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Preface

This lecture course was prepared for the Special Radon Semester
organized in October–December 2005 by J. Radon Institute of Computational
and Applied Mathematics (RICAM) in Linz, Austria.
The main purpose of the course is to present (at least for certain classes of
partial differential equations) a mathematically justified and practically efficient
answer to the question:

How to verify the accuracy of approximate solutions computed by various
numerical methods ?

During the last decade, this question has been intensively investigated by the
functional methods of the theory of partial differential equations. As a result a
new (functional) approach to the a posteriori error control of differential
equations has been formed. In the present course of lectures, I tried to present
the main ideas and results of this approach in the most transparent form and
discuss it using several classical problems (diffusion problem, linear elasticity,
Stokes problem) as basic examples.
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The material is based on earlier lectures on a posteriori estimates and adaptive
methods (University of Houston (2002), USA; Summer Schools of the
University of Jyväskylä, Finland (2003, 2005); St.-Petersburg Polytechnical
University). Also, I used some publications appeared in 2000-2004. However, in
many parts the course is quite new and reflects the latest achievements in the
area. A list of the literature is given at the end of the text, but certain key
publications are also cited in the respective places related to the topic discussed.

I am grateful to RICAM and especially to Prof. U. Langer for the kind support.
Also, I thank Prof. D. Braess, Prof. R. Lazarov, Dr. J. Valdman, and
Dr. S. Tomar for the interest and discussions.

Sergey Repin Linz, December 2005
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Lecture 1.
INTRODUCTION. ERROR ANALYSIS IN THE MATHEMATICAL

MODELING
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Lecture plan

Errors arising in mathematical modeling;

Basic mathematical knowledge

Notation
Functional spaces and inequalities;
Generalized solutions.

A priori error estimates for elliptic type PDE’s

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

We begin with two assertions that present a motivation of this lecture
course.

I. In the vast majority of cases, exact solutions of differential
equations are unknown. We have no other way to use differential
equations in the mathematical modeling, but to compute their
approximate solutions and analyze them.

II. Approximate solutions contain errors of various nature.

From I and II, it follows that

III. Error analysis of the approximate solutions to differential
equations is one of the key questions in the Mathematical
Modeling.
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Errors in mathematical modeling

ε1 – error of a mathematical model used

ε2 – approximation error arising when a
differential model is replaced by a
discrete one;

ε3 – numerical errors arising when solving a
discrete problem.
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MODELING ERROR

Let U be a physical value that characterizes some process and
u be a respective value obtained from the mathematical
model. Then the quantity

ε1 = |U− u|
is an error of the mathematical model.

Mathematical model always presents an ”abridged”
version of a physical object.

Therefore, ε1 > 0.
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TYPICAL SOURCES OF MODELING ERRORS

(a) ”Second order” phenomena are neglected
in a mathematical model.

(b) Problem data are defined with an uncertainty.

(c) Dimension reduction is used to simplify a model.
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APPROXIMATION ERROR

Let uh be a solution on a mesh of the size h. Then, uh

encompasses the approximation error

ε2 = |u− uh|.
Classical error control theory is mainly focused on
approximation errors.
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NUMERICAL ERRORS

Finite–dimensional problems are also solved approximately, so that
instead of uh we obtain uε

h. The quantity

ε3 = |uh − uε
h |

shows an error of the numerical algorithm performed with a
concrete computer. This error includes

roundoff errors,

errors arising in iteration processes and in numerical
integration,

errors caused by possible defects in computer codes.
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Roundoff errors

Numbers in a computer are presented in a floating point format:

x = +
−

( i1
q

+
i2
q2

+ ... +
ik
qk

)
q`, is < q.

These numbers form the set Rq`k ⊂ R.
q is the base of the representation,
` ∈ [`1, `2] is the power.

Rq`k is not closed with respect to the operations +,−, ∗
!
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The set Rq`k × Rq`k

1

2

3
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Example

k = 3, a =

(
1

2
+ 0 + 0

)
∗ 25, b =

(
1

2
+ 0 + 0

)
∗ 21

b =

(
0 +

1

2
+ 0

)
∗ 22 =

(
0 + 0 +

1

2

)
∗ 23 = (0 + 0 + 0) ∗ 24

a + b = a!!!

Definition. The smallest floating point number which being added to 1
gives q quantity different from 1 is called the machine accuracy.
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Numerical integration

∫ a

b

f(x)dx ∼=
n∑

i=1

cif(xi)h =

n/2∑

i=1

∼1

cif(xi)h +
∼δ

cn/2+1f(xn/2+1)h +...

0
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Errors in computer simulation

U Physical object/process
⇓
ε1 −→ Error of a model
⇓

u Differential model Au = f
⇓
ε2 −→ Approximation error

⇓
uh Discrete model Ahuh = fh

⇓
ε3 −→ Computational error

⇓
uε

h Numerical solution Ahuε
h = fh + ε.
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Two principal relations

I. Computations on the basis of a reliable (certified) model. Here
ε1 is assumed to be small and uε

h gives a desired information on U.

‖U− uε
h‖ ≤ ε1 + ε2 + ε3 . (1.1)

II. Verification of a mathematical model. Here physical data U and
numerical data uε

h are compared to judge on the quality of a
mathematical model

‖ε1‖ ≤ ‖U− uε
h‖+ ε2 + ε3 . (1.2)
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Thus, two major problems of mathematical modeling, namely,

reliable computer simulation,

verification of mathematical models by comparing physical
and mathematical experiments,

require efficient methods able to provide
COMPUTABLE AND REALISTIC

estimates of ε2 + ε3 .
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What is u and what is ‖ · ‖?

If we start a more precise investigation, then it is necessary to answer the
question

What is a solution to a boundary–value problem?

Example.

∂2u

∂x2
1

+
∂2u

∂x2
1

+ f = 0, u = u0 on ∂Ω.

Does such a function u exists and unique? It is not a trivial question, so
that about one hundred years passed before mathematicians have found
an appropriate concept for PDE’s.
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Without proper understanding of a mathematical model no real modeling
can be performed. Indeed,

If we are not sure that a solution u exists then what we try to
approximate numerically?

If we do not know to which class of functions u belongs to, then
we cannot properly define the measure for the accuracy of
computed approximations.

Thus, we need to recall a
CONCISE MATHEMATICAL BACKGROUND
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Vectors and tensors

R n contains real n–vectors. Mn×m contains n ×m matrices and M n×n
s

contains n × n symmetric matrices (tensors) with real entries.

a · b =
n∑

i=1

aibi ∈ R, a,b ∈ R n (scalar product of vectors),

a⊗ b = {aibj} ∈Mn×n (tensor product of vectors),

σ : ε =
n∑

i,j=1

σijεij∈R, σ, ε ∈Mn×n (scalar product of tensors).

|a| := √
a · a, |σ| := √

σ : σ,

Unit matrix is denoted by I. If τ ∈M n×n, then τD = τ − 1
n I is the

deviator of τ .
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Spaces of functions

Let Ω be an open bounded domain in Rn with Lipschitz continuous
boundary.
Ck(Ω) – k times continuously differentiable functions.
Ck

0(Ω) – k times continuously differentiable functions vanishing at the
boundary ∂Ω.
C∞0 (Ω) – k smooth functions with compact supports in Ω.
Lp(Ω) – summable functions with finite norm

‖g‖p,Ω = ‖g‖p =

(∫

Ω

|g|p
)1/p

.

For L2(Ω) the norm is denoted by ‖ · ‖.
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If g is a vector (tensor)– valued function, then the respective spaces are
denoted by
Ck(Ω,R n) (Ck(Ω,M n×n)),
Lp(Ω,R n) (Lp(Ω,M n×n))
with similar norms.

We say that g is locally integrable in Ω and write f ∈ L1,loc(Ω), if
g ∈ L1(ω) for any ω ⊂⊂ Ω. Similarly, one can define the space Lp,loc(Ω)
that consists of functions locally integrable with degree p ≥ 1.
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Generalized derivatives

Let f, g ∈ L1,loc(Ω) and

∫

Ω

gϕdx = −
∫

Ω

f
∂ϕ

∂xi
dx, ∀ϕ ∈ ◦C1(Ω).

Then g is called a generalized derivative (in the sense of Sobolev) of f
with respect to xi and we write

g =
∂f

∂xi
.
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Higher order generalized derivatives

If f, g ∈ L1,loc(Ω) and

∫

Ω

gϕdx =

∫

Ω

f
∂2ϕ

∂xi∂xj
dx, ∀ϕ ∈ ◦C2(Ω),

then g is a generalized derivative of f with respect to xi and xj . For
generalized derivatives we keep the classical notation and write

g = ∂2f/∂xi∂xj = f,ij.

If f is differentiable in the classical sense, then its generalized derivatives
coincide with the classical ones !
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To extend this definition further, we use the multi-index notation and
write Dαf in place of ∂kf/∂xα1

1 ∂xα2

2 . . . ∂xαn
n .

Definition

Let f, g ∈ L1,loc(Ω) and

∫

Ω

gϕdx = (−1)|α|
∫

Ω

f Dαϕdx, ∀ϕ ∈ ◦Ck(Ω).

Then, g is called a generalized derivative of f of degree
|α| := α1 + α2 + ... + αn

and we write

g = Dαf .
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Sobolev spaces

The spaces of functions that have integrable generalized
derivatives up to a certain order are called Sobolev spaces.

Definition

f ∈ W1,p(Ω) if f ∈ Lp and all the generalized derivatives of f of the first
order are integrable with power p, i.e.,

f,i =
∂f

∂xi
∈ Lp(Ω).

The norm in W1,p is defined as follows:

‖f‖1,p,Ω :=




∫

Ω

(|f|p +
n∑

i=1

|f,i |p)dx




1/p

.
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The other Sobolev spaces are defined quite similarly: f ∈ Wk,p(Ω) if all
generalized derivatives up to the order k are integrable with power p and
the quantity

‖f‖k,p,Ω :=




∫

Ω

∑

|α|≤k

|Dαf|p dx




1/p

is finite. For the Sobolev spaces Wk,2(Ω) we also use a simplified
notation Hk(Ω).
Sobolev spaces of vector- and tensor-valued functions are introduced by
obvious extensions of the above definitions. We denote them by
Wk,p(Ω,R n) and Wk,p(Ω,M n×n), respectively.
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Embedding Theorems

Relationships between the Sobolev spaces and Lp(Ω) and Ck(Ω) are
given by Embedding Theorems.

If p, q ≥ 1, ` > 0 and ` + n
q ≥ n

p , then W`,p(Ω) is continuously

embedded in Lq(Ω). Moreover, if ` + n
q > n

p , then the embedding
operator is compact.

If `− k > n
p , then W`,p(Ω) is compactly embedded in Ck(Ω).
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Traces

The functions in Sobolev spaces have counterparts on ∂Ω called traces.
Thus, there exist some bounded operators mapping the functions defined
in Ω to functions defined on the boundary, e.g.,

γ : H1(Ω) → L2(∂Ω)

is called the trace operator if it satisfies the following conditions:

γv = v |∂Ω, ∀v ∈ C1(Ω),

‖γv‖2,∂Ω ≤ c‖v‖1,2,Ω,

where c is a positive constant independent of v. From these relations, we
observe that such a trace is a natural generalization of the trace defined
for a continuous function.
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It was established that γv forms a subset of L2(∂Ω), which is the space
H1/2(∂Ω). The functions from other Sobolev spaces also are known to
have traces in Sobolev spaces with fractional indices.

Henceforth, we understand the boundary values of functions in the sense
of traces, so that

u = ψ on ∂Ω

means that the trace γu of a function u defined in Ω coincides with a
given function ψ defined on ∂Ω.

All the spaces of functions that have zero traces on the boundary are

marked by the symbol ◦ (e.g.,
◦
Wl,p(Ω) and

◦
H1(Ω)).

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Inequalities

In the lectures we will use the following inequalities 1.
Friederichs-Steklov inequality.

‖w‖ ≤ CΩ‖∇w‖, ∀w ∈
◦
H1(Ω), (1.3)

2. Poincaré inequality.

‖w‖ ≤ C̃Ω‖∇w‖, ∀w ∈ H̃1(Ω), (1.4)

where H̃1(Ω) is a subset of H1 of functions with zero mean.
3. Korn’s inequality.

∫

Ω

(|v|2+|ε(v)|2)dx≥ µΩ‖v‖2
1,2,Ω, ∀v ∈ H1(Ω,R n), (1.5)
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Sobolev spaces with negative indices

Definition

Linear functionals defined on the functions of the space
◦
C ∞(Ω) are

called distributions. They form the space D′(Ω)

Value of a distribution g on a function ϕ is 〈g,ϕ〉.
Distributions possess an important property:

they have derivatives of any order .
Let g ∈ D′(Ω), then the quantity −〈g, ∂ϕ

∂xi
〉 is another linear functional

on D(Ω). It is viewed as a generalized partial derivative of g taken over
the i-th variable.
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Derivatives of Lq–functions

Any function g from the space Lq(Ω) (q ≥ 1) defines a certain
distribution as

〈g, ϕ〉 =

∫

Ω

gϕdx

and, therefore, has generalized derivatives of any order. The sets of
distributions, which are derivatives of q-integrable functions, are called
Sobolev spaces with negative indices.
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Definition

The space W−`,q(Ω) is the space of distributions g ∈ D′(Ω) such
that

g =
∑

|α|≤`

Dαgα,

where gα ∈ Lq(Ω).
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Spaces W−1,p(Ω)

W−1,p(Ω) contains distributions that can be viewed as generalized
derivatives of Lq-functions. The functional〈

∂f

∂xi
,ϕ

〉
:= −

∫

Ω

f
∂ϕ

∂xi
dx f ∈ Lq(Ω)

is linear and continuous not only for ϕ ∈ ◦
C ∞(Ω) but, also, for

ϕ ∈
◦

W 1,p(Ω), where 1/p + 1/q = 1 (density property). Hence, first

generalized derivatives of f lie in the space dual to
◦
W1,p(Ω) denoted by

W−1,p(Ω).

For
◦
W1,2(Ω) =

◦
H1(Ω), the respective dual space

is denoted by H−1(Ω).
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Norms in ”negative spaces”

For g ∈ H−1(Ω) we may introduce two equivalent ”negative norms”.

‖g‖(−1),Ω := sup

ϕ∈
◦
H1(Ω)

|〈g, ϕ〉|
‖ϕ‖1,2,Ω

< +∞

[] g [] := sup

ϕ∈
◦
H1(Ω)

|〈g, ϕ〉|
‖∇ϕ‖Ω

< +∞

From the definitions, it follows that

〈g, ϕ〉 ≤ ‖g‖(−1),Ω‖ϕ‖1,2,Ω

〈g,ϕ〉 ≤ [] g [] ‖∇ϕ‖Ω
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Generalized solutions

The concept of generalized solutions to PDE’s came from
Petrov-Bubnov-Galerkin method.

