllo = llgll = ( / |g|°) .
Q

For L2(R) the norm is denoted by | - ||.
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If g is a vector (tensor)— valued function, then the respective spaces are
denoted by

CK(Q, R") (CH(Q,M™ ™),

LP(,R") (LP(Q, M"™M))

with similar norms.

We say that g is locally integrable in Q and write f € L11°¢(Q), if
g € LY(w) for any w cC Q. Similarly, one can define the space LP'°¢(Q)
that consists of functions locally integrable with degree p > 1.
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Generalized derivatives

Let f, g € L1'°¢(Q) and

/gwdx:—/f%dx, Yo ECOZI(Q).
Q Q '

Then g is called a generalized derivative (in the sense of Sobolev) of f
with respect to x; and we write

of

g:a?'
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Higher order generalized derivatives

If f,g € L1'°¢(Q) and

/ dx—/f P e v eC?(Q)
J g‘P - 9 8Xian ’ 90 ’

then g is a generalized derivative of f with respect to x; and x;. For
generalized derivatives we keep the classical notation and write
g = f)zf/(‘)xiaxj = f7ij.

|
If f is differentiable in the classical sense, then its generalized derivatives
coincide with the classical ones !
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To extend this definition further, we use the multi-index notation and
write Df in place of 9%f/Ox{10x52 ... IxZ.

Let f,g € L1'°¢(Q) and

/g<de: (—U""/fD"sodx, Vip €CH(Q).
Q Q

Then, g is called a generalized derivative of f of degree
la| =1+ a2+ ... +

a=o7)

and we write
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Sobolev spaces

The spaces of functions that have integrable generalized
derivatives up to a certain order are called Sobolev spaces.

f € WLP(Q) if f € LP and all the generalized derivatives of f of the first
order are integrable with power p, i.e.,
of
fo—
5 Bx;

€ LP(Q).

The norm in WP s defined as follows:

1/p

n
Iflipe = / (IFP+ 37 IF )
Q i=1
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The other Sobolev spaces are defined quite similarly: f € WkP(Q) if all
generalized derivatives up to the order k are integrable with power p and
the quantity

1/p

Il

kp,@ = /Z IDF| dx

Q lal<k

is finite. For the Sobolev spaces W*2(Q) we also use a simplified
notation H*().

Sobolev spaces of vector- and tensor-valued functions are introduced by
obvious extensions of the above definitions. We denote them by
WHKP(Q R") and WKP(Q, M""), respectively.
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Embedding Theorems

Relationships between the Sobolev spaces and LP(2) and Ck(Q2) are
given by Embedding Theorems.

|
If p,g>1,¢>0and ¢+ g > g, then W*P(Q) is continuously
embedded in L9(2). Moreover, if £+ g > g, then the embedding
operator is compact.

|
If £ —k > 2, then W*P(RQ) is compactly embedded in C*(%2).
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Traces

The functions in Sobolev spaces have counterparts on 0X called traces.
Thus, there exist some bounded operators mapping the functions defined
in Q to functions defined on the boundary, e.g.,

v : HY{(Q) — L2(0Q)

is called the trace operator if it satisfies the following conditions:
W =V |5Q, Vv € CI(Q)7
[vll2.00 < cllv]12.0,

where c is a positive constant independent of v. From these relations, we
observe that such a trace is a natural generalization of the trace defined
for a continuous function.

RICAM, Special Radon Semester, Linz, 2005.




It was established that yv forms a subset of L2(9R), which is the space
H/2(9Q). The functions from other Sobolev spaces also are known to
have traces in Sobolev spaces with fractional indices.

|
Henceforth, we understand the boundary values of functions in the sense
of traces, so that

u=1 onodf

means that the trace ~yu of a function u defined in 2 coincides with a
given function v defined on 9f2.

All the spaces of functions that have zero traces on the boundary are
marked by the symbol o (e.g., W'"P(R) and H}(R)).
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Inequalities

In the lectures we will use the following inequalities 1.
Friederichs-Steklov inequality.

Iw| < Co|Vwl[l, vYw e HY(Q), (1.3)
2. Poincaré inequality.
lwl| < Co[|Vw], vweHY(Q), (1.4)

where H() is a subset of H! of functions with zero mean.
3. Korn’s inequality.

[P +1emP) dr= palvlR o0 v e HIRERD,  (15)
Q
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Sobolev spaces with negative indices

Linear functionals defined on the functions of the space E‘X’(Q) are
called distributions. They form the space D'(2)

Value of a distribution g on a function ¢ is (g, ).
Distributions possess an important property:

they have derivatives of any order
Let g € D/'(2), then the quantity —(g, g—ﬁ) is another linear functional
on D(Q). It is viewed as a generalized partial derivative of g taken over
the i-th variable.
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Derivatives of L9—functions

Any function g from the space L9(Q) (q > 1) defines a certain
distribution as

(g, p) = /ngix

and, therefore, has generalized derivatives of any order. The sets of
distributions, which are derivatives of g-integrable functions, are called
Sobolev spaces with negative indices.
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Definition
The space W~%9(Q) is the space of distributions g € D’(2) such
that

g = Z D%gq,

lee<e

where g, € L9(Q).
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Spaces W~1P(Q)

W=1P(Q) contains distributions that can be viewed as generalized
derivatives of L9-functions. The functional

<ax. > /8‘de feLi(Q)

is linear and continuous not only for ¢ EEOO(Q) but, also, for
» € WHP(Q), where 1/p+ 1/q = 1 (density property). Hence, first

generalized derivatives of f lie in the space dual to W1P(Q) denoted by
W-1r(Q).

For W12(Q) = H}(Q), the respective dual space
is denoted by H™1().
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Norms in "negative spaces”

For g € H71(Q) we may introduce two equivalent " negative norms"”.

g,
Hg||(_1)79: sup |< 2l < 400
petin) llell2e
(g, )
= <
lel = s jgopg <F
peHY(Q)

From the definitions, it follows that

(g, %) <lgll-1.ellelize
(g,0) < Igl [Vyla
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Generalized solutions

The concept of generalized solutions to PDE’s came from
Petrov-Bubnov-Galerkin method.

/(Au+f)wdx:0 Yw
Q

Integration by parts leads to the so—called generalized formulation of
o
the problem: find u € H1(R) + ug such that

/Vu-dex:/ fw dx VWGISII(Q)
Q Q

This idea admits wide extensions.
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A symmetric form B : V x V — R, where V is a Hilbert space, called
V — elliptic if 3¢; > 0, c; > 0 such that

B(u,u) > c1|[uf?, YueV
| B(u,v) |< ca|ull|v]], Yu,veV

General formulation for linear PDE's is: for a certain linear continuous
functional f (from the space V* topologically
dual to V) find u such that

‘B(u,w):<f.,w> weV.
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Existence of a solution

Usually, existence is proved by

Lax-Milgram Lemma

For a bilinear form B there exists a linear bounded operator A € L(V, V)
such that

B(u,v) = (Au,v), Yu,v eV
It has an inverse A~1 € £(V, V), such that

1
1Al < e, IA7Y] < =
C

We will follow another modus operandi.
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Variational approach

If J : K — R is convex, continuous and coercive, i.e.,

J(w) — +o0 as ||wljy — +oo
and K is a convex closed subset of a reflexive space V, then the problem

)

has a minimizer u. If J is strictly convex, then the minimizer is unique.

See, e.g., I. Ekeland and R. Temam. Convex analysis and variational
problems. North-Holland, Amsterdam, 1976.
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Take J(w) = %B(w,w)— < f,w > and let K be a certain subspace.

Then

1 2

EB(WvW) > C1||W||v7 | < f,W > | < ”f v* W”V‘
We see, that

J(w) > crfwlf —|If

v lwly— 400 as [[wlly — 400

|
Since J is strictly convex and continuous we conclude that a
minimizer exists and unique.
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Useful algebraic relation

First we present the algebraic identity
1 1
EB(u—v,u—v):EB(v,v)7<f,v>+ (1.6)
+<f,u> f%B(u,u) —B(u,v—u)+ < fv—u>=
=J(v) = J(u) = B(u,v—u)+ < f,v—u >
From this identity we derive two important results:
m (a) Minimizer u satisfies B(u,w) =< f,w >;

m (b) Error is subject to the difference of functionals.
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W] %) . = [ 4 1] (1) NI (NN

Let us show (a), i.e., that from (1.6) it follows the identity
B(u,v—u)=<f,v—u> v € K,

which is B(u,w) =< f,w > if set w = v — u. Indeed, assume the opposite, i.e.
3v € K such that

B(u,v —u)— <f,i—u>=4§ >0 (Vv #ul)

Setv:=u+ a(Vv—u), a € R. Thenv —u= a(V—u) and

%B(u —V,u—Vv)+B(uv—u)+ < f,v—u>=
_«

2

However, for arbitrary a such an inequality cannot be true. Denote

B(V—uvV—u)+ad=JW)—J(u)>0

a=B(vV—u,v—u). Then in the left—hand side we have a function
1/20a% + ad, which always attains negative values for certain a. For
example, set o = —&/a’. Then, the left—hand side is equal to —36%/a” < 0
and we arrive at a contradiction.
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Error estimate

Now, we show (b). From

%B(u—v,u—v):
=J(v) = J(u) = B(u,v—u)+ < f,v—u >

we obtain the error estimate:

1

§B(u—v,u—v) = J(v) — J(u). (1.7)
See S. G. Mikhlin. Variational methods in mathematical physics.

Pergamon, Oxford, 1964.
which immediately gives the projection estimate
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Projection estimate

Let u, be a minimizer of J on K, C K. Then

%B(u — up,u —uy) = J(uy) — J(u) < J(vy) — J(u) =

1
= EB(U —vhu—vp) Vv, € K.

and we observe that

B(u—uy,u—up) = inf B(u— vy u—wy) (1.8)

vh €EKp

Projection type estimates serve a basis for deriving a priori convergence
estimates.
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Interpolation in Sobolev spaces

Two key points: PROJECTION ESTIMATE and

INTERPOLATION IN SOBOLEV SPACES.

Interpolation theory investigates the difference between a function in a
Sobolev space and its piecewise polynomial interpolant. Basic estimate
on a simplex Ty, is

h m
v M, < Clmn) () 0wl
and on the whole domain
vV — Mpv|me0, < Ch?™|v]20,-

Here h is a the element size and p is the inscribed ball diameter.
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Asymptotic convergence estimates

Typical case is m =1 and t = 2. Since
B(u — up,u —uy) < B(u—Mpu,u — Mpu) < czju— I'Ihu||2
for

B(w,w) = / Vw - Vw dx
Q

we find that
[V(u—un)|| < Chlulz20.
provided that
m Exact solution is H? — regular;
m uy, is the Galerkin approximation;

m Elements do not ”degenerate” in the refinement process.
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A priori convergence estimates cannot guarantee that the error
monotonically decreases as h — 0.

Besides, in practice we are interested in the error of a concrete
approximation on a particular mesh. Asymptotic estimates can
hardly serve these purposes because, in general the constant C in
such an estimate is either unknown or highly overestimated.
Therefore, a priori convergence estimates have mainly a theoretical
value: they show that an approximation method is correct ”in
principle”.

|

For these reasons, starting from late 70th a quite different

approach to error control is

rapidly developing. Nowadays it has already formed a new direction:
A Posteriori Error Control for PDE’s
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Lecture 2.
A CONCISE OVERVIEW OF A POSTERIORI ERROR
ESTIMATION METHODS FOR APPROXIMATIONS OF
DIFFERENTIAL EQUATIONS.
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Lecture plan

Heuristic Runge’s rule;

Prager and Synge estimate. Estimate of Mikhlin;

Estimates using negative norm of the equation residual;

m Basic idea;
m Estimates in 1D case;
m Estimates in 2D case;
s Comments;

Methods based on post—processing;

Methods using adjoint problems;
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Runge’s rule

At the end of 19th century a heuristic error control method was
suggested by C. Runge who investigated numerical integration methods
for ordinary differential equations.
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Heuristic rule of C. Runge

If the difference between two approximate solutions computed on a

with mesh size
and uy are

coarse mesh 7, with mesh size h and refined mesh 7,
heer (e.g., hyer = h/2) has become small, then both u,
probably close to the exact solution.

ref

In other words, this rule can be formulated as follows:

‘ If [up — up,] is small then up,, is close to u ‘

where [-] is a certain functional or mesh-dependent norm.

___________________________________________________________________________|
Also, the quantity [un — up,,] can be viewed (in terms of modern
terminology) as a certain a posteriori error indicator.
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Runge's heuristic rule is simple and was easily accepted by numerical
analysts.

|
However, if we do not properly define the quantity [ -], for which
[un — up,,] is small, then the such a principle may be not true.

One can present numerous examples where two subsequent elements of an
approximation sequence are close to each other, but far from a certain joint limit.
For example, such cases often arise in the minimization (maximization) of functionals
with "saturation” type behavior or with a "sharp—well” structure. Also, the rule may
lead to a wrong presentation if, e.g., the refinement has not been properly done, so
that new trial functions were added only in subdomains were an approximation is
almost coincide with the true solution. Then two subsequent approximations may be
very close, but at the same time not close to the exact solution.
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Also, in practice, we need to now precisely what the word ” close”
means, i.e. we need to have a more concrete presentation on the
error. For example, it would be useful to establish the following
rule:

If [u, —uper] <e then |u, —u| <d(e),
where the function d(e) is known and computable.

In subsequent lectures we will see that for a wide class of boundary—value
problems it is indeed possible to derive such type generalizations of the
Runge's rule.
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Prager and Synge estimates

W. Prager and J. L. Synge. Approximation in elasticity based on the
concept of function spaces, Quart. Appl. Math. 5(1947)
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Prager and Synge derived an estimate on the basis of purely geometrical
grounds. In modern terms, there result for the problem

Au+f=0, in Q,
u=20, on 0

reads as follows:
IV(u—=v)[>+[[Vu—7|> = Vv—1|?

where T is a function satisfying the equation divr +f = 0.
We can easily prove it by the orthogonality relation

/V(u—v)-(Vu—T)dx:O (div(Vu—7)=01).
Q
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Estimate of Mikhlin

S. G. Mikhlin. Variational methods in mathematical physics. Pergamon,
Oxford, 1964.

A similar estimate was derived by variational arguments (see Lecture 1).
It is as follows:

1
V(U= v)* < J(v) —infJ,
where

J(v)::%nv\lnt(f,v), inf) ;= inf J(v).
veH; ()
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Dual problem

Since

infJ = sup {—1|T|2},
TEQs 2

where

Qs = {TeLz(Q,Rd) | / T‘VWdX:/deX Vwelfll},
Q Q

we find that

1 1
SIVE—VP 3w+ 507 vrea
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Since

1 1
3w+ Hrl? = I [ s g -
Q

1 2 1 2
= §|\Vv|| 7/9 T-VvderEHTH =
1
= 5lIVv - 7|2
we arrive at the estimate
1 2 _ 1 2
§||V(u —v)|I° < §||Vv — 7%, VT € Q. (2.1)
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Difficulties

Estimates of Prager and Synge and of Mikhlin are valid for any

v € H1(R), so that, formally, that they can be applied to any conforming
approximation of the problem. However, from the practical viewpoint
these estimates have an essential drawback:

they use a function 7 in the set Q¢ defined by the
differential relation,

which may be difficult to satisfy exactly. Probably by this reason further
development of a posteriori error estimates for Finite Element Methods
(especially in 80'-90") was mainly based on different grounds.
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Errors and Residuals: first glance

|
If an analyst is not sure in an approximate solution, then the very first
idea that comes to his mind is to substitute it into the equation
considered, i.e. to look at the equation residual.

We begin by recalling basic relations between residuals and errors that
hold for systems of linear simultaneous equations. Let A € M"*",
det A # 0, consider the system

Au+f=0.
For any v we have the simplest residual type estimate
: -1
Av—u)=Av+f = e < [[A]].

wheree=v —uand r = Av + f.
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Ayl

yer™ |yl
y# y#0

Amin = min 1Ay and  Apax =

Since Ae = r, we see that

|l Aef| _ [Irll

Amin < <
™ el el

< Amax = )‘;axH [ <llell <A

A

Since u is a solution, we have

f
IAul]l _ IfI oy = AZL i) <l < A

Amin < S
M ]

Ll

m|n|

Thus,
/\min [Irll < ||eH Amax ||l
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Key " residual—error” relation

Since

Amax _ Cond A,

min
we arrive at the basic relation where the matrix condition number serves
as an important factor

(Cond A)1 1Tl lel g 4 I (2.2)

Thus, the relative error is controlled by the relative value of the
residual. However, the bounds deteriorates when the conditional
number is large.
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In principle, the above consideration can extended to a wider set of linear
problems, where

Ae L(X,Y)

is a coercive linear operator acting from a Banach space X to another
space Y and f is a given element of Y.

However, if A is related to a boundary-value problem, then one should
properly define the spaces X and Y and find a practically meaningful
analog of the estimate (2.2).
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Elliptic equations

Let A: X — Y be a linear elliptic operator. Consider the boundary-value
problem

Au+f=0 inQ u=ug on JQ.

Assume that v € X is an approximation of u. Then, we should measure
the error in X and the residual in Y, so that the principal form of the
estimate is

v —ul[x < C[lAv +flly, (2.3)

where the constant C is independent of v. The key question is as follows:

_____________________________________________________________________________|
Which spaces X and Y should we choose for a particular
boundary-value problem ?
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Consider the problem
Au+f=0 inQ u=0 ondQ,

with f € L2(Q). The generalized solution satisfies the relation

/Vu~dex:/dex Yw € Vp = Ic-)ll(Q),
Q Q

which implies the energy estimate
[Vull2,0 < Callf|l2.0-

Here Cgq is a constant in the Friederichs-Steklov inequality. Assume that
an approximation v € Vg and Av € L?(Q). Then,

/V(u—v)-dex:/(f—i—Av)wdx, Yw € V.
Q Q
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Setting w = u — v, we obtain the estimate
[V(u=v)l2,0 < Callf + Av|2,0, (2.4)

whose right-hand side of (2.4) is formed by the L2-norm of the residual.
However, usually a sequence of approximations {vi} converges to u only
in the energy space, i.e.,

{vw} — u in HY(Q),

so that ||Avg + f|| may not converge to zero !

|
This means that the consistency (the key property of any
practically meaningful estimate) is lost.
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Which norm of the residual leads to a consistent estimate of the
error in the energy norm?

To find it, we should consider A not as H2 — L? mapping, but as
H! — H~1 mapping. For this purpose we use the integral identity

/ Vu-Vwdx = (f,w), VweVy:= I(-)Il(Q).
Q

Here, Vu € L2, so that it has derivatives in H™1 and we consider the
above as equivalence of two distributions on all trial functions w € V.
By (f,w) < [ f ]||Vw]||2.@, we obtain another "energy estimate”

[Vull2.0 < Tf].
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Consistent residual estimate

Let v € Vg be an approximation of u. We have
/ V(u—v) - Vwdx = / (fw — Vv - Vw)dx =
Q Q
= (Av+f,w), f+AveH Q).

By setting w = v — u, we obtain

[V(u—-v)ll2o <]f+Av]. (2.5)
where
f+A
[f+Av] = sup M:
o Vel
pEHL(Q)
V(u—v) -V _
sup ‘ fﬂ (U V) 14 | S sup ||V(U V)|||Vg0|| S ||V(U 7V)||
o) Vell o) Vel
peHY(Q) peHY(Q)
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|
Thus, for the problem considered

IVu=v)2a=]f+Av] ! (2.6)

From (2.6), it readily follows that
[f+Aw ] — 0 as {w} — uinH.

We observe that the estimate (2.6) is consistent.
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Diffusion equation

Similar estimates can be derived for
Au+f=0, in€Q, u=0on 09,

where

49 du
Au = divAVu := ijZ::l o <aij(x)axj>a
a;i(x) = aji(x) € L™(Q),
Amin 1% < @(X)mim; < Amax[nl?, VM ER, x € Q,
)\max Z Amin Z 0.
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Let v € Vg be an approximation of u. Then,

/AV(u—v)'dex:/(fw—AVv-Vw)dx, Yw € V.
Q Q

Again, the right-hand side of this relation is a bounded linear functional
on Vo, i.e.,

f +div(AVv) € H7L.
Hence, we have the relation

/ AV(u—v) - Vwdx = (f +div(AVv),w), VYw € V.
Q

Setting w = u — v, we derive the estimate

[V (u—=v)|20 <AL f+div(AVv) . (2.7)

min
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Next,

[ f+div(AVv) [ = sup | (f + div (AVV), ) | _

o v
Sefit@) [Vell2,e
AV(u—v)- - Vpdx
= sup | fQ |(|V ) | < Amax||V(u —V)|l2.0. (2.8)
petn(@) 7lize

Combining (2.7) and (2.8)) we obtain

Amax [RO) T < [V(u =)l < A IRV T, (2.9)

min

where R(v) = f + div (AVv) € H71(Q). We see that upper and lower
bounds of the error can be evaluated in terms of the negative norm of
R(v).
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Main goal

-
We observe that to find guaranteed bounds of the error
reliable estimates of [R(v)] are required.

In essence, a posteriori error estimates derived in 70-90" for Finite
Element Methods (FEM) offer several approaches to the evaluation of

[R(VT
We consider them starting with the so—called explicit residual method
where such estimates are obtained with help of two key points:

m Galerkin orthogonality property;

m H! — V,, interpolation estimates by Clément.
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Explicit residual method in 1D case

Take the simplest model

(au’) +f=0, u(0) = u(1).
Let 1:=(0,1), f € L2(1), a(x) € C(1) > ap > 0. Divide I into a number
of subintervals I; = (x;, X;+1), where xg = 0, xy41 = 1, and

o
IXi11 — x| = h;i. Assume that v € H!(l) and it is smooth on any interval
I;.
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In this case,
1 oyt
— + fw)dx
[RW)[= sp ooV o
weVg(1), w0 (w2,
N
cup Dico i (—ov'w’ + fw)dx
weﬁl()-w¢0 w2,
Ofl ri(v wdx+z —1 a(xi)w(x;)j(v'(xi))
= sup ;
weVg(l), w0 (w2

where j(é(x)) := ¢(x + 0) — ¢(x — 0) is the " jump—function” and
ri(v) = (av’)’ + f is the residual on /.

For arbitrary v we can hardly get an upper bound for this
supremum.
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Use Galerkin orthogonality

Assume that v = uy, i.e., it is the Galerkin approximation obtained on a
finite—dimensional subspace Vg, formed by piecewise polynomial
continuous functions. Since

/au;,w{] dx — /fw|1 dx =0 VYw, € Vo
I I
we may add the left—hand side with any wj, to the numerator what gives

fol(—auf](w — mhw)’ + f(w — mhw)) dx

[R(un) [ = sup
weVg(l) [lw’

)

2.1

where 7y, 1 Vg — Vo, is the interpolation operator defined by the
conditions 7pv € Von, mpv(0) = mrv(1) = 0 and

mhv(xi) = v(x;), Vx, i=1,2,... N.
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Integrating by parts

Now, we have
Z:\I:o fli ri(up)(w — mpw) dx
lw'{[2,1

Sy alx) (w(x) — muw () i (%)) } .

[lw’l[2,1

[R(un) [ = sup {

WGVQ(')

+

Since w(x;) — wpw(x;) = 0, the second sum vanishes. For first one we
have

N N
Z/"i(uh)(w — mpw) dx < [Iri(un) 2.4 w — maw]2,
i—0 /b i=0

RICAM, Special Radon Semester, Linz, 2005.




(11 %) . = [ 4 1] (1) NI (NN

Since for w € ﬁl(li)

[w — aw(l2,;, < cil|w'|l2,1,

we obtain for the numerator of the above quotient

Z/r;(uh)(w — mnw) dx < > cillri(un) |2 [wll2; <
i=0 i=0

N 1/2
< (Zc?nn(uh) 2) W/l
i=0
which implies the desired upper bound
N 1/2
[Rw) T < (Y lnlB,) (2.10)
i=0

This bound is the sum of local residuals r;(u,) with weights given by the
interpolation constants c;.
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Interpolation constants

For piecewise affine approximations, the interpolation constants c; are
easy to find. Indeed, let ~; be a constant that satisfies the condition

W,
gy W — w3, T
weH!1 () h¥I2,1;

Then, for all w € HX(I;), we have

~1/2
lw — w21, <, / (w21

~1/2
and one can set ¢; =y, 2,

e
Let us estimate ;..
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Note that
Xit1 Xi+1
/ |w’|? dx = / l(w — mpw) + (pw)’|? dx,
Xi Xj
where (wpw)’ is constant on (xi, Xj+1). Therefore,
Xi+1
/ (w— mpw) (mpw) dx = 0
Xi

and

Xit+1 Xi+1 Xi+1

/ w2 dx = / |(w—7rhw)'\2dx—|—/ |(mpw)' |2 dx >
Xi Xj Xj

Xjt+1
z/ |(w — mpw) P dx.
X
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Interpolation constants in 1D problem

Thus, we have

R i VU

inf St (w — aw)'| dx
ety T2 W w2 d

WEHI(I) fx”rl |W—7ThW‘2dX
LR dx a2

inf X =
ety I R dx W2

3

so that ~; = 7\'2/hi2 and ¢; = h;/=.
Remark. To prove the very last relation we note that

foh |n’\2dx i

inf = = —
. h 2
nert(om) Jo I dx h

is attained on the eigenfunction sin% x, of the problem ¢" + A¢ = 0 on (0, h).
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Residual method in 2D case

Let Q2 be represented as a union 7, of simplexes T;. For the sake of
simplicity, assume that Q = U,NIIT,- and Vg, consists of piecewise affine
continuous functions. Then the Galerkin approximation uy, satisfies the
relation

/ AVu;, - Vw,dx = / fwy, dX7 Ywy, € V()h7
Q Q

where

Von = {Wh € Vy | Wy € Pl(Ti), T, € fh}.
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In this case, negative norm of the residual is

Jo(fw — AVuy, - Vw) dx
R(u = su
IR = o Vwlza

o
Let 7w : H* — Vo be a continuous interpolation operator. Then, for the
Galerkin approximation

Jo(f(w — mpw) — AVuy, - V(w — 7pw)) dx
R(u = su .
IR T= 2, Wiz

For finite element approximations such a type projection operators has
been constructed. One of the most known was suggested in

Ph. Clément. Approximations by finite element functions using local
regularization, RAIRO Anal. Numér., 9(1975).

and is often called the Clement’s interpolation operator. Its properties
play an important role in the a posteriori error estimation method
considered.
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Clement’s Interpolation operator

Let E;; denote the common edge of the simplexes T; and Tj. If s is an
inner node of the triangulation Fy, then ws denotes the set of all
simplexes having this node.

For any s, we find a polynomial ps(x) € P!(ws) such that

/ (v—ps)qdx =0 Vq e P(w).

Now, the interpolation operator 7y, is defined by setting
mv(xs) = p(xs), Vxs € Q,
mhv(xs) =0, Vxs € 0.

[e]
It is a linear and continuous mapping of HI(SZ) to the space of piecewise
affine continuous functions.
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Interpolation estimates in 2D

Moreover, it is subject to the relations

v = mwvllz.r, < c diam (T3)[[v]l12.0(ry- (211)

v — mnvll2,6; < c5IEiY2V]l1,2,0e(Ti), (2.12)

where wy(T;) is the union of all simplexes having at least one common
node with T; and wg(T;) is the union of all simplexes having a common
edge with T;.

|
Interpolation constants ¢ and cif are LOCAL and depend on the
shape of patches wn(T;) and we(T;).
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Quotient relations for the constants

Evaluation of ¢ and ciﬁ requires finding exact lower bounds of the
following variational problems:

W w i .
~T = inf 7” 1.2, on(r) diam(T;)
weVo [|w — maw|l2,T,

and

w .
4E = inf [[Wl}1,2.0(T:) B2,
Y weVy ||W — 7rhW||2,E;j

|
Certainly, we can replace Vo be H!(wn(T;)) and H(we(T;)),
respectively, but, anyway finding the constants amounts solving
functional eigenvalue type problems !
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%) . = [ 4 1] (1) NI (NN

Let o, = AVuy. Then,

Jo(f(w — mpw) — o - V(w — mpw)) dx
R(u = su .
IR =22, [Wwlzs

If v is the unit outward normal to Ej, then

/ oh-V(w—mpw)dx =
T

= Z /Eij(g-h-u)(w — wpw)ds — /T divop(w — mpw) dx,

E;COT;

Since on the boundary w — rp,w = 0, we obtain

{E.Nl J7,(divoy + f)(w — maw) dx N

Vw20

[ R(un) [ = sup

weVy

St Yo Je, i(on-vi) (W — mow) ds
[Vwl2,0
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First term in sup

/ (divoy + f)(w — wpw)dx < ||divoy + f|l2. 7 ||lw — Thw||2 T,
T;

< C;eriVO'h + f||2,1-idiam (T,)||W|

1,2,wn(Ti)»

Then, the first sum is estimated as follows:

divoy + f)(w — maw)dx <
21/( )W — mw)

N 1/2
2 . .
< (Y (&)’ diam (T)2divr, + 3 ) whhza.

i=1

where the constant d; depends on the maximal number of elements in
the set wn(T;).
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Second term in sup

For the second one, we have

ZZ/ j(onvi)(w — mpw) dx <

i=1 j>i
N
< ZZ li(on-2i)ll2,5 € [Eal"/? [Wll12,0em) <
=1 j>i
N N ) 1/2
<23 () EsllilonvilBe, ) Iwlhza,

i=1 j>i

where dy depends on the maximal number of elements in the set we(T;).
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Residual type error estimate

By the above estimates we obtain

N 9 1/2
[ R(un) 1 SCo((Z(c;r) diam (Ti)2||divo-h—|—f§7.ri> +
i=1
N N 1/2
+ (ZZ (C5)2 L ||j(0'h'Vij)||§7Eij> ) (2.13)
i=1 j>i

Here Cy = Co(dy,d2). We observe that the right-hand side is the sum of
local quantities (usually denoted by n(T;)) multiplied by constants
depending on properties of the chosen splitting Fy,.
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Error indicator for quasi-uniform meshes

For quasi—uniform meshes all generic constants ¢ have approximately
the same value and can be replaced by a single constant c;. If the
constants C5 are also estimated by a single constant ¢, then we have

N 1/2
[R(un) ] <C (Z 772(Ti)> : (2.14)
i=1
where C = C(cy, ¢z, Cp) and
2
. . C .
n*(Ti) = cidiam (T:)?|/div oy + f|3.7, + = |Eiilli(om- vi)l13 g,
E;COT;

The multiplier 1/2 arises, because any interior edge is common for two
elements.
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Comment 1

General form of the residual type a posteriori error estimates is as follows:

|
Hu — uh|| § M(uk,cl, Ca, .‘.CN,D),

where D is the data set, uy, is the Galerkin approximation, and
ci,i=1,2,...N are the interpolation constants. The constants depend
on the mesh and properties of the special type interpolation operator.
The number N depends on the dimension of Vi, and may be rather large.
If the constants are not sharply defined, then this functional is not more
than a certain error indicator. However, in many cases it successfully
works and was used in numerous researches.
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Comment 2

It is worth noting that for nonlinear problems the dependence between
the error and the respective residual is much more complicated. A simple
example below shows that the value of the residual may fail to control
the distance to the exact solution.
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A posteriori methods based on post—processing

|
Post—processing of approximate solutions is a
numerical procedure intended to modify
already computed solution in such a way that
the post—processed function would fit some a
priori known properties much better than the
original one.
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Preliminaries

Let e denotes the error of an approximate solution v € V and
E(v):V— Ry

denotes the value of an error estimator computed on v.

Definition
The estimator is said to be equivalent to the error for the
approximations v from a certain subset V if

ciE(v) <|le| <cé(v) WeV
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The ratio

E(v) — |lef

e =1 =g

is called the effectivity index of the estimator .

Ideal estimator has ief = 1. However, in real life situations it is hardly
possible, so that values ief in the diapason from 1 to 2-3 are considered
as quite good.
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In FEM methods with mesh size h one other term is often used:

The estimator £ is called asymptotically equivalent to the error if for
a sequence of approximate solutions {up} obtained on consequently
refined meshes there holds the relation

inf M =1
h—0 |lu — up|

It is clear that an estimator may be asymptotically exact for one sequence
of approximate solutions (e.g. computed on regular meshes) and not
exact for another one.
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General outlook

Typically, the function Tup, (where T is a certain linear operator,
e.g., V) lies in a space U that is wider than the space U that
contains Tu. If we have a computationally inexpensive continuous
mapping G such that G(Tvy) € U, Vv, € Vy,. then, probably, the
function G(Tuy) is much closer to Tu than Tuy,.

|
Tuy
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These arguments form the basis of various post-processing algorithms
that change a computed solution in accordance with some a priori
knowledge of properties of the exact solution. If the error caused by
violations of a priori regularity properties is dominant and the
post-processing operator G is properly constructed, then

IGTup — Tu|| << ||Tup — Tul|.

In this case, the explicitly computable norm ||GTu — Tup| can be used
to evaluate upper and lower bounds of the error.

Indeed, assume that there is a positive number a < 1 such that for the
mapping T the estimate

H(GTuh - TUH <a HTuh — Tu|| .
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Two—sided estimate

Then, for € = up, — u we have

(1-a) |[Tel = (1- a) | Tuy — Tu] <
< |ITup — Tu|| — ||GTup — Tu|| <
< |IGTup — Tuy| <
< |GTup — Tu|| + || Tup — Tu|| <
<1+ a)||Tup — Tu|| = (1 + a) || Te]| .

Thus, if & << 1, then
[Tup, — Tu|| ~ ||GTuy — Tuy|| .

and the right-hand can be used as an error indicator.
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Post-processing by averaging

Post-processing operators are often constructed by averaging Tuy,
on finite element patches or on the entire domain.

Integral averaging on patches
If Tup, € L2, then post-processing operators are obtained by various
averaging procedures. Let €; be a patch of M; elements, i.e.,

Q=T i=12.M.

Let PX(;,R™) be a subspace of U that consists of vector-valued
polynomial functions of degrees less than or equal to k. Define
g € PX(2;,R") as the minimizer of the problem:

inf — Tuy|? dx.
gCPH(Q; R ) / & = Tun|
Q;
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The minimizer g; is used to define the values of an averaged function at
some points (nodes). Further, these values are utilized by a prolongation
procedure that defines an averaged function

GTup : Q — R.

Consider the simplest case. Let T be the operator V and uy, be a
piecewise affine continuous function. Then,

Vu, € PU(Tij,Rn) on each Tij C Qi.

We denote the values of Vuy on Tj; by (Vup)jj.

ial Radon Semester, Linz, 2005.