∫

Ω

(∆u + f)wdx = 0 ∀w

Integration by parts leads to the so–called generalized formulation of

the problem: find u ∈
◦
H1(Ω) + u0 such that

∫

Ω

∇u · ∇wdx =

∫

Ω

fw dx ∀w ∈
◦
H1(Ω)

This idea admits wide extensions.
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Definition

A symmetric form B : V × V → R, where V is a Hilbert space, called
V − elliptic if ∃c1 > 0, c2 > 0 such that

B(u,u) ≥ c1‖u‖2, ∀u ∈ V

| B(u, v) |≤ c2‖u‖‖v‖, ∀u, v ∈ V

General formulation for linear PDE’s is: for a certain linear continuous
functional f (from the space V∗ topologically
dual to V) find u such that

B(u,w) =< f,w > w ∈ V.
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Existence of a solution

Usually, existence is proved by

Lax-Milgram Lemma

For a bilinear form B there exists a linear bounded operator A ∈ L(V,V)
such that

B(u, v) = (Au, v), ∀u, v ∈ V

It has an inverse A−1 ∈ L(V,V), such that

‖A‖ ≤ c2, ‖A−1‖ ≤ 1

c1

We will follow another modus operandi.
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Variational approach

Lemma

If J : K → R is convex, continuous and coercive, i.e.,

J(w) → +∞ as ‖w‖V → +∞

and K is a convex closed subset of a reflexive space V, then the problem

inf
w∈K

J(w)

has a minimizer u. If J is strictly convex, then the minimizer is unique.

See, e.g., I. Ekeland and R. Temam. Convex analysis and variational
problems. North-Holland, Amsterdam, 1976.
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Coercivity

Take J(w) = 1
2B(w,w)− < f,w > and let K be a certain subspace.

Then

1

2
B(w,w) ≥ c1‖w‖2

V, | < f,w > | ≤ ‖f‖V∗ ‖w‖V.

We see, that

J(w) ≥ c1‖w‖2
V − ‖f‖V∗ ‖w‖V→ +∞ as ‖w‖V → +∞

Since J is strictly convex and continuous we conclude that a
minimizer exists and unique.
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Useful algebraic relation

First we present the algebraic identity

1

2
B(u− v,u− v) =

1

2
B(v, v)− < f, v > + (1.6)

+ < f,u > −1

2
B(u,u)− B(u, v−u)+ < f, v−u > =

= J(v)− J(u)− B(u, v−u)+ < f, v−u >

From this identity we derive two important results:

(a) Minimizer u satisfies B(u,w) =< f,w >;

(b) Error is subject to the difference of functionals.
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Let us show (a), i.e., that from (1.6) it follows the identity

B(u, v − u) =< f, v − u > ∀v ∈ K,

which is B(u,w) =< f,w > if set w = v − u. Indeed, assume the opposite, i.e.
∃v̄ ∈ K such that

B(u, v̄ − u)− < f, v̄−u >= δ > 0 (v̄ 6= u!)

Set ev := u + α(v̄ − u), α ∈ R. Then ev − u = α(v̄ − u) and

1

2
B(u− ev, u− ev) + B(u,ev−u)+ < f,ev−u >=

=
α2

2
B(v̄ − u, v̄ − u) + αδ = J(ev)− J(u) ≥ 0

However, for arbitrary α such an inequality cannot be true. Denote

a = B(v̄ − u, v̄ − u). Then in the left–hand side we have a function

1/2α2a2 + αδ, which always attains negative values for certain α. For

example, set α = −δ/a2. Then, the left–hand side is equal to − 1
2δ2/a2 < 0

and we arrive at a contradiction.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Error estimate

Now, we show (b). From

1

2
B(u− v,u− v) =

= J(v)− J(u)− B(u, v−u)+ < f, v−u >

we obtain the error estimate:

1

2
B(u− v,u− v) = J(v)− J(u). (1.7)

See S. G. Mikhlin. Variational methods in mathematical physics.
Pergamon, Oxford, 1964.
which immediately gives the projection estimate
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Projection estimate

Let uh be a minimizer of J on Kh ⊂ K. Then

1

2
B(u− uh,u− uh) = J(uh)− J(u) ≤ J(vh)− J(u) =

=
1

2
B(u− vh,u− vh) ∀ vh ∈ Kh.

and we observe that

B(u− uh,u− uh) = inf
vh∈Kh

B(u− vh,u− vh) (1.8)

Projection type estimates serve a basis for deriving a priori convergence
estimates.
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Interpolation in Sobolev spaces

Two key points: PROJECTION ESTIMATE and
INTERPOLATION IN SOBOLEV SPACES.
Interpolation theory investigates the difference between a function in a
Sobolev space and its piecewise polynomial interpolant. Basic estimate
on a simplex Th is

|v −Πhv|m,t,Th ≤ C(m,n, t)

(
h

ρ

)m

h2−m‖v‖2,t,Th ,

and on the whole domain

|v −Πhv|m,t,Ωh ≤ Ch2−m‖v‖2,t,Ωh .

Here h is a the element size and ρ is the inscribed ball diameter.
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Asymptotic convergence estimates

Typical case is m = 1 and t = 2. Since

B(u− uh,u− uh) ≤ B(u−Πhu,u−Πhu) ≤ c2‖u−Πhu‖2

for

B(w,w) =

∫

Ω

∇w · ∇wdx

we find that

‖∇(u− uh)‖ ≤ Ch|u|2,2,Ω.

provided that

Exact solution is H2 – regular;

uh is the Galerkin approximation;

Elements do not ”degenerate” in the refinement process.
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A priori convergence estimates cannot guarantee that the error
monotonically decreases as h → 0.
Besides, in practice we are interested in the error of a concrete
approximation on a particular mesh. Asymptotic estimates can
hardly serve these purposes because, in general the constant C in
such an estimate is either unknown or highly overestimated.
Therefore, a priori convergence estimates have mainly a theoretical
value: they show that an approximation method is correct ”in
principle”.

For these reasons, starting from late 70th a quite different
approach to error control is
rapidly developing. Nowadays it has already formed a new direction:

A Posteriori Error Control for PDE’s .
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Lecture 2.
A CONCISE OVERVIEW OF A POSTERIORI ERROR

ESTIMATION METHODS FOR APPROXIMATIONS OF
DIFFERENTIAL EQUATIONS.
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Lecture plan

Heuristic Runge’s rule;

Prager and Synge estimate. Estimate of Mikhlin;

Estimates using negative norm of the equation residual;

Basic idea;
Estimates in 1D case;
Estimates in 2D case;
Comments;

Methods based on post–processing;

Methods using adjoint problems;
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Runge’s rule

At the end of 19th century a heuristic error control method was
suggested by C. Runge who investigated numerical integration methods
for ordinary differential equations.

Carle Runge
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Heuristic rule of C. Runge

If the difference between two approximate solutions computed on a
coarse mesh Th with mesh size h and refined mesh Thref

with mesh size
href (e.g., href = h/2) has become small, then both uhref and uh are
probably close to the exact solution.

In other words, this rule can be formulated as follows:

If [uh − uhref ] is small then uhref is close to u

where [ · ] is a certain functional or mesh-dependent norm.

Also, the quantity [uh − uhref
] can be viewed (in terms of modern

terminology) as a certain a posteriori error indicator.
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Runge’s heuristic rule is simple and was easily accepted by numerical
analysts.

However, if we do not properly define the quantity [ · ] , for which
[uh − uhref ] is small, then the such a principle may be not true.

One can present numerous examples where two subsequent elements of an

approximation sequence are close to each other, but far from a certain joint limit.

For example, such cases often arise in the minimization (maximization) of functionals

with ”saturation” type behavior or with a ”sharp–well” structure. Also, the rule may

lead to a wrong presentation if, e.g., the refinement has not been properly done, so

that new trial functions were added only in subdomains were an approximation is

almost coincide with the true solution. Then two subsequent approximations may be

very close, but at the same time not close to the exact solution.
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Also, in practice, we need to now precisely what the word ”close”
means, i.e. we need to have a more concrete presentation on the
error. For example, it would be useful to establish the following
rule:

If [uh − uhref] ≤ ε then ‖uh − u‖ ≤ δ(ε),

where the function δ(ε) is known and computable.

In subsequent lectures we will see that for a wide class of boundary–value
problems it is indeed possible to derive such type generalizations of the
Runge’s rule.
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Prager and Synge estimates

W. Prager and J. L. Synge. Approximation in elasticity based on the
concept of function spaces, Quart. Appl. Math. 5(1947)

W. Prager and J. L. Synge
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Prager and Synge derived an estimate on the basis of purely geometrical
grounds. In modern terms, there result for the problem

∆u + f = 0, in Ω,

u = 0, on ∂Ω

reads as follows:

‖∇(u− v)‖2 + ‖∇u− τ‖2 = ‖∇v − τ‖2,

where τ is a function satisfying the equation divτ + f = 0.
We can easily prove it by the orthogonality relation

∫

Ω

∇(u− v) · (∇u− τ )dx = 0 (div(∇u− τ ) = 0 !).
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Estimate of Mikhlin

S. G. Mikhlin. Variational methods in mathematical physics. Pergamon,
Oxford, 1964.
A similar estimate was derived by variational arguments (see Lecture 1).
It is as follows:

1

2
‖∇(u− v)‖2 ≤ J(v)− infJ,

where

J(v) :=
1

2
‖∇v‖2 − (f, v), infJ := inf

v∈
◦
H1(Ω)

J(v).
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Dual problem

Since

infJ = sup
τ∈Qf

{
−1

2
‖τ‖2

}
,

where

Qf :=

{
τ ∈ L2(Ω,Rd) |

∫

Ω

τ · ∇wdx =

∫

Ω

fw dx ∀w ∈
◦
H1

}
,

we find that

1

2
‖∇(u− v)‖2 ≤ J(v) +

1

2
‖τ‖2, ∀τ ∈ Qf .
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Since

J(v) + 1
2‖τ‖2 =

1

2
‖∇v‖2 −

∫

Ω

fv dx +
1

2
‖τ‖2 =

=
1

2
‖∇v‖2 −

∫

Ω

τ · ∇v dx +
1

2
‖τ‖2 =

=
1

2
‖∇v − τ‖2

we arrive at the estimate

1

2
‖∇(u− v)‖2 ≤ 1

2
‖∇v − τ‖2, ∀τ ∈ Qf . (2.1)
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Difficulties

Estimates of Prager and Synge and of Mikhlin are valid for any

v ∈
◦
H1(Ω), so that, formally, that they can be applied to any conforming

approximation of the problem. However, from the practical viewpoint
these estimates have an essential drawback:

they use a function τ in the set Qf defined by the
differential relation,

which may be difficult to satisfy exactly. Probably by this reason further
development of a posteriori error estimates for Finite Element Methods
(especially in 80’-90’) was mainly based on different grounds.
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Errors and Residuals: first glance

If an analyst is not sure in an approximate solution, then the very first
idea that comes to his mind is to substitute it into the equation
considered, i.e. to look at the equation residual.

We begin by recalling basic relations between residuals and errors that
hold for systems of linear simultaneous equations. Let A ∈M n×n,
detA 6= 0, consider the system

Au + f = 0.

For any v we have the simplest residual type estimate

A(v − u) = Av + f; ⇒ ‖e‖ ≤ ‖A−1‖‖r‖.

where e = v − u and r = Av + f.
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Two–sided estimates

Define the quantities

λmin = min
y∈R n

y 6=0

‖Ay‖
‖y‖ and λmax = max

y∈R n

y 6=0

‖Ay‖
‖y‖

Since Ae = r, we see that

λmin ≤ ‖Ae‖
‖e‖ =

‖r‖
‖e‖ ≤ λmax ⇒ λ−1

max‖r‖ ≤ ‖e‖ ≤ λ−1
min‖r‖.

Since u is a solution, we have

λmin ≤ ‖Au‖
‖u‖ =

‖f‖
‖u‖ ≤ λmax ⇒ λ−1

max‖f‖ ≤ ‖u‖ ≤ λ−1
min‖f‖

Thus,

λmin

λmax

‖r‖
‖f‖ ≤

‖e‖
‖u‖ ≤

λmax

λmin

‖r‖
‖f‖ .

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Key ”residual–error” relation

Since

λmax

λmin
= CondA,

we arrive at the basic relation where the matrix condition number serves

as an important factor

(CondA)−1 ‖r‖
‖f‖ ≤

‖e‖
‖u‖ ≤ CondA ‖r‖

‖f‖ . (2.2)

Thus, the relative error is controlled by the relative value of the
residual. However, the bounds deteriorates when the conditional
number is large.
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In principle, the above consideration can extended to a wider set of linear
problems, where

A ∈ L(X,Y)

is a coercive linear operator acting from a Banach space X to another
space Y and f is a given element of Y .

However, if A is related to a boundary-value problem, then one should
properly define the spaces X and Y and find a practically meaningful
analog of the estimate (2.2).
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Elliptic equations

Let A : X → Y be a linear elliptic operator. Consider the boundary-value
problem

Au + f = 0 in Ω, u = u0 on ∂Ω.

Assume that v ∈ X is an approximation of u. Then, we should measure
the error in X and the residual in Y, so that the principal form of the
estimate is

‖v − u‖X ≤ C‖Av + f‖Y, (2.3)

where the constant C is independent of v. The key question is as follows:

Which spaces X and Y should we choose for a particular
boundary-value problem ?
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Consider the problem

∆u + f = 0 inΩ, u = 0 on∂Ω,

with f ∈ L2(Ω). The generalized solution satisfies the relation

∫

Ω

∇u · ∇wdx =

∫

Ω

fw dx ∀w ∈ V0 :=
◦
H1(Ω),

which implies the energy estimate

‖∇u‖2,Ω ≤ CΩ‖f‖2,Ω.

Here CΩ is a constant in the Friederichs-Steklov inequality. Assume that
an approximation v ∈ V0 and ∆v ∈ L2(Ω). Then,

∫

Ω

∇(u− v) · ∇wdx =

∫

Ω

(f + ∆v)wdx, ∀w ∈ V0.
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Setting w = u− v, we obtain the estimate

‖∇(u− v)‖2,Ω ≤ CΩ‖f + ∆v‖2,Ω, (2.4)

whose right-hand side of (2.4) is formed by the L2-norm of the residual.
However, usually a sequence of approximations {vk} converges to u only
in the energy space, i.e.,

{vk} → u in H1(Ω),

so that ‖∆vk + f‖ may not converge to zero !

This means that the consistency (the key property of any
practically meaningful estimate) is lost.
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Which norm of the residual leads to a consistent estimate of the
error in the energy norm?

To find it, we should consider ∆ not as H2 → L2 mapping, but as
H1 → H−1 mapping. For this purpose we use the integral identity

∫

Ω

∇u · ∇wdx = 〈f,w〉, ∀ w ∈ V0 :=
◦
H1(Ω).

Here, ∇u ∈ L2, so that it has derivatives in H−1 and we consider the
above as equivalence of two distributions on all trial functions w ∈ V0.
By 〈f,w〉 ≤ [] f [] ‖∇w‖2,Ω, we obtain another ”energy estimate”

‖∇u‖2,Ω ≤ [] f [] .
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Consistent residual estimate

Let v ∈ V0 be an approximation of u. We have
∫

Ω

∇(u− v) · ∇wdx =

∫

Ω

(fw −∇v · ∇w)dx =

= 〈∆v + f,w〉, f + ∆v ∈ H−1(Ω).

By setting w = v − u, we obtain

‖∇(u− v)‖2,Ω ≤ [] f + ∆v [] . (2.5)

where

[] f + ∆v [] = sup

ϕ∈
◦
H1(Ω)

| 〈f + ∆v, ϕ〉 |
‖∇ϕ‖ =

= sup

ϕ∈
◦
H1(Ω)

| ∫Ω∇(u− v) · ∇ϕ |
‖∇ϕ‖ ≤ sup

ϕ∈
◦
H1(Ω)

‖∇(u− v)‖|∇ϕ‖
‖∇ϕ‖ ≤ ‖∇(u− v)‖
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Thus, for the problem considered

‖∇(u− v)‖2,Ω = [] f + ∆v [] !!! (2.6)

From (2.6), it readily follows that

[] f + ∆vk [] → 0 as {vk} → u in H1.

We observe that the estimate (2.6) is consistent.
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Diffusion equation

Similar estimates can be derived for

Au + f = 0, inΩ, u = 0 on ∂Ω,

where

Au = div A∇u :=
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
,

aij(x) = aji(x) ∈ L∞(Ω),

λmin|η|2 ≤ aij(x)ηiηj ≤ λmax|η|2, ∀η ∈ R n, x ∈ Ω,

λmax ≥ λmin ≥ 0.
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Let v ∈ V0 be an approximation of u. Then,

∫

Ω

A∇(u− v) · ∇wdx =

∫

Ω

(fw − A∇v · ∇w)dx, ∀w ∈ V0.

Again, the right-hand side of this relation is a bounded linear functional
on V0, i.e.,

f + div (A∇v) ∈ H−1.

Hence, we have the relation
∫

Ω

A∇(u− v) · ∇wdx = 〈f + div (A∇v),w〉, ∀w ∈ V0.

Setting w = u− v, we derive the estimate

‖∇(u− v)‖2,Ω ≤ λ−1
min [] f + div (A∇v) [] . (2.7)
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Next,

[] f + div (A∇v) [] = sup

ϕ∈
◦
H1(Ω)

| 〈f + div (A∇v), ϕ〉 |
‖∇ϕ‖2,Ω

=

= sup

ϕ∈
◦
H1(Ω)

| ∫Ω A∇(u− v) · ∇ϕdx |
‖∇ϕ‖2,Ω

≤ λmax‖∇(u− v)‖2,Ω. (2.8)

Combining (2.7) and (2.8) we obtain

λ−1
max [] R(v) [] ≤ ‖∇(u− v)‖2,Ω ≤ λ−1

min [] R(v) [] , (2.9)

where R(v) = f + div (A∇v) ∈ H−1(Ω). We see that upper and lower
bounds of the error can be evaluated in terms of the negative norm of
R(v).
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Main goal

We observe that to find guaranteed bounds of the error
reliable estimates of [] R(v) [] are required.

In essence, a posteriori error estimates derived in 70-90’ for Finite
Element Methods (FEM) offer several approaches to the evaluation of
[] R(v) [] .
We consider them starting with the so–called explicit residual method
where such estimates are obtained with help of two key points:

Galerkin orthogonality property;

H1 → Vh interpolation estimates by Clément.
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Explicit residual method in 1D case

Take the simplest model

(αu′)′ + f = 0, u(0) = u(1).

Let I := (0, 1), f ∈ L2(I), α(x) ∈ C(I) ≥ α0 > 0. Divide I into a number
of subintervals Ii = (xi, xi+1), where x0 = 0, xN+1 = 1, and

|xi+1 − xi| = hi. Assume that v ∈
◦
H1(I) and it is smooth on any interval

Ii .

x xi i+1

I i
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In this case,

[] R(v) [] = sup
w∈V0(I), w 6=0

∫ 1

0 (−αv′w′ + fw)dx

‖w′‖2,I
=

= sup

w∈
◦
H1(I) ;w 6=0

∑N
i=0

∫
Ii
(−αv′w′ + fw)dx

‖w′‖2,I
=

= sup
w∈V0(I), w 6=0

∑N
i=0

∫
Ii
ri(v)wdx +

∑N
i=1 α(xi)w(xi)j(v′(xi))

‖w′‖2,I
,

where j(φ(x)) := φ(x + 0)− φ(x− 0) is the ”jump–function” and
ri(v) = (αv′)′ + f is the residual on Ii .
For arbitrary v we can hardly get an upper bound for this
supremum.
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Use Galerkin orthogonality

Assume that v = uh, i.e., it is the Galerkin approximation obtained on a
finite–dimensional subspace V0h formed by piecewise polynomial
continuous functions. Since

∫

I

αu′hw
′
h dx−

∫

I

fwh dx = 0 ∀wh ∈ V0h.

we may add the left–hand side with any wh to the numerator what gives

[] R(uh) [] = sup
w∈V0(I)

∫ 1

0 (−αu′h(w − πhw)′ + f(w − πhw))dx

‖w′‖2,I
,

where πh : V0 → V0h is the interpolation operator defined by the
conditions πhv ∈ V0h, πhv(0) = πhv(1) = 0 and

πhv(xi) = v(xi), ∀xi, i = 1, 2, ...,N.
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Integrating by parts

Now, we have

[] R(uh) [] = sup
w∈V0(I)

{∑N
i=0

∫
Ii
ri(uh)(w − πhw)dx

‖w′‖2,I
+

+

∑N
i=1 α(xi)(w(xi)− πhw(xi))j(u′h(xi))

‖w′‖2,I

}
.

Since w(xi)− πhw(xi) = 0, the second sum vanishes. For first one we
have

N∑

i=0

∫

Ii

ri(uh)(w − πhw)dx ≤
N∑

i=0

‖ri(uh)‖2,Ii‖w − πhw‖2,Ii .
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Since for w ∈
◦
H1(Ii)

‖w − πhw‖2,Ii ≤ ci‖w′‖2,Ii ,

we obtain for the numerator of the above quotient

N∑

i=0

∫

Ii

ri(uh)(w − πhw)dx ≤
N∑

i=0

ci‖ri(uh)‖2,Ii‖w′‖2,Ii ≤

≤
( N∑

i=0

c2
i ‖ri(uh)‖2

2,Ii

)1/2

‖w′‖2,I,

which implies the desired upper bound

[] R(uh) [] ≤
( N∑

i=0

c2
i ‖ri(uh)‖2

2,Ii

)1/2

. (2.10)

This bound is the sum of local residuals ri(uh) with weights given by the
interpolation constants ci.
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Interpolation constants

For piecewise affine approximations, the interpolation constants ci are
easy to find. Indeed, let γ i be a constant that satisfies the condition

inf
w∈

◦
H1(Ii)

‖w′‖2
2,Ii

‖w − πhw‖2
2,Ii

≥ γ i.

Then, for all w ∈
◦
H1(Ii), we have

‖w − πhw‖2,Ii ≤ γ
−1/2
i ‖w′‖2,Ii

and one can set ci = γ
−1/2
Ii

.

Let us estimate γ Ii .
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Note that
∫ xi+1

xi

|w′|2 dx =

∫ xi+1

xi

|(w − πhw)′ + (πhw)′|2 dx,

where (πhw)′ is constant on (xi, xi+1). Therefore,

∫ xi+1

xi

(w − πhw)′(πhw)′ dx = 0

and
∫ xi+1

xi

|w′|2 dx =

∫ xi+1

xi

|(w − πhw)′|2 dx +

∫ xi+1

xi

|(πhw)′|2 dx ≥

≥
∫ xi+1

xi

|(w − πhw)′|2 dx.
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Interpolation constants in 1D problem

Thus, we have

inf
w∈

◦
H1(Ii)

∫ xi+1

xi
|w′|2 dx∫ xi+1

xi
|w − πhw|2 dx

≥ inf
w∈

◦
H1(Ii)

∫ xi+1

xi
|(w − πhw)′|2 dx∫ xi+1

xi
|w − πhw|2 dx

≥

≥ inf
η∈

◦
H1(Ii)

∫ xi+1

xi
|η′|2 dx∫ xi+1

xi
|η|2 dx

=
π2

h2
i

,

so that γ i = π2/h2
i and ci = hi/π.

Remark. To prove the very last relation we note that

inf
η∈
◦
H1((0,h))

R h

0
|η′|2 dxR h

0
|η|2 dx

=
π2

h2

is attained on the eigenfunction sin π
h
x , of the problem φ′′ + λφ = 0 on (0, h).
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Residual method in 2D case

Let Ω be represented as a union Th of simplexes Ti. For the sake of
simplicity, assume that Ω = ∪N

i=1Ti and V0h consists of piecewise affine
continuous functions. Then the Galerkin approximation uh satisfies the
relation

∫

Ω

A∇uh · ∇wh dx =

∫

Ω

fwh dx, ∀wh ∈ V0h,

where

V0h = {wh ∈ V0 | wh ∈ P1(Ti), Ti ∈ Fh}.
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In this case, negative norm of the residual is

[] R(uh) [] = sup
w∈V0

∫
Ω(fw − A∇uh · ∇w)dx

‖∇w‖2,Ω
.

Let π :
◦
H1 → V0h be a continuous interpolation operator. Then, for the

Galerkin approximation

[] R(uh) [] = sup
w∈V0

∫
Ω(f(w − πhw)− A∇uh · ∇(w − πhw))dx

‖∇w‖2,Ω
.

For finite element approximations such a type projection operators has
been constructed. One of the most known was suggested in
Ph. Clément. Approximations by finite element functions using local
regularization, RAIRO Anal. Numér., 9(1975).
and is often called the Clement’s interpolation operator. Its properties
play an important role in the a posteriori error estimation method
considered.
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Clement’s Interpolation operator

Let Eij denote the common edge of the simplexes Ti and Tj. If s is an
inner node of the triangulation Fh, then ωs denotes the set of all
simplexes having this node.
For any s, we find a polynomial ps(x) ∈ P1(ωs) such that

∫

ωs

(v − ps)qdx = 0 ∀q ∈ P1(ωs).

Now, the interpolation operator πh is defined by setting

πhv(xs) = p(xs), ∀xs ∈ Ω,

πhv(xs) = 0, ∀xs ∈ ∂Ω.

It is a linear and continuous mapping of
◦
H1(Ω) to the space of piecewise

affine continuous functions.
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Interpolation estimates in 2D

Moreover, it is subject to the relations

‖v − πhv‖2,Ti ≤ cT
i diam (Ti)‖v‖1,2,ωN(Ti), (2.11)

‖v − πhv‖2,Eij ≤ cE
ij |Eij|1/2‖v‖1,2,ωE(Ti), (2.12)

where ωN(Ti) is the union of all simplexes having at least one common
node with Ti and ωE(Ti) is the union of all simplexes having a common
edge with Ti.

Interpolation constants cT
i and cE

ij are LOCAL and depend on the
shape of patches ωN(Ti) and ωE(Ti).
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Quotient relations for the constants

Evaluation of cT
i and cE

ij requires finding exact lower bounds of the
following variational problems:

γT
i := inf

w∈V0

‖w‖1,2,ωN(Ti)

‖w − πhw‖2,Ti

diam(Ti)

and

γE
ij := inf

w∈V0

‖w‖1,2,ωE(Ti)

‖w − πhw‖2,Eij

|Eij|1/2.

Certainly, we can replace V0 be H1(ωN(Ti)) and H1(ωE(Ti)),
respectively, but, anyway finding the constants amounts solving
functional eigenvalue type problems !
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Let σh = A∇uh. Then,

[] R(uh) [] = sup
w∈V0

∫
Ω(f(w − πhw)− σh · ∇(w − πhw))dx

‖∇w‖2,Ω
.

If ν ij is the unit outward normal to Eij, then∫

Ti

σh · ∇(w − πhw)dx =

=
∑

Eij⊂∂Ti

∫

Eij

(σh ·ν)(w − πhw)ds−
∫

Ti

div σh(w − πhw)dx,

Since on the boundary w − πhw = 0, we obtain

[] R(uh) [] = sup
w∈V0

{∑N
i=1

∫
Ti

(div σh + f)(w − πhw)dx

‖∇w‖2,Ω
+

+

∑N
i=1

∑N
j>i

∫
Eij

j(σh ·ν ij)(w − πhw)ds

‖∇w‖2,Ω



 .
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First term in sup

∫

Ti

(divσh + f)(w − πhw)dx ≤ ‖divσh + f‖2,Ti‖w − πhw‖2,Ti

≤ cT
i ‖divσh + f‖2,Tidiam (Ti)‖w‖1,2,ωN(Ti),

Then, the first sum is estimated as follows:

N∑

i=1

∫

Ti

(div σh + f)(w − πhw)dx ≤

≤ d1

( N∑

i=1

(
cT
i

)2
diam (Ti)

2‖div σh + f‖2
2,Ti

)1/2

‖w‖1,2,Ω,

where the constant d1 depends on the maximal number of elements in
the set ωN(Ti).
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Second term in sup

For the second one, we have

N∑

i=1

N∑

j>i

∫

Eij

j(σh ·ν ij)(w − πhw)dx ≤

≤
N∑

i=1

N∑

j>i

‖j(σh ·ν ij)‖2,Eij cE
ij |Eij|1/2 ‖w‖1,2,ωE(Ti) ≤

≤ d2

( N∑

i=1

N∑

j>i

(
cE
ij

)2 |Eij|‖j(σh ·ν ij)‖2
2,Eij

)1/2

‖w‖1,2,Ω,

where d2 depends on the maximal number of elements in the set ωE(Ti).
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Residual type error estimate

By the above estimates we obtain

[] R(uh) [] ≤ C0

(( N∑

i=1

(
cT
i

)2
diam (Ti)

2‖div σh + f‖2
2,Ti

)1/2

+

+

( N∑

i=1

N∑

j>i

(
cE
ij

)2 |Eij| ‖j(σh ·ν ij)‖2
2,Eij

)1/2
)

. (2.13)

Here C0 = C0(d1,d2). We observe that the right-hand side is the sum of
local quantities (usually denoted by η(Ti)) multiplied by constants
depending on properties of the chosen splitting Fh.
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Error indicator for quasi-uniform meshes

For quasi–uniform meshes all generic constants cT
i have approximately

the same value and can be replaced by a single constant c1. If the
constants cE

ij are also estimated by a single constant c2, then we have

[] R(uh) [] ≤ C

(
N∑

i=1

η2(Ti)

)1/2

, (2.14)

where C = C(c1, c2,C0) and

η2(Ti)= c2
1diam (Ti)

2‖div σh + f‖2
2,Ti

+
c2
2

2

∑

Eij⊂∂Ti

|Eij|‖j(σh · ν ij)‖2
2,Eij

.