Set k = 0 and find g; € PY such that

/|gi—Vuh\2dx: |nf )/|g Vuh| dx =

M; M;

= inf |g|?|] - 2g ’Z(vuh)ij|Tij| + Z [(Vun )i [ T
gePO(Q) =1 =1

It is easy to see that g; is given by a weighted sum of (Vup);;, namely,

o (Tl
g = ‘Q|‘ (vuh)u
=1
Set G(Vuh)(xi) = gi.
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(11 %) . = [ 4 1] (1) NI (NN [

Repeat this procedure for all nodes and define the vector-valued function
GV/(up) by the piecewise affine prolongation of these values. For regular
meshes with equal |Tj|, we have

M;

1
&= iy (Vi
=1

Various averaging formulas of this type are represented in the form

M; M;
gi= Ni(Vuni, Y Nj=1,
=1 =1

where \jj are the weight factors. For internal nodes, they may be taken,
e.g., as follows

). — il

i = 5 |73 is the angle.
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However, if a node belongs to the boundary, then it is better to choose
special weights. Their values depend on the mesh and on the type of
the boundary. Concerning this point see

I. Hlavd¢ek and M. KFiZek. On a superconvergence finite element
scheme for elliptic systems. |. Dirichlet boundary conditions. Aplikace
Matematiky, 32(1987), No.2, 131-154.
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Discrete averaging on patches

Consider the problem

inf Z |g(xs Tuh(xs)|2 )

gEP ()

where the points xs are specially selected in €;. Usually, the points xs are
the so—called superconvergent points.

Let g; € PX(€;) be the minimizer of this problem.

If k=0, and T = V then

1
g = m ;Vuh(xs).
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Global averaging

e
Global averaging makes the post—processing not on patches,
but on the whole domain.

Assume that Tuy, € L? and find g, € Vp(R) C U such that
g, — Tup|® = inf — Tuyl3 .
(=" hllQ L Ign hllg

The function gy, can be viewed as GTuy,. Very often gy, is a better
image of Tu than the functions obtained by local procedures.
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Remark

Moreover, mathematical justifications of the methods based on global
averaging procedures can be performed under weaker assumptions what
makes them applicable to a wider class of problems see, e.g.,

C. Carstensen, S. Bartels. Each averaging technique yields reliable

a posteriori error control in FEM on unstructured grids. |: Low order
conforming, nonconforming, and mixed FEM, Math. Comp., 71(2002)
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Justifications of the method. Superconvergence

Let up be a Galerkin approximation of u computed on Vy,. For
piecewise affine approximations of the diffusion problem we have
the estimate

IV (u—un)llpq < c1h, [ju—up,q < c2h?

However, it was discovered see, e.g.,

L. A. Oganesjan and L. A. Ruchovec. Z. Vychisl. Mat. i Mat.
Fiz.,9(1969);

M. Zlamal. Lecture Notes. Springer, 1977;

L. B. Wahlbin. Lecture Notes. Springer, 1969 that in certain cases
this rate may be higher. For example it may happen that

lu(xs) — up(xs)] < Ch%* o>0

at a superconvergent point x.
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Certainly, existence and location of superconvergent points strongly
depends on the structure of 7.

For the paradigm of the diffusion problem we say that an operator G
possesses a superconvergence property in w C Q if

[Vu—GVuy|,,, < coh!t,

where the constant c; may depend on higher norms of u and the
structure of 7.
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For the diffusion problem estimates of such a type can be found, e.g., in

I. Hlavagek and M. KF¥iZek. On a superconvergence finite element
scheme for elliptic systems. |. Dirichlet boundary conditions. Aplikace
Matematiky, 32(1987).

M. KFizek and P. Neittaanmaki. Superconvergence phenomenon in the
finite element method arising from averaging of gradients Numer. Math.,
45(1984)
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By exploiting the superconvergence properties, e.g.,
[Vu—=GVup|,, < cohlte,
while
[Vu = Vun|,,, < c2h,

one can usually construct a simple post-processing operator G satisfying
the condition

IGVup — Vu|| < a||Vup — Vul|.

where the value of a decreases as h tends to zero.
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Since

HGVUh - Vuh||
IGVup — Vup||

IVup — Vul| + ||GVuy, — Vu||,

<
> |[Vup — Vul — |GVuy — Vul.

where the first term in the right—hand side is of the order h and the
second one is of h11t% We see that

IGVup — Vug|| ~ h
Therefore, we observe that in the decomposition
IV(up — u)| < [|[Vup — GVuwy| + ||GVuy, — Vu||

asymptotically dominates the second directly computable term.
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Thus, we obtain a simple error indicator:

_
[V(up —u)]| = [[Vup — GVug.

Note that

[V (un — u)]

AP 14 chf
||Vuh — GVuhH

eff =
so that this error indicator is asymptotically exact provided that uy, is a
Galerkin approximation, u is sufficiently regular and h is small enough.
Such type error indicators (often called ZZ indicators by the names of
Zienkiewicz and Zhu) are widely used as cheap error indicators in
engineering computations.
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Some references

M. Ainsworth, J. Z. Zhu, A. W. Craig and O. C. Zienkiewicz. Analysis of
the Zienkiewicz-Zhu a posteriori error estimator in the finite element
method, Int. J. Numer. Methods Engrg., 28(1989).

I. Babuska and R. Rodriguez. The problem of the selection of an a
posteriori error indicator based on smoothing techniques, Internat. J.
Numer. Meth. Engrg., 36(1993).

0. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive
procedure for practical engineering analysis, Internat. J. Numer. Meth.
Engrg., 24(1987)
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Post-processing by equilibration

For a solution of the diffusion problem we know that
dive +f =0,

where o = AVu. This suggests an idea to construct an operator
G such that

div(G(AVu,)) +f =0.
If G possesses additional properties (linearity, boundedness), then

we may hope that the function GAVuy, is closer to o than AVuy,
and use the quantity ||[AVup, — GAVug|| as an error indicator.
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This idea can be applied to an important class of problems

NTu+f =0, Tu = AAu, (2.15)

where A is a positive definite operator, A is a linear continuous operator,
and A* is the adjoint operator.

In continuum mechanics, equations of the type (2.15) are referred to as
the equilibrium equations. Therefore, it is natural to call an operator G
an equilibration operator.

If the equilibration has been performed exactly then it is not
difficult to get an upper error bound. However, in general, this
task is either cannot be fulfilled or lead to complicated and
expensive procedures. Known methods are usually end with
approximately equilibrated fluxes.
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Goal—oriented error estimates

Global error estimates give a general idea on the quality of an
approximate solution and stopping criteria. However, often it is
useful to estimate the errors in terms of specially selected linear
functionals /5, s =1,2,..M, e.g.,

</{l,v—u >:/ ©o (v — u)dx,
Q
where ¢ is a locally supported function. Since
| <lu—up > [ < [|€][]lu—unlv,
we can obtain such an estimate throughout the global a posteriori

estimate. However, in many cases, such a method will strongly
overestimate the quantity.
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Adjoint problem

A posteriori estimates of the errors evaluated in terms of linear
functionals are derived by attracting the adjoint boundary-value
problem whose right-hand side is formed by the functional /.

Let us represent this idea in the simplest form. Consider a system

Au="f,

where A is a positive definite matrix and f is a given vector. Let v
be an approximate solution. Define uy by the relation

A*Ug = 5,
where A* is the matrix adjoint to A. Then,

C-(u—v)=A*up-u—Ll-v=Ff-uy—L-v=(f—Av) - u
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Certainly, the above consideration holds in a more general
(operator) sense, so that for a pair of operators A and A* we
have

<flu—v>=<f—-Av,u >. (2.16)

and find the error with respect to a linear functional by the
product of the residual and the exact solution of the adjoint
problem:

A*Ug =/.

Practical application of this principle depends on the ability
to find either u, or its sharp approximation.
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Consider again the diffusion problem. Now, it is convenient to
denote the solution of the original problem by ug, i.e

/ AVus - Vwdx = / fwdx, Vw e V().
Q Q

Since in our case A = A*, the adjoint problem is to find
u; € Vo(R) such that

/ AVu, - Vwdx = / wdx, VYw e Vy(Q).
Q Q
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Let Q be divided into a number of elements T;, i = 1,2,...N. Given
approximations on the elements, we define a finite-dimensional subspace
Von € Vo(R2) and the Galerkin approximations ug, and ug,:

/ AVug, - Vw,dx = / fwydx, Ywy € Vop,
Q Q

/ AVuy, - Vw, dx = / fwpdx, Ywp € V.
Q Q

Since
/ f(Uf — Um)dx = / AVU@ . V(Uf — Uﬂq)dx
Q Q
and

/ AVUgh . V(Uf — Ufh)dx = 0,
Q
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We arrive at the relation
/f(Uf — Ufh)dX: /AV(U(/ — U(/h) . V(Uf — ufh)dx (217)
JQ JQ

whose right-hand side is expressed in the form

div (AV(us — ugm)) (ug — ugn) dx+

31

:'\

+% /j(ui ~AV(us — um)) (ug — ugm) ds
oT;

This relation implies the estimate
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N
/g(uf - Uﬂl)dXZZ{HdiVAv(Uf - “ﬂ1)||2,Ti lue — 'Jéh”z,Ti +
Q i=1
+1 (- AV (ur = um) o, e = wanllpor, } =
N
= > {If + divAVunl, 7, lue = unlly 7, +
i=1

+% lli(vi - Avuﬂl)Hz,aTi lug — ugn

|2,8Ti} :

Here, the principal terms are the same as in the explicit residual method,
but the weights are given by the norms of uy — uy.

RICAM, Special Radon Semester, Linz, 2005.




Assume that uy € H? and uy, is constructed by piecewise affine
continuous approximations. Then the norms |juy — ug||T, and

lus — ugn|l2,67, are estimated by the quantities h*|ug|2 2,7, with e =1
and 1/2 and the multipliers & and &;, respectively.

In this case, we obtain an estimate with constants defined by the standard

H? — Vo

interpolation operator whose evaluation is much simpler than that of the
constants arising in the

H! — Vo

interpolation.
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A posteriori estimates in [?>—norm

In principle, this technology can be exploited to evaluate estimates in
L2—norm. Indeed,

||Uf . Ufh” — sup (f, urg — Ufh) — sup (AVU@, V(Uf - Ufh)) _
£elL? HEH Lel? ||£||
— sup (AV(Ug - Wh(uZ)), V(l.lf - Uﬂ,)) _
eeL? €]l
— sup (V(uz - ﬂh(uE)), AV(Uf - ufh)) _
ecL? €]l
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Integrating by parts, we obtain

N
; {lIF+divAVum||r, ue—mn(ue)lly, + 3 [5(vi - AVum)ll o, llue— m(ue) o7, }
€]l

If for any £ € L? the adjoint problem has a regular solution (e.g.,

ug € HZ), so that we could combine the standard interpolation estimate
for the interpolant of ug with the regularity estimate for the PDE (e.g.,
|lue]l < Ci]|€]]), then we obtain

ue — mn(ue)|lT, < Crh* ||, [ue — mn(ue)llor;, < C1h*2||£]|

with certain o.

Under the above conditions ||£|| is reduced and we arrive at the estimate,
in which the element residuals and interelement jumps are weighted with
factors C1h®t and Cyh2.
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Comment

We end this lecture with one comment concerning the terminology In the
existing literature devoted to a posteriori error analysis one can find often
find terms like "duality approach to a posteriori error estimation” or
"dual-based error estimates”’. However, the essence that is behind this
terminology may be quite different because the word "duality” is used in
at least 3 different meanings:

(a) Duality in the sense of functional spaces. We have seen that if
for the equation Lu = f errors are measured in the original (energy) norm
then a consistent upper bound is given by the residual in the norm of the
space topologically dual to a subspace of the energy space (e.g., H™1).
(b) Duality in the sense of using the Adjoint Problem.

(c) Duality in the sense of the Theory of the Calculus of
Variations.
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In the next lecture
we will proceed to the detailed exposition
of the approach (c).
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Lecture 3.
FUNCTIONAL A POSTERIORI ESTIMATES. FIRST EXAMPLES.
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Lecture goal

In the lecture, we derive Functional A Posteriori
Estimate for the problem

Auif=00Q u=00Q

and discuss its meaning, principal features and practical
implementation.

ial Radon Semester, Linz, 2005.




Lecture plan

m 1. Functional a posteriori estimates
m 2. How to derive them? Paradigm of a simple elliptic problem

= 3. How to use them in practice?

4. Examples.
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Functional A Posteriori Estimates

Functional A Posteriori Estimate is a computable majorant of
the difference between exact solution u and any conforming
approximation v having the general form:

®d(u—v) <M(D,v) Yv e V! (3.1)

where D is the data set (coefficients, domain, parameters,
etc.),

® :V — R, is a given functional.

M must be computable and continuous in the sense that

M(D,v) — 0, ifv—u
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Types of ®

= Energy norm d(u—v)=|lu—v|o
= Local norm d(u—v)=|u—v|,

m Goal-oriented quantity d(u—v)=(Lu—v)
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METHODS OF THE DERIVATION.

These estimates are derived by purely functional methods
using the analysis of variational problems or integral
identities.

Variational method 96’-97’
These results are summarized in S. Repin. Math. Comput., 2000.
Nonvariational method 2000’

see S. Repin. Proc. St.-Petersburg Math. Society, 2001.
Complete list of publications on the matter can be found in the
References appended to the Lectures.
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Functional a posteriori estimate gives complete solution of the
error control problem from the viewpoint of the MATHEMATICAL
THEORY of PDE’s

A systematic exposition of the variational approach to deriving Functional
a Posteriori Estimates can be found in

P. Neittaanmaki and S. Repin. Reliable methods for computer
simulation. Error control and a posteriori estimates. Elsevier, NY, 2004.
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Variational Method

Let u be a (generalized) solution of the problem
Au+f=0, Q u=00Q.

As we have seen in Lecture 1, this problem is equivalent to the following
variational problem:

Problem P. Find u € Vg := H}() such that

J(u) = inf J(v),

veVy

where
1 2
I(v) = SIVv]® = (F.v).

By the reasons that we discussed earlier this problem has a unique
solution.
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Lagrangian

Note that

1
J(v) =supL(Vv,y), L(Vv,y)= / (Vv cy— |y|2—fv)dx
yey Q 2

where Y = L2(,R"). Indeed, the value of the above supremum cannot
exceed the one we obtain if for almost all x € Q solve the pointwise
problems

1

sup (Vv)(x) - y(x) — E\Y(X)\z x€Q
y(x)

whose upper bound is attained if set y(x) = (Vv)(x). Since Vv €'Y, we
observe that the respective maximizer belongs to Y and, therefore

sup L(Vv,y) = L(Vv, Vv) = J(v).
yey
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Minimax Formulations

Then, the original problem comes in the minimax form:

P inf sup L(Vv,
(P) Jjnf, sup L(Vv.y)

If the order of inf and sup is changed, then we arrive at the so-called
dual problem

(P") sup inf L(Vv,y)

yey veVy
Note that
'nfr/ Vv 1| 12 —fv )dx 1|| Hz—i-'nf/(Vv fv)dx
I . _— — —_ = —_—— I . —_ =
veVy /o y 2 y 2 y veVo /o y

_ [ =3yl ifyeQr:={yeY]|divy+f=0}
—00 ify ¢ Qs
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Thus, we observe that the dual problem has the form: find p € Qf such

that
—1"(p) = sup —I"(y)
yeQ¢
where
1
I*(q) = = lq|?
(a) = 5 llall

How are these two problems related?

First, we establish one relation that holds regardless of the structure of
the Lagrangian.
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Sup Inf and InfSup

Let L(x,y) be a functional defined on the elements of two nonempty sets
X andY. Then

sup inf L(x,y) < |nf sup L(x,y). (3.2)
yeyY xeX Xyey

It is easy to see that

L(x,y) > inf L({,y), Vxe X, yeY.
Com) 2 IEHED),  WE2 g

Taking the supremum over y € Y, we obtain
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sup L(x,y) > sup |nf L(&y), VxeX
yey yey £eX

The left-hand side depends on x, while the right-hand side is a number.
Thus, we may take infimum over x € X and obtain the inequality

inf sup L(x,y) > sup |nf L(&,y).
xeXyey yeyY é

|
Therefore, we always have

< inf P
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Duality relations

However, in our case we have a stronger relation, namely

|
sup P° = inf P

To prove this fact, we note that

/Vu~Vvdx:/fvdx Vv € V.
Q Q

Therefore p = Vu € Q¢ and

() = 51 Vul? = [ (5170~ fu)dx = J(u)
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Let us use the Mikhlin's estimate established in Lecture 2:

1
SI9 (V)| < 3(v) — ().
Since J(u) = —1*(p), we have
1
SV =v)|? <I(v) +1"(p) < J(v) +1"(a) Ya € Qr.
Reform this estimate by using the fact that q € Q.
. 1 1
39 +1%(a) = V] ~ (£.3) + olal?

V7w + *||Q||2 —(Vv,q) =

= 2Ivv—al?
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Now, we have

[Vv—u)| <|[Vv—a| Vvac Q.
Take arbitrary y € L2(2). Then,

[V(v—u)| < [Vv—y[+ inf ly—aq].
qeQr

How to estimate the above infimum?
Various methods give one and the same answer:

inf [ly — ql| < [divy + f] y € L*(Q), (3.3)
qeQr
inf lly —all < Calldivy + f]| y € H(Q,div),  (3.4)
qer
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To prove these estimates we consider an auxiliary problem

An+f+divy=0 Q n=0 99Q.

/ vn - dex:/ (fF+ divy)wdx:/(fw —y - Vw)dx
Q Q Q
q

—
/(Vn—l—y)~dex:/fwdx Yw € Vj
Q Q

Thus, § € Qf !!!
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Since 7 is a solution of the boundary—value problem with right—hand side
divy +f € H™!, we have

[Vl < Idivy +f],
Then
inf ly —ql <y —all = [[Vn[ < [divy +f].
qeQr
Here

. Jo (y - Vw — fw)dx
divy +f] = sup
Ly 01 = e 5w
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y € H(Q, div)

If y has a square summable divergence, then we have

di fwd
[divy + f] = sup fﬂ( fuy + Fwdx

< Cgql|divy + f||,
Tl | |

where Cgq is the constant in the Friederichs—Steklov inequality for the
domain Q. Thus, by taking the flux vector—valued function in the
space that contains the flux of the true solution we make a
”noncomputable” negative norm computable.
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Thus, for any y € H(SQ, div) we obtain

[V(v—u)]| < [[Vv—y|+ inf ly—ql <
qeQr
[Vv — y|| + Cql/divy + f]|.

Above presented modus operandi can be viewed as a simplest version of
the variational approach to the derivation of Functional Error Majorants.
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Method of integral identities. First glance.

For many problems the variational techniques cannot be applied because
they have no variational formulation.

In

S. Repin. Two-sided estimates for deviation from an exact solution to
uniformly elliptic equation. Trudi St.-Petersburg Math. Society, 9(2001),
translated in American Mathematical Translations Series 2, 9(2003))

it was suggested another method, which is based on certain
transformations of integral identities. Later this method was applied to
parabolic problems:

S.Repin. Estimates of deviation from exact solutions of initial-boundary
value problems for the heat equation, Rend. Mat. Acc. Lincei, 13(2002).
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Nonvariational method in the simplest case

Let us expose its simplest version adapted to our model problem.
We have seen that

[V(u—v)| < JAv+f]

Instead of the estimation of the negative norm by Galerkin orthogonality
and special intepolation estimates we suggest another method of
finding an upper bound that is based on the functional relation

/ (divyw + Vw - y)dx =0 Yw € Vj
Q
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We have

Jo (Vv - Vw — fw) _

Av+f] = sup
[Avl =2 v

Jo (Vv-Vw — fw — (divyw + Vw - y))
sup
weV [Vw]

Jo (Vv —y) - Vw — (f + divy)w)dx
sup =
weV [Vw||

Vv = y[[IVw] + [If + divy[[[lw] _
weVy HVWH N

< |Vv —y|| + Col|f + divy]|.
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Functional error estimate. Meaning and properties

For the problem
Au+f=0, u=00n0R

we have obtained the estimate

IV(u = v)|| < [[Vv —y|| + Co|/divy + f] | (3.5)

The estimate is valid for any v € Vg and y € H(£2, div)
Two terms in the right—hand side have a clear sense: they present
measures of the errors in two basic relations

p=Vu, divp+f=0 inQ

that jointly form the equation.

ial Radon Semester, Linz, 2005.




The estimate is sharp

If set v=0 and y = 0, we obtain the energy estimate for the generalized
solution

[Vul| < Callf|

Therefore, no constant less than Cq can be stated in the second term.
If set y = Vu, than the inequality holds as the equality.

Thus, we see that the estimate (3.5) is sharp in the sense that the
multipliers of both terms cannot be taken smaller and in the set of
admissible y there exists a function that makes the inequality hold
as equality.
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The estimate as a quadratic functional

By means of the algebraic Young's inequality

2ab§ﬁaz+%b2, B>0

we rewrite this estimate in the form
IV(u—v)* < (3-6)

<@+ BV —y|? + ;5

For any 3 the right—hand side is a quadratic functional. This property
makes it possible to apply well known methods for the minimization with
respect to y.

||d|vy4rf||2
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Deviation Majorant

Denote the right—hand side of (3.6) by Mg, i.e.,

1
Mg(v.y,B.Cq.f):= (1+8)[|Vv—y|? +%ﬁ

This functional provides an upper bound for the norm of the
deviation of v from u. Therefore, it is natural to call it the
Deviation Majorant.

C2||divy+ f||2.
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BVP Au - f = 0 has another variational formulation

inf M@(V,y,,ﬂ,CQ,f)

veVy,
5>07
yeH(Q,div),

m Minimum of this functional is zero;
m it is attained if and only if v=uand y = AVu |;

m Mg contains only one global constant Cq, which is problem
independent;
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In principle, one can select certain sequences of subspaces
{Vi} € Vg and {Yp} € H(R,div) and minimize the Error Majorant
with respect to these subspaces

inf M@(V,y,@, CQ,f)
vE Vi,

B>0,
yE€Yhk,

If the subspaces are limit dense, then we would obtain a sequence
of approximate solutions (v, yx) and the sequence of numbers

=i f
Yk ﬂlgfoMGB(vkayka/Ba CQ7 )_) 0
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How to use the Majorants in practice?

Consider CONFORMING FEM APPROXIMATIONS.

We have 3 basic ways to use the deviation estimate:
(a) Use flux averaging on the mesh 7p,);

(b) Use flux averaging on the refined mesh hyef);
(c) Minimization with respect to y.
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(a) Use recovered gradients

Let u, € Vy,, then
ph = Vup € Ly(2,RY),  pp & H(Q, div).

Use an averaging operator Gy, : Lp(2,R9) — H(R,div) and have
a directly computable estimate

IV(u—up)l| < [[Vun — Gppn|| + Co [|divGppn + f|
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(b) Use recovered gradients from 7,

ref

Let u,ug, ..., uy, ... be a sequence of approximations on meshes

Tp,. Compute pi := Vuy, average it by Gk and for ux_1 use the
estimate

Ju—u 1l < [[Vuk1-Gipill + Co [|divGipi+f]

This estimate gives a quantitative form of the Runge’s
rule.
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(c) Minimize Mg with respect to y.

Select a certain subspace Y, in H(Q,div). Generally, Y, may be
constructed on another mesh 7. and with help of different
trial functions. Then

[V(u—up)|| < inf {|[Vun—ynl|l + Cq [|divy, +F|}
Yh€Yh

The wider Y}, C H(S, div) the sharper is the upper bound.
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Quadratic type functional

From the technical point of view it is better to square both parts
of the estimate and apply minimization to a quadratic functional,
namely

IV(u = u)I? < inf {(1+B)IIVun—ynll +
Yh€Yh

1 .
+Ca (14 ) vy, +12}

Here, the positive parameter B8 can be also used to minimize the
right—hand side.
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Before going to more complicated problems
where Deviation Majorants are derived by a
more sophisticated theory, we observe several
simple examples that nevertheless reflect key
points of the above method.
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It is equivalent to the variational problem

J(v) = /b <;a(x) v 2 +f(x)v) dx.

a

Assume that the coefficient a belongs to € L* and bounded from below
by a positive constant. Now

Vo +up = {ve H(a,b) | v(a) =0, v(b) = up}.
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Deviation Majorant

b Czb b
Me(v, B,y) = (1+8) /| o'y [ e G /|y'—f|2 dx. (3.7)

In this simple model, u can be presented in the form

u(x) = /: azt) /at f(z)dzdt + E (ub - /ab azt) /at f(z)dzdt) .

what gives an opportunity to verify how error estimation methods work.
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Approximations

Let V}, be made of piecewise—P! continuous functions on uniform
splittings of the interval and consider approximations of the following
types:

m Galerkin approximations;
m Approximations very close to Galerkin (sharp);
m Approximations which are "good" but not Galerkin;

m Coarse (rough) approximations.
|

Our aim is to show that the Deviation Majorant can be effectively
used as an error estimation instrument in all the above cases.
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Computation of the Majorant

To find a sharp upper bound, we minimize Mg with respect to y and 3
starting from the function yo = G(v’), where G is a simple averaging
operator, e.g, defined by the relations

G(v')(xi) = %(V/(Xi —0) +v'(xi +0)),

I M '/ ,3, yﬂ
ﬁ>0 @( ) )7

we obtain a coarse upper bound of the error. It is further improved by
minimizing Mg with respect to y.
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Example 1

Let a(x)=1,f(x)=c,a=0,b=1, u, =1, e.g., we consider the
problem

u’" =2, u(0)=0,ul)=1.
In this case, C(ap) = 1/7 and

%)x7 W =cx+1- S

u:Exz—i—(l— >

2

Take a rough approximation v = x. Then

1
[(u—v)|?= / c(x — 0.5)%dx = c?/12 ~ 0.083c>.
0
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Various y give different upper bounds

(a) Take y = v’ =1, then the first term in

1 1
!/ 1 /
Mo(v.By) = (1+8) | [Ivoy Pt [iy-e? | ax
0 0

vanishes and we have Mg — /72 ~ 0.101c?; as 8 — +0co0. We see
that this upper bound overestimates true error. Note that in this case, all
sensible averagings of v/ = 1 give exactly the same function: G(1) =1 !
Therefore,
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For the choice y = v’ the Majorant give a certain upper bound of the
error (which is not so bad), but the integrand cannot indicate the
distribution of local errors. Indeed, we have

1 /1,
M@:ﬁACdX.

However, the integrand of the Majorant is a constant function, but the
error is distributed in accordance with a parabolic law:

(u—v) =c(x—0.5)>
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(b). Takey =ecx+ 1 —c¢/2. Then, y' = c and the second term of the
majorant vanishes. We have (for 3 = 0)

1
Mg = / c(x — 1/2)%dx = c?/12.
0

We observe that both the global error and the error distribution are
exactly reproduced. In real life computations such an "ideal” function y
may be unattainable. However, the minimization makes the Majorant
close to the sharp value. In this elementary example, we have minimized
the Majorant on using piecewise affine approximations of y on 20
subintervals. The elementwise error distribution obtained as the result of
this procedure is exposed on the next picture.
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To give further illustrations, we consider the functions

us =u-+dp,
where § is a number and ¢ is a certain function (perturbation).

Approximate solutions (whose errors are measured) are piecewise
affine continuous interpolants of us defined on a uniform mesh
with 20 subintervals.

We take ¢ = xsin(mrx) and 6 = 0.1, 0.01, 0.001, and 0.

Table:

1) e 2M@ 2M9 ieﬁ iesh
0.1 0.019692 0.019743 0.019683 1.003 1.018
0.01 0.001022 0.001025 0.001013 1.003 1.011
0.001 0.000835 0.000839 0.000827 1.005 1.002
0 0.000833 0.000836 0.000825 1.004 1.002

In this experiment the Majorant was computed for 3 |le||.
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Error estimation for 6 = 0.1

0.008 T T
Errors Errors
DEM —— GA -—--—--
0.006 |- -
0.004
0.002 |- §
0 .I”HH"TI‘P-I-J
0 0.5 1 0.5
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Functions u, v and i for § = 0.1




Error estimation for 6 = 0.01

A more precise approximation.

Errors
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T
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Error estimation for 6 = 0.01

A more precise approximation.
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Error estimation for 6 = 0.001

Sharp approximation.

Errors
DEM —— GA -------
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2e-05
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Error estimation for § =0

Interpolant of the exact solution.
_____________________________________________________________________________|

T
Errors Errors
DEM ——

S
w

o
ol

ial Radon Semester, Linz, 2005.




4e-05
3e-05
2e-05
1le-05

RICAM, Special Radon Semester, Linz, 2005.




Functional a posteriori error estimates were derived by the methods of duality
theory in convex analysis in 1996. These results are published in [7,8]. In
[5,9,23,24], they were applied to certain linear and nonlinear variational
problems with convex functionals. First consequent study of their
computational properties was presented in [10]. Later a detailed investigation
of the practical aspects was done in [1,3,18]. General a posteriori estimates for
the class of convex functionals are derived and discussed in [3,5,11,12]. A
posteriori estimates for a class of nonconvex problems are can be found in [6].
A posteriori estimates which take into account errors in main boundary
conditions were derived in [20], there readers can also find a method of the
derivation of the estimates based upon the orthogonal decomposition of the
space [? (Helmgholts decomposition). In, [17,21,22] a posteriori estimates
were derived for modeling errors in dimension reduction models. Estimates for
the Stokes problem will be further discussed in this lecture course (see [15,16]).
In [19], functional type a posteriori estimates were obtained for the
Reissner-Mindlin plate.
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Lecture 4.
AN INTRODUCTION TO DUALITY THEORY.
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Lecture goal

In subsequent lectures we will present the general theory of a
posteriori error control for convex variational problems. In the
framework of this theory we are able to derive computable upper
bounds for the errors for problems of the type

inf J(v,Av), J(v,Av) := G(Av) + F(v),

veV
where A : V — Y is a linear continuous operator from a Banach
space V to another Banach space Y and J: Y — R and
F:V — R are convex |l.s.c. functionals.
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In particular, if

Av =Vv, G(y)=(Ay,y), F(v)=(f,v),
then we arrive to the variational formulation of the problem
divAVu+f=0

with certain boundary conditions.

Many other problems have the above form, were
G is the energy functional whose form is dictated by
the dissipative properties of a media.
F is the functional associated with external forces.
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Many problems in continuum mechanics encompassed in the
general scheme are: linear elasticity,

biharmonic problems,

Kirhghoff and Mindlin plates,

deformation theory of elastoplasticity,

Stokes problem.

Also, this scheme is applicable to the p-Laplace equation and
certain nonlinear models in the theory of viscous fluids.

In such models the structure of the ”energy functional” G
plays crucial role in all the parts of the mathematical
analysis: existence and differentiability properties of

minimizers and estimates of deviations from the minimizers.
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To understand the basic principles of the
functional approach to the derivation of a
posteriori bounds of the approximation errors
we need to make a concise overview of some
parts of the duality theory in the calculus of
variations.
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Lecture plan

m Dual and bidual functionals ;
= Compound functionals ;

= Uniformly convex functionals.
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Dual (polar) functionals

Hereafter V* contains all linear continuous functionals defined on
V. The elements of V* are marked by stars,

(v*,v) is called the duality pairing of the spaces V and V*.

Let J: V — R, then J* defined by the relation

J5(v*) = sup{(v*,v) — J(v)}
veV
is called dual to J.
If J is a smooth function that increases at infinity faster than any
linear function, then J* is the Legendre transform of J. The above
general definition comes from Young and Fenchel. The functional
J* is also called polar to J.
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Bipolar functionals

The functional

(v = sup {7 v) = 3]

is called the bidual to J (or bipolar).
Straightforwardly from the definition, it follows that J* and J** are

convex functionals (they are defined as upper bounds of affine
functionals). Formally, one can also define

JH(vr) = sus{(v*,v) —J7(v)}.

IS

However, this definition brings nothing new. It is proved that

I (v) = J*(v¥), W* e V.
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Mutually dual functionals

Let J:V — R := {R, —o00, +00} and G* : V* — R be two
functionals defined on a Banach space V and its dual space V*,
respectively. These two functionals are called mutually dual if

(G*)*=J and J*=G".

ial Radon Semester, Linz, 2005.




Examples

To illustrate the definitions of conjugate functionals, we present
below several examples for functionals defined on the Euclidean
space EY. In this case, V and V* are isometrically isomorphic.
Their elements are d-dimensional vectors denoted by € and €%,
respectively, so that

(€.8) = &£ =%

These examples have a practical meaning because for a wide class
of integral type functionals (in the mechanics they are the energy
functionals) finding the dual energy functional is reduced to
finding dual to its integrand !

ial Radon Semester, Linz, 2005.




In other words, if the " primal energy functional” has the form

G(v) :_/Qg(l\v)dx

where g is the "internal energy” or "dissipative potential”, then
the so—called " complementary energy” is given by the integral
functional
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Example 1 (Diffusion problems)

Let A = {aj;} be a real, positive definite matrix and

1 1
g(&) = §A€ €= Eaijgifj-
Then 1
g€ = s {6 jac €.

¢cEd

This supremum is attained on an element &, such that
-1
£ =A = E=A¢
Therefore, we have a pair of mutually conjugate functionals

1 1
g(€) = 5AE-€ and g (€)= 5ATIE €
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In diffusion type boundary—value problems we arrive at the
functional (with y = Vv)

1/ Ay -ydx yeL?QR"),
2 Jo

which is mutually dual to

',
/ A-ly* . y*dx y* e L3(QR")
2 Jo
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Example 2 (Linear elasticity)

Let L = {Lijkm} be a real, positive definite tensor of the 4-th order
and 7 be a tensor of the second order (d x d-matrix). Then,

1 1
g(e) = §Le iEe = §L;jkms;jskm.
Then 1
g*(e") = sup {s* re— zAe: s} .
SEMdXd 2
This supremum is attained on an element €g such that

7" =Leg = g9 = L le*.

Therefore, we have a pair of mutually dual functionals

1 1
g(E) = §L€ L€ and g*(E*) = 5'_715* : E*.
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In linear elasticity problems we arrive at the energy functional in
terms of strains e(v) = (Vv + (Vv)T)

1

= / Le:edx € L?(Q,M™"),

2 Ja

which is mutually dual to the " complementary energy” functional
written in terms of stresses e*(x) => 7(x)

17
/ L~ 17 7dx TGLZ(Q,M"X")
2 Jg

ial Radon Semester, Linz, 2005.