The multiplier 1/2 arises, because any interior edge is common for two
elements.
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Comment 1

General form of the residual type a posteriori error estimates is as follows:

‖u− uh‖ ≤ M(uk, c1, c2, ...cN,D),

where D is the data set, uh is the Galerkin approximation, and
ci, i = 1, 2, ...N are the interpolation constants. The constants depend
on the mesh and properties of the special type interpolation operator.
The number N depends on the dimension of Vh and may be rather large.
If the constants are not sharply defined, then this functional is not more
than a certain error indicator. However, in many cases it successfully
works and was used in numerous researches.
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Comment 2

It is worth noting that for nonlinear problems the dependence between
the error and the respective residual is much more complicated. A simple
example below shows that the value of the residual may fail to control
the distance to the exact solution.

φ

xx
_x0
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A posteriori methods based on post–processing

Post–processing of approximate solutions is a
numerical procedure intended to modify
already computed solution in such a way that
the post–processed function would fit some a
priori known properties much better than the
original one.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Preliminaries

Let e denotes the error of an approximate solution v ∈ V and

E(v) : V → R+

denotes the value of an error estimator computed on v.

Definition

The estimator is said to be equivalent to the error for the
approximations v from a certain subset Ṽ if

c1E(v) ≤ ‖e‖ ≤ c2E(v) ∀v ∈ Ṽ
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Definition

The ratio

ieff := 1 +
E(v)− ‖e‖

‖e‖
is called the effectivity index of the estimator E .

Ideal estimator has ieff = 1. However, in real life situations it is hardly
possible, so that values ieff in the diapason from 1 to 2-3 are considered
as quite good.
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In FEM methods with mesh size h one other term is often used:

Definition

The estimator E is called asymptotically equivalent to the error if for
a sequence of approximate solutions {uh} obtained on consequently
refined meshes there holds the relation

inf
h→0

E(uh)

‖u− uh‖ = 1

It is clear that an estimator may be asymptotically exact for one sequence
of approximate solutions (e.g. computed on regular meshes) and not
exact for another one.
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General outlook

Typically, the function Tuh (where T is a certain linear operator,
e.g., ∇) lies in a space U that is wider than the space Ū that
contains Tu. If we have a computationally inexpensive continuous
mapping G such that G(Tvh) ∈ U, ∀vh ∈ Vh. then, probably, the
function G(Tuh) is much closer to Tu than Tuh.

U

U

Tu

Tu

TuG

.

.
.

−

h

h
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These arguments form the basis of various post-processing algorithms
that change a computed solution in accordance with some a priori
knowledge of properties of the exact solution. If the error caused by
violations of a priori regularity properties is dominant and the
post-processing operator G is properly constructed, then

‖GTuh − Tu‖ << ‖Tuh − Tu‖ .

In this case, the explicitly computable norm ‖GTuh − Tuh‖ can be used
to evaluate upper and lower bounds of the error.
Indeed, assume that there is a positive number α < 1 such that for the
mapping T the estimate

‖GTuh − Tu‖ ≤ α ‖Tuh − Tu‖ .
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Two–sided estimate

Then, for e = uh − u we have

(1−α) ‖Te‖ = (1−α) ‖Tuh − Tu‖ ≤
≤ ‖Tuh − Tu‖ − ‖GTuh − Tu‖ ≤

≤ ‖GTuh − Tuh‖ ≤
≤ ‖GTuh − Tu‖+ ‖Tuh − Tu‖ ≤

≤ (1 + α) ‖Tuh − Tu‖ = (1 + α) ‖Te‖ .

Thus, if α << 1, then

‖Tuh − Tu‖ ' ‖GTuh − Tuh‖ .

and the right-hand can be used as an error indicator.
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Post-processing by averaging

Post-processing operators are often constructed by averaging Tuh

on finite element patches or on the entire domain.
Integral averaging on patches

If Tuh ∈ L2, then post-processing operators are obtained by various
averaging procedures. Let Ωi be a patch of Mi elements, i.e.,

Ωi =
⋃

Tij, j = 1, 2, ...Mi.

Let Pk(Ωi,R n) be a subspace of U that consists of vector-valued
polynomial functions of degrees less than or equal to k. Define
gi ∈ Pk(Ωi,R n) as the minimizer of the problem:

inf
g∈Pk(Ωi,R n)

∫

Ωi

|g − Tuh|2 dx.
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The minimizer gi is used to define the values of an averaged function at
some points (nodes). Further, these values are utilized by a prolongation
procedure that defines an averaged function

GTuh : Ω → R.

Consider the simplest case. Let T be the operator ∇ and uh be a
piecewise affine continuous function. Then,

∇uh ∈ P0(Tij,R n) on each Tij ⊂ Ωi.

We denote the values of ∇uh on Tij by (∇uh)ij.
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Set k = 0 and find gi ∈ P0 such that

∫

Ωi

|gi −∇uh|2 dx = inf
g∈P0(Ωi)

∫

Ωi

|g −∇uh|2 dx =

= inf
g∈P0(Ωi)



|g|

2|Ωi| − 2g ·
Mi∑

j=1

(∇uh)ij|Tij|+
Mi∑

j=1

|(∇uh)ij|2|Tij|


 .

It is easy to see that gi is given by a weighted sum of (∇uh)ij, namely,

gi =

Mi∑

j=1

|Tij|
|Ωi| (∇uh)ij.

Set G(∇uh)(xi) = gi.
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Repeat this procedure for all nodes and define the vector-valued function
G∇(uh) by the piecewise affine prolongation of these values. For regular
meshes with equal |Tij|, we have

gi =

Mi∑

j=1

1

Mi
(∇uh)ij.

Various averaging formulas of this type are represented in the form

gi =

Mi∑

j=1

λij(∇uh)ij,

Mi∑

j=1

λij = 1,

where λij are the weight factors. For internal nodes, they may be taken,
e.g., as follows

λij =
|γij|
2π

, |γij| is the angle.
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However, if a node belongs to the boundary, then it is better to choose
special weights. Their values depend on the mesh and on the type of
the boundary. Concerning this point see

I. Hlaváček and M. Kř ižek. On a superconvergence finite element
scheme for elliptic systems. I. Dirichlet boundary conditions. Aplikace
Matematiky, 32(1987), No.2, 131-154.
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Discrete averaging on patches

Consider the problem

inf
g∈Pk(Ωi)

mi∑

s=1

|g(xs)− Tuh(xs)|2 ,

where the points xs are specially selected in Ωi. Usually, the points xs are
the so–called superconvergent points.
Let gi ∈ Pk(Ωi) be the minimizer of this problem.
If k = 0, and T = ∇ then

gi =
1

mi

mi∑

s=1

∇uh(xs).
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Global averaging

Global averaging makes the post–processing not on patches,
but on the whole domain.

Assume that Tuh ∈ L2 and find ḡh ∈ Vh(Ω) ⊂ U such that

‖ḡh − Tuh‖2Ω = inf
gh∈Vh(Ω)

‖gh − Tuh‖2Ω .

The function ḡh can be viewed as GTuh. Very often ḡh is a better
image of Tu than the functions obtained by local procedures.
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Remark

Moreover, mathematical justifications of the methods based on global
averaging procedures can be performed under weaker assumptions what
makes them applicable to a wider class of problems see, e.g.,

C. Carstensen, S. Bartels. Each averaging technique yields reliable
a posteriori error control in FEM on unstructured grids. I: Low order
conforming, nonconforming, and mixed FEM, Math. Comp., 71(2002)
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Justifications of the method. Superconvergence

Let uh be a Galerkin approximation of u computed on Vh. For
piecewise affine approximations of the diffusion problem we have
the estimate

‖∇(u− uh)‖2,Ω ≤ c1h, ‖u− uh‖2,Ω ≤ c2h
2

However, it was discovered see, e.g.,
L. A. Oganesjan and L. A. Ruchovec. Z. Vychisl. Mat. i Mat.
Fiz.,9(1969);
M. Zlámal. Lecture Notes. Springer, 1977;
L. B. Wahlbin. Lecture Notes. Springer, 1969 that in certain cases
this rate may be higher. For example it may happen that

|u(xs)− uh(xs)| ≤ Ch2+σ σ > 0

at a superconvergent point xs .
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Certainly, existence and location of superconvergent points strongly
depends on the structure of Th.

For the paradigm of the diffusion problem we say that an operator G
possesses a superconvergence property in ω ⊂ Ω if

‖∇u−G∇uh‖2,ω ≤ c2h
1+σ,

where the constant c2 may depend on higher norms of u and the
structure of Th.
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For the diffusion problem estimates of such a type can be found, e.g., in

I. Hlaváček and M. Kř ižek. On a superconvergence finite element
scheme for elliptic systems. I. Dirichlet boundary conditions. Aplikace

Matematiky, 32(1987).

M. Kř ižek and P. Neittaanmäki. Superconvergence phenomenon in the
finite element method arising from averaging of gradients Numer. Math.,

45(1984)
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By exploiting the superconvergence properties, e.g.,

‖∇u−G∇uh‖2,ω ≤ c2h
1+σ,

while

‖∇u−∇uh‖2,ω ≤ c2h,

one can usually construct a simple post-processing operator G satisfying
the condition

‖G∇uh −∇u‖ ≤ α ‖∇uh −∇u‖ .

where the value of α decreases as h tends to zero.
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Since

‖G∇uh −∇uh‖ ≤ ‖∇uh −∇u‖+ ‖G∇uh −∇u‖,
‖G∇uh −∇uh‖ ≥ ‖∇uh −∇u‖ − ‖G∇uh −∇u‖.

where the first term in the right–hand side is of the order h and the
second one is of h1+δ. We see that

‖G∇uh −∇uh‖ ∼ h

Therefore, we observe that in the decomposition

‖∇(uh − u)‖ ≤ ‖∇uh −G∇uh‖+ ‖G∇uh −∇u‖

asymptotically dominates the second directly computable term.
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Thus, we obtain a simple error indicator:

‖∇(uh − u)‖ ≈ ‖∇uh −G∇uh‖ .

Note that

ieff =
‖∇(uh − u)‖
‖∇uh −G∇uh‖ ≈ 1 + chδ

so that this error indicator is asymptotically exact provided that uh is a
Galerkin approximation, u is sufficiently regular and h is small enough.
Such type error indicators (often called ZZ indicators by the names of
Zienkiewicz and Zhu) are widely used as cheap error indicators in
engineering computations.
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Some references

M. Ainsworth, J. Z. Zhu, A. W. Craig and O. C. Zienkiewicz. Analysis of
the Zienkiewicz-Zhu a posteriori error estimator in the finite element
method, Int. J. Numer. Methods Engrg., 28(1989).

I. Babuška and R. Rodriguez. The problem of the selection of an a
posteriori error indicator based on smoothing techniques, Internat. J.
Numer. Meth. Engrg., 36(1993).

O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive
procedure for practical engineering analysis, Internat. J. Numer. Meth.
Engrg., 24(1987)
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Post-processing by equilibration

For a solution of the diffusion problem we know that

divσ + f = 0,

where σ = A∇u. This suggests an idea to construct an operator
G such that

div(G(A∇uh)) + f = 0.

If G possesses additional properties (linearity, boundedness), then
we may hope that the function GA∇uh is closer to σ than A∇uh
and use the quantity ‖A∇uh −GA∇uh‖ as an error indicator.
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This idea can be applied to an important class of problems

Λ?Tu + f = 0, Tu = AΛu, (2.15)

where A is a positive definite operator, Λ is a linear continuous operator,
and Λ? is the adjoint operator.
In continuum mechanics, equations of the type (2.15) are referred to as
the equilibrium equations. Therefore, it is natural to call an operator G
an equilibration operator.

If the equilibration has been performed exactly then it is not
difficult to get an upper error bound. However, in general, this

task is either cannot be fulfilled or lead to complicated and
expensive procedures. Known methods are usually end with

approximately equilibrated fluxes.
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Goal–oriented error estimates

Global error estimates give a general idea on the quality of an
approximate solution and stopping criteria. However, often it is
useful to estimate the errors in terms of specially selected linear
functionals `s , s = 1, 2, ...M, e.g.,

< `, v − u >=

∫

Ω
ϕ0 (v − u)dx,

where φ is a locally supported function. Since

| < `,u− uh > | ≤ ‖`‖‖u− uh‖V,

we can obtain such an estimate throughout the global a posteriori
estimate. However, in many cases, such a method will strongly
overestimate the quantity.
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Adjoint problem

A posteriori estimates of the errors evaluated in terms of linear
functionals are derived by attracting the adjoint boundary-value
problem whose right-hand side is formed by the functional `.
Let us represent this idea in the simplest form. Consider a system

Au = f,

where A is a positive definite matrix and f is a given vector. Let v
be an approximate solution. Define u` by the relation

A?u` = `,

where A? is the matrix adjoint to A. Then,

` · (u− v) = A?u` · u− ` · v = f · u` − ` · v = (f − Av) · u`
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Certainly, the above consideration holds in a more general
(operator) sense, so that for a pair of operators A and A? we
have

< `,u− v >=< f − Av, u` > . (2.16)

and find the error with respect to a linear functional by the
product of the residual and the exact solution of the adjoint
problem:

A?u` = `.

Practical application of this principle depends on the ability
to find either u` or its sharp approximation.
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Consider again the diffusion problem. Now, it is convenient to
denote the solution of the original problem by uf , i.e

∫

Ω
A∇uf · ∇wdx =

∫

Ω
fw dx, ∀w ∈ V0(Ω).

Since in our case A = A?, the adjoint problem is to find
u` ∈ V0(Ω) such that

∫

Ω
A∇u` · ∇wdx =

∫

Ω
`wdx, ∀w ∈ V0(Ω).
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Let Ω be divided into a number of elements Ti, i = 1, 2, ...N. Given
approximations on the elements, we define a finite-dimensional subspace
V0h ∈ V0(Ω) and the Galerkin approximations ufh and u`h:

∫

Ω

A∇ufh · ∇wh dx =

∫

Ω

fwhdx, ∀wh ∈ V0h,

∫

Ω

A∇u`h · ∇wh dx =

∫

Ω

`whdx, ∀wh ∈ V0h.