Example 3 (Nonlinear elasticity, p-Laplacian)

Consider the functional
1
_ gl
g(¢) plé’! ,

where p > 1 and |£] = (€ - £)Y/2. It is easy to verify that the
quantity £&* - £ — %|£|p attains a supremum if & = £, where &,
satisfies the relation

€~ [€lP 6 =0,
which yields |€*] = |&,|P~! and £€* - &, = |&,|P. Therefore,

1 1 1 X
B(€) =€ &~ 6ol = (1 - p) P = e

where p* = p—fl.
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This relation admits generalizations. Namely, let ¢ : R — R be a
proper convex function that is, in addition, odd and let
©* : R — R be its conjugate. Then

(p(llullv))” = ¢ (lu*llv-)-
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In certain nonlinear boundary—value problems we arrive at the
functional (with y = Vv or y = g(v))

= [ wPax ye@rmpar,
PJa
which is mutually dual to

]. ’ * *
[P ax v e (@ R )
P Jo
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Example 4 (Action of external forces )

Let g(&) be a linear functional, i.e.,

gé)=r-¢ rcEL

It is easy to see that

0 £ =1,
* * — *. _g. —
g (&%) ;:5{5 £ £} {+OO Ry

Denote by Xy, the characteristic functional of the set {¢} C Ed.
Then, another pair of mutually conjugate functionals is as follows:

g§) =(-& and g'(£7) = X(y(€).
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Thus, for the functional G : L2 —» R
G(v) :/ fvdx, f € L2(Q)
Q

the respective dual functional is G* : L2 — R

G (v*)=0if v: =f, G*(v*) = 400 in other cases.
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Example 5 (Variational inequalities, friction)

Let g(&) = |&|. Then
Slép{€* € — [€]}

may be finite or infinite depending on the value of [£7]. If |€*] > 1,
then, obviously, it is infinite. If |€*| < 1, then, on the one hand,

Stép{E* - [El} < szp{llél - ¢[} =0.

On the other hand, supg{§*- & —[£|} > £"-0— 0 = 0. This means
that g*(£*) =0 if |€*] <1 and, thus,

g(8) = [€], g"(€") = Xp-(0.1) ("), where B*(0,1)={¢"c E?| [¢"| <1}
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Thus, for the functional G : L1 — R

G(v) := / lv| dx,
JQ
the respective dual functional is G* : L* — R

G*'(v') =0if v'(x)] <1la.e.inQ, G*(v*)= +oo inother cases.
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Example 6 (Variational inequalities, perfect plasticity)

Let K be a convex closed set in E9 and

g(&) = Xk(§)-

The respective conjugate functional is defined as follows:
g'(§") = sup{&"- & — Xk(§)} =sup & - €.
£cEd geK

This function is called the support function of K and is denoted
by X (£7). For example, if K = B(0,1), then

sup&*-€ =€ = Xy (&) =1£"]-
geK
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Example 7 (Elasto-plasticity )

Let us find conjugate for the functional

* * k * *
g (&)= §|§ 2+ Xp0)(€), k>0, A>0.

In this case,

k
B(6) = s (€6 5l€

£ eB*(0,\

If £5 meets the relation & = k&; and satisfies the condition
|€5] < A, then it is the required maximizer. For such a & we have

* 5*2_1 * 2 i*Z_l 2
€& 2’50\ —k’€0| 2k’£°‘ _2k’£"

RICAM, Special Radon Semester, Linz, 2005.




If |€5] > A, then the maximizer £}, meets the conditions

which mean that &, = /\% and, consequently,
€ &m— el = Mgl - 577
Thus, we obtain

1
o [l if €] < kA,

g(§) = 2k k

>\|§|—§>\2 if |€] > k.
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In the theory of perfect elasto—plasticity stresses are subject to the

condition ’T € K = plasticyield set‘ and the stress energy
functional is defined and finite only on such 7:

17
G* ()= / L~ 17: rdx for 7 € K.
2 /o
The respective dual functional (for strains) is given by a linear
growth functional

where g is a linear growth functional of the type given on the
previous page.
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Example 8 (Minimal surfaces, capillary problems)

Consider the functional g(&¢) = /1 + |£|2, arising in some
variational problems having a geometrical meaning (e.g., for the

nonparametric minimal surface problem). If |£*| > 1, then the

value of
sup {76~ \/1+ le )
£cEd
is infinite. If |€¥] < 1, then the maximizer &, satisfies the condition
£o 2 [
§————=—==0,= L= 7 -Fn
V1+ &R 1- g2

Therefore, we obtain

g*(g*):{_\/l_S*F if |£*|§1/

+00 if €% > 1.
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Energy functional for the minimal surface problem (with y = Vv)

/ 1+ |y2dx ye LI(Q,}Rz),
JQ

which is mutually dual to

[ ViR st
Q
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Properties of dual functionals

Property 1

IfJ:V—>Rand G:V — R are such that

J(v) > G(v), WeV,
then

F(v*) < G*(v¥), W* eV

Proof. We have

I (v) = sup{(v*,v) —J(v)} < 325{@*, v) — G(v)} = G*(v").

veVv
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Property 2

For any A > 0,

(M) (v*) = AJ? (VX) .

Proof. This property is justified by direct calculations:

(M) (v*) = 325{<V*7V> —M(v)} =

() -af = (%)
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Property 3

Let J:V — R and J,(v) = J(v) + o, where o € R. Then

B () = F(v') - a

Proof. It follows from the obvious relation

sup{(v*,v) — J(v) — a} = sup{(v*,v) = J(v)} — a.
veV veV
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Property 4

Let vop € V and G(v) = J(v — vp). Then

G*(v*) = J*(v") + (v*, vp).

Proof. Since

sup{ (v’ v) = J(v = vo)} = sup{{v’,w +vo) — J(w)}
= sup{{vi,w) —J(w)} + (v%,vo) = I (V') + (V" vo),

we arrive at the required relation.
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Property 5

If G(v) = mini=1__n{Ji(v)}, then G*(v*) = maxi—1, n{Ji(v*)}.

Proof. We have
G'(v) = sup{(v".v) — _min {5i(v)}}

veV i=1,...

= sup{(v*,v) + T 3XN{_Ji(V)}}
vev i=1,...,
o () - )
= i:Tf].?fN 325{@*7 v) — Ji(v)} = i:T,.a.?fN{J?(v*)}’
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Property 6

If G(v) = maxj=1,.. n{Ji(v)}, then G*(v*) < minj=1 _ n{JF(v*)}.

Proof. By definition, we have

G*(v*) = sup{(v*,v) — i—TaXN{Ji(V)}}

vev S
= ‘slg\p;{<v*7 v) + i:T.i.r.],N{_Ji(V)}}
= sup,pin {9}~ 1))

Now we apply supinf < infsup relation to (v*,v) — J;(v). Then,

G*(v*) < min_ sup{(v*,v) —Ji(v)} = 7in’N{J;k(v*)}.

i=1,...Nycv i=1,...
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Subdifferential

Definition

The functional JV — R is called subdifferentiable at vg if there
exists an affine minorant ¢ € AM(J) such that J(vp) = ¢(vp). A
minorant with this property is called the exact minorant at vg.

Obviously, any affine minorant exact for J at vy has the form
l(v) = (v',v —vg) +J(vp), L(v) <J(v), YweV.

The element v* is called a subgradient of J at vg.
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The set of all subgradients of J at vg forms a subdifferential,
which is usually denoted by dJ(vp). It may be empty or contain
one element or infinitely many elements.

An important property of convex functionals follows directly from
the above definition. For a convex functional J at a point vg where
it is finite, the exact affine minorant is evidently exist!

In other words, there is at least one element v* € 9J(vp) that
"creates” an affine minorant such that

(viv) —a < J(v), YveV,
(v*,vg) — a = J(vp).
By subtracting, we obtain
J(v) = I(vo) > (v',v —vp).

The inequality (4.1) presents the basic incremental relation for
convex functionals.
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Compound functionals

Let J and J* be a pair of mutually dual convex functionals.

The functional Dy : V x V* — R of the form
Dy(v,v*) = J(v) + J*(v*) — (v¥,v).

is called it the compound functional associated with these pair of
functionals.

We will see that compound functionals play an important role in
the a posteriori analysis of linear and nonlinear variational
problems.
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Compound functionals are always nonnegative. Indeed,

J*(v*) = sup ((v*,v) — J(v)) > (v',v) —J(v) WveV
veV

and

J*(v) + J(v) — (vi',v) >0 Vv, v*
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Compound functionals may vanish only on special sets, where v
and v* satisfy certain relations.

Theorem

Let J be a proper convex functional and J* be its polar. Then, the
following two statements are equivalent:

J(v) + J*(v*) — (v',v) =0, (4.1)

v € 0J(v) and v € 9J*(v"). (4.2)

Relations (4.2) are also called duality relations for the pair (v, v*).
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Assume that v* € 9J(v)., i.e,

J(w) > J(v)+ (vi,w—v), YweV.
Hence,
(v'v) —J(v) > (v, w) — J(w), YweV

and, consequently,

(viv) —J(v) > :’ESKV*,M —J(w)} = J5(v),

what leads to the conclusion that J*(v*) + J(w) — (v*,w) < 0.
But the left—hand side is nonnegative, so that we obtain
Dy(v*,v) =0.
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|
Assume that v € 9J*(v*). Then

JH(w*) > I (v*) + (W* —v*,v),
and we continue similarly to the previous case:
(W, v) — J*(w*), Yw* eV,
I (v) = J(v).

Thus, we again arrive at the conclusion that it can only be if
D,(v*,v) =0.
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Assume that Dj(v*,v) = 0. Since

I (v) = sup {(v*, w) — J(w)},

weV

we obtain
0=J(v)+J"(v*)—(v*,v) > J(v)—J(w) — (v',v—w), Yw € V.
Rewrite this inequality in a more familiar form:
Jw)—J(v) > (vi,w—v), YweV,

which means that J(v) + (v*,v — w) is an exact affine minorant of
J (at v) and, consequently, v* € 9J(v). The proof of the fact that
v* € 0J*(v*) is quite analogous.
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Properties of compound functionals

First, we note that, Dg(y,y*) is convex with respect to y and y*,
but, in general, Dg(y,y*) is a nonconvex functional on Y x Y*.
This fact is easily observed in the simplest case Y = R if set

1 . 1 .
=— G'(y) = —|y|*.
Gly) = _ Wl (y) = Iyl
Only for a = 2 we have a convex functional
*\ 1 2 1 %12 * 1 *\2
Daly,y") = slyI" + Sy 1" —yy" =5y —y)"

For other & € (1,400) Dg is nonconvex on R x R.

RICAM, Special Radon Semester, Linz, 2005.




77
e

e
7777
17
LT
7

7
77

s
AT
7177
777
17
77

RICA i
M, Special Radon Semester, Li




“
=]
=
I
N
|
=
5]
P
]
o
=
(5]
7]
=
<]
°
4]
-4
i
[s]
@
=
(7]
<
=
x

0.5

WM

vk
TR
SRR

o~
w
Aol
W
I
©
~
w2

1
6
-0.5

1€,18/5 +

5
~ 6

D(£11£2)
Compound functional on R x R and its level lines

Example 2




However, they have an important property, which is to some extent
similar to convexity.

For any y1,y2 € Y and yj,y; € Y7,

*+ *
Dg (Hh¥2, YD) < %(DG(yl yi) + Da(y1,y3)+

+ Dg(y2,¥1) + Dc(yz,y3)>
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From the definition it follows that

g (v.%54) = 6(y) + 6" ("3%) ~ (31.y)
< 1(Dc(y.y5) + Da(y.y3))

and

Do(132,y') = G(25%) +6'(y) = (" 24)
< 3 (Da(y1,¥*) + Da(y2,¥")) -

Therefore,
Do (252, ylgyz) < % (Dc(yl, y1;y2 ) + Dg(ya, yﬁzryz )) _

and we arrive at the required estimate.
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Important property

]
If G and G* are Gateaux differentiable, then

(y* = G'(y),G"(y") —y) > Dgl(y,y").

Note, that from this relation we conclude that Dy vanishes if the
duality relations are satisfied.
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Uniformly convex functionals

Let a proper |.s.c. functional T : Y — R be subject to the
conditions

T(y) >0, VyeY, T(y)=0 < y=0y.

Definition

A convex functional J : Y — R is called uniformly convex in
B(0y, ) if there exists a functional Ts such that T5 #Z 0 and for
all y1,y2 € B(0y, 9) the following inequality holds:

(M%) il ) < 5000 ). @)

The functional T enforces standard convexity inequality. For this
reason, it is called a forcing functional.
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It is clear that any uniformly convex functional is convex in
B(0y,d). Now we establish two important inequalities that hold
for uniformly convex functionals.

Theorem

If 3 : Y — R is uniformly convex in B(Oy,8) and Gateaux
differentiable in B(Oy, d), then for anyy,z € B(0vy,0) the following
relations hold:

J(z2) = J(y) + (J'(y)z—y) +2T5(z - y)

and

(@) - Y(y),z—y) >2Ts5(z—y) +2Ts(y — 2).
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We have Ts(z—y) < 3(z2)+ 30y) - I ().

Since J is convex and differentiable

R

and, therefore,

27s(z~y) < 3(2) = I(y) — (Y(¥). 2~ y).
We can rewrite it replacing z by y
27s(y —2) < J(y) —I@) + (Y (@).2 - y)

and obtain the second inequality. O
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Deviations from the minimizer

Let a functional J be uniformly convex in B(Oy, d) and
Ym € B(0vy, ) be the minimizer of J.

[y

Ts5(z—ym) < 5 (J(2) = I(ym)), vz € B(Oy, ). (4.4)

Since J (Y22) > J(ym), we obtain

To(z—ym) < 3dlom)+ 5302) — 3 (Y77 <




Estimate (4.4) is the first step in deriving a posteriori error
estimates of the functional type by means of the variational
techniques. It shows that deviations from the minimizer (measured
in terms of the functional T) are controlled by the difference of
the functionals.
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Corollary 1

Rewrite (4.3)) in the form

Tz = ym) +3 (Y7575 < dlom) < 5 02) ~ S9m).

By virtue of (4.4), we have

) (y'“;z> ~ Jym) > 275 <z _2”“‘)

and, therefore, we arrive at the strengthened estimate

Tz —ym) + 275 (20 < 5 06 - dgm)) . (49




Corollary 2

Assume that J is twice differentiable in the vicinity of y,, and
satisfies the finite increment relation

352 ) = atum)+ (Yo, 20

L/ Z+Ym\Z—Ym Z—Ym
+5(9 <y"‘+5 2 ) 2 )

where € € (0,1). Since J'(ym) = Oy+, we have another estimate:

8

Ts(z—ym) + 1<J” ((1 + %)ym + %z) (z—Ym),z— ym> <
1




Example 1

Consider a self-adjoint operator A € L(H, H) defined on a Hilbert space
H with scalar product (.,.). Assume that it satisfies the condition

o [lyl® < G(y) = (Ay.,y) < ez |lyll>,  VyeH.
For J(y) = G(y) + (¢,y), £ € H we have

260y) + %G(z) -G (y - Z) -

= 3(AY.y) + 3(Az,2) — S(Aly +2)y +2) =

Te—y) = 5(AG~),(z - y)).
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Thus, from (4.4) we have

S(A(z —ym), (2~ ym) < 5 (42) ~ dlym)), ¥
However (4.6) gives a better estimate
LAz~ o). (2~ yo) < 3(2) ~ J(ym). (@)

Note that for quadratic type functionals this estimate holds as
equality. Indeed,

1
J(2) = J(ym) = (Aym +£,2 = ym) + 5(A(z = Ym), 2 — Ym)-
and the minimizer y,, satisfies the relation
(Aym +£4,y) =0, VyeY.

Therefore, (4.7) holds as equality.

RICAM, Special Radon Semester, Linz, 2005.




Let J; and J; be uniformly convex in B(0y,d) with
functionals T15 and Ty, respectively.
Then the functional

pad1 + p2da,
where 1, 1o > 0, is uniformly convex in B(0y, d) with

Ts = p1T15 + 2T 2s.

The proposition follows directly from definition of uniform
convexity . O
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Example 2

Consider the functional

Jy) = %(Ay,y) + (4,y) + W(y),

where W(y) is a convex and |.s.c. functional. Applying the above
Theorem with u; = up =1,

h(y) = 5(Ayy) +(Ly)  Jaly) = W)

we see that J is uniformly convex with functional T defined in
Example 1.
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Let J1 and Jy be uniformly convex in B(Oy, ) with functionals
T1s and Tys, respectively. Then the functional

J(y) = max{J1(y), J2(y)}

is uniformly convex in B(Oy, d) with

Ts = min{Tl(;, Tz(s}.
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2900 + 33(2) — 3 (%52) = 5 max{h(y), Ja(y)+

+ L max(J1(2). (@)} — max {31 (%) .02 (52)}.

Assume that

Then
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If we have an opposite situation, i.e.,

max{Jl( ) Jo (y;z)} =1 (yT)’

then
230) 4 5 02) I (1) = Tz ).

Thus, in both cases the lower bound is given by the functional

min {Ti5(z — y), Tas(z — y)}.
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Example 3. Power growth functionals

Let
Gy) =1 / y[®dx  F(v) = / fudx,
Q Q

where a > 1. Then Problem P is to minimize the functional

Ja(v) :—/Q (L|Vv|* + fv) dx

over the space V = {v € H*(Q) | v=00n0Q}.
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Problem P* is to maximize the functional

() = —;*/Q ¥ dx

over the set

Q’f*:{y* eY" .= La*(Q,R")|/ y*'dex:/ fwdx Yw € V}.
Q Q
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For ac > 2 uniform convexity of G(y) follows from the first
Clarkson's inequality

/‘%‘adfr/ ‘%’adxﬁ%/ (lya[*+1y2|*) dx,
Q Q 2

which is valid for all y1, yo € Y.

See S. L. Sobolev. Some Applications of Functional Analysis in
Mathematical Physics. Hence, we observe that in this case

1
To(z) = o ||ZHa,Q-

and




For 1 < a < 2, the functional G is also uniformly convex. This
fact follows from the second Clarkson’s inequality

(L (5™ (f () )™
= (5/9 (|y1|°‘+|y2|a)dx>“‘1.

However, in this case, the functional Ts depends on the radius §
of a ball B(0y, ) that contains y; and ys, so that the estimate
holds with

o

Ts(z) =05k 2] 5q

1 : : 1
where Kk = pe and ko is the integer part of =
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Lecture 5.
FUNCTIONAL A POSTERIORI ESTIMATES. GENERAL
APPROACH.
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Main goal of the lecture

We expose the general approach to deriving two-sided
functional estimates of the deviations from exact
solutions of linear elliptic type problems having the
operator form

NANu-+ £=10

where A and A are linear bounded operators and
A is symmetric and positive definite.
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Lecture plan

m Two-sided a posteriori estimates for linear elliptic type
problems;

m Properties: computability, consistency, reliability;

m Relationships with other error estimation methods;
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Problem in the abstract form

Many problems can be presented in the following form: find u € Vg + up
such that

(ANu, Aw) + (£,w) =0 VYw € V. (5.1)

Here Vj is a subspace of a reflexive Banach space V,

o
e.g., V=H! Vo =H.
N :V — U is a bounded linear operator, e.g. A =V.
U is a Hilbert space with scalar product (-,-) and norm || - ||,
eg,U=1L2%
£ € Vg, is a linear functional in the dual space, e.g., in H-1. In general,
we may assume that

(€,w) = (f,w) + (g, Aw).

A € L(U,U) is a self-adjoint operator.
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Assumptions

We assume that
V  is compactly embedded in U (5.2)
and the operators A and A satisfy the relations

alyl? < (Ay,y) <clyl?,  Vyeu,
[Aw[| > c3|lw|y, Vw € Vyq,
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For our analysis, it is convenient to introduce two more norms:
Iy l:=(Ay. )%y = (A ly, )2

where A1 is the operator inverse to A. The respective spaces Y
and Y* contain elements of U equipped with the norms || - || and
Il - I, respectively.

Problem (5.1) is equivalent to following problem.

Problem P. Find u € Vg + ug such that

J(u) = ve\l/r;frqu(u) = inf P,

where

W)= 2 1AV I HEY).
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Lagrangian

On the set (Vg + ug) x Y*, we define the Lagrangian

1
L(v,y) = (y.Av) = 5 [y I -+, v)
and the functional

- Aug)—3 Il y I2+(€ uo), yeQ;
I* — fL — (y7 0 2 * ) ’ 'z
)=, ot Lo ={ &1 o

where Q; :={y € Y* | (y,Aw) + (£,w) =0, Vw e Vy}.
Note that since

(y, N(ug + w)+ (€, (up + w)) = (y, Aug)+ (€, up)

we see that I" does not depend on the form of ug inside €.
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The problem dual to P is as follows.
Problem P*. Find p € Q} such that

I"(p) = sup I"(y) :=supP* < infP.
yeQ;

The minimizer u satisfies and the maximizer p satisfies the
stationarity conditions

(AAu, Aw) + (£, w) =0 VYw € Vy,
(Aug — A7 'p,y) =0, VyeQ,

where Qg 1= {y € Y*‘(y,l\w) =0, vYwe Vo} .
|

We see that AAu € Qj,.
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Take

1
I"(ANu) = (AN, Aug) -5 || AAu 2+ (£, uo)
and set ug = u. We obtain
1
1" (ARu) = (AR, Au) = o | AR 2 +(€ u) < supP*.

Since || AAu ||>= (A 1 AAu, AAu) =|| Au ||?, we see that
I"(AAu) = J(u) = inf P

Thus




The relation I"(p) = J(u) means that

1 1
(p,Au) =5 lIp 12 +(€,u) = 5 I Au 2+, u),
which is equivalent to the relation
1 2 1 2
D(Au,p) = 5 | Au |2 +5 | p |2 ~(p, Au) = 0.

From the above we see that Au and p are joined by a certain
relation:

p=AAu
This is the so—called duality relation for the pair (u, p).
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Let v € Vg +ug and y € Y* be some approximations of u and p,
respectively. Our goal is to obtain two-sided estimates of the
quantities || A(v —u) || and || y — p ||« that are norms of
deviations from the exact solutions u and p.

First, we establish the following basic result.

For any v € Vg +ug and q € Qj,
I Av—u) [ + [ a—p 3= 2(I(v) - I*(a)), (5.5)

I A(v —u) > + [l a — p [I2= 2D(Av, q). (5.6)




By the stationarity relations, we have

3 IA —u) 2 =J(v) = J(u) +
(AAu,A(u—v)) + (L,u—v) =
= J(v) — J(u).

Analogously

Pla-pl? =1 -1+ (Aw-App—a)=
~ I(p) ~ I(a).
Since J(u) = I"(p), we sum two relations and obtain (5.5). For

q € Q;} the difference J(v) — 1"(q) is equal to D(Av, q), so that
(5.6) follows from (5.5).
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The estimates (5.5) and (5.6) are valid only for ¢ € Qj, which
poses some difficulties. Below it is shown how we can overcome
this drawback. First, we establish one subsidiary result.

Theorem
Letqe Qp,veVo+uy, BER,, andy € Y*. Then

J(v) =1 (a) < (1+B)D(Av,y) Tk IH -y 2. (57)

Note that

1 1
D(Av,y) = 5 (AAv, Av) + E(A’lm p) — (y, Au) =

= (AAv —y),Av — A_ly) =
= (ANl - Ay Av—Aly) = Av— ATy ||
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For any y € Y*, we have

. 1
Jw) =1 @) =5l A+ yI2)+
1
+5(la 12 =1y 1?)—(Auo,a)+ (£ v — uo).
Since (£,v —ug) = (q, A(ug — v)), we find that
. 1 1
JW-r@=5 I+ 1y I2) +5 Ua 2=y I2) - (@) =

_ 1
D(Mv,y)+(y —a. v - A7l )+ 5 la-y .

/_\

This relation yields (5.7)) if we use the Young's inequality

2(y—aAv—ATly) <BIA-ATYI2+8 " y—ql?.
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Another form of the estimate

Introduce the quantity
2
dy(y) = I3,

which is the distance to Qz. Then, (5.7) imply the estimate

2 1AW= < (14 8)D(w.y) + (14 5) 302)

where v € Vg 4+ ug and y € Y*. We rewrite this estimate as

1
5 AW - [P< M(v.8), W eVo+u, BER,,

where




Above estimate is sharp for any 3 !

For any B € Ry,

1
5 I Av —u) 1= M(v, B).

1
Proof. Set y = A\p + (1 — \).AAv. Then D(Av,y) = E)\Z Il A(v —u) .
Since

di(y) <llp—yl?=
=(1=A? ] p—AAv [P= (1 -2 [ AA(u —v) |2=
= (1= [ A —v) |2,

we obtain

M) < 5 (@B + (14 5) - 7) IAG = u) 2.
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The right-hand side attains its minimal value at A = 1/(1 + 3), which leads to
the estimate

1
5 IA(V—u) [P> M(v.8), W eVo+u, BER,.

Recalling that the inverse inequality has already been established, we arrive at
the required conclusion

Now, we proceed to finding computable upper bounds for the
quantity dg. The first step is given by

Theorem
1d3(y) = sup {1 || Aw | —(&,w) — (y,Aw)}.
weVy
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This assertion comes from that inf P = sup P*. Indeed,

1 1 1
~d3(y)=— sup {— y—1n" §}=— sup {— n* i},
L) sly=nh== s (Gl

n*€Q;

where Q; —y 1= {n* € Y*|77* =x* -y, e QZ}.
In other words, n* € Q; — vy if

(n", Aw) = —{£,w) — (y,Aw), Vw € V.

The right-hand side of this relation is a linear continuous functional. We
denote it by £, and rewrite the relation as follows:

(n*,Aw) + (£y,w) =0 VYw € V,.
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1
Sdj(y) = — sup {— n* i}-
210 = s {310

This maximization problem is a form of Problem 7 if set ug = 0 and
£ =14£,. Since supP" = inf P, we have

1 2 _ H 1 2 _
2800 == ot {5 1w e f -
. 1
=—inf {2 || Aw > +(£,w) + (y,/\w)} =
weVg | 2
1
= sup {5 1A 12 —(eow) ~ (v. 2w}
WEV()
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Corollary

We arrive at the conclusion that the majorant M(v, 3) has a
minimax form

M(v,B) =
inf sup {(1+ﬁ)D(/\v,y)+1+ﬂ5(—(y,Aw)_J(w))}. (5.8)

YEY* wev,

Further,we use (5.8) for deriving upper and lower error bounds.
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Upper estimates of || v—u ||

In the relation
M(v,8) < (1+ B)D(Av,y)+
i <1+1) sup {—; I Aw |2 —<e,w>—(y,/\w)}v

/6 weVy

we will estimate the value of supremum. Let A* be the operator
conjugate to A, i.e.,

(y, Aw) = (N'y, w), Yw € V.
Then

(€, w) + (y, Aw) = (£+ Ny, w) < [ £+ Ny] [[Aw]].
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Here

N (e+ Ny, w
[£+Ny] = sup —————— < 4o0.
wevg [l Aw ||

To prove that the value of the negative norm is finite we estimate the
numerator as follows:

e+ Ny, w) < [ellvg IIwllv + yllIAw]) < (e [€llv; + Iyl ) l1Awl] <
< (e lellv + vl ) I Aw -

We see that

sup {—3 || Aw [ —(£,w) — (y,Aw)} <

weVy 1

sup {—3 | Aw [ +] £+ Ny[Aw]} <

WEVO

sup {—3t2+ [ L+ Ny[t}=3]e+Ny]%

t>0

IN

IN
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Thus, we obtain

3 | A=< (14 D) + TP T e4 Ny 2 (59)

This estimate contains the norm | - [ defined via a sup-relation.
We replace it by the norm in a Hilbert space U provided that £
belongs to a narrower set. Assume that

£ € UC\Vy,

yeQ :={z" €Y Nz eU}

Note that Q* can be endowed with the norm

2 . 2 2
Iylig- = llylls + [IA"y*[|g-

If £ € U, then Q* contains the exact solution p of the dual
problem! This fact is important for the proof of the
sharpness of the Majorant.
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Majorant of the deviation

Then
€+ Ny w) =(£+Nyw) we V.

£+ N £+ N
Lo Ay ] = sup LENYW) €5 Ay w]
ol TAWT =38 TAw]

- Awll ||
weVy

Here c; and c3 are the constants in (5.3) and (5.4). Denote

= cl_zc_;z. Now, the Majorant is represented in the form

<ol e+ Ayl

1
5 I A (v —u) I?< Me(v, B,y) =

— (14 8)D(Avy) + 1P

*y[I2. (5.1
23 © 1€+ Ny (5.10)
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Deviation Majorant for the problem A* AAu + £ =0

(AA(v — u). Av — u)) <
< (1+8) (A, AV) + (A7ly.y) = 2(y. Av) )+

1+5

c?[| + Nyl
3 I |

+

In the above, ve Vg +ug, B8>0, yeU.
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Theorem

For any v € Vg + ug,

1 .

5 I AMu—v) I?= inf Mg(v,B,y).
yeQ
B>0

If £ € U, then p € Q* and, therefore,

. 1
nf Ma(v.8.y) < Ma(v.,p) = (1+)5 | Aw—) |,
B8>0
where € > 0 may be taken arbitrarily small.

Hence, the majorant My, is reliable and exact.

RICAM, Special Radon Semester, Linz, 2005.




inf sup {(l—i—,B)D(I\v,y) +1—g (—(y,l\w)— J(w))} :

yeyY* weVy

Since supinf < infsup, we have

M(v,3) > sup inf {(1 + B)D(Av,y)—

weVg yeY*

(1) (1w ew) o) )}
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Thus, for any w € Vg
M(v,B) =
1
ardaem( 1y o )= (14 5) a4

Far I E - (145 ) (1M 4w ).

Evidently, this estimate is also valid for the function Bw, which
yields

Mw.B) = (148) jof {51312 = (v.Mw+w) |+

ye

L8 (I -G I —ew) ).
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2 3 4 = 2 L= 1] (W1
Note that
of {3 1y 2= AGrw) | >
yey* | 2 * ’ -
> inf {2y By 1 AGAw) =~ 1 A+ w) |2
= yey- |2 WY Iy T2 ‘
Thus, we obtain
1
M(v. ) = (1+B){ 5 I A +w) | +
1 2 B 2 _
5 A2 =5 | Aw |2 —(e,w)} =
1+
= 1+ B~ aw) - R aw g e w)

RICAM, Special Radon Semester, Linz, 2005.




(1 +B){~(Anv. )~ 22 w2 —ew) ).

w is an arbitrary function in Vg. We may replace

w

Such a replacement leads to the Minorant Mg (v, w) that gives a
lower bound of the deviation from exact solution:

For any w € V),

1 1
5 Il A(v—u) %> —5 [l Aw I —~(AAv, Aw)— (€, w)5.11)
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Minorant is sharp

It is easy to see that

1
sup Mo (v, w) = 5 | AQw—u) 2

weV

Indeed, take w = u — v.
1
Mg (v,u—v) = -3 | A(u—v) [|2—(AAv, Au — v)—(£,u — v).

Represent the last two terms as follows:

—(AAv,A(u —v))—(L,u—v) =
— (AAV A v)) + (AR, A(u—v)) =
= (AA(u = v), A(u = v)) =[| A(u—v) |?

so that this choice of w gives the true error.
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Remark.

We outline that for the exact solution Mg = Mg = 0! Indeed,
assume that v coincides with u. In this case,

1 1
Mo(u,w) = —3 || Aw I? —(ARu, Aw) — (€, w) = —5 I Aw I

and, therefore,

sup Mg(u,w) =0.
weVy

The same is true for the majorant. Indeed, set y = AAu. Then,
1+
23

Mg (u, B,Y) = (1 + B)D(Au,y) + c?||e + A" AAu? = 0.
Thus,

inf M =0.
yIEnY* @(uaﬁvy) 0
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Estimates of deviations in terms of the dual variable

In many cases, error estimates in terms of the dual variable
(that may represent " flux” or "stress”) is as important as
the error control of the primal variable.

Error estimates for the dual variable in the dual energy norm || - ||« can
be obtained by the arguments similar to those used above.
Let y € Y* be an approximation of p. For any q € Qj, we obtain (from
the triangle inequality and Young inequalities with v > 0)

1
ly—pl?<(+v) |||y—q|||£+<1+ﬁ> la—p 2.

Recall that (see (5.5)) [ @ — p [I2< 2 (J(v) — I*(a)).
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Therefore,
2 2 1 .
ly—pl s(lﬂ)ny—qnﬁz(la><J<u>l (@) <
1 o
<@inly-al +2(1+7)(J(v)—- (@) =

Recall that
1

J(v) — 1"(a) < (1 + B)D(Av,y) + (1+ ﬁ) La)

so that the right—hand side is estimated by

(147) <1+i + Blv) d2 +2(1+8) <1+ i) D(Av,y).
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Therefore,

1 1
1 2 * 2
2lly=-pls <@+~ <1++> L+ Ny]°+

1
+(1+03) <1+7> D(Av,y). (5.12)
Rewrite this estimate as follows:

1 *
Sy —pI2< My(y.v.8.9),

where M. denotes the right-hand side of (5.12). This estimate
holds for ény y € Y*, positive parameters 3, 7y, and any

v € Vg + ug. Here v is a "free” function in Vg + ug. This
"freedom” can be used to make the estimate sharper.
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Computability of two—sided estimates

By computability we mean that upper and lower estimates can be
computed with any a priori given accuracy by solving
finite-dimensional problems. In the case considered, they are
certain problems for quadratic type integral functionals whose
minimization (maximization) is performed by well-known methods.
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Let {Y;}°; and {Vy;}{2; be two sequences of finite-dimensional
subspaces that are dense in Q* and Vg, respectively, i.e., for any
given € > 0 and arbitrary elements y € Y* and w € Vg, one can
find a natural number k¢ such that

inf ||W — < inf Il — < .
WlenvaW wlly <e, ylenYi* Iy —yllg<e, i > ke

Let us show that sequences of two-sided bounds converging to the
actual error can be evaluated by minimizing the Majorant on {Y;}
and maximizing the Minorant on {Vg;}.
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Take a small € > 0,. Then there exists a number k and elements
wi € Vogk and pi € Y, satisfying the conditions

lwi —(u—v)llv<e,  [[pc—plla-<e

Define two quantities defined by solving finite—dimensional
problems, namely

M'E‘B = inf Mg(v,,yk), M'é = sup Mg(v,wy).
lgee]gk wi€Vok
+

By the definition

1

Mo (v.wi) < M < 2 [lu—v [2< MY < Mo (v, 8, pi).

N
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The quantities M'é and M'gB are computable (they require solving
finite dimensional problems for quadratic type functionals). We will
that

k 1 2
ME — SlIAW - u)?,
1 2

ME — AW - u)

as the dimensionality k tends to +oo.
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Consider the upper estimates.

1
Mg (v,8,pk) = (14 B)D(Av,pk) + +B

2 * 2
£+ N =

1+
= (1+AD(A.pu) +

2(|A*(px — p)I1%.
Here

D(Av.pi) = 5(Av — A~ py AR — py) =
= 2 (M~ 1)~ A (P~ p). ANy — 1) — (pic— p)) =
= 2 IAG - 12+ 1P 12 ~(A( — u).pi— p).

From the latter estimate we see that

1 1
D(W,p) < 5l Av — u) [P+e | Av = u) | +5¢%5.13)
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Since

IA*(Pk — P)]

Q* < g,
we find that
MlE(B S M@(V,E,pk) -
B 1 2 15\ 1+e 55
= (1+e) (51 A=) Pe | Av—u) | +5¢2) + = "ce? =
1
=5 1 A(v —u) I? +cae + o(€?).

where ¢q = % (c+2 [ A(v—u) || + || A(v —u) |H2) . Thus, we
conclude that

1
M — S IAW—u) [P as koo
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Remark

It is worth noting that the constant c4 in the convergence
term with ¢ depends on the norm of (v — u), so that we can
await that for a good approximation convergence of the
upper bounds to the exact value of the error is faster than in
the case where || v — u || is considerable. This phenomenon
was observed in many numerical experiments. In general,
finding an upper bound for a precise approximation takes less
CPU time than for a coarse one.
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Consider the lower estimates.
1
Mo (v, wie) = —5 || Aw I> — (AAv, Awy) — (€, wy) =

1
= =5 [ Awic || + (AA(u = v), Awy) =

1

= 3 IAG—v) 2 5 | Al — (u ) [P

1 1 9
> 5 I A =v) |7 —Se2 [A(wi = (u = v))|*.
This implies the estimate
1 1 2
5 [ A(u—v) 12> mE > 5 [IMu = V)"~ cse’,
where cg > 0 depends on the norm of A. Thus,

1
MY — > | Au—v) > ask — oo.
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Computable upper bound of the effectivity index

Having MY and MK, one can define the number

M'{I\
M= —— > 1, 5.14
k Mke - ( )

which gives an idea of the quality of the error estimation. From
the above it follows that

e — 1, as k — 4o0.
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Relationships with other methods

Mg (v, 3,y) involves an arbitrary function y. We are aimed to show
that some special choices of it lead to known error estimates. We
assume that (I, w) = (g,w), where g € U, so that p € Q* C Qf
and

Q={yeQ" | (Ny+g,w)=0, VweVy}
First, we select y as follows
y1 = AAv. (5.15)
Other variants arise if we set
y = My, (5.16)

where I is a certain continuous mapping.
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Residual based estimate

If I is the identity mapping of Y*, i.e., y = yg, then
D(Av,yy) = 0.
Use the majorant in the form (5.9):

1 1
2 1AW= w) < (14 B)D(v.y) + S5 P 1 Ay 2

Now, it contains only the second term, which after the
minimization with respect to 3 gives

| A(v—u) [P< [ £+ N ANV ] =
(g,w) + (AAv, Aw)
weVg I Aw ||

If v is obtained by FEM and v = u, € V}, :== Vg + ug, (5.17) is
estimated by using Galerkin orthogonality.

(5.17)
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If in the functional a posteriori error estimate is applied to a FEM
solution u, then we may select the variable y in the simplest way
as y = Auy,. Then, if u, is a Galerkin approximation, we can use
this fact and obtain at an upper bound given by the residual type a
posteriori error estimate that involve integral terms associated with
finite elements and interelement jumps.
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Estimates using post—processing of the dual variable

In Mg(v, 3,y) the best choice isy = p € Q*. Therefore, if
Yo & Q" then its mapping Q* could be a better approximation of
p. Let us denote such a mapping by My. We obtain

yi = My; € Q* (5.18)

and the quantity Mg(v, 3,y7), which leads to the error majorant

MD(v) = 616,1]1£+{(1+ﬂ)D(/\V7 M1(AAV))+

1
+ ;ﬁﬂcz | €-+N* M1 (AAV) |;2}. (5.19)

RICAM, Special Radon Semester, Linz, 2005.




Particular case

In the simplest case associated with the problem
Au+f=0, u=ug onJdR
we have
M (uy) =

1+ B)C2
(+2[Za)ﬂf+div”1(vuh)2}‘

If My is a gradient averaging operator, then the first term in the
right—hand side is the difference between the original and
averaged gradient, i.e. it coincides with a gradient averaging
indicator. However, as we have seen in previous lectures, such an
indicator cannot provide a reliable upper bound of the error. The
second term in the right-hand side shows what is necessary to add
in order to provide the reliability.

— _ 2
= inf {(14)]|Vun— My (Vo) +
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Diagram that shows connections with other methods

/ Problem P
(primal )

Problem P*
(dual)
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Estimates based on the ” equilibration” of the dual variable

Let My maps Y* to the set Qj. Define
y> = Mayp € Qp. (5.20)
Then,
Ny; +£=0,
so that the Majorant has only the first term:
M (v) = D(Av, y3).

M5 is natural to call an equilibration operator. In general, it is
rather difficult to construct an "exact mapping” Mz to Q. One
may use an operator ﬁz, which provides an approximate
"equilibration”. In this case, the second term of the Majorant
does not vanish and should be taken into account.
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A priori projection type error estimates

As an exercise, we now will derive classical a priori projection type error
estimates from a functional a posteriori estimate. Let u, € Vi, be a
Galerkin approximation of u. We have

I Au—uy) I < 2(1+mD<Auh,y)+(1+;) Ay £]?

Set here y = AAvy,, where vy, is an arbitrary element of V). Then,

. (y — p, Aw)
[Ny+£L] = sup ———+ =
weve |l Aw ||

— sup (AN(vh — u), Aw)

<l Alvn —u) || -
weVy I Aw ]
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It is easy to see that
D(I\uh,AI\vh) = J(Vh) — J(uh).
Indeed,

1
D(Aup, AAvy) = E(Al\vh, Avyp) + (£, vp)—

1
— E(Al\uh, l\uh) — <£, uh>—|—
+ (AAup, A(up — vi)) + (£, up — ).

Since up € Vy, is a Galerkin approximation, the last two terms
vanish and we obtain the relation.
We know that

Il Aun — u) [IP= 2(J(un) — I(u)),
I A(vn — u) 2= 2(3(vn) — J(w)).
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Therefore,
2D(Aup, AAvp) = 2(J(vh) — J(u)) — 2(J(up) — J(u)) =
=|| A(vn — ) [I> = | Alup —u) |%.
Now, the error estimate comes in the form
I Au—up) < (X+B)(| A(vi —u) |2 = || A(up — u) |?) +

i (1+;) I Awn—u) I

Thus, we obtain
2+ 8) | Au = up) P<

<4 8) | Awn—u) P + (1 n ;) I Avn — u) 2
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We see that

| Au—up) [2< (1 T ﬁ(ziﬁ)) I A=) 2.

Since 3 is an arbitrary positive number, we arrive at the projection
type error estimate

A(u — < inf || A(u— .
I A= un) I inf | A(u =) |
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Finally, we note that functional a posteriori estimates also imply a
projection type error estimate of a different type.
Let us set v=up, y = yp := AVuy. Since

D(/\UhaYh) = 07
we have

I ACun =) <[l yn —q |I2 Vg€ Q;.
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From here, it follows the estimate

A(u—u < inf —q [,
I A(u — un) |||_q€QZ I'yn —all

which is in a sense dual to the first one. It shows that an upper
bound of the error is also given by the distance in the space Y*

between the " Galerkin flux” AVuy and the set Qj that contains
the solution of the dual problem.
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Lecture 6.
FUNCTIONAL A POSTERIORI ESTIMATES. LINEAR
ELLIPTIC PROBLEMS.
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Main goal of the lecture

In the previous lecture we have analyzed the abstract
linear problem of the form

NANu+ £=10

and obtained an estimate

1 1 B ’

5 AW —u) [*< 1+ B)D(Av,y) + =1 £+ Ny ]*

In the present lecture, we discuss particular forms of
this general estimate for some elliptic type

boundary—value problems.
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Lecture plan

Diffusion equation with Dirichlét boundary conditions;

Diffusion equation with Neumann boundary conditions;

Diffusion equation with mixed boundary conditions;

Linear elasticity with mixed boundary conditions;
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Diffusion equation

Let A is produced by a matrix A = {a;;} = {a;}, V = H}(Q),
where Q is a Lipschitz domain, U = L2(,R"), and Aw = Vw.
Let the entries of A be bounded at almost all points of Q and such
that

c1lé]? < a&g < eolé?, V€ € R" (6.1)

Then, the spaces Y and Y* have the norms

Iy [?= /Q Ay-ydx, |y l2= /Q Aly . ydx.
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Dirichlet boundary conditions

We begin with the problem
divAVu=f in Q, (6.2)

u=uy on 0N (6.3)
In this case, Vg = H}(Q) and u meets the integral identity
/ AVu-Vwdx + (f,w) =0, VYw e V. (6.4)
Q
The relation (y, Aw) = (A*y, w) has the form
/ y-Vwdx = (—divy,w),
Q

where A* = —div and divy is in H"1(Q).

RICAM, Special Radon Semester, Linz, 2005.




(11 W] %) . = 4 1] (1) NI

The operator A satisfies the required inequality

[¢]
col|Vw| > w],  vw e HY(Q).
Upper estimates of || v — u || for an approximation v € Vg + ug

follow from the general estimate presented in Lecture 5. We have

where

2/QAV(\/—u)-V(v—u)dx<|\/|69( B.y)

1+ﬂ/

+pc 2
v— A" y)-(AVv—y)dx TTHd' y—f|

(6.5)
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Certainly, the above estimate is aplicable for the case f € L2() so

that
(f,w):/ fw dx,
Q

and for y € H(2, div).
Let {Y;} be finite-dimensional subspaces of Y* such that

Y, € HQ,div) forallk=1,2,..;

dimYg — +oo ask — oo.

We obtain computable upper bounds

1
MK = IEan* +ﬂ/ Vv—Aly) . (AVv—y)dx+
y

,3€R+




Lower estimates follow

We have

;/ﬂ AV(v—u)-V(v—u)dx > Mg(v,w), Vw € Vy,
where

Mg(v,w)= —% /Q AVw - Vwdx — /QAVV - Vwdx —(f, w).

Let {Vok} be finite-dimensional subspaces such that
Voo € Vo forallk=1,2,..;
dimVgk — +oo  as k — oo.
Find the numbers

ME = sup Mg(v,wy). (6.7)

wi EVk
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1
Both sequences MK and MY tend to 5 v —ul|? as k — oo,

provided that {Y;} and {Vqk} possess necessary approximation
properties (limit density).

Note that if v is a Galerkin approximation computed on Vg, then
Mg (v, wg) = 0. This means that to obtain a sensible lower
estimate in this case, one must always use a finite-dimensional
subspace that is larger than V.

ial Radon Semester, Linz, 2005.




Neumann boundary condition

Consider the Neumann boundary condition
v-AVu+F=0 on 09, (6.8)

where v is the vector of unit outward normal to 9. To apply the
general scheme we set

Vo = {v c H(Q) ‘ /dex - 0}
and define A*y € V{; by the relation

(Ny,w) = / y-Vwdx, VYw e Vg
If y is sufficiently regular chn

(N'y,w) = /ﬂ (—divy)wdx + /(y - v)wdx.

2k,
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Therefore, in such a case
Ny =[—divy|o; y- v o]
Also, we assume that F and f satisfy the equilibrium condition

/ fdx+/Fdx:0.
Q

oQ

Assume that f € L2(Q) and F € L2(09). Then the Neumann
problem has a solution defined by the integral identity

/ AVu-Vwdx+ (¢,w) =0, Vw e Vo,
Q

where

(£,w>:/ fwdx—i—/Fwds.
Q
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In general, [£+ A"y] is estimated in terms of the norms
Idivy —fllur and [y v+ F [y
However, if we assume that y possesses a certain regularity, so that
y € QY Q) :={y e Y |divy € L}(Q),y-v € L(0Q)},

then

£+ Ny,w) :/ (f—divy)wdx+/(F+y~1/)wds
Q
B}

and, therefore,

[(€+ Ny, w)| <
<[l divy — fl20llwl20 + [ly - v + Fl200lw

2,00Q- (6.9)
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Let the constant cq be defined as
1 .. Jo AVw - Vwdx
C?Q,ag) weVo ||WH%Q + ||WH%769'

Since the trace operator is bounded, this constant is finite.
Therefore, (6.9) implies the estimate

|(€+ Ny, w)| <
: 2 2 \12 2
< ¢0.00) (H divy —fl3o+ |y v+ FHz,an) Il Aw |

and the second term of the majorant is calculated as follows:

€+ Ny, w)
[¢+Ny]=sup —+
wevo I Aw ||

. 2 2 1/2
< €(,69) (”d"’y—fH2,9+HY'V+F||2,89) :
The term D(Av,y) is defined as in the Dirichlét problem.
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We see that the Majorants Mg for the two main boundary-value
problems have different values of cg. In addition, the Neumann
problem majorant contains an extra term

ly - v + Fll2,00

that penalizes violations of the Neumann boundary condition.

It is worth noting that if the given F can be exactly reproduced by
y - v for y in a certain finite dimensional subspace Y|, then one
can compute Mes as

. 1+8 _
5 = T~ — 1 . _
M@_er.’(ﬂy!DiFonasz{ 2 /Q(Vv A~7y) (AVv—y)dx+
BERL
1+8 ,
+ -3 23 C(QaQ)Hd'VY f”Q} (6.10)
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Mixed boundary conditions

Let 02 consist of two measurable nonintersecting parts 012 and
022, on which different boundary conditions are given:

u=ug on 019,

v-AVu+F=0 on 0.

Set
Vo = {v cHY(Q)|v=0 on 819}

and
(N'y,w) = / y - Vwdx, Yw € V.
Q
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Assume that
fel?(Q), Fel?9).
and y possesses an extra regularity, namely,
y€Q*(Q) = {y e Y*|divy € LA(Q), y-v € L2(82$2)} .
Then, for any w C Vg, we have

€+ Nyw) = /(divy—f)wdx + /(y - v + F)wds,
Q
0 Q

Note that p € Q*()!
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Now, we obtain

|(€+ Ny, w)| < |divy —f

w20+
+ lly - v + Fll2.0,0/lwll2.0,0-

2,Q

Let v and ~, be two numbers such that v > 1, ~, > 1,
% + ,Yi = 1. Use the algebraic inequality

1 1
ab+cd < y/~va% +v,¢% | —b2+ —d2.
vy e

Then

i} ) 1/2
€+ Ny.w)| < (yldivy—Fl3 g+ ly-v+Fl3ae )

(1
X | =|lw
Y

) 1 ) 1/2
|2Q+||W||2aﬂ> .
5 ,-Y* ,O2
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Since (Friederichs type inequality)

Iwl3 0 < CHQ)[Vw[3 0. vw € Vo,
and (trace inequality)

HWH%,82Q < Csr(9782Q)HWH%,2,Qv Vw € Vy,

we find that
1.5 1 2
;Hsz,ﬂ + iHW”zazQ <

1 1
<c22 2, 2 4 2
< G VwlP+Ch - (IwlBq+[IvVw

*

2
\2,9) <

1 1
< <C§7 + Cf,ﬂy— (1 + CE)) IVw(3.0.

*
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Therefore, there exist a positive constant C such that

fQ AVw - Vw dx
1 |

cz -

o
W||2,azsz

The value of this constant can be estimated numerically by
minimizing the above quotient on a sufficiently representative finite
dimensional subspace. Besides, if Cg and Cy, are estimated, then

~ 1
<= (c2 +C2 (1+c.%)7> il
so that an upper bound ofC, is directly computed. Now,
[(€+ Ny, w)| <

. 9 2 1/2
vlidivy = fl g +.ly- v+ Fl3a) 1V
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From this estimate, we obtain
* ~ . Y
[+ Ay 1? < C(ldivy ~Flg+ —Tqly v+ Fl3oe)
Consider first the case, in which we simply set v = ~* = 2. Then
~ ~ 1
2 2 _ 2 2
C2 _, =C _§<CF+C (1 +C2 ))c1 :
[ e+ Ny % <2C3(ldivy — 3o+ Iy v+ Fl3a0).

and we find that

Mg (v, 3 1+B/ v— A" y - (AVv —y) dx+
1
;ﬁﬁ 2 (Ildivy — (3 ). (611)

This Majorant gives an upper bound of the deviation for any
veVy+ug, yeQF and 3> 0.
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A more exact estimate is obtained if we define v by minimizing of
the quantity

1 1 . «
(B2 + e ) (sldivy gty lyw +FlB ng) =

%
ol ol .

C%7 ly- v +F|[3 5,0 + 7C$r(1 + C})||divy — f||3 o + const(v).

Denote

. 2
pr=ldivy—fl3q  po=Ily-v+Fl340
K1 = Cz, Kp = Ctzr(]. + C|2:)

Then the problem is

+ (7 — 1)r3pi).

1
c 2 2
my|n(/£1p27_ 1

Its minimum is attained at ¥ = 1 + k1p,/k2p;-
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In other words, we observe that the lowest estimate of the term
[ £+ A"y | is attained if

A1 ly- v + F[[2,0,2Cr
' [divy — f[20Ce(1 + C3)1/2°

Let us find the respective upper bound. We need to calculate

*

1 1>
Ki=+kKy— | (Ap1 +7 p3) =
<l 2 ( 1 2)

~

1 . Y o~
= §(H% +(7 - l)m%)ﬁ((’y —1)pi + p3) =

K2P1, 2 K1P2 o K1pP2 P> K1
= K K + = ropy(K1+—2H2 —+py) =
K1py 1 K2 Py 2)(P ) Pz) p1( 1 )(p1 o P2)

= (k1py + pzﬂz)(pm + paka) = (K1py + paka)’.
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Mg for mixed boundary conditions

By recalling the definitions of k1, k2, p;, and p, we obtain
[£+Ny[2 < (Celdivy - flzg+
2
+Cu(1+ CA)V2y-v + Fllaop) <

and we have

Mg(v, 3 1+ﬁ/ v—Aly). (AVv — y)dx+

n 2‘f(ch.vy—fuz o+

2
+Cul(1+CHYV2y v + Flage) o2 (6.12)

Majorant vanishes if and only if v=wu and y = AVu, it is

continuous with respect to the convergence of vin V and y in Q'
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Lower estimates

Lower estimates for the problems considered follow from the
general ones obtained in the previous lecture. They have the form

1
2/ AV(v—u)-V(v—u)dx > Mg(v,w), Vw € Vo,
Q
where
1
Mg(v,w) = ) AV(w —v)- dex—/ fw dx— / Fwds.
Q Q
0,92

Here Vg depends on the type of boundary conditions, and the
integral over 3,2 must be eliminated in the case of Dirichlét
problem.
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Linear elasticity

Classical statement. The classical formulation is as follows:

Find a tensor-valued function o* (stress) and a vector-valued
function u (displacement) that satisfy the system of equations

o =Le(u) in K, (Hooke's law)
dive® =fin €, (Equilibrium equation)
u=ug on 019,

oc'v+F=0on 0,9.

where e(u) is a symmetric part of the tensor Vu.
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Here € is a bounded domain with Lipschitz boundary 02 that
consists of two disjoint parts 91Q2 and 9,£2, [0:1Q2| > 0, f and F are
given forces and I = {L;jm} is the tensor of elasticity constants,
which is subject to the conditions

Cile|? <Le:e < Cyle?, Ve e MM,

and

Lijkm = Ljikm = Lkmij,  Lijkm € L*°(82).
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Generalized solution

Let
feL2(Q,R"), Fel?(3QR").
Then, a generalized solution u € Vg + ug is defined by the identity

/ Le(u):e(w)dx+ (£,w) = 0, Yw e Vy, (6.13)
Q

where

(E,w>:/ f-wdx+/F-wds.
Q

0
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Assume that u is a smooth function and it satisfies the identity
/ Le(u):e(w)dx+ (€,w) = 0, VYw eV,
Q
Then,

(f — div(L g(u)) - wdx e(u))v -wds = 0,
/Q +32/9<(]L()) +F)-wds = 0
Yw € V),

and we observe that in such a case the equilibrium equation and
the Neumann boundary condition are satisfied in the classical
sense.
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Variational formulation

Note that the relation (6.13)) is the Euler's equation for the
functional

J(v) = ;/ﬂ Le(v) : e(v)dx+ < £,v > .

Therefore, the respective boundary—value problem may be
considered as a minimization problem for J(v) on the set

Vo :={ve H(Q,R") | v=ugondQ}.

To prove existence of a minimizer we must show the coercivity of
J(v) on V. The key role in this belongs to the so—called Korn's
inequality.

ial Radon Semester, Linz, 2005.




In the Dirichl et problem

=5 / Le(v v)dx+ < £,v > >
C
> 7||~€(V)H2 — [Iflllv]l =
G 2
=~ le(uo +w)|[= — [[fl[[juo +w| =
C 2
> 7(H€(UO)H — lle(w)[))* = [IF[l{[uoll — [IF[[[[wl]-

Thus, if we can prove that

le(w)]| > cl|Vw]  vw € HY(€),

then we would establish the coercivity of J.
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Korns’s inequality

This inequality is required in various aspects of the mathematical
analysis of elasticity problems. In the general form it states the
equivalence of two norms:

1/2
[wilioq = ( [ w2+ |w|2)dx) ,

and

Iwisza= ([ e+ |w\2)dx>l/2.
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[e]
Korns's inequality in H!

For the functions in H1() this fact is not difficult to prove.
Indeed,

1 1
[ letw)ax = 51Vl 4 5 [ g =
Q Q ij
R | 1 501
= 5lVwll —2/QiZjWin,ijdX— 5 lIVw +2/Q ;Wi,iwj,jdx—

_ 1 2 1 2
= 5[ Vw] +2/Q Zi:|w.,.| dx.
Thus,
IVw]| < V2lle(w)|  vYw € HY(Q). (6.14)
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By (6.14) we prove that the energy functional of the elasticity
problem for the case of Dirichl'et boundary conditions is coercive,
i.e.,

J(vk) — +oo, as [|Vvg|| — +oo.
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Rigid deflections

In the analysis of elasticity problems one more notion is often
required. It is the so—called Space of Rigid Deflections that we
denote RD(S2). This space is the kernel of the operator g(w), i.e.
it contains vector—valued functions w such that

e(w) =0.
It can be defined as follows:
RD(Q) = {W = W + wpX ’ wg € R", wg € Mnxn},

where wo(w) = 3(Vw — (Vw)T) is a sqew-symmetric tensor
associated with "rigid rotations”.
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Implications of the Korn’s inequality

Let Q be a Lipschitz domain and 019 is a nonempty connected
part of the boundary. Then,

p

lulipa < C / ePdx| WueV, pe(L2] (6.15)
Q

Proof. Assume the opposite. Then, for any m € N we can find
v(™ such thatv(™ € V and




Set w(m) =

™|

Therefore,

v(m)
Iv™I[1,p,0

’Lp,ﬂ =1

, then

and

Y
—
o}
£

3
)
o
x

3=

W},(Q, R"),
LP(2,R"),

lpg — 0 in LP(Q,R").
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Indeed, by the fact that a norm is weakly lower semicontinuous, we
have

0 = lim inf le(W™)|p.a > [le(w)]p.0-

Thus, w € RD(2) N V. There is only one such a function: w = 0.
It means that w(™ — 0 in LP. Now, we apply Korn’'s inequality

P
w(m) e <€ | [ (Je™)P+ w™P)dx | o
Q

which shows that |[w(m)||1p .o tends to zero. But for any m
[w(m™| 1.0 =1, so that such a behavior is impossible. We have
arrived at a contradiction that proves the Theorem.
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Another similar result is required for the Neumann problem. Define
the set

V= vew;(9)|/v-wdx:0 Yw € RD(R)
Q

Theorem
Let Q2 be a bounded domain with Lipschitz boundary 0X2. Then

p

1o = C /|e(u)|pdx Vuev. (6.16)
Q

[l
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Proof. By the same arguments as before, we obtain a sequence
w(™ € V such that

w™ ~w in W;(Q, R"),
w™ —w e LP(QR"),
lew™)pg — 0 n LP(QR).

By the arguments similar to those in the previous Theorem, we

find that e(w) = 0 and, thus, w € RD(2). In addition, for any
w € RD, we have

0:/ w(m)-v'vdx:/ w - wdx.
Q Q

But w € RD, so that |jw|| = 0, and by applying Korn's inequality
we prove that |[w(™||; , o tends to zero, what leads to a
contradiction.
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Estimates of deviations

Let v and y be some approximations of u and o*. Estimates of
v —u and y — o follow from the general scheme if we set

U= LZ(Q7M2XH)7 V= Hl(Qan)7
V():{WEV’W:OOH 819},

Iy IP= /Q Ly:ydx, |yl2= /ﬂ Lly:ydx,

(N'y,w) = / y:e(w)dx, VYw e Vy,
Q
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Now y is a tensor-valued function and yv = y;jv; is a
vector—function defined on 0f2.
If

y € Q* :={y € Y* | divy € L2(Q, M™"), yv € L?(9,Q,R")}.

then

(/\*y7w):—/ divy‘wdx+/(y1/)~wdl'
@ 0

so that

Ny = {—divy [o, (yv) |a,a}-
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Upper estimates

By applying the general estimate, we obtain the following upper

estimate:
;/Q Le(v—u):e(v—u)dx < Mg(v,8,y),
where
Mg(v, B,y) = HTBD( ) + 71 Ny +¢ [2
and

D(e(v),y) = ;/9 <Ls(v) ce(v)Lly 1y — 2¢e(v) : y) dx =
:/Q(s(u)—]L_ly):(Ls(u)—y)dx
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If y € Q, then
(N'y +£,w)
Ny+2€] =sup ————F =
' wiie IAw]
Jo(y:e(w)+f-w)dx+ [ F-wds
= sup il =
wevg I'e(w) |l
Jo (F—divy) -wdx+ [ (F+yv) wds
= sup st <
weV I e(w) | -
= wup I~ d¥3laglwlan +F + yvlsalwlon
weVy I e(w) |
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Let Cq be a constant in the inequality
/Q lw|? dx + / lw|?ds < C3le(w)||3, Yw e V.
5Q

Note that the existence of such a constant follows from the Korn's
inequality. Indeed, the inequality

/S2 lw|2 dx + / w|2ds < €3||V(w)|3, VYw e V.
0

for the tensor—gradient V(w) follows from the Friederichs type
inquality for the vector—valued functions and the respective trace
theorems. By (6.15) we recall that for the functions in Vg

IV(w)lle < Clle(w)l|o

with a certain constant C and the estimate follows.
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In practice, values of Cq can be estimated by minimizing the
quotient

le(w)3
Jo Iw|2dx+ [ |w|2ds
9,9

over sufficiently representative finite dimensional space Vg, C Vp.

Let us now return to finding an upper bound of the quantity
[Ny+2].
By the inequality ab + cd < Va? + ¢2v/b2 + d?, we obtain

[Ny+£] <

Iwl[g+Iwl3,0)"/?

<
ECIS
12 ({4 1/2

< Coc; V? (|ldivy — FI}3 + IF + yv[,q)

: 2
< (Ildivy—f3+|F+yvi3,o) * sup
weVy
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Error Majorant for mixed boundary conditions

Hence, we arrive at the Majorant Mg:

Ma(e(v)y) = —5 | (e(0)~L7y): (Le(u)-y)dxr

148 2 . 2 2
+ 53¢, Ch (Ildivy—fI3+F+yvi3e) . (6.17)
It has a clear physical meaning. The first term of Mg is
nonnegative and vanishes if and only if

y = Le(v).

It penalizes violations of the Hooke’s law. The meaning of the
second term is obvious: it contains L2-norms of other two
relations, which gives errors in the equilibrium equation and
boundary condition for the stress tensor.
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Thus, the majorant not only gives an idea of the overall
value of the error, but also shows its physically sensible parts.

Let {Y;} C H1(Q,M" ") be a collection of finite-dimensional
subspaces that satisfy the limit density condition. Then, (6.17)
generates a sequence of computable upper bounds

1
'V"é—yiev* +B/ Le(v) :e(v) + L7y 1y —2¢(v) :y) dx

5€R+
1 +,3

"2Ba

which tends to the exact value of the error.

(Hdlvy fI3 +|F +YVH§ZQ)}7
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Lower estimates

Lower estimates also follow from the general theory. We have

1
2/ Le(v—u):e(v—u)dx > Mg(v,w), VYw e Vy,
Q

where

Mg (v, w) = —;/Q Le(w) : s(w)dx—/Q]Ls(v) e(w)dx —

—/ f-wdx—/F-wds.
Q

5Q
By the same arguments as for the diffusion equation one can prove
that
1
~ | Le(v—u):e(v—u)dx = sup Mg(v,wy).
2 Q weVy
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By the maximization the functional Mg on a sequence of
finite-dimensional spaces Vgx C Vg, we obtain a sequence of
computable lower bounds

M'é: sup Mg(v,wy).
weVi

If the spaces Vg satisfy the limit density condition stated, then
the sequence of numbers {Mg} tends to %]Hs(v—u)mz.
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FUNCTIONAL A POSTERIORI ESTIMATES. FOURTH
ORDER EQUATIONS.
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Linear elliptic equations of the fourth order

Now, we consider the problem

V-V-(BVVu)=f in Q (6.18)
Ou
u= - = 0 on 0. (6.19)

Here Q C R?, v denotes the outward unit normal to the boundary,
and B = {bjj} € £L(M2*2,M2*2). We assume that

bijii = bjiki = byaij,
a1ln®> <Bn:n <agln?,  ¥ne M2,
and

f e LZ(Q)7 bijkl S LOO(Q)
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To apply the general scheme, we set

U=L%Q,M>*?), V=HYQ),
0
V0:{w€V|w:a—v::0 on 0Q},
and define A as the Hessian operator. Now, the basic integral
identity has the form

/ BVVu: VVwdx = / fwdx VYw € V. (6.20)
Q Q

By B~ we denote the inverse tensor, which satisfies the double
inequality

og'm? <B 'min<aglinl?  vneMP?
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The spaces Y and Y* are equipped with norms

Iy [?= /Q By :ydx [y2= /Q Bly:ydx,

(E,w>——/ fw dx,
Q

and

Q ={yeY"

/y:Vdex:/ fwdx, Vw e Vp}.
Q Q

Since
||VVW|| > a3|\w||2’279 Yw € V),
we have the required version of the coercivity condition

[Aw]| > e3lwlly.

Problem (6.18) and (6.19) is associated with two variational
problems.
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Problem P. Find u € Vy such that

J(u) = inf J(v),

VEVQ

where 1
J(v) = / BVVv : VVvdx —/ fw dx.
2 Jo Q

Problem P*. Find p € Qj such that

I"(p) = sup I"(aq),
VqeQ;

where
1

I"(q) = ) /Q B~ lq: qdx.
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By In this case, the two basic relations for deviations derived in
Lecture 5 come in the form:

| VV(v—u) |? + [ a—p 2= 2(J(v) — I"(a)), (6.21)
and
| VV(v—u) >+ [ a—p[?=2D(VVv,q) =
— / (vaV :VVv+Blq:q—2VVv: q) dx, (6.22)
Q

which hold for any v € Vg and q € Q.
Also, from the general theory it readily follows the first a posteriori
estimate:

3 1990w 22 (14 pwvny) + (1405) 70, (623)

where d?(y) = qien(];* la-yl?.
4
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Note that

/ y: VVwdx = / (divdivy)wdx, VYw € Vy,
Q Q

so that A* : Y* — H™2(Q) is the operator divdiv.
Next,

<£+/\*y,w>—/ (y : VVw — fw) dx
Q

and, therefore,

Jo (¥ : VVwW — fw) dx
d =JL+Ny] = sup
(=AY L= o = oow]
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If
y € H(divdiv, Q) := {y € L2(Q,M™") | divdivy € Lz(sz)} ,
then this quantity is estimated by the relation

[divdivy — fllofwle _

[£+Ny] < sup

wevg I VVw | B
|ldivdivy — fllq|lw|le _ Cio, ,. ..
< su < divdivy — f||q,
= sup oWl < | y — fllo

in which Cyq is a constant in the inequality
lwlle < Cial|VVW|q Yw € V.

Now, we obtain the first variant of a posteriori estimate for the
biharmonic type problem.
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First a posteriori estimate

1
5 1VV(v—u) [’< 1+ B)D(VVv,y)+

1\ Cig, . o 2
+(1+ 3 ﬁﬂdlvdlvy —fllg, (6.24)
1

Here, y is an arbitrary tensor-valued function from H(div div, Q)
and 3 is a positive real number. However, this is rather demanding
in relation to the dual variable y (which must have square
summable divdiv). To avoid technical difficulties that rises from
this condition, we estimate the negative norm in a different way.
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[£4AY] = sup fQ(y:VVw—fw)dx _

weVg I VVw |
_ fQ(y:VVw+n-Vw+divnw—fw)dx_
e IvVwl
Jo (—divy - Vw + 1 - Vw + divw — fw) dx -
I VVw | -

Caa, .. Cio,
< —|divy — nllq + —||divny — f[[q.
a1 a1

Here, 1 is an arbitrary vector-valued function from H(div, Q) and
Cyq is a constant in the inequality

IVwl|o < Cal|VVW|q Yw € V.
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Second a posteriori estimate

Then, we arrive at the estimate

3 VY0 —u) 1< (1+ A)D(VTv.y)+

1\ 1 ) .

+ (14 =) 5= (Caqlldivy — n]|@ + Ciqll/divy — flla)*, (6.25)
B) 2aj

in which y € X4;,(2) and 1 € H(div, ).

This estimate was obtained in

P. Neittaanmaki and S. Repin. A posteriori error estimates for

boundary-value problems related to the biharmonic operator, East-West
J.Numer. Math., 9(2001)
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Note that
lw]| < Ce[[Vwllg < CeCoq|[VVWlla  Yw € V.

where Cg is a constant in the Friederichs inequality. Therefore,
Ci0 < CeCyq. In view of this, we obtain a slightly different form
of the deviation estimate:

1
5 I VV(v—u) I< (1+ B)D(VVv,y)+
1

Cc2 . .
n (1+ ﬁ) 22 (|divy — nlla + Crldivn — fla)?, (6.26)
Oél

For boundary conditions of other types, the deviation majorants
can be derived by arguments similar to those used in Lecture 6.
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Lower estimates of the deviation from u

Lower estimates follow from the general estimate discussed in
Lecture 5. We have

1
5 I VV(v—w) 12> Mg (v,w) w e Vq, (6.27)
where

1
Me(v,w) = =3 | VVw & —/Q(BVVV : VVw — fw)dx.

ial Radon Semester, Linz, 2005.




Lecture 7.
FUNCTIONAL A POSTERIORI ESTIMATES. STOKES
PROBLEM.
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Lecture plan

Stokes problem;

Inf-sup condition ;

A posteriori estimates for solenoidal approximations ;

A posteriori estimates for non-solenoidal approximations;

A posteriori estimates for problems with condition
divv = ¢;

A posteriori estimates for problems on a subspace.
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George Stokes

Classical formulation of the Stokes problem: find a vector—valued
function u (velocity) and a scalar-valued function p (pressure) that
satisfy the relations

—vAu=f—-Vp in Q, (7.1)
divu=0 in Q, (7.2)
u=ug on 092, (7.3)
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Nomenclature

Let smooth solenoidal functions with compact supports in €2 form
the set be denoted by J*°(2). The closure of J*°(2) with respect

to the norm ||Vv|| is the space j%(Q)

Next, W := W3(Q,R9) and X := Lp(Q,M9¥9), where M9*9 is
the space of symmetric d x d matrixes (tensors), whose scalar
product is denoted by two dots. Wy is a subspace of W that
contains functions with zero traces on 0f2.