Since
∫

Ω

`(uf − ufh)dx =

∫

Ω

A∇u` · ∇(uf − ufh)dx

and
∫

Ω

A∇u`h · ∇(uf − ufh)dx = 0,
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We arrive at the relation
∫

Ω

`(uf − ufh)dx=

∫

Ω

A∇(u` − u`h) · ∇(uf − ufh)dx (2.17)

whose right-hand side is expressed in the form

N∑

i=1

∫

Ti

A∇(uf − ufh) · ∇(u` − u`h)dx =

N∑

i=1



−

∫

Ti

div (A∇(uf − ufh)) (u` − u`h)dx+

+
1

2

∫

∂Ti

j (ν i · A∇(uf − ufh)) (u` − u`h)ds



 .

This relation implies the estimate
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∫

Ω

`(uf − ufh)dx=
N∑

i=1

{
‖divA∇(uf − ufh)‖2,Ti

‖u` − u`h‖2,Ti
+

+ 1
2 ‖j(ν i · A∇(uf − ufh))‖2,∂Ti

‖u` − u`h‖2,∂Ti

}
=

=
N∑

i=1

{
‖f + divA∇ufh‖2,Ti

‖u` − u`h‖2,Ti
+

+ 1
2 ‖j(ν i · A∇ufh)‖2,∂Ti

‖u` − u`h‖2,∂Ti

}
.

Here, the principal terms are the same as in the explicit residual method,
but the weights are given by the norms of u` − u`h.
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Assume that u` ∈ H2 and u`h is constructed by piecewise affine
continuous approximations. Then the norms ‖u` − u`h‖Ti and
‖u` − u`h‖2,∂Ti are estimated by the quantities hα|u`|2,2,Ti with α = 1
and 1/2 and the multipliers ĉi and ĉij, respectively.
In this case, we obtain an estimate with constants defined by the standard

H2 → V0h

interpolation operator whose evaluation is much simpler than that of the
constants arising in the

H1 → V0h

interpolation.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

A posteriori estimates in L2–norm

In principle, this technology can be exploited to evaluate estimates in
L2–norm. Indeed,

‖uf − ufh‖ = sup
`∈L2

(`,uf − ufh)

‖`‖ = sup
`∈L2

(A∇u`,∇(uf − ufh))

‖`‖ =

= sup
`∈L2

(A∇(u` − πh(u`)),∇(uf − ufh))

‖`‖ =

= sup
`∈L2

(∇(u` − πh(u`)),A∇(uf − ufh))

‖`‖ =

= sup
`∈L2

N∑
i=1

{
∫
Ti

∇(u` − πh(u`)),A∇(uf − ufh)dx

}

‖`‖
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Integrating by parts, we obtain

N∑
i=1

{‖f+divA∇ufh‖Ti
‖u`−πh(u`)‖Ti

+ 1
2 ‖j(ν i · A∇ufh)‖∂Ti

‖u`− πh(u`)‖∂Ti

}

‖`‖

If for any ` ∈ L2 the adjoint problem has a regular solution (e.g.,
u` ∈ H2), so that we could combine the standard interpolation estimate
for the interpolant of u` with the regularity estimate for the PDE (e.g.,
‖u`‖ ≤ C1‖`‖), then we obtain

‖u` − πh(u`)‖Ti ≤ C1h
α1‖`‖, ‖u` − πh(u`)‖∂Ti ≤ C1h

α2‖`‖

with certain αk.
Under the above conditions ‖`‖ is reduced and we arrive at the estimate,
in which the element residuals and interelement jumps are weighted with
factors C1hα1 and C2hα2 .
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Comment

We end this lecture with one comment concerning the terminology In the
existing literature devoted to a posteriori error analysis one can find often
find terms like ”duality approach to a posteriori error estimation” or
”dual-based error estimates”. However, the essence that is behind this
terminology may be quite different because the word ”duality” is used in
at least 3 different meanings:
(a) Duality in the sense of functional spaces. We have seen that if
for the equation Lu = f errors are measured in the original (energy) norm
then a consistent upper bound is given by the residual in the norm of the
space topologically dual to a subspace of the energy space (e.g., H−1).
(b) Duality in the sense of using the Adjoint Problem.
(c) Duality in the sense of the Theory of the Calculus of
Variations.
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In the next lecture
we will proceed to the detailed exposition

of the approach (c).
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Lecture 3.
FUNCTIONAL A POSTERIORI ESTIMATES. FIRST EXAMPLES.
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Lecture goal

In the lecture, we derive Functional A Posteriori
Estimate for the problem

∆u + f = 0, Ω u = 0 ∂Ω

and discuss its meaning, principal features and practical
implementation.
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Lecture plan

1. Functional a posteriori estimates

2. How to derive them? Paradigm of a simple elliptic problem

3. How to use them in practice?

4. Examples.
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Functional A Posteriori Estimates

Functional A Posteriori Estimate is a computable majorant of
the difference between exact solution u and any conforming
approximation v having the general form:

Φ(u− v) ≤ M (D, v) ∀v ∈ V ! (3.1)

where D is the data set (coefficients, domain, parameters,
etc.),
Φ : V → R+ is a given functional.
M must be computable and continuous in the sense that

M (D, v) → 0, if v → u
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Types of Φ

Energy norm Φ(u− v) = ‖u− v‖Ω
Local norm Φ(u− v) = ‖u− v‖ω

Goal–oriented quantity Φ(u− v) = (`,u− v)
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METHODS OF THE DERIVATION.

These estimates are derived by purely functional methods
using the analysis of variational problems or integral

identities.

Variational method 96’-97’
These results are summarized in S. Repin. Math. Comput., 2000.

Nonvariational method 2000’
see S. Repin. Proc. St.-Petersburg Math. Society, 2001.
Complete list of publications on the matter can be found in the
References appended to the Lectures.
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Functional a posteriori estimate gives complete solution of the
error control problem from the viewpoint of the MATHEMATICAL

THEORY of PDE’s

A systematic exposition of the variational approach to deriving Functional
a Posteriori Estimates can be found in
P. Neittaanmaki and S. Repin. Reliable methods for computer
simulation. Error control and a posteriori estimates. Elsevier, NY, 2004.
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Variational Method

Let u be a (generalized) solution of the problem

∆u + f = 0, Ω u = 0 ∂Ω.

As we have seen in Lecture 1, this problem is equivalent to the following
variational problem:

Problem P . Find u ∈ V0 :=
◦
H1(Ω) such that

J(u) = inf
v∈V0

J(v),

where

J(v) =
1

2
‖∇v‖2 − (f, v).

By the reasons that we discussed earlier this problem has a unique
solution.
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Lagrangian

Note that

J(v) = sup
y∈Y

L(∇v, y), L(∇v, y) =

∫

Ω

(
∇v · y− 1

2
|y|2−fv

)
dx

where Y = L2(Ω,R n). Indeed, the value of the above supremum cannot
exceed the one we obtain if for almost all x ∈ Ω solve the pointwise
problems

sup
y(x)

(∇v)(x) · y(x)− 1

2
|y(x)|2 x ∈ Ω

whose upper bound is attained if set y(x) = (∇v)(x). Since ∇v ∈ Y, we
observe that the respective maximizer belongs to Y and, therefore

sup
y∈Y

L(∇v, y) = L(∇v,∇v) = J(v).
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Minimax Formulations

Then, the original problem comes in the minimax form:

(P) inf
v∈V0

sup
y∈Y

L(∇v, y)

If the order of inf and sup is changed, then we arrive at the so-called
dual problem

(P∗) sup
y∈Y

inf
v∈V0

L(∇v, y)

Note that

inf
v∈V0

∫

Ω

(
∇v · y− 1

2
|y|2−fv

)
dx = −1

2
‖y‖2+ inf

v∈V0

∫

Ω

(∇v · y−fv)dx =

=

{ − 1
2‖y‖2 if y ∈ Qf := {y ∈ Y |divy + f = 0}

−∞ if y 6∈ Qf
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Dual Problem

Thus, we observe that the dual problem has the form: find p ∈ Qf such
that

−I∗(p) = sup
y∈Qf

−I∗(y)

where

I∗(q) =
1

2
‖q‖2

How are these two problems related?

First, we establish one relation that holds regardless of the structure of
the Lagrangian.
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Sup Inf and Inf Sup

Lemma

Let L(x, y) be a functional defined on the elements of two nonempty sets
X and Y. Then

sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y). (3.2)

Proof

It is easy to see that

L(x, y) ≥ inf
ξ∈X

L(ξ, y), ∀x ∈ X, y ∈ Y.

Taking the supremum over y ∈ Y, we obtain
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proof

sup
y∈Y

L(x, y) ≥ sup
y∈Y

inf
ξ∈X

L(ξ, y), ∀x ∈ X.

The left-hand side depends on x, while the right-hand side is a number.
Thus, we may take infimum over x ∈ X and obtain the inequality

inf
x∈X

sup
y∈Y

L(x, y) ≥ sup
y∈Y

inf
ξ∈X

L(ξ, y).

Therefore, we always have

sup P∗ ≤ inf P
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Duality relations

However, in our case we have a stronger relation, namely

sup P∗ = inf P
To prove this fact, we note that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V0.

Therefore p = ∇u ∈ Qf and

−I∗(p) = −1

2
‖∇u‖2 =

∫

Ω

(
1

2
|∇u|2 − fu)dx = J(u).
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Let us use the Mikhlin’s estimate established in Lecture 2:

1

2
‖∇(u− v)‖2 ≤ J(v)− J(u).

Since J(u) = −I∗(p), we have

1

2
‖∇(u− v)‖2 ≤ J(v) + I∗(p) ≤ J(v) + I∗(q) ∀q ∈ Qf .

Reform this estimate by using the fact that q ∈ Qf .

J(v) + I∗(q) =
1

2
‖∇v‖2 − (f, v) +

1

2
‖q‖2

=
1

2
‖∇v‖2 +

1

2
‖q‖2 − (∇v,q) =

=
1

2
‖∇v − q‖2.
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Now, we have

‖∇(v − u)‖ ≤ ‖∇v − q‖ ∀q ∈ Qf .

Take arbitrary y ∈ L2(Ω). Then,

‖∇(v − u)‖ ≤ ‖∇v − y‖+ inf
q∈Qf

‖y − q‖.

How to estimate the above infimum?
Various methods give one and the same answer:

inf
q∈Qf

‖y − q‖ ≤ [] divy + f [] y ∈ L2(Ω), (3.3)

inf
q∈Qf

‖y − q‖ ≤ CΩ‖divy + f‖ y ∈ H(Ω,div), (3.4)
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Proof

To prove these estimates we consider an auxiliary problem

∆η + f + divy = 0 Ω η = 0 ∂Ω.

∫

Ω

∇η · ∇wdx=

∫

Ω

(f + divy)wdx=

∫

Ω

(fw − y · ∇w)dx

q
∫

Ω

︷ ︸︸ ︷
(∇η + y) ·∇wdx =

∫

Ω

fw dx ∀w ∈ V0

Thus, q̄ ∈ Qf !!!
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Since η is a solution of the boundary–value problem with right–hand side
div y + f ∈ H−1, we have

‖∇η‖ ≤ [] div y + f [] ,

Then

inf
q∈Qf

‖y − q‖ ≤ ‖y − q‖ = ‖∇η‖ ≤ [] divy + f [] .

Here

[] divy + f [] = sup
w∈V0

∫
Ω (y · ∇w − fw)dx

‖∇w‖

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

y ∈ H(Ω,div)

If y has a square summable divergence, then we have

[] divy + f [] = sup
w∈V0

∫
Ω (divy + f)wdx

‖∇w‖ ≤ CΩ‖divy + f‖,

where CΩ is the constant in the Friederichs–Steklov inequality for the
domain Ω. Thus, by taking the flux vector–valued function in the
space that contains the flux of the true solution we make a
”noncomputable” negative norm computable.
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Thus, for any y ∈ H(Ω,div) we obtain

‖∇(v − u)‖ ≤ ‖∇v − y‖+ inf
q∈Qf

‖y − q‖ ≤
‖∇v − y‖+ CΩ‖divy + f‖.

Above presented modus operandi can be viewed as a simplest version of
the variational approach to the derivation of Functional Error Majorants.
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Method of integral identities. First glance.

For many problems the variational techniques cannot be applied because
they have no variational formulation.
In
S. Repin. Two-sided estimates for deviation from an exact solution to
uniformly elliptic equation. Trudi St.-Petersburg Math. Society, 9(2001),
translated in American Mathematical Translations Series 2, 9(2003))
it was suggested another method, which is based on certain
transformations of integral identities. Later this method was applied to
parabolic problems:
S.Repin. Estimates of deviation from exact solutions of initial-boundary
value problems for the heat equation, Rend. Mat. Acc. Lincei, 13(2002).
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Nonvariational method in the simplest case

Let us expose its simplest version adapted to our model problem.
We have seen that

‖∇(u− v)‖ ≤ []∆v + f []

Instead of the estimation of the negative norm by Galerkin orthogonality
and special intepolation estimates we suggest another method of
finding an upper bound that is based on the functional relation

∫

Ω

(divyw +∇w · y)dx = 0 ∀w ∈ V0
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We have

[]∆v + f [] = sup
w∈V0

∫
Ω (∇v · ∇w − fw)

‖∇w‖ =

sup
w∈V0

∫
Ω (∇v · ∇w − fw − (divyw +∇w · y))

‖∇w‖ =

sup
w∈V0

∫
Ω ((∇v − y) · ∇w − (f + divy)w)dx

‖∇w‖ =

sup
w∈V0

‖∇v − y‖‖∇w‖+ ‖f + divy‖‖w‖
‖∇w‖ ≤

≤ ‖∇v − y‖+ CΩ‖f + divy‖.
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Functional error estimate. Meaning and properties

For the problem

∆u + f = 0, u = 0 on ∂Ω

we have obtained the estimate

‖∇(u− v)‖ ≤ ‖∇v − y‖+ CΩ‖divy + f‖ (3.5)

The estimate is valid for any v ∈ V0 and y ∈ H(Ω,div)
Two terms in the right–hand side have a clear sense: they present
measures of the errors in two basic relations

p = ∇u, divp + f = 0 inΩ

that jointly form the equation.
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The estimate is sharp

If set v = 0 and y = 0, we obtain the energy estimate for the generalized
solution

‖∇u‖ ≤ CΩ‖f‖.