W + ug contains functions of the form w + ug, where w € V.

Analogously, J3(€2) + ug contains functions of the form

w + ug,w €J3(Q).
The operator e(v) := %(Vv +(Vv)T) acts from W to X.

RICAM, Special Radon Semester, Linz, 2005.




We will also use the Hilbert space X 4;,(£2), which is a subspace of
Y that contains tensor—valued functions 7, such that divr € Lj.
The scalar product in this space is defined by the relation

(r,m) = / (7 : n+divr - divy) dx.
Q

o)
By L2(f2) we denote the space of square summable functions with
zero mean. Henceforth, we assume that

feLy(RY), upe WIHQRY,
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Generalized solution can be defined by the integral identity. It is
o
a function u €J3(R) + ug that meets the relation

/uV(u) :V(v)dx = / f-vdx Wv ej%(Q) (7.4)
Q Q

It is well known that u exists and unique and can be viewed as the
minimizer of the functional

I(v):/<Z|V(v)|2—f-v> dx

Q

on the set j%(ﬂ) + ug. Thus, the problem

inf  1(v)
vEL(2)+ug

presents a variational formulation of the Stokes problem.
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Existence of a minimizer follows from known properties of convex
lower semicontinuous functionals.

In addition, the Stokes problem can be presented in a minimax
form. .

Let L : (Wp + ug) X L2(R2) — R be defined as follows:

L(v,q) = / (%|Vv|2 —f-v— qdivv) dx.
Q

Now, u and p are defined as a saddle—point that satisfies the
relations

L(u,q) < L(u,p) <L(v,p) Y & Wy +up, p < La(R).
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Extension of solenoidal fields and related results

Olga Ladyzhenskaya

First, we recall some basic results that has been established when
the solvability of the Stokes problem was investigated. Works of
O.A. Ladyzhenskaya made a grate contribution to the
mathematical theory of viscous incompressible fluids.
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The first principal result states that a solenoidal field can be
extended inside a domain such that the norm of the extended field
is subject to the norm of the boundary trace (see O.A.
Ladyzhenskaya Mathematical problems in the dynamics of a viscous
incompressible fluid. Nauka, Moscow, 1970 and

O.A Ladyzhenskaya and V.A. Solonnikov Some problems of vector
analysis, and generalized formulations of boundary value problems for the
Navier-Stokes equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI), 59(1976), 81-116, 256 ).

For any vector—valued function a € W;/z(aﬂ) satisfying the condition
fasza - v dx = 0 there exists a function a € Wy such that diva = 0 and

V]| < x1(2)llall1/2,00, (7.5)

where k1() is a positive constant that depends on .

RICAM, Special Radon Semester, Linz, 2005.




This lemma implies another proposition, which is of grate
importance for the analysis of problems defined on solenoidal fields.

For any f € Ez(ﬂ) there exists a function i € Wy satisfying the
relation diva = f and the condition

V]| < r2(Q)|f]l, (7.6)
where k2(2) is a positive constant that depends on Q.

Lemma 2 implies several important corollaries that we discuss
below.
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Inf-Sup condition

Lemma 2 is related to the inequality known in the literature as the
Inf-Sup- or LBB (Ladyzhenskaya—Babuska—Brezzi)—condition
that reads: there exists a positive constant Cq such that

/gf)divwdx
inf sup HL——— > Cq. (7.7)
P 3
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Ilvo Babuska Franco Brezzi

Inf-Sup condition (7.7) was established in the papers by

I. Babuska The finite element method with Lagrangian multipliers,
Numer. Math., 20(1973) and F. Brezzi, On the existence, uniqueness and
approximation of saddle-point problems arising from Lagrange multipliers,
R.A.ILR.O., Annal. Numer., 8 (1974). They used its discrete analogs for
proving the convergence of finite—-dimensional approximations in various
problems related to the theory of viscous incompressible fluids.
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Lemma 2 implies LBB condition

By Lemma 2, any ¢ € EZ(Q) has a counterpart function v, € Wy
that meets the conditions

divvy = ¢, [[Vvg| < k2(Q2)][0]]

In this case,
sup Jq ddivv dx . Jq ¢divvg dx _ el > 1
veWowzo ||V |l [Vvglllloll  [[Vvgll — K2(S2)

and, consequently, Inf-Sup condition holds with
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It is easy to observe that the Inf-Sup condition can be presented in

the form
/ p divw dx
sup 2 > Calpl forall pe L)
[Vw]|
weW
w0

We may consider the expression in the left—hand side of the above
inequality as the norm of Vp in the space topologically dual to
Wy, namely

< Vp,w >
[Vel = sup ————
weW ||VW||

Then, we arrive to the Nelas inequality.
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Jindfich Necas

Ipll < ®2IVPI ¥ pe La(@), (7.8)
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A simple proof of the Nelas inequality for domains with Lipschitz
boundaries can be found in the paper by

J. Bramble. A proof of the inf-sup condition for the Stokes equations on
Lipschitz domains, Math. Models Methods Appl. Sci. 13 (2003), no. 3,
361-371.

In the later paper, it is also shown that the well-known Korn's
inequality follows from Inf-Sup condition.

Constants Cq and k2 play an important role in the numerical
analysis of the Stokes problem as well as in the theoretical one.
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Existence of a saddle point

Existence of a saddle point of L(v,q) follows from Lemma 2 and
known results of the minimax theory. In a simplified version these
results reads:

___________________________________________________________________________|
Lagrangian L(v, q) possess a saddle point provided that

(a) it is convex and continuous with respect to the first variable
and concave and continuous with respect to the second one;

(b) for a certain q the functional v — L(v,q) is coercive (or the set
of admissible v is compact);

(c) or a certain v the functional q — —L(V, q) is coercive (or the
set of admissible q is compact.)
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Since

J(v) = sup L(v,q) > L(q,v),
qex

we observe that (b) means that J(v) is coercive. Analogously, (c)
means that the functional —1(q), where

I(q) = inf L(v,q)<L(q,v

(@)= _inf L(v.9) <L(a,¥),
is coercive.
In other words, for a continuous convex-concave Lagrangian
existence of a saddle point mainly depends on the coercivity
properties of the two dual functionals generated by it.
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Let us apply these results to the Stokes problem. It is easy to see
that for any q € L2(f2) the mapping

v L(v,q) = / (g|Vv|2 —f-v— qdivv) dx.
Q

is convex and continuous (in W) and there exists am element
d € L2(Q) (e.g., = 0) such that L(v,§) — +oc if [[v|jy — +oc.

The mapping q — L(v, q) is affine and continuous (in E2(Q)) for
any v € V. Therefore, existence of a saddle point is guaranteed
provided that the coercivity condition

lim inf  L(v,q)=—¢ 7.9
|lq||—+occ vEWg+ug ( q) ( )

is established. By Lemma 2 we can prove this fact.
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Consider the functional

I(q) ;== inf

L(v,
veWp+ug ( q)

and the variational problem

I(p) = I(a)

sup
acla(Q)

(7.10)

for the pressure function. Note that the functional | has no
explicit integral-type form and is defined as a
supremum—functional. The solvability of this problem follows from
the coercivity condition (7.9). To prove (7.9) we apply Lemma 2.
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Coercivity of the variational problem for the pressure function

Indeed, by Lemma 2 for any q € EZ(Q) we find vq € Wy such that
divwg =q and ||Vvg| < k2]|q].

Take v = pvq+ ug and recall that divug = 0. Then,

. v .
it L)< (519 o) P o - adiv v ) ) e <

1 %4
S/Q<§|VUU|2_f.u0) dx + u(v||Vuol| + Callf]))||Vvqll+
2
vp 2 2 14 2
v B < v s
+ 2 Vvl — plal _/9(2|Vu0| Fuo) dct

2
VUK
+ (v ol + Calfmalal + i (252 1) Jal?,

where Cgq is a constant in the Friederichs inequality.
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We see that

i(a) < ex(uo.£.0) + (v Vug|| + Cal [ )nalall +
2
VUK
s (Y52 1) lal?

Set here u = —X,. Then
2

VK.

) 1
inf  L(v,q) <ci+cflall - s—llal? — —oc as [lq] — +oc.

veWp+ug 21/%%

Thus, we observe that the constant K arises in the quadratic term
that provides the required coercivity property of the pressure
functional.
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Estimates of the distance to the set of solenoidal fields

Now we are concerned with the estimates of the distance between
a function v € H! and the space of solenoidal functions.
Estimates in Ly-norm.  An estimate of the distance between v
and the space

3@ = {v e WA(Q) | divw = o}

in Lo—norm follow from the solvability of the Dirichlét problem for
the Lapalce operator. It is as follows:

inf ||V — vo|| < Celldivy],
VoEJ%

where C is the constant in the Friederichs inequality.
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Proof. Indeed, since the problem

DG = f,

has a solution ¢ € W3(R) for any f € Ly(£2), we conclude that for
any f there exists v§ = V¢ such that

divvg = f and lIve|| < Ce||f]|-
Set f = divv. Then,
div(vf —v) =0,
so that vg = v§ — v belongs to J% and we observe that

IV — vl < Cgl/divv].
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Estimates in Hl-norm.  Let now v € Wy. Set f = divv. Since

/didex:/ v-vds =0,
Q o

we see that f elciz (R2). Then, by Lemma 2, one can find us € Wy
such that

divus = divy, and |Vug| < k2(Q)|divv]|.

In other words, there exists a solenoidal field wg = (Vv — ug) € Wy
such that

V(v —wo)|| = Vg < k2(Q)[/divv]|.
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This fact can be presented in another form

inf [V~ v)|| < ra()]divi]. (7.11)
VE,&(Q)

o
Thus, for the functions with zero traces the distance to J3(R) in a
strong norm is also measured via ||divv||, but with a different
factor: k2(Q).
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Comments on the value of Cq

Note that Cq can be estimated throughout the constant Cg and
the constant Cp in the Poincare inequality. Indeed,

Cqoq= inf &(q),

o
q€lz q#0

E(q) = sup :
wewg, w0 Al [|Vw]|

fQ q divw dx

For q EW () ::|C:2 NW3(Q) we have

E(q)= sup fQ va - wdx < [Val M
wewo,w20  [[all VW]l lall wews, w20 VW]
\Y
- Ival
lall
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Let Cp be the smallest constant in the inequality

lall < CplIVall, aew (%),

ie.,
1
inf M = —.
qeEW(Q), q£0 lal| Ce
Then
. ) Cr
Cqo= inf &E(q)< inf &(q) < Co
qclz g0 aEW(R), a0 P
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LBB-condition can be written in the form

Ipll < Co ' [Vpl V peLy
what amounts

Vel
[

Cq <
we see the meaning of this constant: Cq is the infimum of H™!
norms of functions such that ||p|| =1 and |, pdx = 0.

Proposition 1

If @ € R" then

Vbl 1)

Vp € Lo(2).
el @)
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Proof.
/ p divw dx
sup CAY E——
wow, oWl
w#0
Z/Q PWtt dx n / P Wit dx
t=1 Q
sup < Z sup .
wowe T T LT, T
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Since
n
IVwl? = /( Z wt27s)dx 2/ wt27tdx Vt=1,2,..n
Q t,s=1,n Q
we have
/ p divw dx n / p Wy ¢ dx
Q Q
sup = < Z sup 2 <
PR | R W P ¥

n / pndx n

SZ sup QHTH = ZHPH =n|p] .
- t=1
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If n=1 then C = 1.

Let Q = (a,b). Due to Proposition 1 we see that Cq < 1. Let p
be an arbitrary function from the set Iciz. Then, the function
x
wP) = /pdeWo.

a

Really, w()(a)=0, w®(b)= [ pdx= 0 and w(P) =p € L(a,b). Thus,

/ pw’dx / pw(®) dx / p? dx
Q Q Q

> p— =
B PR e T I

w#0

Thus, Cq > 1 and we arrive at the required result.
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These estimates give a certain presentation on the value of Cq.
However, we are mainly interested in the estimate from below,
what imposes a task more complicated than the finding the
constant in the Friederichs inequality.

In principle, one could determine Cq by the following arguments.
Let wp € Wy be a function such that

Awp = Vp, wp =0 on 09Q.
Then,

—/ pr:Vvdx:/ Vp-vdx YveW,
Q Q

and, thus, we have

/ |pr|2 dx:/ pdivwpdx Vv e Wp.
Q Q
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a = 3 L1 11
Therefore,
/pdivwdx /pdivadx
Cq = inf sup 2 > gpf £
o \Y o \Y
e wew, [PV = " Rl TVws]
pA0 W#0 p#0
oy, L7l
P €L2 P
p#0

Thus, finding Cq requires the minimization

of this quotient with

[¢]
respect to all p €Lz, where wy, is taken as the solution of the above
defined linear problem. Certainly, such a task (for some Q) might
be solved by only analytical methods. However, the minimization

(o]

on a subspace of Lz may give a presentation on the value of Cq.
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The value of C;gg is known for several model domains:
m Rectangular domain (0,1) x (0,L), L>1
see G. Stoyan, M. Olshanskij, E. Chizhonkov
sing T
<C <
L — B =auaL
m unitary disc with radius 1
see L. Halpern

1
Ciee = —=
LBB \@

Concerning numerical computation of C;gg see the works of G.
Stoyan, M. Olshanskij, E. Chizhonkov
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On Cq, for the square domain

Let
Q=Q ={xeR" | x;e(—mm), i=12,..n}.

We are interested in the value of the quotient

\%
inf Vel .
oct, [Pllg
Represent p as a series with respect to the trial functions
6 2 . . .
p;j =sinix sinjy, p;”’ = sinix cosjy,
p(3) = cosix sinj (4) _ i j
i = Jy, pjj = cosix cosjy,

where /,j =0,1,2,... Then
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Here, the first nonzero coefficients are

a(()%) = 2 . p dxdy ,

a,(-g) = 2;/9 p sin ix dxdy ,
a((;) = % ; p sin jy dxdy ,
a,(-g) = 27172/9 p cos ix dxdy ,
ag) = # . p cos jy dxdy ,
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Other coefficients are as follows:

o 1 o
a;’ = 7T2/stmlx sin jy dxdy ,
@ 1 . :
a;’ = = p sin ix cos jy dxdy ,
Q
@ 1 o
a;’ = 7r2/ p cos ix sin jy dxdy ,
Q
1
a,(j4) = 2/ p Cos ix cos jy dxdy .
™ JQ
We have
e 2 2 2 2
2 1 2 3 4
ol = = > (o) (&) (587) "+ (47)]
i.j=0

where Agog =0, Ao1 =2, Ad;p =2 and \j =1 forall i,j > 1.
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Let us take a finite number of elements in the Fourier series for p:
Z > el
i,j=0s=1

(s)

where a; are the above defined coefficients. Since

/ p divv dx
Vel = = ol

we need to introduce the system of trial functions in Wy(Q). It is
given by the system of eigenfunctions for the problem

Aw = puw wlag = 0.
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This system is
$ap = sin g(X+7T) sin g(erﬂ').
In this case,

@ o .
bap1 = Ecos §(X+7T) sin g(y+7r),

bap2 = gsin %(x+w) cos g(y+7r).

Take a finite number M of basic functions in the representation of v,
namely we set

M M
v=u"= (W), v = D bagdas v = D Capdas-
a,B=1 «a,B=1

The set of all such functions we denote WB". In this case, we can obtain
a lower bound for the required norm. Really, we have
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/pdivadx /pdivvdx
Vp M) . sup J < Vp] = sup 2
IVel™ = o, “wwg < 1VPL = 20 T,

Thus, we may hope to estimate the value of the quotient

inf Vel .
oct, [Pllg

by taking N,M — +o00, M = kN & is essentially larger than 1
(typically 8-20). Numerical results for different N are exposed
below.
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Minimizer p, for n =8, 36 and 120.
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In order to clarify the main ideas of our approach we rewrite the
classical Stokes system in a somewhat different form:

dive = Vp —f in Q, (7.12)
divu = 0 in Q, (7.13)
o =rvVu in Q, (7.14)
u=2=0 on 0NQ. (7.15)

This system involves one additional variable o that corresponds to
the field of stresses. Now we may regard the Stokes problem as the
problem of finding a triplet of functions (u, o, p).
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Primal and Dual Problems

Functional formulations of the above problem are given in natural
"energy"” set for this velocity—stress-pressure setting, which is

£ ::j%(ﬂ) X XX I(iz-
Problem P. Find u ej%(Q) such that

J(u) < J(v) forall v ej%(ﬂ),

J(v) :/ﬂ (%NVF - f-v) dx.

We denote the exact lower bound of this problem by infP.

where
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Let ¥ = L2(Q,M"™") and L :J}(Q) x (Q) — R be the
Lagrangian

L(v,T):/Q (T:Vv—211/|7'|2> dx—/Q fv dx

that together with Problem P generates the dual problem

sup inf L(v,T)
TEX VGE(Q)

which is Problem P": find o € () such that

(o) = sup I*(7), I"(r) = ~ 2 |T|2dX
TEXH(RQ) vV Jja

where

T(Q) = {7’ €X(Q) | /Q’T : Vw dx :/wadx for all w Ej%(ﬂ)}
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From the general theorems of convex analysis it follows

Theorem (1)

There exists a unique minimizer u of problem P and unique
maximizer o of problem P*. These two functions meet the
equalities

I"(0) = supP* = inf P = I(u), (7.16)
o = vVu. (7.17
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Basic error estimate

The basic error relation for the Stokes problem is given by the
following theorem (S. Repin, 2002).

Theorem (2)

For any v Ej%(ﬂ) and any T¢ € X¢, we have

v (Vv —u)l® + %Ilff — o> = 2(J(v) = I*(71)) (7.18)
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Proof of Theorem 2

The minimizer u of problem P satisfies the relation (?7).
Therefore, we obtain

Jv) = Ju) = / (5|VV|2 - 5|VU|2 - f-(v—u)) dx =
Q
—/ (—\V(v—u)] +vVu:V(v—u)—f- (v—u))
2/ IV(v—u)dx  forall vel}(Q).
Since J(u) = inf P, we conclude that

% V(v —u)|> = J(v) — infP for all v €13(Q) .
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The next step is to derive a similar relation for the dual problem.
For this purpose, we note that the maximizer o of problem P*
satisfies the relation

/ o:(rf—o)dx =0 for all T¢ € Z¢(9).
Q

By virtue of this relation, we find that

1
sup P* — I"(7¢) = I"(o) — I"(71¢) = 2 |T¢ — O'fH2 Tf € Xp(Q).

Since inf P = supP* we sum the two equalities and obtain
p q

VIV = )|+ e — o = 2(0(v) 1 (rr).
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Stokes problem is a particular case of the abstract problem we
investigated in Lecture 5:

Find u € Vg + ug such that

(AAu, Aw) + (£,w) =0 VYw € V.

In this case Vg :j%(ﬂ) V is a subspace of H! containing
solenoidal fields, A = V (tensor—gradient), U = X, Ay = vy, and

0, w) = _/Q v dx
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Thus, we can apply the estimate
1 1+ N
2 IAG =) P< (14 8Dy + 5 P T Ay (7.9

where || y ||2= fﬂ v|y|?>dx and

N Vw :y —fw)d
[£+Ny] = sup 7<£+/\ y.w) _ sup Ja( V\ﬁlvy ”| wdx _
weVg ”’ W”| WEE(Q) w
sup Jo (Vw : ym—vfw M qdivw)dx -
o w
weB(Q)
Vw : y—fw— qdivw)d
< sup Jo (Vw : y—fw— qdivw)dx vq € L3(Q).

o I Vw |
weH(Q)
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y € Zaiy(Q) := {y € £ | divy € L2(Q,R")}

and g € H1, we have

Jo (Vw : y—fw—qdivw)dx Jo (F=Va+divy) - wdx
sup = sup
o) I Vw || o I Vw ||
weH(Q) weH(Q)
Since
lwl] < Co||Vw|| = Cav /% || Vw ||,
we obtain

[ £+ Ny < CorY2|f — Vq + divy||
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Further,
1 1
D(Vv,y):/ —vVv:Vv+ v y:y—Vv:y |dx =
g \2 2
= oy~ v

Now, from (7.19) we obtain

+ .
Y V-2 < (1) ly v+ ﬁﬂ C2f— V-t divy|2,
or
+ .
V2V (u—v)|2< (14 8)y— Vv + [f 2 |1f— V- divy|.
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Deviation estimate for solenoidal approximations

By the minimization with respect to 3 we derive the first basic
estimate for the Stokes problem:

w|[V(u— V)| < lly - vVv] + Callf — Va + divy||.| (7.20)

Here v is any conforming approximation of u and y is any
tensor—function in X4;,(2) and q € H! is an "image’ of the
pressure function.

This and the next estimate for non-solenoidal approximations has been
derived in '99, English translation is presented in S. Repin. A posteriori
estimates for the Stokes problem, J. Math. Sci. (New York), 109 (2002).
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Non-solenoidal approximations

If the function v € Vg + ug does not satisfy the incompressibility
condition, then the estimate of its deviation from u can be
obtained as follows.

By Lemma 2 for the function Vg := V — ug one can find a function

wo Ej%(ﬂ) such that
IV (vo — wo)|| < r2(22)|[divvg||.
Then,

v[[V(u=v)[| = v[[V(u—vo —uo)| <
< v[|V(u — (Wo + uo))|| +v[|V(vo — wo)l.

Use (7.20) to estimate the first norm in the right—hand side of this
inequality.
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We obtain

v[|[V(u —v)|| < |[vV(wp + ug) — y|| + Col[divy +f — Vql| +
V||V (Vo — wo)|| < [[vVV -yl +
+Cql|divy + f — Vq|| + 21|V (Vo — Wo)||.

Hence, we arrive at the estimate

- . . v
VHV(U—V)HSva(V)—YH+Csz||dlvy+f—VQH+@Qlld'VV!\( 21)

Three terms in the right—hand side of the estimate present three
natural parts of the error, namely errors in the constitutive law,
differential equation and incompressibility condition.
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Another form of the Majorant

Set y = n + ql, where I is the unit tensor and 1 € X 4;,(2)(£2).
Then the Majorant comes in the form

~ . ; 2,
v[[V(u—v)[|< IIVV(V)—TI—qHH+Csz\|dlv77+fH+@Qlld'VV!\(7-22)
Thus, if the constants cg and Cq are known (or we know suitable

upper bounds for them), then (7.21) and (7.22) provides a way of
practical estimation the deviation of v from u.
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Practical implementation

To use the above estimates in practice we should select certain
finite dimensional subspaces

):k and Qk

for the functions y (or n ) and q, respectively.

Minimization of the right—hand side of the estimates with respect
to y and q gives an estimate of the deviation, which will be the
sharper the greater is the dimensionality of the subspaces used.
Numerical testing of the estimates has been performed in E.
Gorshkova and S. Repin. Error control of the approximate solution to the
Stokes equation using a posteriori error estimates of functional type. In
European Congress on Computational Methods in Applied Sciences and
Engineering, ECCOMAS 2004, Jyvaskyla, 24-28 July, 2004 (electronic).
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Estimates for the pressure field

Let q Elo_z be an approximation of the pressure field p . Then
(p — q) €L2 and the Inf-Sup condition implies the relation

Jo (p — q) divw dx

> Cq.
lp—all [Vw]

sup
weVy, w20

Thus, for any small positive € there exists a nonzero function
Wpq € Vo such that

/Q (P — q)divwiqdx > (Ca — €)[[p — a| Vwgl.
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Since

/l/Vu:ngqu:/ (F-wpy + pdivwg,) dx,
Q Q
we have

/(p q)divwy, dx =
/{VV u—v): Vwg, + (vVv: Vws +Va - wh,—f - wio) }dx
/ vV(u—v): lef,qu—i-/ (VVV —y : Vwy,)dx
Q Q
+/( :Vwgg +Va - wg —f-w;q)dx,
Q

where V is an arbitrary function in Wg + ug and y as an arbitrary
tensor—valued function in X .
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Above relations lead to the estimates

1
—qll <
lp—qf < (Ca —o)[Vws

al

X [/9 (vV(u—=V): V(wgg) + (¥V(V) —y): V(w;q)) dx

—l—/ (—wig - divy + Vg - wh, — - wi, ) dx
Q
1

< —— ||V ||+ ||vV (V) —y|| + Cq||divy +f — Vq]||.
(€ =y VIV (=) + [V (@)~ y|| + Calldivy +F Vel
The first term in the right—hand side of this inequality is estimated
by (7.21).
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Deviation estimate for the pressure function

Since € may be taken arbitrarily small, we obtain the following
estimate for the deviation from the exact pressure field:

1 v
Zllp — < — _|ldiw 2
5lp qH,CQZHd-WIH (7.23)
1 Ca, ..
+|wV ) —y| + =2 ||divy + f — Vq||.
CQ CQ

It is easy to see that the right—hand side of (7.23) consists of the
same terms as the right—hand side of (7.21) and vanishes if and
only if, v =u,y =0 and p = q . However, in this case, the
dependence of the penalty multipliers from the constant Cq is
stronger.
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Problems with condition divu = ¢.

In many cases, divergence—free condition is replaced by
divu =¢ inQ,

where ¢ is a given function in IC:Q. For such functions, we have the
problem: find u that is equal to ug on 02 and
—dive + Vp=f inQ,
o=vVu inQ,
Let ug € Wy, divuy = ¢. By setting u = ti +uy and tip = ug — uy, we
present the boundary—value problem as follows: find u ej%(ﬂ) + Ug such
that
—divd+Vp=Ff inQ, f=f+uvdivV(uy) e H L,
g=vVia inQ.
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Assume that u is approximated by a certain v € Vg 4 ug. Let v be
presented in the form v =¥ + u,. Now. we apply (7.21) to a "shifted"
system and obtain

[V(u=v)[=[V(@-v)| <
, 2
< |vVi —y|| + [divy + F — Vq] + —— |[divi|.
Cies

Set here y = —vVuy + 1, where 77 is a function in ¥.
Then

divy + f = —vdivVu, + divy + f = divy + f
and vVV —y =vV(v —uy) —y = vVv — 1. Therefore,
[V(u=v)ll <

2
< [[vVv —n| + [divp +f - Vq] + 7V||divv - 3.
Cies
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Problems for almost incompressible fluids

Models of almost incompressible fluids are often used for constructing
sequences of functions converging to a solution of the Stokes problem. In
this case, the incompressibility condition is replaced by the term that
contains the divergence with a large multiplier. Let us consider a model
of such a type.

We find us € V satisfying the integral identity

1
/ (vVus : Vw + gdivu(; divw)dx = / f-wdx, we W,
Q Q
and the boundary condition us = ug 0RQ. It is not difficult to show
(see, e.g., R. Temam [?]), that us tends to u (solution of the Stokes
problem) in H! norm and p; = —%divu(; GI(iz converges to the respective
pressure function p in Ly as § — 0.
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By (7.21) we can easily obtain an estimate of the difference
between u and ug. Let us set in(7.21) y = 75 := vVus and
q = ps = —+divug. In this case, |[Vus — 74 = 0 and

[divrs +f — Vps] =
Jo (—vVus : Vw +f - w + psdivw) dx
= sup =

0.
weVo IVw

Thus, we conclude that
1 1
—|IV(u— < —||di
S IV (u—us)l < CLBBH ivus|,

We observe that the deviation from the exact solution of the Stokes
problem is controlled by the norm of the divergence of the regularized
problem. Similar estimate can be obtained for the approximations
constructed by means of the Uzawa algorithm.
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In S. Repin. Estimates of deviations from exact solutions for some
boundary—value problems with incompressibility condition.
Algebra and Analiz (St.-Petersburg Math. J), 16(2004), 5

functional a posteriori estimates for the Stokes and some other
problems were derived by nonvariational techniques.

In particular, in this paper readers can find such estimates for
Convection—diffusion equation

—divAVu+a-Vu=f
and Oseen problem

—vAu+diva®u)=f—-Vp inQ,
divu=0 in Q,
u=~0 on 0f).
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Generalizations

A posteriori estimates of the above discussed type can be derived
in the abstract form for the whole class of problems where a
solution is seeking in a subspace.
Typically, we have the following diagram:

HE w X~ u v,y

) i}

H B ow Aoy

Basic problem. Find p € H and u € V) that satisfy the relation
(AAu,Aw) + (f — B*p,w) =0 VYw € Wy,

where

Vo = KerB := {ve Wy | Bv=0}.
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Assume that
villyl? < (Ay,y) <uvallyl?, yeu,

Let the operator B possesses the following property: there exists a
constant « such that for any

gclmB:={zeH| 3ve Wp: Bv =2z}
one can find ug € Wy such that
Bug =g and [ugllw < afgl.

Note that such a condition is a generalization of Lemma 2.

Under the above assumption we obtain an estimate of the
deviation from u.
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Estimate of the deviation from u

I A(u—v) [I<

o - 1 * *
< 2y/vza|[By|+ [ ANV —y . +jllf+/\ y — B'q].

vV

where || y [l:= (Ay,y)'/2, |y [.:= (A"1y,y)!/? We see that the
terms of the estimate present errors in the basic relations

(No+f—B*p,w) =0 Yw € V),
o = Alu,
Bv =0.
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For the Stokes problem Av = Vv, A = vI, where I denotes the
identity operator and Bv = —divv. It is easy to see that in this
case V1 = vy =V,

1
N

Since || A(u — V) ||= v/V||A(u —V)||, we find that the general
estimate coincides with (7.21)).

I AAV —y [l.= —=[lvVv —y].
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Lecture 8.
ESTIMATION OF INDETERMINACY ERRORS.
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Errors arising due to data indeterminacy

IN REAL LIFE PROBLEMS ALL THE DATA ARE
INDETERMINATE!!!

Example 1.
Diffusion problem: find (temperature) T such that

divk(x)VT(x) +f =10 in Q
T(x)=Tpo on 02

In reality, the diffusion coefficient, temperature sources, and even
the domain are not exactly known.
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Example 2.
Stokes problem: find solenoidal u such that

—dive =f - Vp in €,
vVu=o in Q,
u=ug on 02,

In Stokes, Oseen and Navier-Stokes equations the viscosity
coefficient is never known exactly. Moreover, it is typically an
unknown function (depending both on the spatial and time
coordinates) that may depend on the temperature, contamination
and other factors.
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Uncertain data lead to a quite different analysis

Data uncertainty drastically changes some basic relations in the
numerical analysis.
For example, let v € C2%[a, b] and x, x + h € [a, b]. Since

v(x +h) = v(x) + v'(x)h + v"(x + Gh)h;, 6 € (0,1)

we have the standard finite difference quotient approximation of
the derivative
x+h) —v(x)

h )

Vv/(x) ~ v(

whose error is given by the relation

ph "
< —_— frd
lef <5k Xren[gf;]\v (x)|

RICAM, Special Radon Semester, Linz, 2005.




Assume now that v(x) is defined with a certain indeterminacy, so

that its real value is unknown and instead we have a function v(x)
whose values lie in the interval [v(x) — &, v(x) + €].

If we use these data to approximate the derivative, then we arrive

at the following result:

, v(x + h) —v(x) , vix+h)—v(x)| 2¢
v'(x) — h < W'(x) h +F <
B =

We see that the error does not tend to zero as h — 0. Moreover,

(7 )

is attained at
h= 2, /% (the best accuracy).
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Therefore, in the case of not fully determinate data the highest
accuracy of the numerical differentiation is

lemin| = 2\/e1

For example, if ¢ = 107% and p = 9, then the highest accuracy is
|€min| =6 %1072 ~ 1071 11!

and it is attained for h ~ 0.01.

ial Radon Semester, Linz, 2005.




Errors in coupled problems

Effects close to those arising as a result of data indeterminacy
often appear in the process of numerical simulation of
coupled systems where certain quantities in a differential
problem are defined throughout solutions of some other
problems. In such systems a phenomenon of

"error multiplication”
may lead to a dramatic loss of the accuracy. An example
below demonstrates such type effects.
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”Baby” coupled problem. Find z(8), where z is the solution of the
problem

2/ -927 -10z=0, z=12(x), x€]0,8],
Z(O) = ].7 Z/(O) = aNn-1 — aN,
where a is a solution of the system of the dimensionality N

T

/ (sin(i€) sin(j¢) + sin(i +J'2)f) dg,

0

25252
Ba = f, bij = J

+oo . k
. (s 4. L I
i,j=1,2,...N, fi = (i+ 1)%, S.—Z<i+l) .
k=0
For N = 10,50, 100,200 find z(8) analytically and compare with the
result obtained by "purely numerical” approach in which sums, integrals

and ODE are treated numerically.
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Sin(i€)Sin(j€) = 5 (Cos(i — j)&  Cos(i + )E).

1 i gr
jSm(l +j)l6=0,

[ costti+yae =

/(Cos(i —)8)d¢é =mif i =j and = 0 otherwise.
0

Therefore,
/sin(i&) sin(j€)d¢ = g if i = j and = 0 otherwise.
0

ial Radon Semester, Linz, 2005.




Thus, B is a diagonal matrix with

b;i IS? = (i+1)4

and

Ba=f is |[(i+1)a=(>G+1)"%=> a=i

Solution of the equation we find in the form z = e**, where X is a root of
A2 —9A—-10=0, Ar=—1, XA =10.
We have

z=Cie "+ Ce'™, 2(0)=Ci;+Co=1
7 = —Cie ¥ +10Ce"™, Z(0)=-C;+10C; =ay 1 —an = —1

From here, C; =1 and C; = 0, so that

z=e*,  z(8)~3.3546262+ 10"
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Principal question

Assume we have an approximation up computed on a mesh 7.
The question to be answered is as follows:

WHICH ERROR:
APPROXIMATION or INDETERMINACY
IS BIGGER?

If

Indeterminacy error‘> ’Approximation error

then all further computations and mesh adaptations are senseless !
We need a practical way to explicitly evaluate errors caused
by indeterminacy in the problem data
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General framework

Consider the problem
N AN =£ inQ, u = ug on, ON. (8.1)

where the operator A and the functional £ are defined with some
indeterminacy. It means that

Ae Uy C LU, V),
Le Uy C Vg,

where U4 and Uy are certain bounded sets.
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All possible solutions of the problem with such a data form the set

T(Ua,Ue) = {ﬁ € Vo + uolﬁ satisfies (8.1) forsome A € Uy £ € L(g}.

Let v € Vg + ug be an approximation of an unknown exact
solution. Since the data are indeterminate, the error estimation
problem comes in two different forms.

The first problem is to find the quantity

1
2 ~\ 112
emin(va T) = HI\(V - U)H ) (82)
The quantity e, measures the distance between v and the set T.
It is equal to zero if v satisfies (8.1) for some pair
(A, £) € Uy x Ug. This quantity provides the lowest possible bound

of the true error or the error in the best-case situation.

RICAM, Special Radon Semester, Linz, 2005.




Another task is to find the quantity

€2, (v.T) = 3 sup [A(v — )2, (63)
ueT
which shows the highest possible error. It takes into account
computational errors and errors caused by indeterminacy and
shows the error in the worst-case situation when the exact
solution is an element of T that is most distant of v.

This quantity is always positive and its value gives an idea of the
accuracy limit dictated by the effect of indeterminacy in the data.
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Thus,

emin(v, T) < e(v) < emax(v, T), (8.4)

where the actual error e(v) is principally unknown and we may
only hope to find its bounds. In general, the exact values of ep;,
and enax could hardly be found. However, using functional type a
posteriori estimates, one can find their computable bounds.
Indeed, the majorant Mg and the minorant Mg explicitly depend
on A and £, which opens a way for computing errors caused by the
indeterminacy in values of the problem data. Below we show how
such an account can be performed.

Assume that the set T is known. Our aim is to find practically
computable numbers eg(v, T) and eg(v, T) such that for any
v € Vg + ug the following relations hold:

ec(v, T) <emin(v, T) < emax(v, T) < eg(v, T). (8.5)
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Particular problem

Consider the generalized diffusion problem
divAVu +f =0,

In this case,

V = HI(Q)’ Y = L2 (Q,Rn), VO ::Ifll(Q)a
Vi =H1Q), Av=Vv, Ay =_divy",

and A is a mapping given by the relation y*(x) — A(x)y*(x),
where A(x) is a symmetric positive definite matrix.
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Assume the the coefficients of the differential equation are defined
by some "mean” elements

Ag € L®(Q;M™™) and fy e L2(Q)

and certain (bounded) variations around these values.
Up = {A e L®(Q;MM™™) | A=A¢g+<cE, E€ &},
Us = {fe L2(Q) | f = fo + b, 906.7-'},

where

€= {EeL(QM") | | [E]|ca <1},
Fi={oel¥@)|l¢l2g <1}

We will define the influence of the above indeterminacy errors. Our
analysis follows the lines of
S. Repin. A posteriori error estimates taking into account

indeterminacy of the problem data. Russian J. Numer. Anal.
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Let, € and d be small parameters characterizing the range of
indeterminacy and

Up = {A e L®(Q;MM") |A=Ag+cE, E€ &},
Us = {fe L2(Q) | f = fo + d¢, soef},
where
£={Ee (M) | |[|Elllocge <1},
Fi={pe 1@ llplba <1}

We assume that the parameter € is small enough, so that the
problems remain uniformly elliptic for all possible data, so that the
relation

il < Agf - ¢ < oof¢r, VEERM,

implies a similar double inequality for all A C Up.
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Since

EE- ¢l = |E: (€®8)| < |E||¢,

we find that
AL € > Agé - € —elE|[€]2 = (1 — )¢, (8.6)
A€ < At - & +elE| €] < (2 + )¢ (8.7)

Therefore, we must assume that possible " disturbances” are
sufficiently small, namely

e < cy.
For the inverse matrix, we have
& EP < Agte-€ < ¢ el -
(c2te) e <ATTE-E<(er—e) MR, (89)
where A € U 4.
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Indeterminacy is explicitly accounted by the Majorant

A principle possibility to involve indeterminacy data into the
consideration is based on that external data are explicitly
presented in the Majorant.

Indeed, we have

/AV(G—V)-V(G—V)zg
Q
1 AVv-Vv+A ly.y-—2Vv-y)|d
(+B)/Q(VV+ y-y vy)X+
2
L(1+08)Cy +§)C9 divy + 2.

We do not know A, f (and also u) exactly. But we can try to
express all terms in this estimate via €, 8, Ag, and fp.
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The left—hand side of the estimate is easy to estimate from below.
Indeed,

| V(v—u)|?= / (Ag +cE)V(v—u) - V(v—u)dx >
Q
> (c1—¢) V(v —uw)?.
Then, we find that
(c1— &) V(@ - v)|2 <

< sup inf{(l—i—ﬁ)/ (AVV-Vv—l—A_ly-y—ZVv-y) dx +
AcAfcF ¥,8 Q

2
L1+ 0)C +§)C9 [divy + ).

In this estimate an approximate solution v contains both
APPROXIMATION and INDETERMINACY Errors !
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Basic idea

Since supinf < infsup, we can change the order and obtain
(c1— &) [[V(u—v)|? <

<inf sup {(l—i—ﬂ)/ (AVV-Vv—i—A_ly-y—ZVv-y) dx +
¥.8 AcAfeF Q
(1+B)C*(2,A)
T8

|divy + [ }.

Now, our aim is to find an analytical estimate for the supremum
that explicitly involves indeterminacy parameters.
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Now, the upper bound of the error of an approximate solution v
with respect to the "worst case situation” comes in the form

2. (v, T) <

< 1 (1 T > {(1+ﬁ) sup D(Vv,yH

c1 Cc1—¢€ Acln

_l’_

1
(1+5) supC2(Q, A) sup ||divy—f|?}, (8.10)
20 acup felh

which is valid for any y € Q* and 3 > 0. Let us consider its terms.
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To obtain a transparent estimate we need to find upper bounds for
the quantities

sup D(Vv,y),
AclUp

C%(Q,A),

sup ||divy—f|2.
feUr
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First, we analyze the functional

1 1
D(Av,y) = 5(AAV, Av) + S (A7ly,y) — (Av,y)
for any A € U 4. First, we rewrite the f|rst term

/ AVv - Vvdx = / (AgVv - Vv + cEVv - Vv)dx.
Q Q

Now, our aim is to estimate the most complicated second term.
Present the inverse matrix as follows

-1
Al = (Ag+cE)! (AO(H+€A61E)) = (I+<B) ‘A,
where B = Ay 'E. Note that
e|B| = c|Ay'E| < e|AyY| [E] < ecyt < 1,

and, therefore, (I +B)~! can be presented as a convergent
matrix series, namely
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(I+eB) ™' =T+ (~1)elB),
=1

Hence, we can present the second term as a combination of known
matrixes Ag and powers of e.

o
Aly.y=(1+eB) 'Agly.y = [T+ (-1)B | Ajlyy =
=1

[ee)
= Aaly Yy — eBAaly Yy + Z(—l)jeijAaly -y.
i=2
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Since E € &, we have

/ﬂ BiA;ly - ydx < /ﬂ AGTHE] [y dx < e 0D |2

/Aly-ydxg/(Aaly-y—sBAaly-y)dx—i—
Q Q

[e.9]

+ | S (1yeie U ) y|2.
j=2
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We find that the first term D explicitly depends on &:

D(Vv,y) < Dg(Vv,y) + % /Q (EVv-Vv — BAaly -y) dx+

arS (-5)
+ 5 - )
D




Since all the matrices are symmetric, we have

EVv- Vv — Ay'EA;ly -y = E(Vv — Agly) - (Vv + Agly).
Now, we obtain

D(Vv,y) < Do(Vv,y)+

®

+ = / E(Vv —Aply) - (Vv +Ayly) dx+

Q
2
g 1 2
+ | =) 77— .
(5) serayh
Note that the the last two terms presents a positive penalty arose

due to indeterminacy. All the terms in the right—hand side are
directly computable!

N
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where

/ AVw-dexZ/
Q Q

Hence,

1

C2(Q,A)

and

> (1 - sc;l)wig\flo

AgVw - Vwdx — €||Vw||2.

Jo AoVwW - Vwdx ¢ —¢

1

HW”2 N C1

Cz(Qv AO)




For any g € L%(Q)

wp/kg—¢VM—me+2mu+L
peF JQ

By this relation, we find the value of the term

sup / divy — fo — dp|%dx,
weF JQ

which is
Idivy — fo|? — 26]|divy — fol| + 62.

Then, we arrive at the final estimate. To represent its right-hand
side of this estimate in a more transparent form, we introduce a
number of quantities.
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Moo(v. B.y) = (1+ B)Do(Vv.y) + (1 n ;)

€ _ —
Mio(v.2.y) =5 ([ |79 =Agy)- (Vv + Agy) ax+

2
v 1+ﬁ>c (82 Ao) / Idivy — f0|2dx)

Ci— ¢

C%(Q,Ay)
2

Idivy —fol?,

Moi(v, B.y) =& (1 T ﬁ) C2(Q, Ag)|divy — o,

2
M (v, B,y) =¢ed (1 ) Mﬂdwy —foll,
B c1—

2
_ e\ vl aC*(R, Ao) s
M (v, B,y) = (1+p) <c1> 2(e + ¢ ) (1 N ﬂ) 2(c; —¢) o




We obtain an upper bound of eg(v, T) in the form

eé(") T) =

1
inf M
cl—¢ yEQID,ﬂ>0( 00(v7ﬂa Y)+

+ Mo1(v, 3,y) + Mag(v, B,y) + M1 (v, 5,Y) + Maa(v, 3,)).
(8.11)

The term Mgg(v, 3,y) coincides with the majorant constructed for
the "mean” problem (with Ag and fp). It represents the
approximation error. The terms Myg, Mg1, and My; are given by
some combinations of the weighted residual and small parameters
€ and 4. In principle, all these terms can be made arbitrarily small
by taking v close enough to the exact solution u of the problem
with A = Ag and £ = fy and y close enough to ApVu.
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Inherent error

In contrast, the term Mgz (v, 3;y) is always positive. This term
contains the inherent part of the error, which does not depend on
the accuracy of numerical approximations. Indeed, in all cases we

have
C152

2(cp —¢€)

This quantity does not depend on the choice of v, 3, and y. It
gives an idea of the accuracy limit that could be achieved within
the framework of the worst-case scenario.

Ma(v, 8,y) > C*(R, Ag)
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Computable upper bounds

Take {Qg} C Q*. Then,

el (v, T)<el (v, T)=

1
:1(1+ < > inf > Ma(v, 8,y)+Ma2a(v, 8.y)
s,t=0

C1 C1—€/ yeQ; ,6>0

If Q¢ C Qg 4, then the sequence {eﬁ@(v, T)} monotonically
decreases but may not tend to zero.
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Lower bound of the error

To find a lower bound, we use the relation
1 -
/ AV(v—u)-V(v—u)dx = sup Mg(v,w),
2 Q weVy

where

Mg(v,w) = —/ <;AVW -Vw + AVv - Vw + fw) dx.
Q

Recall that
AE-€ < (e+e) ¢

By this inequality we can estimate the left—hand side from below,
so that for any pair

(A.f) € Un x Us

that generates the respective solution u we have
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1 9 1 - .
- —u >__ - A — . — dx =
IV -8 > 5 [ AV -)- V-
1
= sup Mg(v,w).
E+C2 WE\?O @( )
Therefore,

P | 112
emin(v, T) l_:fe‘,ﬁ, > V(v —a)|° >

1
> inf sup Mg (v, w) >
€ + C2 (Af)elnaxUs weV,

> sup inf Mg(v,w).
T E+Co weV (AF)eUa xUs 9( ’ )
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We have

emln(

T e+t WEVO

+ inf <.€/<
EcE ,peF Q

{ AOVw -Vw + AgVv - Vw + fgW) dx+
Q

N =

EVw . -Vw+ EVv- Vw) dx—é/ wgodx) }
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By the algebraic inequality

Ea-b+ Ec-b= Eij(ajbj + Cjbi) = Eij(b;(aj + Cj)) =E: (b & (a + C))

we find that

inf {—/ <1EVW-Vw+EVv‘Vw> dx} =
Ec& Q 2
1
:—/ ’ (vW+vV) ®Vw‘dx.
Q 2

It is easy to see that




Now, we obtain

(v T) >

mln

=
Zar C2 WGVD

/ ( AogVw - Vw+ApVv - Vw—i—fow) dx—
Q

e/ |< Vw+Vv>®Vw‘dx—
Q
—ollwll}-
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Introduce the quantities

1
mgo(v, w) = —/Q (2A0Vw -Vw + AgVv - Vw + f0w> dx,

1
myo(v,w) = —s/ | <2Vw®Vw+Vv®Vw> ‘dx,
Q
mor(w) = —d]lw].

Then, we represent the lower bound in the form

eze(v, T) = sup {mgo(v, w)+mpo1(v,w)+myp(w)} > 0.

€+ C2 weVy
(8.12)

In this estimate, the term mgg(v, w) contains the major part of the
approximation error. It vanishes if v is a solution of the "mean”
problem with A = Ag and £ = fy. Two other terms reflect the
influence of the small parameters § and €.
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Computable lower bounds

Take a collection of finite-dimensional subspace Vg and solve the
problems

erznin(vv T) > eﬁ@(‘h T) =
1
= sup {mgo(v,w) + mqy(v,w) + myg(w)}.
€ + €2 weVy,

Now eﬁe(v, T) can be used to estimate the efficiency of further
computational efforts within the framework of the best-case
scenario.
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To refine or not to refine? That is the question.

If eﬁ@(v, T) are large, then approximation errors are significant.
In this case, it is worth computing a new approximation on a finer
mesh.

If for a certain k the quantity eﬁe(v, T) is very small, then an
approximate solution computed is already close to some u € T.
Since we do not know exactly the data (and, thus, have no way to
select the proper u) all further computations and mesh
refinements are in a sense useless because they cannot improve
our presentation on the true solution.
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Lecture 9.
A POSTERIORI ESTIMATES FOR MIXED METHODS
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Mixed approximations. A glance from the minimax theory

Consider our basic problem

divAVu+f=0 inQ,
u = ugon 019,
AVu-n = Fon 0,Q,

QP <AX)E-E<SE?  VEERY forae xeQ,

where ug € HY(Q), f € Ly(RQ), F € L2(0,9) . Functional spaces

V:=HYQ), Vog:={veV | v=0 on 8:;Q}, V:=Ly(Q),
Q = Ly(Q;RY) Q= H(Q; div),
Q" :={yeQ|y-n|,qcL0Q)}.
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We recall that ||q||giy is the norm in H(R; div):

lallgv := (lal® + [dival?)*? va € Q

and
1/2
Ial:= /Aq-qu , 9€Q
Q
1/2
lall= / A-lq-qdx
Q
Note that,

cfle? <ATI(x)E-E <P VEER!, forae xe€Q

with €3 =1/c3, €2 =1/c3.
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Generalized solution of the problem considered can be viewed as
a saddle point of the Lagrangian

L(v,q) r—/ﬂ (Vv-q - ;A‘lq-q) dx — £(v),

where £(v) = [ fudx + [, o Fvds.
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In this formulation (u,p) € (Vo + ug) x Q satisfies the relations

/(A_lp—Vu) .qdx=0 VYqeQ,  (9.1)
Q
/p-dexE(w)zO Yw € Vp. (9.2)
Q

Here

p = AVu, issatisfiedinL(2) — sense
divp+f=0 inQ and

p-n=FondQ aresatisfied in a weak sense.
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As we have seen in previous lectures L generates two functionals

1
3(v) = supL(v,a) = 3 [| Vv [ ~£(v)
qeqQ

and 1
@)=~ a2 ~(u0) + [ Vuo- qdx.
Q
Also, we know that

inf  J(v) :=infP =L(u,p) =supP*:= sup I"(q), (9.3)
vEVg+ug q<€Qy

where Q¢ :={q € Q | [q-Vwdx = £(w) Vw € Vp}.
Q
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Primal Mixed Method (PMM)

Let Qn C Q and Vg, C Vg are subspaces constructed by FE
approximation, then a discrete analog of (9.1)—(9.2) is the

Primal Mixed Finite Element Method .
See, e.g., F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element
Methods. Springer-Verlag, New York, 1991.
D. Braess. Finite elements. Cambridge University Press, Cambridge,
1997.
J. E. Roberts and J.-M. Thomas. Mixed and Hybrid Methods. In
Handbook of Numerical Analysis, I, eds. P. G. Ciarlet and J.-L. Lions,
North-Holland, Amsterdam, pp. 523-639, 1991.
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In PMM, we need to find a pair of functions
(un, pn) € (Von + ug) X Qy such that

/ (A_lph — Vuh) gndx =0 Vg, € Qpn, (9.4)
Q

/ph - Vwpdx — E(Wh) =0 Yw, € VOh . (95)
Q

In this formulation, uy, can be constructed by means of the
Courant-type elements and py, by piecewise constant functions.

RICAM, Special Radon Semester, Linz, 2005.




Dual Mixed Method (DMM)

Another mixed formulation arises if we represent L in a somewhat
different form. First, we introduce the functional
g : (Vo +up) x Q — R by the relation

g(v,q) := /(Vv -q + v(divq)) dx. (9.6)
Q
We have
L(v,q) = /Q (Vv q— %A*lq : q> dx — £(v) =

~g(v.a) — [ vidva)dx— 3 a2 —¢(v).

RICAM, Special Radon Semester, Linz, 2005.




Introduce the set

Qr:={qeQ | g(w,q)—/ Fwds Vw € Vg}.
59

Note that for q € ﬁp we have

g(v,q) = g(w + ug,q) = g(w,q) + g(ug.q) =
= / Fwds + g(ug,q) Yw € Vp.
0,

Therefore, if the variable q is taken not from Q but from the
narrower set Qf, then the Lagrangian can be written as

L(v,q) :=
1 .
~pllal? = [vidvaydx— [fvax— [ Fupds + gluo.a).

Q Q 0,Q
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We observe Note the new Lagrangian L
is defined on a wider set of primal functions v € V, but uses
a narrower set Qf for the fluxes.

The problem of finding (u,p) € V x QF such that

~

L(@,§) < L@,p) < LWU,p) VG€Qr, WeV  (9.7)

lead to is the so-called
Dual Mixed Formulation
of the problem in question (see, e.g., F. Brezzi and M. Fortin).
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From (9.7) we obtain the necessary conditions for the dual mixed
formulation. Since

L(4,4) <L(G,p) V4 € Qf,
we have

1 Py A - ey AN o~
—5 llp+An IZ - / u(div(p+An)—fu)dx— / Fug ds-+g(uo, p+An) <

Q 5,9
1 Py A . AN AN o~
-5 I ® > —/u(dwp) dx — /fudx - / Fug ds + g(ug, p),
Q Q 0,9

where A is a real number and 7 is a function in (30 = (A)F with
F = 0. Now, arrive at the relation

~ /e A2 _
—)\/(A_lp -m + u(divn))dx+Ag(ug,n) < 2/Q A"l ndx.

RICAM, Special Radon Semester, Linz, 2005.




Rewrite it as

~ s A _
/(A‘lp-n+U(d'vn))dx—g(uO,n) > 2/ A"l ndx.
Q
Q

Since A > 0 can be taken arbitrarily small, the latter relation may
hold only if

/ (A1 -7 + Gidivy)dx—g(ug, m) > 0.
Q

But n is an arbitrary element of a linear manifold 60, so that +n
can be replaced by —n what leads to the conclusion that

(& 15 1+ Givn)dx—g(un.m) = 0 ¥ € Qo
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From

L(U,p) < L@+v,p) WeV:=L%Q)

we observe that the terms of L linear with respect to the
"pressure” must vanish. Namely, we obtain

/ (Vdivp + fo)dx = 0
Q
Thus, we arrive at the system
J (A~15 -G + (diva)t) dx = g(up,q) V4 € Qo, (9.8)

[(divp +f)vdx =0 wWeV. (9.9)
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We observe that now the condition

divp+f=0

is satisfied in a "strong” (L2) sense, the Neumann type boundary
condition is viewed as the essential boundary condition, and the
relation

p=AVu

and the Dirichlet type boundary condition are satisfied in a weak
sense.

These properties of the DMM lead to that the respective finite
dimensional formulations are better adapted to the satisfaction of
the equilibrium type relations for the fluxes. This fact is important
in many applications where a sharp satisfaction of the equilibrium
relations is required.
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The Lagrangian L also generates two functionals

J():= sup L(V,§) and T1%(q) := inf L(v,q).
aeaF veVv

The two corresponding variational problems are

inf J(U) and  sup 1*(q).
veVv aeaF

They are called Problems P and P*, respectively. Note that the
functional J (unlike J) has no simple explicit form. However, we
can prove the solvability of Problem P by the following Lemma.
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Lemma

For any v € V and F € L2(029) there exists p¥ € QF such that

divp' +v =0 in Q, (9.10)
I'e* l-< Ca (V]| + IFllag) - (9.11)

Proof. We know that the boundary-value problem

divAVu' +v=0 inQ,
uw =0 onoQ,
AVu' -n=F on 5N

possesses the unique solution u¥ € Vy.
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For it and the energy estimate

I Vu* lI< Ca (V]| + [IF|lo,0)
holds. Let p¥ := AVu"Y. We have
divp¥ +v=0.
Obviously, p¥ € (A)F and, since

= / A-1(AVWY) - (AVW) dx =] Vu" 2,
Q

we find that (9.11) also holds.
O
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By the Lemma we can easily prove the coercivity of Jon V.
Indeed,

J©) > L@, 0p") =
1 P
~5 lap" I —a [ W(dive)dx- [ Fadx— [ Fuodsg(un,ap) =
Q Q 50

1 - -
=—5a’ [l IZ +l[V)? — [If][1[V]] + g(uo, ap*) — / Fupds.
0

Here |g(uo, ap”)| < o||p'|[div|/uoll1,2,2 and

1
2 : 2 2 =112
Ip¥ 13 = Ip*II2 + [[divp*|* < g, " I+ =
1 2 (11 2 5112
< g Ca (VI +IIFla,)” + VI
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Therefore

~ 1 - . .
(V) > —50*C[[V]* + al[¥[|* + ©([v]) + O,

where O(]|v]|) contains the terms linear with respect to ||v|| and
©p does not depend on V. Take o = 1/C%. Then

L 1 . .
I(v) > WIIVII2 +O(|v])) + ©g — +oo as [|[v]| — cc.
Q

It is not difficult to prove that the functional J is convex and lower
semicontinuous. Therefore, Problem P has a solution u.
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Inf-Sup condition for the dual mixed formulation

Corollary
Lemma implies the inf-sup condition

J ¢divadx + [, 5 ¥q - nds
inf  sup

Q
oc2@  aco. Allav([l12 + [|¥]13,0)12
e acar lallaiv(121% + [[415,0)

>Co>0.
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1, =N ~
—inf {5 112 vidivayex— [ fudx— [ Fuods:g(uo.d)
Q Q 5,9

1 - ~
5 Ia12 g0~ [ Fuods
(2739

provided that divq + f = 0 (in the Ly-sense). In all other cases
I*(q) = —cc.

RICAM, Special Radon Semester, Linz, 2005.




Recalling that divq = —f (in L»(€2)-sense), we find that the dual
functional for such a case has the form

~ 1 ~
I"(q) = -3 I 4> +/(Vuo q-— fuo)dx—/aQFuo ds
2
Q

N 1
— [ Vuo-adx— 5 1@ 12 ~£(w),
Q

Since q € Qr, we have

/Vw -qdx = — /(diva)wdx +/ Fwds Yw e Vy.
X0
Q Q

we see that q satisfies the relation
/Vw-adx:ﬂ(w) Yw € Vp.
Q

In other cases, 1(g) = —oc.
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Thus, Problems P* and P* coincide and are reduced to the
maximization of I* on the set Qp. This means that

sup P* = sup Pr.

Since the saddle point of L exists, we have

L(u,p) = inf P = sup P*,
but R
sup P* = supP* = inf P.
Thus, we infer that
|

inf P = inf P.
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Thus, we conclude that u € Vg + ug (minimizer of P) also
minimizes J on V.
Analogously, if p € Qg is the maximizer of Problem P*, then

/Vw-pdx:/fwdx+/ Fwds VYw e Vj.
Q2
Q Q

From here we see that divp +f =0 a.e. in Q and, hence,

/(Vw -p + (divp)w) dx = / Fwds VYw e Vp,
0
Q

thatisp € ap. Thus, p is also the maximizer of Problem P*.
The reverse statement that the solutions of P, P* are also the
solutions of P, P* is not difficult to prove as well.
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Hence, both mixed formulations have the
same solution (u, p) which is in fact the
generalized solution of our problem.

RICAM, Special Radon Semester, Linz, 2005.




Finite dimensional formulations

Let
\7h C \7, 60h C 60 th C GF

A discrete analog of the dual mixed formulation is:  Find
(Up, Pr) € Vi, X QFp such that

/ (A~15n - G+ indivan ) dx=g(uo, @) Van € Qoi9.12)

/ divp, + f)vpdx =0 Vv, € Vi (9.13)
Q
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Error analysis for DMM

First we will obtain a priori error estimates for the dual mixed
method and after that we will derive computable upper bounds for
the quantities

I V(u—=un) I, e =pnll, [[p— Pnllaiv -
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A priori error estimates for DMM

Below we will show a simple way of the derivation of projection
type error estimates for the dual mixed method. By combining
them with standard interpolation results, one can obtain known
rate convergence estimates. A detailed exposition of this subject
can be found in the above cited books.

Here, we present a simplified version, which, however contains the
main ideas of the a priori error analysis for the dual mixed
approximations.

ial Radon Semester, Linz, 2005.




For the sake of simplicity we will consider the case of uniform
Dirichlét boundary conditions and a constant matrix A. In this
case, the basic system is as follows

[ (A15-G + (divg)i) dx =0 Vg€ Qo,
Q
[ (divp +f)udx =0 Wev.
Q

Since there is no Neumann part of the boundary, 6,: and 60
coincides with Q := H(£2, div).
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In the considered, case the system of DMM is as follows

/(Alﬁh -ah+ﬁhdivah>dx:0 YGh € Qn,
Q

/(dlvﬁh + f)Vhdx =0 Wh € \7h-
Q

Assumptions.

(a) ’27, is a regular triangulation of a polygonal domain Q.
(b) Vi, = {v, € L2 |v,, € PY(T) VT € 7;,}.

(c) Qh = {an € H(Q,div) | gy € RTY(T) VT € 7,}.

(d) fe PYT), VTeT,
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Note that under the assumptions made

divp, +f =0 onany T.

Indeed, this fact directly follows from the relation

/(dlvﬁh + f)Vhdx =0 Wh S \7h-
Q

Therefore py € Qs.
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Compatibility and stability conditions

We need that one more condition be satisfied in order to provide
the stability of the discrete DM formulation. L

We assume that a pair of finite dimensional spaces V},, Qy, satisfies
the following condition:

|
For any v, € \7h exists qp € ah such that

divgy, = v, (compatibility), (9.14)
lakll < Cllvall  (stability). (9.15)
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Discrete Inf-Sup condition

From (9.14) and (9.15), it follows that

Jo vndivgy dx

inf  sup >C>0
eV q,cq, Vil llanldiv
Indeed,
di d divg) d
sup Jo vndivay dx > Jo vh “:,qh X _ [Vl . 1 |
avc@, |Vhllllandiv [vallllakllav — llanllav — v1+C2

Now, we refer to known results on the solvability of DMM, that
can be summarized as follows: if the triangulations are "regular”
and the discrete Inf-Sup condition holds, then the discrete
formulation has a unique solution.
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Projection type estimate for the dual problem

Since p is a maximizer, i.e.,
1 2 1 2
_Z < _ Y
slali=—51lel q < Qy,
we find that
/ A'lp-qdx=0 Vqe<Qy,
Q

where Qg is the space of solenoidal functions. Therefore, for any
q < Qs,

1 1 1 _
Sla-pl2=5llalZ—5lpl2 +/ A'p-(p—q)dx =
2 2 2 0

_ 1 2 1 2
=5 lalZ-5lplE.
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Let Qm = Q N Qp. Note that py, € Qp, is also the maximizer of
~3 ' am 2 on Qm, so that

1 2 1 2 1 2_ 1 2 1 2
- —p|?*== _= < = - _
> Il pn—p |5 > Il P [I% 2 I plli< 2 Il am 5 2 (N
1
=5 lam—p > Vam € Qm.

Thus, we arrive at the first projection estimate

Ip=pul-< inf [[p—aml-. (9.16)
am<€Qm
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However, this projection error estimate has an obvious drawback.
It is applicable only for a very narrow class of approximations:
conforming (internal) approximations of the set Q.

To obtain an estimate for a wider class, we first derive one
auxiliary result.
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A Modified DM problem

Take f = div(Gn — p) where G5, € Q, and solve the modified DM
problem
/ (A*Iﬁ .ah+a{,divah)dx:0 Van € Qon,  (9.17)
Q
/ (divpl. + F)ndx = 0 Vi, € Vi (9.18)
Q

Under the assumptions made fe PO(T), the above DM problem is
solvable, and

I8 12 + /Q & divpfdx — 0,

oF 12 15 (1 diuaf ~F11(F
I Pr 5= llug [l divpy || = [l [[1IF]
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From here, we observe that
= af 12 ~F 2_ 1F |111F
1lpwll® <l P X< lluplllIF]l- (9-19)

By (9.14) and (9.15) we conclude that for uf, we can find gp in Qs
such that

divgy + 0, =0 and [|Gn|| < C|laj|
Use @ in the first identity (9.17). We have,
/ (A—lﬁf, : qh+a{,divah>dx:0
Q

Thus,

12 = | Ghdivain <1 B} 111 G 1<
Q
<% I8} I Gl < € 118} I 561
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We observe that

[n ]l < €C [ Py [I- - (9.20)
Now, we use (9.19) and obtain
I B 1< 118§ 1Tl < &C I B, [I- Il
so that
Il 8%, Il < €&C|f]. (9.21)

Hence,

2

~ ~ .~ C ~

IBh11% = (18417 + [ldivh||* < (1 + c%Cz)llfllz- (9-22)
1
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We note that the estimates (9.20), (9.21), and (9.22) show that

the modified DM problem is stable, i.e. its solutions (pf,,uf) are

bounded by the problem data uniformly with respect to h.

If replace f by f, then we can derive the same stability estimate for
the functions (pp, un) that present an approximate solution of the
original DM problem.
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Projection estimates for fluxes

Now, we return to the projection error estimates. As we have seen
Ip—pnl<< inf [p—am.
am<Qm

This estimate did not satisfy us because the set Qg, is difficult to
construct. To avoid this drawback, we apply the following
procedure.

Let 17, = P}, + Gn, where Qp, is an arbitrary element of Qn.
We have,

divn, = divpl, + divgy, = —f + divg, =
= div(p — qy) + divg, = divp = —f.

Therefore, ny, € Qf
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Now, we recall the projection inequality and substitute in it n;:

~f A
e =enll<<llp=nn =l P = Ph —an [l.<
<llp—anll-+ 1 pn ll«

Note that in the case considered div(p — pn) = 0, so that

1
Ip=pnllav = llp—pnl < =l p—pnl

Therefore, by means of (9.21) we obtain

1 ~ ~
Ip = pnllaw = Z-(Ip = an [l + [ oy [|-)

1
=z Up—anl. +&C|f]).
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Thus, we arrive at the estimate

lp — Phlldiv <

1 - _ ) N ~
< a(”’ P — G [« +C2C|/div(p —@n)[|) Van € Q.
and, therefore,

Ip = pullav < Cp inf {1 p—Gin I +lldiv(p —Gn)l[}. (9.23)

dn<€Qn

where (_:p depends on C, €y, and & and does not depend on h.
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Projection type error estimates for u — uy,

We have

/ (A*lﬁh -ah+ﬁhdivah)dx:0 Yan € Qn.
Q
Since ah C Q, we also have
/(Alp : ah+udivah)dx:0.
Q

From here, we observe that

/(A_l(ﬁh —P) - Gn+(up — U)divah)dxzo Y € Qn.
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Denote

1 .
lr = /T udx,  [uln(x) = [ur, if xeTi

Since divq, is constant on each T;, we rewrite the relation as
follows:

/ (A (B — p) - @i+ (@ — [ulu)divn )dx =0 Vaiy < Qu.
Q

Note that [u], € \7h and @iy, :=up, — [u]y € \7h Now, we exploit the
compatibility and stability conditions (9.14) and (9.15) again. For
i, one can find q;, € Qp such that

diva, + Gn = 0 and |lap| < C|lan]l-
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Let us use this function qj, in the integral relation. We have

[ (8@~ p)- iy v, dx—0.
Q

From here, we conclude that

]2 ]/ B ) -ah| <
<l 8w~ p Il @ ll-< C& I B —p Il .
Thus,

[Th]| = [[[u]ls —Un]| < CE2 [P0 —p |+
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Since

[Ju =g < [Ju—[u]n]| + [[u]n — un]| <
< lu—[ulal +CC2 [ Pn —p |-

Note that by the definition of [u]y
lu—[ulall < lu—vn|  Yvy € Vi
From here, we observe that

Ju—Gnll < CE | Bo—p I + inf [lu—va
VhEV)

Recall that

I'p—pn <l p—@n Il + Il B, lI-<
I P —an ||« +€2 C|/div(p — gn)l|.
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Then, we arrive at the projection type error estimate for the primal
variable

lu—an| <

< Cu_inf {1l p—Gn Il +|div(p — @)+
an<eQn

+ inf flu— v}, (9.24)
VhEVh

where C, depends on C,C;1, and € and does not depend on h.

Estimates (9.23)) and (9.25) lead to a qualified a priori convergence

estimates provided that the solution possesses proper regularity.

RICAM, Special Radon Semester, Linz, 2005.




A posteriori estimates for the primal mixed formulation

Further analysis follows the lines of the paper

S. Repin and A. Smolianski, A Functional-type a posteriori error
estimates for mixed finite element methods. Russian J. Numer. Anal.
Math. Modelling 20 (2005), no. 4, 365-382.

A posteriori estimates for the mixed formulation are based on the
relation that we have already derived:

e —all+ 1 V(u—v) = 2(J(v) - I*(a)), (9.25)

where g € Qg and v € Vg + ug.
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Since the difference of the functionals in the right—hand side can
be estimated by the known way, we arrive at the estimate

e —al + 1l V(u—v) |>< 2(1 + 5)D(Vv,y)

1 .
+ (1 + ﬂ) c? (Hdlvy + sz +y-n-— FH%29> , (9.26)

where y € (AQJF, q € Qg and v € Vg + g are arbitrary functions and
[ is any positive number.
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Thus, for the error in the primal variable we have

I V(u —un) 2< 2(1 + 5)D(Vun, y)

1 .
; <1 T ﬁ) C (|ldivy + 2+ [ly -n — Fl3,0) - (9:27)

where C is a constant in the inequality

2 2 2 2
Iw[|® + [[wllge < C | Vw || Yw € V.
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A posteriori estimate for the dual variable

By using the general estimate derived in Lecture 4, we find that

e —pn ll.< V2DY2(Vv, y)+ |y —p |-
1/2
+2C (|/divy + f12 + [ly -0~ F[2) 7" (9.28)

Here v is an arbitrary function from Vg + ug and y is an arbitrary
function from Q*. If y = AVu and v = u, then the right-hand
side of (9.37) coincides with the left-hand side, i.e. is exact in the
sense that there exist such "free variables” that the inequality

holds as the equality.
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A directly computable upper bound of || p — py, ||« is given by
(9.37), if we set

v=uh, and y=Gnpn,

where G, : Qp — 6* is a certain projection operator (some
examples such operators has been already discussed in the previous
lectures).