Therefore, no constant less than CΩ can be stated in the second term.
If set y = ∇u, than the inequality holds as the equality.
Thus, we see that the estimate (3.5) is sharp in the sense that the
multipliers of both terms cannot be taken smaller and in the set of
admissible y there exists a function that makes the inequality hold
as equality.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

The estimate as a quadratic functional

By means of the algebraic Young’s inequality

2ab ≤ βa2 +
1

β
b2, β > 0

we rewrite this estimate in the form

‖∇(u− v)‖2 ≤ (3.6)

≤ (1 + β)‖∇v − y‖2 +
1 + β

β
C2

Ω‖divy + f‖2

For any β the right–hand side is a quadratic functional. This property
makes it possible to apply well known methods for the minimization with
respect to y.
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Deviation Majorant

Denote the right–hand side of (3.6) by M⊕, i.e.,

M⊕(v, y, β,CΩ, f) := (1+β)‖∇v−y‖2 +
1+β

β
C2

Ω‖divy+ f‖2.

This functional provides an upper bound for the norm of the
deviation of v from u. Therefore, it is natural to call it the

Deviation Majorant.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

BVP ∆u + f = 0 has another variational formulation

inf
v∈V0,

β>0,

y∈H(Ω,div),

M⊕(v, y,β,CΩ, f)

Minimum of this functional is zero;

it is attained if and only if v = u and y = A∇u !;

M⊕ contains only one global constant CΩ, which is problem
independent;
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In principle, one can select certain sequences of subspaces
{Vhk} ∈ V0 and {Yhk} ∈ H(Ω,div) and minimize the Error Majorant
with respect to these subspaces

inf
v∈Vhk,

β>0,

y∈Yhk,

M⊕(v, y, β,CΩ, f)

If the subspaces are limit dense, then we would obtain a sequence
of approximate solutions (vk, yk) and the sequence of numbers

γk := inf
β>0

M⊕(vk, yk,β,CΩ, f) → 0
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How to use the Majorants in practice?

Consider CONFORMING FEM APPROXIMATIONS.

We have 3 basic ways to use the deviation estimate:
(a) Use flux averaging on the mesh Th);
(b) Use flux averaging on the refined mesh href);
(c) Minimization with respect to y.
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(a) Use recovered gradients

Let uh ∈ Vh, then

ph := ∇uh ∈ L2(Ω,R d), ph 6∈ H(Ω, div).

Use an averaging operator Gh : L2(Ω,R d) → H(Ω, div) and have
a directly computable estimate

‖∇(u− uh)‖ ≤ ‖∇uh − Ghph‖+ CΩ ‖divGhph + f‖
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(b) Use recovered gradients from Thref

Let u1,u2, ...,uk, ... be a sequence of approximations on meshes

Thk
. Compute pk := ∇uk, average it by Gk and for uk−1 use the

estimate

‖u− uk−1‖ ≤ ‖∇uk−1−Gkpk‖+ CΩ ‖divGkpk+f‖

This estimate gives a quantitative form of the Runge’s
rule.
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(c) Minimize M⊕ with respect to y.

Select a certain subspace Yτ in H(Ω,div). Generally, Yτ may be
constructed on another mesh Tτ and with help of different
trial functions. Then

‖∇(u− uh)‖ ≤ inf
yh∈Yh

{‖∇uh−yh‖+ CΩ ‖divyh +f‖}

The wider Yh ⊂ H(Ω,div) the sharper is the upper bound.
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Quadratic type functional

From the technical point of view it is better to square both parts
of the estimate and apply minimization to a quadratic functional,
namely

‖∇(u− uh)‖2 ≤ inf
yh∈Yh

{
(1 + β)‖∇uh−yh‖+

+ CΩ

(
1 +

1

β

)
‖divyh +f‖2

}

Here, the positive parameter β can be also used to minimize the
right–hand side.
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Before going to more complicated problems
where Deviation Majorants are derived by a

more sophisticated theory, we observe several
simple examples that nevertheless reflect key

points of the above method.
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Simple 1-D problem

(α(x) u′ )′ = f(x),

u(a) = 0, u(b) = ub.

It is equivalent to the variational problem

J(v) =

b∫

a

(
1

2
α(x) | v′ |2 +f(x)v

)
dx.

Assume that the coefficient α belongs to ∈ L∞ and bounded from below
by a positive constant. Now

V0 + u0 = {v ∈ H1(a,b) | v(a) = 0, v(b) = ub}.
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Deviation Majorant

M⊕(v, β, y)=(1+β)




b∫

a

| αv′−y |2 dx+
C2

(a,b)

β

b∫

a

|y′−f|2

dx. (3.7)

In this simple model, u can be presented in the form

u(x) =

∫ x

a

1

α(t)

∫ t

a

f(z)dzdt +
x

b

(
ub −

∫ b

a

1

α(t)

∫ t

a

f(z)dzdt

)
.

what gives an opportunity to verify how error estimation methods work.
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Approximations

Let Vh be made of piecewise–P1 continuous functions on uniform
splittings of the interval and consider approximations of the following
types:

Galerkin approximations;

Approximations very close to Galerkin (sharp);

Approximations which are ”good” but not Galerkin;

Coarse (rough) approximations.

Our aim is to show that the Deviation Majorant can be effectively
used as an error estimation instrument in all the above cases.
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Computation of the Majorant

To find a sharp upper bound, we minimize M⊕ with respect to y and β
starting from the function y0 = G(v′), where G is a simple averaging
operator, e.g, defined by the relations

G(v′)(xi) =
1

2
(v′(xi − 0) + v′(xi + 0)),

By the quantity

inf
β>0

M⊕(v,β, y0),

we obtain a coarse upper bound of the error. It is further improved by
minimizing M⊕ with respect to y.
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Example 1

Let α(x) = 1, f(x) = c, a = 0, b = 1, ub = 1, e.g., we consider the
problem

u′′ = 2, u(0) = 0, u(1) = 1.

In this case, C(a,b) = 1/π and

u =
c

2
x2 + (1 − c

2
)x, u′ = cx + 1− c

2
.

Take a rough approximation v = x. Then

‖(u− v)′‖2 =

∫ 1

0

c2(x− 0.5)2dx = c2/12 ≈ 0.083c2.
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0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

v
u

Exact solution and an approximation.
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Various y give different upper bounds

(a) Take y = v′ = 1, then the first term in

M⊕(v, β, y) = (1 + β)




1∫

0

| v′−y |2 dx+
1

π2β

1∫

0

|y′−f|2

dx.

vanishes and we have M⊕ → c2/π2 ≈ 0.101c2; as β → +∞. We see
that this upper bound overestimates true error. Note that in this case, all
sensible averagings of v ′ = 1 give exactly the same function: G(1) = 1 !
Therefore,

G(v′) − v′ ≡ 0

and formally ZZ indicator ”does not see the error”.
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For the choice y = v′ the Majorant give a certain upper bound of the
error (which is not so bad), but the integrand cannot indicate the
distribution of local errors. Indeed, we have

M⊕ =
1

π2

∫ 1

0

c2dx.

However, the integrand of the Majorant is a constant function, but the
error is distributed in accordance with a parabolic law:

(u− v)′ = c(x− 0.5)2.
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(b). Take y = cx + 1− c/2. Then, y′ = c and the second term of the
majorant vanishes. We have (for β = 0)

M⊕ =

∫ 1

0

c2(x− 1/2)2dx = c2/12.

We observe that both the global error and the error distribution are
exactly reproduced. In real life computations such an ”ideal” function y
may be unattainable. However, the minimization makes the Majorant
close to the sharp value. In this elementary example, we have minimized
the Majorant on using piecewise affine approximations of y on 20
subintervals. The elementwise error distribution obtained as the result of
this procedure is exposed on the next picture.
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To give further illustrations, we consider the functions

uδ = u + δϕ,

where δ is a number and ϕ is a certain function (perturbation).

Approximate solutions (whose errors are measured) are piecewise
affine continuous interpolants of uδ defined on a uniform mesh

with 20 subintervals.

We take ϕ = x sin(πx) and δ = 0.1, 0.01, 0.001, and 0.

Table:

δ e 2M⊕ 2Mª ieff iesh
0.1 0.019692 0.019743 0.019683 1.003 1.018
0.01 0.001022 0.001025 0.001013 1.003 1.011
0.001 0.000835 0.000839 0.000827 1.005 1.002

0 0.000833 0.000836 0.000825 1.004 1.002

In this experiment the Majorant was computed for 1
2‖e‖2.
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Error estimation for δ = 0.1
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Functions u, v and ieff for δ = 0.1
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Error estimation for δ = 0.01

A more precise approximation.

0

4e-05

8e-05

0 0.5 1

Errors
DEM

0.5

Errors
GA

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Functions e(y), β and ieff for δ = 0.1
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Error estimation for δ = 0.01

A more precise approximation.
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Functions e(y), β and ieff for δ = 0.01
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Error estimation for δ = 0.001

Sharp approximation.
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Functions e(y), β and ieff for δ = 0.001
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Error estimation for δ = 0

Interpolant of the exact solution.
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Functions e(y), β and ieff for δ = 0
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Functional a posteriori error estimates were derived by the methods of duality
theory in convex analysis in 1996. These results are published in [7,8]. In
[5,9,23,24], they were applied to certain linear and nonlinear variational
problems with convex functionals. First consequent study of their
computational properties was presented in [10]. Later a detailed investigation
of the practical aspects was done in [1,3,18]. General a posteriori estimates for
the class of convex functionals are derived and discussed in [3,5,11,12]. A
posteriori estimates for a class of nonconvex problems are can be found in [6].
A posteriori estimates which take into account errors in main boundary
conditions were derived in [20], there readers can also find a method of the
derivation of the estimates based upon the orthogonal decomposition of the
space L2 (Helmgholts decomposition). In, [17,21,22] a posteriori estimates
were derived for modeling errors in dimension reduction models. Estimates for
the Stokes problem will be further discussed in this lecture course (see [15,16]).
In [19], functional type a posteriori estimates were obtained for the
Reissner-Mindlin plate.
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Lecture 4.
AN INTRODUCTION TO DUALITY THEORY.
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Lecture goal

In subsequent lectures we will present the general theory of a
posteriori error control for convex variational problems. In the
framework of this theory we are able to derive computable upper
bounds for the errors for problems of the type

inf
v∈V

J(v,Λv), J(v,Λv) := G(Λv) + F(v),

where Λ : V → Y is a linear continuous operator from a Banach
space V to another Banach space Y and J : Y → R and
F : V → R are convex l.s.c. functionals.
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In particular, if

Λv = ∇v, G(y) = (Ay, y), F(v) = (f, v),

then we arrive to the variational formulation of the problem

div A∇u + f = 0

with certain boundary conditions.
Many other problems have the above form, were

G is the energy functional whose form is dictated by
the dissipative properties of a media.
F is the functional associated with external forces.
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Many problems in continuum mechanics encompassed in the
general scheme are: linear elasticity,
biharmonic problems,
Kirhghoff and Mindlin plates,
deformation theory of elastoplasticity,
Stokes problem.
Also, this scheme is applicable to the p-Laplace equation and
certain nonlinear models in the theory of viscous fluids.

In such models the structure of the ”energy functional” G
plays crucial role in all the parts of the mathematical
analysis: existence and differentiability properties of

minimizers and estimates of deviations from the minimizers.
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To understand the basic principles of the
functional approach to the derivation of a

posteriori bounds of the approximation errors
we need to make a concise overview of some
parts of the duality theory in the calculus of

variations.
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Lecture plan

Dual and bidual functionals ;

Compound functionals ;

Uniformly convex functionals.
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Dual (polar) functionals

Hereafter V∗ contains all linear continuous functionals defined on
V. The elements of V∗ are marked by stars,
〈v∗, v〉 is called the duality pairing of the spaces V and V∗.
Let J : V → R, then J∗ defined by the relation

J∗(v∗) = sup
v∈V

{〈v∗, v〉 − J(v)}

is called dual to J.
If J is a smooth function that increases at infinity faster than any
linear function, then J∗ is the Legendre transform of J. The above
general definition comes from Young and Fenchel. The functional
J∗ is also called polar to J.
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Bipolar functionals

The functional

J∗∗(v) = sup
v∗∈V∗

{〈v∗, v〉 − J∗(v∗)}

is called the bidual to J (or bipolar).
Straightforwardly from the definition, it follows that J∗ and J∗∗ are
convex functionals (they are defined as upper bounds of affine
functionals). Formally, one can also define

J∗∗∗(v∗) := sup
v∈V

{〈v∗, v〉 − J∗∗(v)}.

However, this definition brings nothing new. It is proved that

J∗∗∗(v∗) = J∗(v∗), ∀v∗ ∈ V∗.
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Mutually dual functionals

Let J : V → R := {R,−∞, +∞} and G∗ : V∗ → R be two
functionals defined on a Banach space V and its dual space V∗,
respectively. These two functionals are called mutually dual if

(G∗)∗ = J and J∗ = G∗.
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Examples

To illustrate the definitions of conjugate functionals, we present
below several examples for functionals defined on the Euclidean
space Ed. In this case, V and V∗ are isometrically isomorphic.
Their elements are d-dimensional vectors denoted by ξ and ξ∗,
respectively, so that

〈ξ∗, ξ〉 = ξ∗ · ξ = ξ∗i ξi .

These examples have a practical meaning because for a wide class
of integral type functionals (in the mechanics they are the energy
functionals) finding the dual energy functional is reduced to
finding dual to its integrand !
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In other words, if the ”primal energy functional” has the form

G(v) :=

∫

Ω
g(Λv)dx

where g is the ”internal energy” or ”dissipative potential”, then
the so–called ”complementary energy” is given by the integral

functional

G∗(y∗) :=

∫

Ω
g∗(y∗)dx,

where g∗ is conjugate to g in the algebraic sense.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Example 1 (Diffusion problems)

Let A = {aij} be a real, positive definite matrix and

g(ξ) =
1

2
Aξ · ξ =

1

2
aijξiξj.

Then

g∗(ξ∗) = sup
ξ∈Ed

{
ξ∗ · ξ − 1

2
Aξ · ξ

}
.

This supremum is attained on an element ξ0 such that

ξ∗ = Aξ0 =⇒ ξ0 = A−1ξ∗.

Therefore, we have a pair of mutually conjugate functionals

g(ξ) =
1

2
Aξ · ξ and g∗(ξ∗) =

1

2
A−1ξ∗ · ξ∗.
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In diffusion type boundary–value problems we arrive at the
functional (with y = ∇v)

1

2

∫

Ω
Ay · y dx y ∈ L2(Ω,R n),

which is mutually dual to

1

2

∫

Ω
A−1y∗ · y∗ dx y∗ ∈ L2(Ω,R n)

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Example 2 (Linear elasticity)

Let L = {Lijkm} be a real, positive definite tensor of the 4-th order
and τ be a tensor of the second order (d× d–matrix). Then,

g(ε) =
1

2
Lε : ε =

1

2
Lijkmεijεkm.

Then

g∗(ε∗) = sup
ε∈Md×d

{
ε∗ : ε− 1

2
Aε : ε

}
.

This supremum is attained on an element ε0 such that

τ ∗ = Lε0 =⇒ ε0 = L−1ε∗.

Therefore, we have a pair of mutually dual functionals

g(ε) =
1

2
Lε : ε and g∗(ε∗) =

1

2
L−1ε∗ : ε∗.
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In linear elasticity problems we arrive at the energy functional in
terms of strains ε(v) = 1

2(∇v + (∇v)T)

1

2

∫

Ω
Lε : εdx ε ∈ L2(Ω,M n×n),

which is mutually dual to the ”complementary energy” functional
written in terms of stresses ε∗(x) => τ (x)

1

2

∫

Ω
L−1τ : τ dx τ ∈ L2(Ω,M n×n)
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Example 3 (Nonlinear elasticity, p-Laplacian)

Consider the functional

g(ξ) =
1

p
|ξ|p,

where p > 1 and |ξ| = (ξ · ξ)1/2. It is easy to verify that the
quantity ξ∗ · ξ − 1

p |ξ|p attains a supremum if ξ = ξ0, where ξ0

satisfies the relation

ξ∗ − |ξ0|p−2ξ0 = 0,

which yields |ξ∗| = |ξ0|p−1 and ξ∗ · ξ0 = |ξ0|p. Therefore,

g∗(ξ∗) = ξ∗ · ξ0 −
1

p
|ξ0|p =

(
1− 1

p

)
|ξ0|p =

1

p∗
|ξ∗|p∗ ,

where p∗ = p
p−1 .
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Thus, we obtain another pair of mutually conjugate functionals

g(ξ) =
1

p
|ξ|p and g∗(ξ∗) =

1

p∗
|ξ∗|p∗ ,

where 1
p + 1

p∗ = 1.

Remark

This relation admits generalizations. Namely, let ϕ : R→ R be a
proper convex function that is, in addition, odd and let
ϕ∗ : R→ R be its conjugate. Then

(ϕ(‖u‖V))∗ = ϕ∗(‖u∗‖V∗).
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In certain nonlinear boundary–value problems we arrive at the
functional (with y = ∇v or y = ε(v))

1

p

∫

Ω
|y|p dx y ∈ Lp(Ω,R n[M n×n]),

which is mutually dual to

1

p∗

∫

Ω
|y∗|p∗ dx y∗ ∈ Lp∗(Ω,R n[M n×n]).
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Example 4 (Action of external forces )

Let g(ξ) be a linear functional, i.e.,

g(ξ) = ` · ξ, ` ∈ Ed.

It is easy to see that

g∗(ξ∗) = sup
ξ∈Ed

{ξ∗ · ξ − ` · ξ} =

{
0 ξ∗ = `,

+∞ ξ∗ 6= `.

Denote by X{`} the characteristic functional of the set {`} ⊂ Ed.
Then, another pair of mutually conjugate functionals is as follows:

g(ξ) = ` · ξ and g∗(ξ∗) = X{`}(ξ∗).
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Thus, for the functional G : L2 → R

G(v) :=

∫

Ω
fv dx, f ∈ L2(Ω)

the respective dual functional is G∗ : L2 → R

G∗(v∗) = 0 if v∗ = f, G∗(v∗) = +∞ in other cases.
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Example 5 (Variational inequalities, friction)

Let g(ξ) = |ξ|. Then

sup
ξ
{ξ∗ · ξ − |ξ|}

may be finite or infinite depending on the value of |ξ∗|. If |ξ∗| > 1,
then, obviously, it is infinite. If |ξ∗| ≤ 1, then, on the one hand,

sup
ξ
{ξ∗ · ξ − |ξ|} ≤ sup

ξ
{1|ξ| − |ξ|} = 0.

On the other hand, supξ{ξ∗ · ξ− |ξ|} ≥ ξ∗ · 0− 0 = 0. This means
that g∗(ξ∗) = 0 if |ξ∗| ≤ 1 and, thus,

g(ξ) = |ξ|, g∗(ξ∗) = XB∗(0,1)(ξ
∗), where B∗(0, 1)={ξ∗∈ Ed | |ξ∗| ≤ 1}.
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Thus, for the functional G : L1 → R

G(v) :=

∫

Ω
|v|dx,

the respective dual functional is G∗ : L∞ → R

G∗(v∗) = 0 if |v∗(x)| ≤ 1 a.e. inΩ, G∗(v∗) = +∞ in other cases.
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Example 6 (Variational inequalities, perfect plasticity)

Let K be a convex closed set in Ed and

g(ξ) = XK(ξ).

The respective conjugate functional is defined as follows:

g∗(ξ∗) = sup
ξ∈Ed

{ξ∗ · ξ −XK(ξ)} = sup
ξ∈K

ξ∗ · ξ.

This function is called the support function of K and is denoted
by X∗

K(ξ∗). For example, if K = B(0, 1), then

sup
ξ∈K

ξ∗ · ξ = |ξ∗| ⇒ X∗
B(0,1)(ξ

∗) = |ξ∗|.
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Example 7 (Elasto-plasticity )

Let us find conjugate for the functional

g∗(ξ∗) =
k

2
|ξ∗|2 + XB∗(0,λ)(ξ

∗), k > 0, λ > 0.

In this case,

g(ξ) = sup
ξ∗∈B∗(0,λ)

{ξ∗ · ξ − k

2
|ξ∗|2}.

If ξ∗0 meets the relation ξ = kξ∗0 and satisfies the condition
|ξ∗0| ≤ λ, then it is the required maximizer. For such a ξ∗0 we have

ξ · ξ∗0 −
k

2
|ξ∗0|2 =

1

k
|ξ∗0|2 −

1

2k
|ξ∗0|2 =

1

2k
|ξ|2.
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If |ξ∗0| > λ, then the maximizer ξ∗m meets the conditions

|ξ∗m| = λ, ξ · ξ∗m ≥ ξ∗ · ξ∗, ∀ξ∗ ∈ B∗(0, λ),

which mean that ξ∗m = λ ξ
|ξ| and, consequently,

ξ · ξ∗m −
k

2
|ξ∗m|2 = λ|ξ| − k

2
λ2.

Thus, we obtain

g(ξ) =





1

2k
|ξ|2 if |ξ| ≤ kλ,

λ|ξ| − k

2
λ2 if |ξ| > kλ.
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In the theory of perfect elasto–plasticity stresses are subject to the
condition τ ∈ K = plastic yield set and the stress energy

functional is defined and finite only on such τ :

G∗(τ ) =
1

2

∫

Ω
L−1τ : τ dx for τ ∈ K.

The respective dual functional (for strains) is given by a linear
growth functional

G(ε) =

∫

Ω
g(ε)dx,

where g is a linear growth functional of the type given on the
previous page.
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Example 8 (Minimal surfaces, capillary problems)

Consider the functional g(ξ) =
√

1 + |ξ|2, arising in some
variational problems having a geometrical meaning (e.g., for the
nonparametric minimal surface problem). If |ξ∗| > 1, then the
value of

sup
ξ∈Ed

{
ξ∗ · ξ −

√
1 + |ξ|2

}

is infinite. If |ξ∗| ≤ 1, then the maximizer ξ0 satisfies the condition

ξ∗ − ξ0√
1 + |ξ0|2

= 0, ⇒ |ξ0|2 =
|ξ∗|2

1− |ξ∗|2 .

Therefore, we obtain

g∗(ξ∗) =

{
−

√
1− |ξ∗|2 if |ξ∗| ≤ 1,

+∞ if |ξ∗| > 1.
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Energy functional for the minimal surface problem (with y = ∇v)

∫

Ω

√
1 + |y|2 dx y ∈ L1(Ω,R2),

which is mutually dual to

−
∫

Ω

√
1− |y∗|2 dx |y∗| ≤ 1.
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Properties of dual functionals

Property 1

If J : V → R and G : V → R are such that

J(v) ≥ G(v), ∀v ∈ V,

then

J∗(v∗) ≤ G∗(v∗), ∀v∗ ∈ V∗.

Proof. We have

J∗(v∗) = sup
v∈V

{〈v∗, v〉 − J(v)} ≤ sup
v∈V

{〈v∗, v〉 − G(v)} = G∗(v∗).
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Property 2

For any λ > 0,

(λJ)∗(v∗) = λJ∗
(

v∗

λ

)
.

Proof. This property is justified by direct calculations:

(λJ)∗(v∗) = sup
v∈V

{〈v∗, v〉 − λJ(v)} =

= λ sup
v∈V

{〈
v∗

λ
, v

〉
− J(v)

}
= λJ∗

(
v∗

λ

)
.
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Property 3

Let J : V → R and Jα(v) = J(v) + α, where α ∈ R. Then

J∗α(v∗) = J∗(v∗)− α.

Proof. It follows from the obvious relation

sup
v∈V

{〈v∗, v〉 − J(v)− α} = sup
v∈V

{〈v∗, v〉 − J(v)} − α.
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Property 4

Let v0 ∈ V and G(v) = J(v − v0). Then

G∗(v∗) = J∗(v∗) + 〈v∗, v0〉.

Proof. Since

sup
v∈V

{〈v∗, v〉 − J(v − v0)} = sup
w∈V

{〈v∗,w + v0〉 − J(w)}

= sup
w∈V

{〈v∗,w〉 − J(w)}+ 〈v∗, v0〉 = J∗(v∗) + 〈v∗, v0〉,

we arrive at the required relation.
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Property 5

If G(v) = mini=1,...,N{Ji(v)}, then G∗(v∗) = maxi=1,...,N{J∗i (v∗)}.

Proof. We have

G∗(v∗) = sup
v∈V

{〈v∗, v〉 − min
i=1,...,N

{Ji(v)}}

= sup
v∈V

{〈v∗, v〉+ max
i=1,...,N

{−Ji(v)}}

= sup
v∈V

max
i=1,...,N

{〈v∗, v〉 − Ji(v)}

= max
i=1,...,N

sup
v∈V

{〈v∗, v〉 − Ji(v)} = max
i=1,...,N

{J∗i (v∗)}.
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Property 6

If G(v) = maxi=1,...,N{Ji(v)}, then G∗(v∗) ≤ mini=1,...,N{J∗i (v∗)}.

Proof. By definition, we have

G∗(v∗) = sup
v∈V

{〈v∗, v〉 − max
i=1,...,N

{Ji(v)}}

= sup
v∈V

{〈v∗, v〉+ min
i=1,...,N

{−Ji(v)}}

= sup
v∈V

min
i=1,...,N

{〈v∗, v〉 − Ji(v)}}.

Now we apply sup inf ≤ inf sup relation to 〈v∗, v〉 − Ji(v). Then,

G∗(v∗) ≤ min
i=1,...,N

sup
v∈V

{〈v∗, v〉 − Ji(v)} = min
i=1,...,N

{J∗i (v∗)}.
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Subdifferential

Definition

The functional JV → R is called subdifferentiable at v0 if there
exists an affine minorant ` ∈ AM(J) such that J(v0) = `(v0). A
minorant with this property is called the exact minorant at v0.

Obviously, any affine minorant exact for J at v0 has the form

`(v) = 〈v∗, v − v0〉+ J(v0), `(v) ≤ J(v), ∀v ∈ V.

The element v∗ is called a subgradient of J at v0.
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The set of all subgradients of J at v0 forms a subdifferential,
which is usually denoted by ∂J(v0). It may be empty or contain
one element or infinitely many elements.
An important property of convex functionals follows directly from
the above definition. For a convex functional J at a point v0 where
it is finite, the exact affine minorant is evidently exist!
In other words, there is at least one element v∗ ∈ ∂J(v0) that
”creates” an affine minorant such that

〈v∗, v〉 −α ≤ J(v), ∀v ∈ V,

〈v∗, v0〉 −α = J(v0).

By subtracting, we obtain

J(v)− J(v0) ≥ 〈v∗, v − v0〉.
The inequality (4.1) presents the basic incremental relation for
convex functionals.
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Compound functionals

Let J and J∗ be a pair of mutually dual convex functionals.

The functional DJ : V × V∗ → R of the form

DJ(v, v∗) := J(v) + J∗(v∗)− 〈v∗, v〉.

is called it the compound functional associated with these pair of
functionals.

We will see that compound functionals play an important role in
the a posteriori analysis of linear and nonlinear variational
problems.
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Compound functionals are always nonnegative. Indeed,

J∗(v∗) = sup
v∈V

(〈v∗, v〉 − J(v)) ≥ 〈v∗, v〉 − J(v) ∀v ∈ V

and

J∗(v∗) + J(v)− 〈v∗, v〉 ≥ 0 ∀v, v∗
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Compound functionals may vanish only on special sets, where v
and v∗ satisfy certain relations.

Theorem

Let J be a proper convex functional and J∗ be its polar. Then, the
following two statements are equivalent:

J(v) + J∗(v∗)− 〈v∗, v〉 = 0, (4.1)

v∗ ∈ ∂J(v) and v ∈ ∂J∗(v∗). (4.2)

Relations (4.2) are also called duality relations for the pair (v, v∗).

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Proof.

Assume that v∗ ∈ ∂J(v)., i.e,

J(w) ≥ J(v) + 〈v∗,w − v〉, ∀w ∈ V.

Hence,
〈v∗, v〉 − J(v) ≥ 〈v∗,w〉 − J(w), ∀w ∈ V

and, consequently,

〈v∗, v〉 − J(v) ≥ sup
w∈V

{〈v∗,w〉 − J(w)} = J∗(v∗),

what leads to the conclusion that J∗(v∗) + J(w)− 〈v∗,w〉 ≤ 0.
But the left–hand side is nonnegative, so that we obtain
DJ(v

∗, v) = 0.
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Assume that v ∈ ∂J∗(v∗). Then

J∗(w∗) ≥ J∗(v∗) + 〈w∗ − v∗, v〉,

and we continue similarly to the previous case:

〈v∗, v〉 − J∗(v∗) ≥ 〈w∗, v〉 − J∗(w∗), ∀w∗ ∈ V∗,
〈v∗, v〉 − J∗(v∗) ≥ J∗∗(v) = J(v).

Thus, we again arrive at the conclusion that it can only be if
DJ(v

∗, v) = 0.
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Assume that DJ(v
∗, v) = 0. Since

J∗(v∗) = sup
w∈V

{〈v∗,w〉 − J(w)},

we obtain

0=J(v)+J∗(v∗)−〈v∗, v〉 ≥ J(v)−J(w)− 〈v∗, v−w〉, ∀w ∈ V.