We have

I p— ph < V2DY2(Vun, Gupn)+ || Gnbh — P |+

) 1/2
+2C (Hdlvghph + €2+ [|Gnpr -1 — F|]2> .
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Projection from Q;, onto Q*

If pn is a piecewise-constant vector field on a simplicial mesh 7,
then, Raviart-Thomas elements (e.g., RT%-elements) can be used
in order to define the mapping G.

Assume that the Q has a polygonal boundary, and the latter is
exactly matched by the triangulation 7. Let T; and T; be two
neighboring simplexes with the common edge E;;. Let q, be a
piecewise constant vector-valued function that has the values q;
and gj on T; and T; respectively. Let E;j be the common edhge
with the unit normal nj; oriented from T; to T; if i > j.

How to define the common value q;; - nj; on E;?

RICAM, Special Radon Semester, Linz, 2005.




One possible option is as follows:

~ 1
aij - mij = 5(ai +ay) - g,
Another option is

G — LG Tilag
R T T

where |T;| and |T;| are the areas of T; and T;. We repeat this
procedure for all internal edges of 7.
If Eip € 0192, then we set qjg - Nig = qip - Njp. If Ejp € 0292, then

. 1 /
gio " nio = = [ Fds.
[Eio| JEg

Here |Ejp| is the length of the edge E;p.
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Thus, all the normal components q;; - njj on internal and external
edges are defined. By prolongation inside all T;, with the help of
RTy-approximations we obtain the function a piecewise affine
function, which has continuous normal components at all the edges
and piecewise constant normal components on 9.

Therefore, we, in fact, have constructed a mapping qn — qp such
that

ah = 0nan € QT .
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A posteriori estimates for DMM

An a posteriori estimate for the flux pp, readily follows from the
general estimate

1 1
1 2 * 2
slhy—plls <147y <1—|—+) £+ Ny ]°+

+(1+ ) (1 + }y) D(Av,y).

that we have derived in Lecture 5. We set y = pn € Q*. Since pj,
is a piecewise polynomial function, it has a summable trace on
028, Then, we estimate | £+ Ay | from above in the same way
we did it in Lecture 6. Minimization with respect to v and 3 leads
to the estimate
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1P~ Bn < V2ZDY3(Vv.B) + (9.29)
L R 1/2
+2C (|ldivpn + F2 + [P -n — F3,0) .

where v is an arbitrary function from Vg + ug.
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For the sake of simplicity we assume that €2 is a polygonal domain
decomposed into a regular collection of simplexes. If py, is
constructed by means of RTg-elements, then

/ (divpy + f)wpdx =0 Yw, € V, C V, (9.30)
Q

where the subspace V), contains piecewise constant functions.
Therefore, on each element T;

. 1
divp, = _|T/T fdx. (9.31)
! i

Let us define by [f] the function that belongs to V}, and whose
values on T; coincide with the mean values of f on T;. Then, we
have

divp, = —[f] onevery T;.
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Remark. We observe that estimate (9.30) is valid for any
approximate flux py from Q*. If Py were in the narrower set Qp
(as it is supposed to be in the discrete dual mixed method) the last
norm in (9.30) would be identically zero.

It cannot, however, be expected, when py, is constructed in the
space RTy, unless the function F is a constant on 0€2.
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The problem of taking into account the essential boundary
condition for the flux variable

p-n=F on 0,Q

in the dual mixed method is not easy and, usually, leads to a
non-conforming approximation py, (see, e.g.,

I. Babuska and G. N. Gatica, On the mixed finite element method with
Lagrange multipliers. Numer. Meth. Partial Diff. Eq. 19(2) (2003),
192-210 ).

Since (9.30) still works for such approximations of the flux, we
propose a simple modification of the discrete dual method,
particularly suited for the lowest-order Raviart-Thomas
approximation.
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Namely, instead of requiring pn € (AQF, we impose a weaker
condition

~ 1
. = — F . 2
P A, |Eio /E;o ds (9-32)

on every edge Ejp € 3,€2. The space of test functions 60h - (AQO
will obviously consist of the RTg-approximations qy, such that
gh - n = 0 on each edge Ejp € 0,9Q.
If now we denote by [F] the piecewise constant function defined on
the set of edges forming 9,2 and whose value on every edge
Eio € 3292 is equal to the mean value of F on that edge, we can
write that pp, - n = [F] for all Ejg € 9.
As a result, we obtain from (9.30)

1/2
Il p—Bn Il.< V2D2(Vv, Bu)+2C (|If — [f]2 + |IF - [Fl|,0)
(9.33)
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The question that now arises is how to choose in (9.33) the
functign v € Vg + ug. The simplest way is to use the function
up € V), available from the solution of the discrete dual mixed
problem and to construct a suitable projection operator

Pn : Vh — Vo + ug. Again, the projection can be easily
accomplished with a simple averaging.

Projection from \7h onto Vj + ug.
In order to find v € Vg + up, it is sufficient to find w € Vg in the
representation v = w + ug (the function ug is given). Using the
computed piecewise-constant function up,, we define wy, € Vj as
follows.
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wh(xg) = =2 — up(x) (9.34)

for any internal node xx and when x, € 9»€. Here Tgk), s =1,Ny,
are the elements containing the vertex xi, and we have assumed
that the function ug has a sufficient regularity, so that its point
values are defined.
If the node xx € 0192, we simply set wy(xx) = 0.
Thus, using the nodal values of wy, and the piecewise-linear
continuous finite element approximation on the mesh 7y, we define
the function

Wp + ug = Prup € Vg + ug .
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Hence, from (9.33) one obtains

Cillp — ol <l p —pn [1+<
1/2

V2D2(V(Pyiin), Bn) + 2C (|If — [F]|2 + |IF — [Fll3,0) ",
(9.35)
which, together with the obvious relation

[div(p —pn)l| = || — F — divpn|| = [If — [f]]

leads to the upper bound for ||p — Pn||div:
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Let (u,p) € V x Qf be the exact solution of the dual mixed
problem and (up, ph) € Vh X QFh the solution of the discrete dual
mixed problem with QFh being the Raviart-Thomas space RTO.
Then, the following estimate holds true:

1P — Phllaiv <
| AV(Prtn) — pn [l +(2C + 1)[If — [f]]| + 2C||F — [F]||a,0,
(9.36)

where Py Vp — Vo + ug is the projection (averaging) operator
introduced above and [f| and [F] are the averaged functions.

Remark. The first and the second terms in (9.36), being
computed elementwise, can serve as local error indicators.
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A sharper estimate can be obtained by the minimization of the
Majorant with respect to v. Here, we can restrict ourselves to
certain subspace V4, i.e.,

1P — Phllaiv <
Vhigf,h I AV(vh) —Pn [l +(2C + 1)[If — [f]]| + 2C|[F — [F]|[s,0 -

(9.37)
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By (9.28) we can also the squared norm of the error of the
averaged solution Pnuy, using the computed flux approximation pp:

| V(u— Patin) [|2< 2(1 + 3)D(V(Pntin). Ph)

1 2 2 2
T (1 " 5) C2([f — (712 + |IF ~ [FlI%,q). (9.38)

where 3 > 0 is an arbitrary number that can be used to minimize
the right-hand side of (9.38) and to obtain the estimate for the
norm of the error.

A sharper estimate may be obtained, if one spends some time on
the minimization of the right-hand side of (9.38) with respect to
the dual variable y over some finite-dimensional subspace of Q.
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Remark.

If one has the solutions of both the primal and the dual mixed
problems, the flux approximation py can be substituted into (9.28)
to immediately yield the error estimate for the primal variable
(which is the most important in the primal mixed method), while
the approximation uy, can be used in (9.360) to bring the error
estimate for the dual variable (which is the most important in the
dual mixed method).
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Lecture 10.
A POSTERIORI ERROR ESTIMATES FOR ITERATION
METHODS
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Banach fixed point theorem;

Two-sided error estimates by A. Ostrovski;
Advanced two-sided estimates;

Applications to matrix equations;

Positivity methods and a posteriori error bounds.
Applications to integral equations;

Applications to ordinary differential equations.
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Fixed point theorem

Consider a Banach space (X, d) and a continuous operator

T X=X

Definition

A point x@ is called a fixed point of T if
X = ‘IX@. (10.1)

Approximations of a fixed point are usually constructed by the
iteration sequence

X = Txq i=12 ... (10.2)
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Contractive mappings

Two basic tasks:
(a) find the conditions that guarantee convergence of x; to xg),
(b) find computable estimates of the error e; = d(x;, x@).

These problems possess solutions provided, that ¥ is subject to the
following additional condition.

Definition
An operator ® : X — X is called g-contractive on a set S C X if
there exists a positive real number g such that the inequality

d(Tx, Ty) < qd(x,y) (10.3)

holds for any elements x and y of the set S.
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(11 W] %) . = [ Wi 1] 1| 10 (NN

Stefan Banach

Theorem (S. Banach)

Let ¥ be a q-contractive mapping of a closed nonempty set S C X
to itself with q < 1. Then, ¥ has a unique fixed point in S and the
sequence x; obtained by (10.2) converges to this point.
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Proof. It is easy to see that

d(xit1, %) = d(Txi, Txi—1) < qd(xi, xi—1) < ... < g'd(x1, Xo).
Therefore, for any m > 1 we have

d(Xitm, xi) <
< d(Xism; Xiym—1) + d(Xigm—1, Xiym—2) + ... + d(Xis1, %) <
<q@" 1+ 2+ .. +1)d(x1,x0) . (10.4)
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Since

m-1
qk S i 9
k= 1-q
(10.4) implies the estimate

i

d(Xi1ms Xi) < l%ld(xl,xo). (10.5)

Let i — oo, then the right-hand side of (10.5) tends to zero, so
that {x;} is a Cauchy sequence. It has a limit in y € X.
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Then, d(x;,y) — 0 and
d(Txi, Ty) < qd(xi,y) — 0

so that d(¥x;, Ty) — 0 and Tx; — Ty. Pass to the limit in
(10.2) as i — +o00. We observe that

Ty =y.

Hence, any limit of such a sequence is a fixed point.
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It is easy to prove that a fixed point is unique.
Assume that there are two different fixed points x%) and x2®, i.e.

k k
‘ZXG = x@a k = ]., 2
Therefore,
d(xb,x%) = d(Txd), Tx3) < qd(xb), %) .

But g < 1, and thus such an inequality cannot be true.
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A priori convergence estimate

Let
ej = d(xj, xp)
denote the error on the j-th step. Then
e = d(Txj_1,Tx@) < qej_1 < qep.

This estimate gives a certain presentation on that how the error
decreases. However, as we will see later, this a priori upper bound
may be rather coarse.
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A posteriori estimates

The proposition below furnishes upper and lower estimates of e;,
which are easy to compute provided, that the number q (or a good
estimate of it) is known.

Theorem (A. Ostrowski)

Let {xj}{2y be a sequence obtained by the iteration process (10.2)
with a mapping ¥ satisfying the condition (10.3). Then, for any
xj, j > 1, the following estimate holds:

: 1 - q
ML = Trqatts, %) <& < M, = - g0 %i-306)
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A. Ostrowski

A. Ostrowski. Les estimations des erreurs a posteriori dans les procédés
itératifs, C.R. Acad.Sci. Paris Sér. A-B, 275(1972), A275-A278.
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Proof. The upper estimate in (10.6) follows from (10.5)). Indeed, put
i =1 in this relation. We have

d(x14m,x1) < ﬁd(xl,xﬂ)-

Since X11m — X@ as m — +o00, we pass to the limit with respect to m
and obtain

d(xg,x1) < ﬁd(xl,x()).

We may view xj_1 as the starting point of the sequence. Then, in the
above relation xg = xj_1 and x; = x; and we arrive at the following upper
bound of the error:

d(x@,xj) < %qd(xjij—ll

1
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The lower bound of the error follows from the relation

d(xj, xj-1) < d(xj,x@) + d(xj-1,xe) < (1 + @)d(xj-1,Xe),
which shows that
d(xj-1,xe) = Lﬂl(XJan—l)-
1+q
Note that

ij@ _ Q(1+Q)d(xjaxj71) 1+q
M 1-q d(xj+1,xj) 1-q

we see that that the efficiency of the upper and lower bounds given
by (10.6) deteriorates as q — 1.
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Remark. If X is a normed space, then

d(xj+1,%) = [IROx)I

where
R(Xj) = ‘ZXJ' — Xj
is the residual of the basic equation (10.1). Thus, the upper and
lower estimates of errors are expressed in terms of the residuals of
the respective iteration equation computed for two neighbor
steps:
1

q
itq IR < € = d(x5,x@) < 1-gq IR(xj-1)]| -
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Corollaries

In the iteration methods, it is often easier to analyze the operator
T=T"=TT..T
——
n times
where T is a certain mapping.
Proposition (1)

Let T:S — S be a continuous mapping such that ¥ is a q-contractive
mapping with q € (0,1). Then, the equations

x = Tx and X = XX

have one and the same fixed point, which is unique and can be found by
the above described iteration procedure.
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Proof. By the Banach Theorem, we observe that the operator ¥
has a unique fixed point £,
Let us show that £® is a fixed point of T, we note that

Téo = T(Tp) =TT =
= T‘I‘£ TOFNe, =T TE,. (10.7)

Denote xg = T&. By (10.7) we conclude that for any i
T¢o = T'xo. (10.8)

Passing to the limit on the right-hand side in (10.8), we arrive at
the relation T¢g = £, which means that £ is a fixed point of
the operator T.
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Let x@ be a fixed point of T. Then,

Xo=Txg=..=T"%s = TXp

and we observe that xg is a fixed point of T. Since the saddle
point of ¥ exists and is unique, we conclude that

X@Z)?é.

Remark. This assertion may be practically useful if it is not
possible to prove that T is gq—contractive, but this fact can be
established for a certain power of T.
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Advanced two-sided a posteriori estimates

Advanced two-sided a posteriori estimates

We can derive more accurate bounds of errors if we use more terms of
the sequence {x;}.
Indeed,

d(xj,xe) < d(xj,Xj+1) + d(xXj+1,X@) <

S d(Xj,Xj+1) + 71 9 d(Xj,Xj_;,_l)7
-q
and we obtain another upper bound
1
d(xj, x@) < ﬂd(xjaxjﬂ). (10.9)

It estimates the error on j-th step by xj and Xxj;1.
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(11 W] %) . = [

Advanced two-sided a posteriori estimates

Which bound is sharper: (10.9) or Mj@?
Since
1 q

md(xjaxjﬂ) =

1 _ qd(xj*:l?)(j)7

we observe that this bound is sharper than Mj@.

Obviously, (10.9) can also be applied to any subsequence of {x;}. For
example, we can take {xg}, s = 0,1,2... with some fixed £. In this case,
we obtain various upper bounds of d(x;,x@) computed on the basis of
some terms of the sequence {x;}:

: 1
L.
d(Xj,X@) < MJ69 = 1_ qld(xj7xj+£)'

Note that the right-hand side of this estimate tends to d(xj,x@) as
£ — +00o. Thus, for a sufficiently large £ the bound will be accurate even
if q is close to 1.
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Advanced two-sided a posteriori estimates

The lower estimates can be improved by similar arguments. We have the
estimate

d >Mit - g

(xj,x) = M = 1+q¢ (%}, Xj+e)

whose right-hand side also tends to the exact value of the error as
£ — +o0.
Let L be a given number that indicates the number of successive elements
used in the evaluation of error bounds for x;. Compute the quantities

_. 1
Mt = ——d(x;, X; } 10.10
4 z_if’z‘,’.il{uqe (. %512) (10.10)
_. 1
L. :
MJ@ = [:]Irlzfuj_ {l—ql d(Xj7 Xj+e)} . (1011)

These upper and lower bounds are the sharper, the greater is L.
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Advanced two-sided a posteriori estimates

Another sequence of upper bounds follows from the relation

d(xj, x@) < d(xj, Xj+1) + d(xj41,x@) <

: 1
< MEP (x5, %511, %j42) = d(x,Xj 1) + fqd(xj+1,xj+2)- (10.12)

1

Note that

Mjﬂéz S d(Xj,Xj+l) + ﬁd(xj‘7xj‘+l) =
= id(x- Xj11) = ML
1— q 12 D

Similarly, we can obtain lower bounds of the error computed by x;j, xj+1,
and Xjyo.
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Iteration methods for bounded linear operators

Consider a bounded linear operator £ : X — X, where X is a Banach
space. Given b € X, the iteration process is defined by the relation

Xj = ﬁXj_l + b. (1013)

Let xg be a fixed point of (10.13) and
___________________________________________________________________________|

£l =aq< 1.
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By applying the Banach Theorem it is easy to show that

{XJ} — X@.
Indeed, let X; = x; — x@. Then
)_(j = ﬁXj,1 +b-— Xe = £(Xj,1 - X@) = [:)_(j,ﬁlo.lll-)

Since
0x = L 0x,

we note that the zero element Ox is a unique fixed point of the
operator L.
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Therefore, we have an a priori estimate

Ixj — x@llx = 1% — Ox[lx <

oo g
< — = —_— .
< IR - Tollx = 1RG0k (105)

and the a posteriori one
q
HXJ' - XG)HX < ﬁ HR(Xjfl)ny (10.16)

where R(z) = Lz + b — z is the residual of the functional equation
considered.
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By applying the general theory, we also obtain a lower bound of
the error

1

1
Ixi —xollx = 774 X1 = xillx = 375 IRCOI - (10.17)

Hence, we arrive at the following estimates for the error in the
linear operator equation:

1-q
q i = xollx < [R(xj-1)lx < (1 +a)[[xj-1 — xellx -

Advanced estimates that provide sharper bounds can be easily
obtained by applying (10.10) and (10.11).
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Iteration methods in linear algebra

Important applications of the above results are associated with
systems of linear simultaneous equations and other algebraic
problems. Set X = R" and assume that L is defined by a
nondegenerate matrix A € M"*" decomposed into three matrixes

A=A;+Aq+ A,

where Ag, A, and Aq are certain lower, upper, and diagonal
matrices, respectively.
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Iteration methods for systems of linear simultaneous equations associated
with A are often represented in the form

Xi — X

B =1L Axig =F. (10.18)
T

In (10.18), the matrix B and the parameter 7 may be taken in various
ways (depending on the properties of A). We consider three frequently
encountered cases:

(a) BZAd,
(b) B=Aq+A,,
(c) B=Ag+whAy, 7=w.

For 7 =1, (a) and (b) lead to the methods of Jacobi and Zeidel,
respectively. In (c), the parameter w must be in the interval (0,2). If
w > 1, we have the so-called "upper relaxation method”, and w < 1
corresponds to the "lower relaxation method".
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The method (10.18) is reduced to (10.13) if we set

L=1-7B'A  and b=7B1f, (10.19)

where T is the unit matrix. It is known that x; converges to x@
that is a solution of the system

Axg =f (10.20)

if an only if all the eigenvalues of L are less than one.
Obviously, B and 7 should be taken in such a way that they
guarantee the fulfillment of this condition.
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Assume that ||£|| < q < 1. In view of (10.15)-(10.17), the
quantities

M = a(l- ) R(xi1)]), (10.21)
MY = g(1—a) ! [R(xo)], (10.22)
ML= (1+a) RG] (10.23)

furnish upper and lower bounds of the error for the vector x;. The
validity of them is demonstrated with an example below.

It is worth noting that from the practical viewpoint finding an
upper bound for ||£|| and proving that it is less than 1 presents a
special and often not easy task.
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Remark. If q is very close to 1, then the convergence of an iteration
process may be very slow. As we have seen, in this case, the quality of
error estimates is also degraded. A well-accepted way for accelerating the
convergence consists of using a modified system obtained from the
original one by means of a suitable preconditioner P~! and solving the
system

(P7'A)x =P~ If

with a smaller condition number. Of cause, the best preconditioner is the
unknown matrix A=, Therefore, a preconditioner is often constructed
from the parts of A that are not difficult to invert (e.g., in the simplest
case it is taken as the matrix inverse to the diagonal part of A). This
iteration technique is well presented in the literature: see, e.g.,

O. Axelsson. lterative solution methods. Cambridge University Press,

Cambridge, 1994.
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Examples

Consider the problem Ax = f for a symmetric matrix A with
coefficients a;; = 0.8/ij if i # j and a;; = i. The system is solved by
the method

xit1 = (I-7B7'A)x + 7B~ F

with B = Ap and x9 = {0,0,...0}.
In this example n = 200, gq= 0.662, and 7 = 0.760. The values of
the error and the estimates are presented below.
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i M [e] My, YV
1 .187145E+03  .412471E-+03 .245893E-+04 .245893E-+-04
2 452820E+02 .104019E+03 .610732E+03 .162904E-+04
3 .123433E+02 .311517E+02 .147774E+03 .107924E-+04
4 405504E+01 .116679E-+02 .402813E+402 .714995E+4-03
5 .166633E+01 .517711E+01 .132333E+02 .473684E+03
6 767379E+00 .244532E+01  .543792E+01 .313815E+03
7 .366283E+00 .117450E+01 .250428E+401 .207902E+03
8 .176340E+00 .566166E+00 .119533E+401 .137735E+03
16 .515722E-03 .165576E-02 .349042E-02 .511127E+01
17 .248671E-03 .798371E-03 .168302E-02 .338621E+01
18 .119903E-03 .384956E-03 .811515E-03 .224336E+01
19 .578146E-04 .185617E-03 .391295E-03 .148623E+01
20 .278769E-04 .895001E-04 .188673E-03 .084624E+00
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Figure: A priori and a posteriori estimates for an iteration process:
1-My, 2-|e|, 3-M, 4—Mg§.
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Positivity methods and a posteriori error bounds.

In some cases, one can obtain two-sided estimates for each
component of a solution. The respective methods can be viewed as
a simplest example of the so—called positivity methods widely used
in the analysis of differential equations.

Let x@ be a solution of the system of linear simultaneous equations

x@ = Axg +f,
where
A =A% —A°
and
A° = {a?} e M™" a? >0,

A® = {aj} e M™", a’ >0
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We may partially order the space R" by saying that x <y if and
only if x; <vyjfori=1,2 ..n.
Assume that the vectors x(? and xae are ordered such that

o ®
Xp gx@gxo.

The vectors xi and x; are considered as the initial guesses for the
bounds of the solution components.
Compute x1e and xiB by the relations

xle = AEBXOe — Aexg9 + f,
xiB = A@xg9 — Aexoe + f.
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It is easy to see that

xle —XE = A@(x? —-X@) — Ae(xg9 —x@) <0,
xi —xg = A%(xg — x@) — A®(x§ — x@) > 0.
Hence,

xle <Xxp < x?.

and we observe that xle and x? also give componentwise bounds
for the exact solution.
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Quite similarly, we observe that the subsequent elements of the
iteration process

O  _ ADO O D
X = AP — Ax +f
x%l = A@XE9 — A@xk6 +f,
possess the same properties. Therefore, for the ith component we
find the following two-sided bounds:
|

e) - ®
max X: < (x@): < min (x. ) .
j=0,1,...k+1 ( 1 /i— ( ®)’ ~ j=01,.k+1 \ 3/
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Similar methods can be applied to functional equations, provided
that the operator A is presented as the sum of

A% and (—A°)

which are certain monotone operators defined on a partially
ordered space:

see, e.g.,

L. Collatz. Funktionanalysis und numerische mathematik.
Springer-Verlag, Berlin, 1964.
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Applications to integral equations

Many problems in science and engineering can be stated in terms of
integral equations. One of the most typical cases is to find a function
x@(t) € Cla, b] such that

b
xp(t) = A/ K(t,s)xg(s)ds + f(t), (10.24)
a
where A > 0, K (the kernel) is a continuous function for
(x,t) eQ:={a<s<b, a<t<b}
and
|K(t,s)| < M, v(t,s) € Q.

Also, we assume that f € CJa, b].
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Let us define the operator ¥ as follows:

b
y(t) = Tx(t) = A / K(t, x)x(s) ds + f(t) (10.25)

and show that ¥ maps continuous functions to continuous ones.
Let tg and to + At belong to [a, b]. Then,

ly(to + At) — y(to)| <
<A /b K(to + At s) — K(to, s)|[x(s)] ds+
+ |f(to + At) — f(to)|.

Since K and f are continuous on the compact sets Q and [a, b],
respectively, they are uniformly continuous on these sets.
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Therefore, for any given € one can find a small number § such that

If(to + At) — f(tg)| < e

and
|K(to + At,s) — K(to,s)| <&,

provided that |At| < 4.
Thus, we have

¥(to + At)  y(ta)| < [Ne(lxllb — al max [x(s)| +1) = Ce.

and, consequently, y(tg + At) tends to y(tp) as |At| — 0.
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T : C[a,b] — CJa, b] is a contractive mapping. Indeed,

d(Tx, Ty) = max [Tx(t) - Ty(t)| =

= maxX

b
a<t<b /\/a K(t,s)(x(s) — y(s)) ds| <

< IAIM(b — ) max [x(s) ~y(s)] = |AIM(b — a)d(x.)

so that ¥ is a q-contractive operator with

q = [A|M(b — a), (10.26)
provided that
1
_— . 10.2
N < S =2 (10.27)
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Numerical procedure

An approximate solution of (10.24) can be found by the iteration
method

b
xj+1(t) = )\/ K(t,s)xi(s) ds + f(t). (10.28)

If (10.27) holds, then from the Banach theorem it follows that the
sequence {x;} converges to the exact solution.
We apply the theory exposed above and find that the accuracy of

X; is subject to the estimate

b
141rq . K(t,s)(xiy1(s) — xi(s)) ds <
b
< o Is(t) —xo(®) < 77 / K(t, $)(xi(s) - xi_1(s)) ds.

(10.29)
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Applications to Volterra type equations

Consider the fixed point problem

t
xo(t) = A / K(t,s) xo(s) ds + f(t), (10.30)
where
Kts) <M,  V(ts)eQ
and f € Cla, b].
Define the operator T as follows:
t
Tx(t) = A / K(t,s)x(s) ds + F(t).
Similarly, to the previous case we establish that

d(Tx, Ty) < |AIM(t — a)d(x,y).
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By the same arguments we find that

_ a\n
d(Tx, ) < e =gy,

n!
Thus, the operator ¥ := T" is q-contractive with a certain q < 1,
provided that n is large enough.
In view of Proposition 1, we conclude that the iteration method
converges to X and the errors are controlled by the two—sided
error estimates.
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Applications to ordinary differential equations

Let u be a solution of the simplest initial boundary-value problem

Y ot u(t), u(to)=a (10:31)

where the solution u(t) is to be found on the interval [to, t1].
Assume that the function ¢(t, p) is continuous on the set

Q:{toﬁtgtl, a—A§p§a+A}
and

lo(t, p1) — @(t,p2)| < Llp1 —p2|, Y(t,p) € Q. (10.32)
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Problem (10.31) can be reduced to the integral equation

ut) = /tt (s, u(s)) ds + a (10.33)

0

and it is natural to solve the latter problem by the iteration method

uj(t) = /t ¢(s,uj—1(s)) ds + a. (10.34)

0

To justify this procedure, we must verify that the operator

Tu = /t ©(s,u(s))ds + a

0

is g-contractive with respect to the norm

lul| := max |u(t)]. (10.35)

te[t07t1]
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We have

|Tz - Tyl = max / (¢(s,2(5)) — (s, y(s)) ds| <

te(tg,t1]
t1
max / |z(s) s)|ds < L/ |z(s) — y(s)|ds <
tE[tg,tl] to to
< L(t1 —to) max [z(s) —y(s)| = L(t1 — to)llz — yl|-
SE[ o,tl]
We see that if
tp <to+L7% (10.36)

then the operator ¥ is q-contractive with

RICAM, Special Radon Semester, Linz, 2005.




Therefore, if the interval [tg, t1] is small enough (i.e., it satisfies
the condition (10.36), then the existence and uniqueness of a
continuous solution u(t) follows from the Banach theorem. In this
case, the solution can be found by the iteration procedure whose
accuracy is explicitly controlled by the two—sided error estimates.

For a more detailed investigation of the fixed point methods for
integral and differential equations see

A. N. Kolmogorov and S. V. Fomin. Introductory real analysis. Dover
Publications, Inc., New York, 1975.

E. Zeidler. Nonlinear functional analysis and its applications. I.
Fixed-point theorems. Springer-Verlag, New York, 1986.
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Lecture 11.
A POSTERIORI ESTIMATES FOR VARIATIONAL
INEQUALITIES
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m Variational inequalities. Background;

m Deviation estimates for variational inequalities;

Obstacle problem;

m Functional type a posteriori estimates for problems with
two obstacles;

Examples;

Elasto-plastic torsion problem;
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Variational inequalities

Variational inequalities provide a mathematical description of a
vide spectrum of nonlinear boundary—value problems that arise in
various applications (see, e.g., G. Duvant and J.-L. Lions. Les
inequations en mecanique et en physique, Dunod, Paris, 1972. )

First we establish the relationship between variational
inequalities and certain variational problems. Consider the
functional

J(v) = Jo(v) +j(v),
where Jg : V — R is a convex, continuous, and

Gateaux-differentiable functional and j(v) : V — R is a convex and
continuous functional.
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Let K be a convex closed subset of a reflexive Banach space V.
Consider the following problem: find u € K such that

J(u) = JQ&J(V), J(v) = Jo(v) +j(v). (11.1)

Hereafter, we assume that J is coercive on V, so that the above
problem has a solution u.
Moreover, the minimizer satisfies the relation

(Jo(u),u—v) +j(u) —j(v) <0 Yv e K (11.2)

Theorem (1)
Relations (11.1 ) and (11.2) are equivalent.
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1. Let(11.1) holds, i.e.

Jo(v) +j(v) > Jo(u) +j(u) WWweK.

Take v=u+ A(w—u), we K, X €]0,1].
Then

Jo(u+ A(w —u)) —Jo(u) +j(v) —j(u) >0 Yu € K.
By the convexitity of j we have

i(v) =j(u+AMw—u)) =j(Aw + (1 - A)u)
< Aj(w) + (1 = A)j(u).
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Passing to the limit as A — 0 we obtain

(Jo(u),w —u) +j(w) —jlu)y >0  vweK.
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(11 W] %) . = [ 4 1] (1) NI [

2. Assume now that (11.2) holds For a convex functional Jg we
have the relation

Jo(v) > Jo(u) + (Jp(u),v —u).

Since
(Jo(u),u—v) +ju) —jlv) <0  WeK
and
(Jo(u),u —v) > Jo(u) — Jo(v)
we find that

—Jo(v) + Jo(u) +j(u) —j(v) <0 WeK,

what means that




Variational inequalities can be regarded as Euler’s equations to
certain convex variational problems with nondifferentiable
functionals defined on convex subsets. If the nondifferentiable part
of such a functional vanishes and the set coincide with the whole
space, then the respective variational inequality converts to a
variational equality (integral identity). However, in many
practically interesting problems it is impossible to define a
mininimizer throughout an integral identity. This fact stimulated
the development of the theory of variational inequalities and their
numerical analysis (see, e.g.,

R. Glowinski. Numerical methods for nonlinear variational problems.
Springer-Verlag, New-York, 1982.
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Obstacle problem. Introduction

Let Q be a bounded domain in R" (n = 1,2) with L—continuous
boundary 02 and

f e Lz(Q),
e e H}(Q), ¢(x) < 00n Q.

" Admissible” functions belong to the set
Ky ={veV |v(x) > p(x) a.ein Q},
where

V:={ve HY(Q) | v=0o0n0Q}.
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Let

a(u,v) ::/ Vu - Vvdx,
Q

(u,v) ::/Q uv dx.

Then, the problem has a variational form

Problem P. Find u € K, such that

J(u) = inf J(v),

veK,

J(v) = %a(v,v) — (f,v)
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Physical interpretation

This problem can be interpreted as the one for an elastic
membrane deformed at the neighborhood of an obstacle ¢(x).

OBSTACLE

9
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Existence of a minimizer

Theorem (Lions — Stampacchia)

Under the above assumptions Problem P possesses a unique
solution u.

Problem P is, in fact, a free boundary problem:

Q = Q, U coincidenceset
where

Q, = {x € Q| u(x) = p(x)}
and

Q= {x €2 | u(x) > p(x)}
Minimizer u satisfies the variational inequality

a(u,v—u) > (f,v—u) We K.
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If u is sufficiently regular, then directly from the variational
inequality we derive the following relations that must hold for the
solution:

Au+f=0 on S,
Au+f<0 u>ep a.e.in Q,
(Au + f)lu—¢p) =0 a.e.inQ,
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Regularity estimates for obstacle problems

In the papers by H. Brezis, D. Kinderlehrer, H. Lewy,
G. Stampacchia and others, it was shown that

|
If f € Ly and o € H?(RQ) then u € H3(Q).
Moreover, if f € C}(R), Q is a bounded domain with smooth

boundary, and ¢ € C? than the respective solution possesses
second derivatives bounded in L.
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Coincidence set

If Q@ C R? is strictly convex with smooth boundary and if ¢ € C?
is strictly concave, then the coincidence set is connected and its
boundary is smooth and homeomorphic to the unit circle.

In general, for any € one can point out such an obstacle ¢ that
Q2 has any number of disjoint subsets.
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Summary

m Problem P is related to a variational inequality.

m The coincidence set QLP is unknown a priori, so that a solution
has a free boundary.

m Solutions of Problem P have a bounded regularity even for
smooth external data (in the best case scenario the second
derivatives are summable, but the third ones are only
distributions).
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A priori convergence estimates

A priori convergence estimates for problems with obstacles were
derived in:

R. S. Falk, Math. Comp. 28 (1974),

U. Mosco and G. Strang, Bull. AMS 80 (1974),

F. Brezzi, W.W. Hager, P.A. Raviart, Numer.Math.28(1997)

It was shown that for regular FE approximations of u € H? :

[V(u—un)llg < C(u,f,)h
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A posteriori error estimates for FEM

Two methods usually applied for linear PDEs, namely residual
method and gradient averaging methods are difficult to directly
apply because:

m There is no differential equation whose "residual” could
control the error in the sense of residual method.

m The applicability of averaging (post—processing) is based on
higher regularity of exact solutions that implies the
superconvergence phenomenon. Typically, solutions of
variational inequalities have bounded regularity and, therefore,
we cannot await such type effects.
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Below we show that by the functional method it is possible to
derive a posteriori estimates of the difference between the exact
solution of an obstacle problem and any conforming approximation.
This estimate does not require a priori knowledge on the
configuration of the coincidence set.
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Basic deviation estimate for variational inequalities

Let a: V x V — R be a bilinear V-elliptic form and
j:V — R be a given convex continuous functional.

|
Consider the following problem: find u € K such that the inequality
a(u,w — u) +j(w) —j(u) > (f,w—u) (113)

holds for any w € K, where K is a convex closed subset of V and
fev:
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The solution u of (11.3is a minimizer of the following variational
problem P: Find u € K such that

J(u) = “i’rg(J(w), (11.4)

J(w) = %a(w,w) + j(w) — (Ff,w).

Our aim is to derive a computable upper bound for the
quantity %a(u —v,u —v) where v is any element of the set K.
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Further analysis follows the lines of the paper
S. Repin. Estimates of deviations from exact solutions of elliptic
variational inequalities, Zapiski Nauchn. Semin. V.A. Steklov

Mathematical Institute in St.-Petersburg (POMI), 271(2000), 188-203.
First, we use (11.3)) to obtain the inequality

J(v) —J(u) = %a(v —u,v—u)+ a(u,v—u) — (f,v —u)+

+i(v) - () > 5alv v~ u).

which implies the basic deviation estimate.

1
S lv—ul?< I - Jw), wek,| (115)
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For linear problems we have derived deviation estimates by means
of the inequality

% v —uf* < J(v) = I(u) = I(v) - 1 (p").

In Lectures 4 and 5 we have shown how to find a directly
computable and physically meaningful upper bound of

J(v) = 1"(q").

For variational inequalities, deviation estimates are obtained in a
similar way, but with some complications caused by the fact that
the problem dual to P has a more cumbersome form.

Below, we show how we can circumvent this difficulty by using the
so-called perturbed functionals.
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Problems with two obstacles

Consider a bilinear form a : Vg x Vg — R defined by the relation
a(v,w) ::/ AVv - Vwdx, (11.6)
Q

where Q is a bounded domain in R? with Lipschitz continuous

boundary 98, Vg := H}(RQ), and A = {a;;} is a symmetric matrix
satisfying the conditions

V1€ < A€ < ale?, VEER", vy >wp >0
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Let K =Kg :={veVy | p(x) <v(x) <9p(x)ae. in Q},
where ¢, 1) € H?(Q) are two given functions such that

p(x) <p(x), VxeQ,
Set in the general setting

j=0 and <f,v>:/fvdx.
Q

Then Problem P is the classical obstacle problem. A solution u
minimizes the functional

J(v) = / AVv - Vvdx — / fvdx on K.
Q Q
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In general, 2 is devided into three sets:
Q= {xeQ| u(x) =(x)} (upper coincidenceset),
Q= {xeQ| u(x) = p(x
Q)= {xeQ| p(x) <u(x) <p(x)} .

)} (lower coincidenceset) ,

Here, €23 is an open set, where a solution satisfies the differential
equation. Thus, we see that this problem involves free boundaries,
which are unknown a priori.

Differentiability properties of solutions to linear and quasiliniear
problems with obstacles were investigated by many authors. In
particular, it was proved that, under natural assumptions on
external data u € H?(Q) and even for very smooth data, solutions
have a limited regularity (which is W%>). We assume that these
assumptions are fulfilled and the solutions are H2-regular.
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To estimate the difference J(v) — J(u) we introduce the perturbed
functional

where ® = (¢, =) and v = (v, —v),
AERg ::{(Al,Az) | A € L2(), Mi(x) > Oace. in Q, i = 1,2}.
It is easy to see that

sup Ja(v) = J(v)— inf A (v—®)dx
/\eNpe; A(v) (v) iy ( )
[ J(v) ifv e Kg,
N { oo ifv & Kgp. (11.7)

RICAM, Special Radon Semester, Linz, 2005.




With Jx we associate a perturbed variational problem.
Problem Py. Find uy € Vg such that

JA(U)\) = inf JA(V) = inf77>\.

veVy
Since
inf J < inf J = inf J =inf P,
VIEnV[] A(‘I)_VIEanp )\(V) VIEanp (V) n
we see that

inf Py < inf P, VA€ Na.

[0 [bOo

(11.8)

(11.9)
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It follows from

—

11.5) and (11.9) that

v—u?< J(v) —inf Py, AERg. (11.10)

N =

To estimate the right-hand side of (11.9), we introduce a dual
counterpart of Problem Psy.
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Dual perturbed problem

By the Lagrangian

L(v,7,A) ::/ (T'VV—;A_IT'T—fV—)V(’U—qJ)) dx,
Q

we define the perturbed functional as follows:

Ja(v) = sup L(v, 7, A), Y* = L%(Q,R?).
TEY*

Problem P5. Find 7 such that

J5(ra) = sup Ji(a)

qa<€Qpy

where J5(a) = [ (—3A7'q-q+ X ®) dx and
Q5 = {q € Y*|/ q-Vvdx:/ (fv + A-v)dx Vv € Vg}.
Q Q
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Qf, is a closed affine manifold in Y* and the functional —J3 is
convex and continuous on Y*,
Therefore, Problem P} has a solution and

inf Py = sup Px. (11.11)
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Estimates of the deviation

By means of (11.5) and (11.11) we obtain

1 * *

> Iv—u 2< J(v) —sup P§ < J(v) — J3(a(11.12)
Here

veKgp, qgeQfy, AeNg.

Rewrite J(v) — J5(q) in a more transparent form. We have

1 1
Livouis [ (Ao w) e [ 2aiera
2 o \2 o 2

+1/ (A_lq-q—A_l'r-T) dx—/ A-®dx.
2 Jo Q
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In view of the relation
Ala.a—Alb-b=A1a-b)-(a—b)+2A1b-(a—b)
and the integral identity

/fvdx:/ q-Vvdx—/A-vdx, Vq € Qfy
Q Q Q

we obtain
1 P | 1
=llv—u*<z [ (AVv—7)-(Vv—A""7)dx
2 2/a
1
+/ )\-(U—¢)dx+/ Alq-—7)-(q—7)
Q 2 /o

+ /gz (Vv —A"lr). (r — q)dx.
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The last integral can be estimated as follows:

/ (Vv —A"lr). (7 — q)dx
Q

<73 /Q A(Vv—A"1r) . (Vv - A7) dx

@

where 3 is any positive number.
Introduce the quantity

d*(1,Qfy) == inf [ AYq—7) (q—T)dx,
q€Q;, Jo

which is the distance between 7 and the set Qy,.
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Now, we rewrite the estimate as follows:

2
v —ul®<

< (14 B)P(r.Q}) + (1 n ;) |- AL 4

+2/Q>\-(v—¢)dx. (11.13)
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Recall some relations that has been established in Lecture 5. We
have proved that

(€+ Ny, w)
dly,Q;) = [£+Ny] ;= sup ——————+,
- Qe) =1 =2 Taw

where Q; = {y € Y* | (y,Aw) + (£,w) =0, Vw c Vp}.
Inourcase,y =7, A=V, A" = —div, and Q; = Q}, if set

(£, w) :—/Q(fw—k)vv)dx.

Therefore,

. (—f — A1 + A2 — divy)wdx
d(y,Qy) = sup fﬂ
weVy [l w |
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Assume that 7 € Q* := H(,div). Then,
/ (—F — A1+ A2 — divy)wdx < Co allf + A1 — A2 + divy|| || w ||
Q

and we obtain
d(7,Q3) < CQ,AHdiVT—I—f—i—)\l —X2|, (11.14)
where Cg a is a constant in the inequality

[wll 0 < Coa[w], Vvwe V.
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Thus, for y* € Q* we obtain the estimate

[ v—ulP<CHA(L+B) [divr+Ff+A1—Xs|?

1 AL g2 (o —
+<1+ﬁ> | Vv —A1r| +2/Q>\(U ®)dx. (11.15)

In this estimate, X is a "free”" vector—valued function. We use this
freedom to obtain the most accurate upper bound for the deviation
fv—ul.

Below we consider two options that lead to two different a
posteriori error estimates for the obstacle problem.
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The first option is as follows. Let v € V be an approximate solution. For
almost all points of Q the function v(x) is either equal to ¢, or ¥ or lies
between these two values. Thus, almost all points of Q can be referred
to one of the three sets:

Q= {xeQ | p(x) <v(x) < P(x)},
Q= (xeQ|  v(x) =)},
QY= {xeQ| v(x) = ¥(x)}.
Now, we can choose A as follows:
A1 =X =0 a.e. in Qg,
A= —(divr+f)g, A2 =0 a.e. in QY
A1 =0, A2 = (divr +f)g, a.e. in QF.

Here (z)g is zeroif z< 0 and z if z > 0.
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As a result of such a choice of A, we obtain the estimate
2 1 “1_ 2
fv—ul®< My(v,7,8) = 1+5 | Vv —A"" 7|

+Cha+8) | [ IMmPdict [ (r(r))2 dxt [ (1)) ],
2

QY QY

52

(11.16)

where
r(r) =divr +f

and ( )g and ( )g denote the negative and positive parts of a
quantity, respectively.
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What is the meaning of the four terms of the Majorant?

The first term || Vv — A~17 ||2 penalizes the error in the
duality relation
Vv=A"1r

Other terms penalize " improper” behavior of r(7) on the sets
o 2%, and QY respectively. Indeed, on 27 the differential
equation must be satisfied. Therefore, the term

i )P

can be viewed as a penalty, which is nonzero if the variable 7 (flux
image) does not satisfy the differential equation.
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By the necessary conditions for the obstacle problem, we find that

div AVu(x) + f(x) <0, fora.e. x € QY

(M

div AVu +f(x) >0 fora.e. x ¢ QY.

Thus, the terms

are certain penalties for the violation of above conditions.
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We see that the majorant My is a nonnegative functional, which

vanishes if and only if

Vv(x) = A7l (x)
div 7 (x) + f(x) <0,
div 7 (x) + f(x) =0,
divT(x) +f(x) > 0

fora.e. x € Q, (11.17)
fora.e. x € QY,  (11.18)
fora.e. x € g,  (11.19)
fora.e. x € Q7.  (11.20)

Let us show that in this case v=u and 7 = AVu.
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Assume that (11.17)—(11.20) hold. Then for any w € Kg,, we have

/QAVV-V(w—v)dx—/Qf(w—v)dx

:/ (div7-+f)(v—w)dx:/ (divT + f)(¢ — w) dx
Q Q

S}
/
Q

This inequality means that

(divr +f)(v — w)dx+/ (divr +f)(¢p —w)dx > 0.

0 Qg

a(v,w—v)Z/ f(w—v)dx, VYweKg,
Q

so that v coincides with the exact solution u (which is unique!).
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All said above can be summarized as follows:

Theorem

For any B3 > 0, My (v, T,3) is a nonnegative functional that
majorizes || v — u ||?> and vanishes if and only if

v=u and 7 = AVu,

where u is a solution of the variational inequality

a(u,w—u)g/ f(w—u)dx, VYw e Kg,
Q
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To obtain a more rigorous upper bound of || v — u ||, we should
find A by minimizing the right-hand side of the estimate

[ v—ulP<CHA(L+B) [divr+F+A1—X|?

+ (1 + ;) | Vv — A=1r |2 —|—2/ A (v — @) dx.
Q

Note that it leads to a quadratic type minimization problem in L2
that can be solved analytically. On this way, we arrive at the
estimate

1 _
I v—ul?< Ma(v,7,8) = (1+ g IVv-A 2
+/ R(v,divr +f,3)dx, (11.21)
Q

where
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—%—i—h(cp—v) if car+v < o,
R(v,r,3) = Cgr2 if o< cgr+v<ap,
—%—i—%(zﬂ—v) if cgr+v >

and cg = C%z,A(l + B).
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Let us show that the term R(v,r, 3) is equal to zero in the
following three cases:

(hr=0, (Mv=pandr<0, (M)v=1andr > 0.

Assume that r = 0. If ¢ < v < 1, then the second branch is realized and
we see that R=0. If o = v (or @ = v), then the first (third) branch is
realized and also R = 0.
Let r > 0 (the case r < 0 is considered quite similar). Then the first
branch is impossible. On the second one we have only positive values.
For the third branch we have

(¥ —v)?

Y- and, therefore, — —" 4+2r(tp —v) > ~— .
Cs Cs Cs

r>

We see that this quantity can be zero if and only if v = .
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¢=0and ¢p =1.

This behavior of R(v,r, 3) is clearly observed on the figure below, where
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The functional My is defined for any v € Kg,, 7 € Q*, and 3 > 0.
It is clear that

MZ(V7 T, B) < Ml(V, T, B)

This fact immediately implies the following assertion.

Theorem

For any B3 > 0, My(v, T,3) is a nonnegative functional that
majorizes || v — u ||?> and vanishes if and only if

v=u and 7 = AVu,

where u is a solution of the obstacle problem.
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Approximative properties

It is not difficult to prove that for any 3 > 0 the functional
Mj(v, T, 3) possesses necessary continuity properties with respect
to the first and second arguments. Namely,

Ma(vk, Tk, 3) — 0

vk —u in Vj

and
Tk — AVu in Q"
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If the problem contains only one obstacle (e.g., if ¥ = +00), then
the function R has a more compact form:

R(v,7,8) =cg [|r|2 - <v— L —I—r)ze] .
B
For a membrane problem, this case was analyzed in
H. Buss and S. Repin. A posteriori error estimates for boundary-value
problems with obstacles. In Proceedings of 3d European Conference on
Numerical Mathematics and Advanced Applications, Jyuvaskyla, 1999,
162-170, World Scientific, 2000.
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Numerical tests. Example 1

We start with simple 1D tests, where the equation is u” = f on
(0,1) and the boundary conditions are homogeneous.

An approximate solution was computed for a uniform mesh with 60
intervals. In this example,

f=-20, p(x) = —0.16,

and the coincidence set is [.400,.600]. The minimal value of the
functional is —.149.

ial Radon Semester, Linz, 2005.




-0.02

-0.04

-0.06

-o.o08

-0.1

-0.12

-0.14

-o.16

EXACT SOLUTION AND ITS APPROXIMANT

MINIMIZER
APPROXIMATION
OBSTACLE




In this case, the error is 0.000118.

Mg computed for y* = Gh(Vuyp) (when the dual variable y* is
computed by a simple gradient averaging procedure)

gives the first upper bound 0.000647. Thus, without noticeable
additional expenditures, we obtain an estimate with

lesr = 5.473.

In this case, two parts of the Majorant have the following values:
0.000164 (duality term) and
0.000483 (generalized residual term).
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Then, Mg was minimized with respect to the dual variable. In the table,
we present values of the Majorant obtained in this process.
Computational expenditures are measured by the "time unit”, which is
the time required for computing the approximate solution.

Table:

Iteration The majorant ler Expenditures
1 .000214 1.804802 448
2 .000163 1.379279 .660
3 .000152 1.281185 187
4 .000146 1.232812 .881
5 .000143 1.209496 977
6 .000140 1.185637 1.073
7 .000137 1.158350 1.169
8 .000136 1.148871 1.243
9 .000134 1.134931 1.336
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This process is depicted below

THE EFFECTIVITY INDEX

3.5
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Error indication

Distributions of subinterval errors and errors computed by the
Majorant are depicted on the next picture. We see that Mg,
provides a good representation of the error distribution.
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Numerical tests. Example 2

Take the same problem with f = —2.0 and
@(x) = —0.3x*> — 0.06.

In this case Q, = [.215,.474] and the lower bound of the primal
variational problem is equal to —.125. An approximate solution
was computed for the uniform mesh with 60 subintervals.
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In this example, the error is 0.000158. The value of Mg
computed for y* = Gp(Vuy,) gives the first ( rough ) upper bound
of the error 0.000861. Thus, without serious additional
expenditures, we obtain an estimate with

left = 5.457.

Two parts of the Majorant are as follows:
0.000156 (duality term) and 0.000704 (generalized residual

term).
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Then, the Majorant was minimized with respect to y. The
respective results are presented below

Table:

Iteration The majorant lefr Expenditures
1 .000296 1.877766 .625
2 .000245 1.551655 .842
3 .000240 1.521251 .938
4 .000235 1.492785 1.033
5 .000227 1.439252 1.165
6 .000218 1.379380 1.287
7 .000212 1.343913 1.383
8 .000210 1.334278 1.457
9 .000209 1.322333 1.542
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In the next figure, we show the distribution of actual errors on the
intervals and those computed by the Majorant.
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Numerical tests. Example 3

Now we consider a 2-dimensional obstacle problem with a plane
obstacle and take Q as a unit square. In the figure below, we
present an approximate solution computed by the finite element
method on a uniform mesh. The elements that belong to £, are
colored black.




Below it is shown the distribution of local (elementwise) errors and
those given by the integrand of the Majorant ( for t = 1).
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If we spend more efforts on the minimization of the Majorant

(t = 3), then the computed error distribution is practically the
same as the true one.
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Below we show the dependence of the effectivity index with respect
to the CPU time used for the minimization of the Majorant

Effectivity Index
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The elasto-plastic torsion problem

Let Q be a bounded domain in R? with Lipschitz continuous
boundary 02. Consider the torsion problem for a long
elasto-plastic bar whose cross-section is the domain . If such a
bar is made of an isotropic material, then the torsion problem is
reduced to the following variational inequality: find u € K such
that

/ Vu-V(v—u)dx > u/ (v—u)dx, VYvdqK,22)
Q Q
where 1 is a positive parameter,

K:={veVp | |Vv|<1 ae inQ},

See, e.g., G. Duvaut and J.-L. Lions, Inequalities in mechanics and
physics. Springer, Berlin-New York, 1976

RICAM, Special Radon Semester, Linz, 2005.




Elasto—plastic torsion problem has a unique solution with a free
boundary that separates the sets

Qe ={xeQ| |Vu <1}
and
Q,={xecQ| |Vu =1},

which are called elastic and plastic sets, respectively.
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If Q is a 1-connected domain, then u coincides with a solution of
the following obstacle problem (see, e.g.,
A. Friedman. Variational principles and free-boundary problems.
Wiley, NY, 1982.).
Problem. Find u € Ky such that

1

) = jnf I). I0) = 5 [ (VW = pw)ex,

where
Ka:={veVy | |v]<d(x,02) fora.e. x € Q}

and d(x, 0R2) denotes the distance between x and 0.
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It is easy to see that we arrived at a special type obstacle problem.
Now, we can use the estimates (11.16) or (11.21) with

p = —d(x,09) P = d(x,09).

In particular, if v has a fixed sign in Q (e.g., v > 0), then (11.16)
implies the estimate

1
Iv-ul?< (1+ﬂ) | v — 7P

+C§2(1+ﬂ)[ /(divr—l—,u)zdx+ /<diw+u>édx].
Qe(v) Qp(v)
(11.23)

In (11.23)), Qe(v) and 2,(v) are the elastic and plastic sets defined by
the approximate solution v € K and Cgq is a constant in the
Friedrichs—Poincaré inequality.
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We end up this lecture with several pictures that show some results
for the elasto—plastic torsion problem.

Figure: Elastic and plastic zones for f =5 computed on two different
meshes
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Below it is shown the distribution of local error and the distribution
computed by the integrand of the Majorant for t = 1.
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On this figure, it is shown the distribution of local error and the
distribution computed by the integrand of the Majorant for t = 3.
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On this picture, we present the dependence of the effectivity index
with respect to CPU time.
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Lecture 12.
FUNCTIONAL A POSTERIORI ESTIMATES FOR
NONLINEAR VARIATIONAL PROBLEMS
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The objective of this lecture is to introduce a general scheme for
deriving a posteriori error estimates by using duality theory of the
calculus of variations. We consider variational problems of the form

inf {F G(Av)},
inf {F(v) + G(Av)}
where F : V — R is a convex lower semicontinuous functional,
G :Y — R is a uniformly convex functional, V and Y are reflexive
Banach spaces and A : V — Y is a bounded linear operator.
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General variational problem

Consider the general variational problem: find u in a Banach space
V such that

J(u,Au) = in\flJ(v,l\v), (12.1)
ve

where J(v) = F(v) + G(Av), F is a convex, lower semicontinuous
functional, G is a uniformly convex functional and A: V — Y is a
bounded linear operator.

V and Y are reflexive Banach spaces endowed with the norms |||\,
and ||.||, respectively.
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Dual spaces are denoted by V* and Y* with duality pairings (.,.)
and ((.,.)), respectively. The spaces Y and Y* are endowed with
the norms ||.|| and ||.||,.

We assume that

IAw] > collwlly Yw eV, (122)

where cg is a positive constant independent of w.
In addition to A, we introduce its conjugate A* : Y* — V*. This
amounts to say that

(y*,Av)) = (N'y*,v) Vy* e Y veV. (12.3)
J(v,Av) := F(v) + G(Av) . is assumed to be coercive on V, i.e.

J(v,Av) — 400 if ||y, — +oo.
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Primal and Dual Problems

Problem P. Find u € V such that

J(u,Au) =infP = in{‘IJ(v,I\v). (12.4)
ve

The problem dual to (12.4is (see e.g.
I. Ekeland and R. Temam Convex analysis and variational problems.
North-Holland, Amsterdam, 1976.)
Problem P*. Find p* € Y* such that

— J(Np*,—p*) =supP* := sup —J*(N'y",—y*)(12.5)

y*eY*

where F* and G* are the functionals conjugate of F and G,
respectively.
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Theorem (1)

If the functional F is finite at some ug € V and the functional G is
continuous and finite at Aug € Y, then there exists a minimizer u
to Problem P and a maximizer p* to Problem P*. Besides,

inf P = sup P* (12.6)
and the following duality relations hold
(i) F(u)+F*(A"p") — (Np*,u) =0,
(i) G(Au)+ G*(—p*)+ (p*, Au)) = 0. (12.7)

Above relations are equivalent to

(i) N*p* € F(u), (i) — p* € G(Au).
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Problems with uniformly convex functionals

We recall (see Lecture 4) that a continuous functional G: Y — R
is uniformly convex in a ball B(0,9) :={y €Y | |y|| <} if there
exists a continuous functional ®5 : Y — R such that ®5(y) =0
only if y = Oy is and

G(152) + ds(y2 — y1) < 3 (G(y1) + G(y2)) Vy1.y2 € B(0,6).

Usually, ®; is given by a continuous strictly increasing function of
the norm |y||.

General form of a posteriori estimates for uniformly convex
variational problems was established in

S. Repin. A posteriori error estimation for variational problems with
uniformly convex functionals, Math. Comput., 69(230), 2000, 481-500.
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General form of the functional a posteriori estimate

Theorem (2)

Assume that the above conditions on F and G are satisfied and
(i) G is uniformly convex on a ball B(0,9),

(ii) the solution u of Problem P and an element v € V are such,
that Au, Av € B(0,0).

Then, for anyy* € Y*

®5 (A(v —u)) < Mg (v,y*) = De(A"y",v) + Dg(y", Av)(12.8)

where

De(A*y*,v) = 3 (F(v) +F*(A"y") — (N'y",v)),
Da(y*, Av) := 3 (G(Av) + G*(—y") + (y*, Av)) ).
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Since F is convex and G is uniformly convex we obtain

®;5 (A(v —u)) + G(A(*3*)) + F(*3*) <
3|(F(v) + G(AV)) + (F(u) + G(Aw)) .

The element u is a minimizer, therefore

(M) + Flw) = J) < GIA(45%)) + F(*5)

and we have

@5 (A(v — u)) + G(Au) + F(u) <
3[(F(v) + G(A)) + (F(u) + G(Aw)|.

RICAM, Special Radon Semester, Linz, 2005.




From the above we observe that

®; (Ae) < §|(F(v) + G(AV)) — (F(u) + G(Au))| =
= %(J(v,/\v) — J(u,Au)) Vv e B(0,0).

In view of Theorem 1,
J(u,Au) = inf P =supP* = —F*(AN"p*) — G*(—p”).
Since p* is a solution of the dual problem, we have
(NP, —pt) > (N, —y) Wyt e Y
so that

J(u, Au) > —F*(N*y*) — G*(—y").
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Therefore

¢5 (I\e)

IANIN

However, by (12.3) we observe that
{(y*,Av)) — (N*y* v) =0 Vy* €Y' veV.

We add this zero term to the above relation and obtain the
required estimate.

g
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Comments

The right-hand side of (12.8 is the sum of two compound
functionals

Mg:VIXV—-R and Mg:Y"xY —R.

They are nonnegative and vanishes if and only if v and y* satisfy
the relations (12.7)(i)—(ii).

|
Therefore, Mg (v, y*) is, in fact, a measure of the error in the

duality relations for the pair (v,y*).
It vanishes if and only if v=u and y* = p*.
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Let the functional F be uniformly convex on V with a forcing
functional s. Then the "forcing functional” has the form we have

®;(Ae) + ps(e) < 2(J(v,Av) — J(u,Au))  (12.9)
and, as a result, (12.8) is replaced by the strengthened estimate

®;5 (Ne) + ps(e) < Mg (v,y") Yy e Y™, (12.10)
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It is not difficult to verify that

Mg (v,y") = Mg (v, p") =

(F(v)+F(A"y") = (Ny" v) +G(Av) + G (—y") + (y", Av))) —
(V)+F*(A"p*) = (AP, v) + G(Av) +G"(—p") +((p", AV)) =
= (Ny* —y") = I (A'p%, —p7) == 0.

_1
-2
LF

Therefore, for any v the right-hand side of (12.8)) is minimal if y* = p*.
Consequently, to make the estimate effective we have to find some y*
close to p* in Y*. A simple way to obtain a function "close” to p* it to
use duality relations. To this end, we set y* = o*(v), where

—o*(v) € 0G(Av) C Y*.

RICAM, Special Radon Semester, Linz, 2005.




In this case,
Mg(a*(v),Av) =0

and we get the estimate
&5 (Ae) < Mg(No*(v),v) (12.11)

whose right—hand side depends on v only.
However, the estimate (12.11) cannot be directly applied in one
practically important case which we consider below.
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Problems with linear functional F

Let
F(v) = (£*,v), £ V™ (12.12)
Since
Krowy . |0 if v =4£%,
F(V)*‘s’gs<v e’v>{+00 1fv*7é£*
we see that

Mg = (€%, v) + F*(N*y") — (N'y*,v) =
= (£ — N'y*,v) + F*(N*y").

RICAM, Special Radon Semester, Linz, 2005.




* % YT * *,k 0 if*GQ*,

where
Q; = {y € Y* | (N'y",w) = (€",w) ¥w € V} .

In general, above defined o does not belong to Qj, so that the
right hand side of (12.11) can become infinite. Therefore, the aim
of our subsequent analysis is to obtain a modified error majorant
Mg (v, y*) which is finite for all v € V and all y* € Y*.
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Let M(y) > 0 for all y M(0) = 0. By M*: Y* — R, we denote
the functional conjugate of I1. For this pair the Joung—Fenchel
inequality

(€5,6) < (") + N(E) VYEeY, eY?

holds.
For the sake of simplicity, we set

Ny) ==(llyl) and M*(y") =="([ly".)-
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General form of the Deviation Majorant

®;5 (A(v —u)) < Mp(y",Av) + Mg(y"), (12.13)

where

Mp(y", Av) = Dg(y*, Av) + 37 (|G (~y") — Av]), (12.14)

MR(y*)qugg ™ (lla* —y*,) (12.15)
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Examples

Set Av := Vv and consider variational problems for the functional

J(v, Vv) = /Q (&(VV) + F(v))dx.

Now G and F are integral functionals whose integrands

g :R9 - R and f: R — R are convex differentiable functions.
Denote their conjugate functions g* and f*, respectively. The
spaces Y and Y* we identify with the Lebesque spaces L%(R2, RY)
and LO‘*(Q,Rd), where a, = % o > 1 is taken such that the
above integral has sense. In the considered case,

y*,y) ::/ y*-ydx and A*y* := —divy* € V*.
Q
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Example 1.

Let g(y) = LAy -y, where A is a symmetric real matrix satisfying
the conditions

2 2
nnl® < An-n <wnnl> vpeR?,

for some vp > v > 0. It is straightforward to check that the
functional G is uniformly convex on any ball. The two parts of the
error majorant Mg (cf. (12.8) are given by the relations

Dg(y*,Av) = i/ﬂ (AVv - Vv 4 A~ ly*.y* — Vv.y*)dx,

De(N'y*,v)= %/(f(v)—y*~Vv)dx+;sup/ (y*-Vw—f(w))dx.
Q wev JQ

RICAM, Special Radon Semester, Linz, 2005.




If the function f*(—divy*) is summable then we arrive at a more
symmetric expression

De(v.y) <} [ () +(~divy’) ~y" - Vv)dx
Q
In particular, if f(v) = %vz + pv, where € R and A € Ry, then
F(v) = 5 (v — p)%.
We note that this case is related to the equation

divAVu — Au+ p = 0.
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In this case, a = 2 and for any
y" € H(R,div)
we obtain
MEg(v,y*) < ﬁ | Av + divy™ + ”H?z ,

Both functionals G and F are uniformly convex and we can take

¢(Ve)—1/ AVe - Vedx,
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Thus, we arrive at the estimate of deviation in the following form:

/ AV(v—u)- V(v —u)dx+ Al —ul} <
Q

< / (A~ly* + Vv) - (y* + AVv) dx+
Q

+ % [IAv + divy* + pll? -
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Example 2

Consider the problem with
G(y) = 3(Ay,y) + W(y), F(v)=<£v>,

where W : Y — R is a convex continuous functional. Note that if
Y =0, then

Dg(Av,p*) = 3(AAv, Av) + 1(AAu, Au) — (Av, AAu)
3 A —u) .

We will measure the error in terms of the above norm generated by
the operator A.
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In this case, the deviation estimate is as follows:

3 I A(v —u) < (1 + B)Dg(Av, y*)+
+(1+3) CRlInTy + £,

where Cq depends on 2 and A.
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A consequent exposition functional type a posteriori error estimates
for nonlinear variational problems can be found in the papers

S. Repin. A posteriori error estimation for variational problems with
uniformly convex functionals, Math. Comput., 69(230), 2000, 481-500.

S. Repin. Two-sided estimates for deviation from an exact solution to
uniformly elliptic equation. Trudi St.-Petersburg Math. Society, 9(2001),
148-179 (in Russian, translated in American Mathematical Translations
Series 2, 9(2003)

and in the book

P. Neittaanmaki and S. Repin. Reliable methods for computer
simulation. Error control and a posteriori estimates. Elsevier, NY, 2004.
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We end up this lecture course with concise exposition of two
important problems closely related with functional type a posteriori
estimates.

m Evaluation of errors in terms of local quantities;

m Evaluation of modeling errors.
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Indication of local errors

Integrand of the Majorant is a good error indicator.

M@:/Qu(x)dx.
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It is proved that if Mg — || u—v |, then

wu(x) — e(x) :=|V(u—v)|(x) inthesenseof measures

This means that for any § > 0

measEs — 0

where E; := {x € Q[ |u(x) —e(x)| > ¢}.
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Guaranteed upper bounds of local errors

GENERAL PRINCIPLE: Guaranteed upper bounds for
®du—v)=|u—v|, and P(u—v)=(L,u—v), £LecV*

are obtained by projection of the functional a posteriori estimate
onto a certain subspace.

S. Repin. A posteriori estimates in local norms. J. Math. Sci. (N. Y.)
124 (2004), no. 3, 5026-5035.

S. Repin. Local a posteriori estimates for the Stokes problem. Zap.
Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 318
(2004), 35, 233-245, 312-313.
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Example. Local estimate for diffusion problem

Let w C Q and V,, := {H}(R) |v = constin w}. An upper bound
of the local error is given by the estimate

IV(u—=v)[2 < Mg, =

1
= inf {(1+ﬂ)||V(v—w)—yH2+ﬂ
wev,

5 c§,||divy+f||2}.

(12.16)

Here 5 > 0 and y € H(div, Q).
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Quality of the estimate

IV (u—v) I < ME(v) < V(u—v) I3 +Hu(v),

where

lo(v) := inf I V(u=v=¢) I\

If v—u = u = const on dw, then the function

q;_:{ u—v inQ\w;

W in w

belongs to V,, and, therefore, 1,,(v) = 0.
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Errors in terms of goal oriented quantities

In the two above cited papers a guaranteed upper bounds for
goal—oriented errors were also derived.
Basic observation

| (Lu—v) |=| (L,u—v+ )| Ve € Voe(),
where Voe(R) := {p € H}(Q) | (£, ) = 0}. Therefore,

Lu—v)| < |£] inf |lu—v+ .
[(u=v) | < 12| inf Ju-v+ o

Since v — ¢ can be viewed as a certain approximation, we apply
the functional error estimate to the left hand side and obtain a
guaranteed bound for the goal—oriented quantity.
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Modeling errors

Since there are no "absolutely exact” mathematical
models, modeling errors always exist in real life
mathematical modeling.

How to estimate their influence?
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Let us shortly consider this question in connection with one type of
modeling errors that arise in dimension reduction models.

Q= Qx (—d, +d),
Q c R? with boundary -,

d < diam(ﬁ) = sup |x3—x2
(xl,xz)eﬁ
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A more detailed exposition can be found in

S. Repin, S. Sauter and A. Smolianski. A posteriori estimation
of dimension reduction errors for elliptic problems in thin domains.
SIAM J. Numer. Anal., 42 (2004), no. 4, 1435-1451.

S. Repin, S. Sauter and A. Smolianski. A Posteriori Control of
Dimension Reduction Errors on Long Domains. Proceedings in
Applied Mathematics and Mechanics, 4, No. 1, 714-715 (2004).
S. Repin, S. Sauter and A. Smolianski. A posteriori estimation
of dimension reduction errors. In Proc. 5th European Conference
on Numerical Mathematics and applications, Prague 2004,
717-725.

S. Repin. Estimates for errors in two-dimensional models of
elasticity theory. J. Math. Sci. (New York), 106 (2001), 3,
3027-3041.
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Key idea

We can consider a solution of a d — 1 —dimensional model as
an approximate solution of the d—dimensional one. Since
deviation estimates are valid for all conforming approximations
in the energy space, we may somehow project
d — 1-dimensional solution to the energy space of the
d—dimensional problem and use the Deviation Estimate for the
estimation of the respective error.
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Example. Plain stress problem as a model of 3D linear elasticity one

Here, 3D solution (u, o) is approximated by the 2D one (u, &),
where u = (u1,uy) and & is a 2 x 2 tensor. Let

u = (Uy, Uz, $(X1,X2,X3)); Gapg =0, O03q =0,

where ¢ € H1(R) and meets boundary conditions (ug3) on the
Dirichlet part of Q. Then, we have
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An estimate of the dimension reduction error

~ 2 ~ 2
Clle(u—u)g+Crllo—ollg <

K 2 - ~ 2

< (F+% / (p(G11 +T22) + ¢ 3)" dxt b / (90,21 + <P,22) dx
2 3 JQ 2 JQ

See the proof in

S. Repin. J. Math. Sci. New York, v. 106,3, 2001.

Here 1 and Kq are elasticity coefficients p = %,,

1 2
= i —_—, T = | 4 5 K .
C. mm{u7 3u}, C; = min{4pu,6Kq}
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General diffusion type equations. Non-plane domains

In
S. Repin, S. Sauter, A. Smolianski. SIAM J. Numer. Anal. 2004.

computable estimates for dimension reduction models we derived
for general diffusion type problem

div(AVu) +f =0, u=ug 0

for "thin" domains of the form Q =T x [—d,d], where I is a
certain surface in 3D.
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Below is the list of publications related to the topics
discussed in the Lectures. In brackets, it shown the number
of a lecture related to a particular publication.
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