Rewrite this inequality in a more familiar form:

J(w)− J(v) ≥ 〈v∗,w − v〉, ∀w ∈ V,

which means that J(v) + 〈v∗, v −w〉 is an exact affine minorant of
J (at v) and, consequently, v∗ ∈ ∂J(v). The proof of the fact that
v∗ ∈ ∂J∗(v∗) is quite analogous.
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Properties of compound functionals

First, we note that, DG(y, y∗) is convex with respect to y and y∗,
but, in general, DG(y, y∗) is a nonconvex functional on Y × Y∗.
This fact is easily observed in the simplest case Y = R if set

G(y) =
1

α
|y|α G∗(y) =

1

α∗
|y|α∗ .

Only for α = 2 we have a convex functional

DG(y, y∗) =
1

2
|y|2 +

1

2
|y∗|2 − yy∗ =

1

2
(y − y∗)2.

For other α ∈ (1, +∞) DG is nonconvex on R× R.
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Example 1: D(ξ1, ξ2) = 1
3 |ξ1|3 + 2

3 |ξ2|3/2 − ξ1ξ2

Compound functional on R× R and its level lines

-0.5 0 0.5

-0.5

0

0.5

0

1
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Example 2: D(ξ1, ξ2) = 5
6 |ξ1|6/5 + 1

6 |ξ2|6 − ξ1ξ2

Compound functional on R× R and its level lines

-0.5 0 0.5

-0.5

0

0.5

0

1
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However, they have an important property, which is to some extent
similar to convexity.

Theorem

For any y1, y2 ∈ Y and y∗1, y
∗
2 ∈ Y∗,

DG

( y1+y2
2 ,

y∗1+y∗2
2

) ≤ 1
4

(
DG(y1, y

∗
1) + DG(y1, y

∗
2)+

+ DG(y2, y
∗
1) + DG(y2, y

∗
2)

)
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Proof

From the definition it follows that

DG

(
y,

y∗1 +y∗2
2

)
= G(y) + G∗

( y∗1 +y∗2
2

)− 〈 y∗1 +y∗2
2 , y

〉

≤ 1
2 (DG(y, y∗1) + DG(y, y∗2))

and

DG

(
y1+y2

2 , y∗
)

= G
(

y1+y2

2

)
+ G∗(y∗)− 〈

y∗, y1+y2

2

〉

≤ 1
2 (DG(y1, y

∗) + DG(y2, y
∗)) .

Therefore,

DG

(
y1+y2

2 ,
y∗1 +y∗2

2

) ≤ 1
2

(
DG(y1,

y∗1 +y∗2
2 ) + DG(y2,

y∗1 +y∗2
2 )

)
.

and we arrive at the required estimate.
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Important property

If G and G∗ are Gateaux differentiable, then

〈y∗ − G′(y),G∗′(y∗)− y〉 ≥ DG(y, y∗).

Note, that from this relation we conclude that DJ vanishes if the
duality relations are satisfied.
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Uniformly convex functionals

Let a proper l.s.c. functional Υ : Y → R be subject to the
conditions

Υ(y) ≥ 0, ∀y ∈ Y, Υ(y) = 0 ⇐⇒ y = 0Y.

Definition

A convex functional J : Y → R is called uniformly convex in
B(0Y, δ) if there exists a functional Υδ such that Υδ 6≡ 0 and for
all y1, y2 ∈ B(0Y, δ) the following inequality holds:

J

(
y1 + y2

2

)
+ Υδ(y1 − y2) ≤ 1

2
(J(y1) + J(y2)) . (4.3)

The functional Υδ enforces standard convexity inequality. For this
reason, it is called a forcing functional.
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It is clear that any uniformly convex functional is convex in
B(0Y, δ). Now we establish two important inequalities that hold
for uniformly convex functionals.

Theorem

If J : Y → R is uniformly convex in B(0Y, δ) and Gâteaux
differentiable in B(0Y, δ), then for any y, z ∈ B(0Y, δ) the following
relations hold:

J(z) ≥ J(y) + 〈J′(y), z− y〉+ 2Υδ(z− y)

and

〈J′(z)− J′(y), z− y〉 ≥ 2Υδ(z− y) + 2Υδ(y − z).
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Proof.

We have Υδ(z− y) ≤ 1
2J(z) + 1

2J(y)− J
(

z+y
2

)
.

Since J is convex and differentiable

J

(
z + y

2

)
= J

(
y +

z− y

2

)
≥ J(y) +

〈
J′(y),

z− y

2

〉
,

and, therefore,

2Υδ(z− y) ≤ J(z)− J(y)−
〈
J′(y), z− y

〉
.

We can rewrite it replacing z by y

2Υδ(y − z) ≤ J(y)− J(z) +
〈
J′(z), z− y

〉

and obtain the second inequality.
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Deviations from the minimizer

Theorem

Let a functional J be uniformly convex in B(0Y, δ) and
ym ∈ B(0Y, δ) be the minimizer of J.

Υδ(z− ym) ≤ 1

2
(J(z)− J(ym)) , ∀z ∈ B(0Y, δ). (4.4)

Proof.

Since J
(

ym+z
2

) ≥ J(ym), we obtain

Υδ(z− ym) ≤ 1

2
J(ym) +

1

2
J(z)− J

(
ym + z

2

)
≤

≤ 1

2
(J(z)− J(ym)) .
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Estimate (4.4) is the first step in deriving a posteriori error
estimates of the functional type by means of the variational

techniques. It shows that deviations from the minimizer (measured
in terms of the functional Υδ) are controlled by the difference of

the functionals.
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Corollary 1

Rewrite (4.3) in the form

Υδ(z− ym) + J

(
ym + z

2

)
− J(ym) ≤ 1

2
(J(z)− J(ym)) .

By virtue of (4.4), we have

J

(
ym + z

2

)
− J(ym) ≥ 2Υδ

(
z− ym

2

)

and, therefore, we arrive at the strengthened estimate

Υδ(z− ym) + 2Υδ

(
z− ym

2

)
≤ 1

2
(J(z)− J(ym)) . (4.5)
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Corollary 2

Assume that J is twice differentiable in the vicinity of ym and
satisfies the finite increment relation

J

(
ym + z

2

)
= J(ym) +

〈
J′(ym),

z− ym

2

〉
+

+
1

2

〈
J′′

(
ym + ξ

z + ym

2

)
z− ym

2
,
z− ym

2

〉
,

where ξ ∈ (0, 1). Since J′(ym) = 0Y∗ , we have another estimate:

Υδ(z− ym) +
1

8

〈
J′′

(
(1 + ξ

2)ym + ξ
2z

)
(z− ym), z− ym

〉
≤

≤ 1

2
(J(z)− J(ym)) . (4.6)
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Example 1

Consider a self-adjoint operator A ∈ L(H,H) defined on a Hilbert space
H with scalar product (., .). Assume that it satisfies the condition

α1 ‖y‖2 ≤ G(y) := (Ay, y) ≤ α2 ‖y‖2
, ∀y ∈ H.

For J(y) = G(y) + (`, y), ` ∈ H we have

1

2
G(y) +

1

2
G(z)− G

(
y + z

2

)
=

=
1

4
(Ay, y) +

1

4
(Az, z)− 1

8
(A(y + z), y + z) =

=
1

8
(A(z− y), (z− y)),

the functional G is uniformly convex in any ball with

Υ(z− y) =
1

8
(A(z− y), (z− y)).
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Thus, from (4.4) we have

1

8
(A(z− ym), (z− ym)) ≤ 1

2
(J(z)− J(ym)) , ∀z

However (4.6) gives a better estimate

1

2
(A(z− ym), (z− ym)) ≤ J(z)− J(ym). (4.7)

Note that for quadratic type functionals this estimate holds as
equality. Indeed,

J (z)− J(ym) = (Aym + `, z− ym) +
1

2
(A(z− ym), z− ym).

and the minimizer ym satisfies the relation

(Aym + `, y) = 0, ∀y ∈ Y.

Therefore, (4.7) holds as equality.
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Theorem

Let J1 and J2 be uniformly convex in B(0Y, δ) with
functionals Υ1δ and Υ2δ, respectively.
Then the functional

µ1J1 + µ2J2,

where µ1, µ2 ≥ 0, is uniformly convex in B(0Y, δ) with

Υδ = µ1Υ1δ + µ2Υ2δ.

Proof.

The proposition follows directly from definition of uniform
convexity .
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Example 2

Consider the functional

J(y) =
1

2
(Ay, y) + (`, y) + Ψ(y),

where Ψ(y) is a convex and l.s.c. functional. Applying the above
Theorem with µ1 = µ2 = 1,

J1(y) =
1

2
(Ay, y) + (`, y) J2(y) = Ψ(y),

we see that J is uniformly convex with functional Υ defined in
Example 1.
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Theorem

Let J1 and J2 be uniformly convex in B(0Y, δ) with functionals
Υ1δ and Υ2δ, respectively. Then the functional

J(y) = max{J1(y), J2(y)}

is uniformly convex in B(0Y, δ) with

Υδ = min{Υ1δ,Υ2δ}.
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Proof. We have

1

2
J(y) +

1

2
J(z)− J

(
y+z
2

)
=

1

2
max{J1(y), J2(y)}+

+
1

2
max{J1(z), J2(z)} −max

{
J1

(
y+z
2

)
, J2

(
y+z
2

)}
.

Assume that
max

{
J1

(
y+z
2

)
, J2

(
y+z
2

)}
= J1

(
y+z
2

)
.

Then

1

2
(J(y) + J(z))− J

(
y+z
2

) ≥

≥ 1

2
(J1(y) + J1(z))− J1

(
y+z
2

) ≥ Υ1δ(z− y).
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If we have an opposite situation, i.e.,

max
{
J1

( y+z
2

)
, J2

(y+z
2

)}
= J2

(y+z
2

)
,

then
1

2
J(y) +

1

2
J(z)− J

(y+z
2

) ≥ Υ2δ(z− y).

Thus, in both cases the lower bound is given by the functional

min {Υ1δ(z − y),Υ2δ(z − y)}.
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Example 3. Power growth functionals

Let

G(y) = 1
α

∫

Ω
|y|α dx F(v) =

∫

Ω
fvdx,

where α > 1. Then Problem P is to minimize the functional

Jα(v) :=

∫

Ω

(
1
α |∇v|α + fv

)
dx

over the space V = {v ∈ Hα(Ω) | v = 0 on ∂Ω}.
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Problem P∗ is to maximize the functional

I∗α∗(y
∗) = − 1

α∗

∫

Ω
|y∗|α∗ dx

over the set

Q∗
f =

{
y∗ ∈ Y∗ := Lα∗(Ω,R n)|

∫

Ω
y∗ ·∇wdx=

∫

Ω
fwdx ∀w ∈ V

}
.
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For α ≥ 2 uniform convexity of G(y) follows from the first
Clarkson’s inequality

∫

Ω

∣∣y1+y2
2

∣∣α dx+

∫

Ω

∣∣y1−y2
2

∣∣α dx ≤ 1
2

∫

Ω
(|y1|α+|y2|α)dx,

which is valid for all y1, y2 ∈ Y.

See S. L. Sobolev. Some Applications of Functional Analysis in
Mathematical Physics. Hence, we observe that in this case

Υª(z) =
1

α
‖z‖α

α,Ω .

and

1

α2α

∫

Ω

|∇(v − u)|αdx ≤ 1

2
(Jα(v)−I∗α(q∗)) , ∀q∗ ∈ Q∗f ,
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For 1 < α ≤ 2, the functional G is also uniformly convex. This
fact follows from the second Clarkson’s inequality

(∫

Ω

(
y1 + y2

2

)α

dx

) 1
α−1

+

(∫

Ω

(
y1 − y2

2

)α

dx

) 1
α−1

≤
(

1
2

∫

Ω
(|y1|α + |y2|α)dx

) 1
α−1

.

However, in this case, the functional Υδ depends on the radius δ
of a ball B(0Y, δ) that contains y1 and y2, so that the estimate
holds with

Υδ(z) = δ
α−2
α−1 κ ‖z‖

α
α−1

α,Ω ,

where κ = 1
κ0+1 and κ0 is the integer part of 1

α−1 .
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Lecture 5.
FUNCTIONAL A POSTERIORI ESTIMATES. GENERAL

APPROACH.
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Main goal of the lecture

We expose the general approach to deriving two-sided
functional estimates of the deviations from exact

solutions of linear elliptic type problems having the
operator form

Λ∗AΛu + ` = 0

where Λ and A are linear bounded operators and
A is symmetric and positive definite.
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Lecture plan

Two–sided a posteriori estimates for linear elliptic type
problems;

Properties: computability, consistency, reliability;

Relationships with other error estimation methods;
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Problem in the abstract form

Many problems can be presented in the following form: find u ∈ V0 + u0

such that

(AΛu,Λw) + 〈`,w〉 = 0 ∀w ∈ V0. (5.1)

Here V0 is a subspace of a reflexive Banach space V,

e.g., V = H1, V0 =
◦
H1.

Λ : V → U is a bounded linear operator, e.g. Λ = ∇.
U is a Hilbert space with scalar product (·, ·) and norm ‖ · ‖,
e.g., U = L2.
` ∈ V∗0 , is a linear functional in the dual space, e.g., in H−1. In general,
we may assume that

〈`,w〉 = (f,w) + (g,Λw).

A ∈ L(U,U) is a self-adjoint operator.
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Assumptions

We assume that

V is compactly embedded in U (5.2)

and the operators Λ and A satisfy the relations

c1‖y‖2 ≤ (Ay, y) ≤ c2‖y‖2, ∀y ∈ U, (5.3)

‖Λw‖ ≥ c3‖w‖V, ∀w ∈ V0, (5.4)
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For our analysis, it is convenient to introduce two more norms:

||| y |||:= (Ay, y)1/2, ||| y |||∗= (A−1y, y)1/2,

where A−1 is the operator inverse to A. The respective spaces Y
and Y ∗ contain elements of U equipped with the norms ||| · ||| and
||| · |||∗, respectively.
Problem (5.1) is equivalent to following problem.
Problem P. Find u ∈ V0 + u0 such that

J(u) = inf
v∈V0+u0

J(u) := inf P,

where

J(v) =
1

2
||| Λv |||2 +〈`, v〉.
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Lagrangian

On the set (V0 + u0)× Y∗, we define the Lagrangian

L(v, y) = (y,Λv)− 1

2
||| y |||2 +〈`, v〉

and the functional

I∗(y)= inf
v∈V0+u0

L(v, y)=

{
(y,Λu0)− 1

2 ||| y |||2∗+〈`,u0〉, y∈Q∗
`,

−∞, y /∈Q∗
`,

where Q∗
` := {y ∈ Y∗ | (y,Λw) + 〈`,w〉 = 0, ∀w ∈ V0} .

Note that since

(y,Λ(u0 + w)+ 〈`, (u0 + w)〉 = (y,Λu0)+ 〈`,u0〉

we see that I∗ does not depend on the form of u0 inside Ω.
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The problem dual to P is as follows.
Problem P∗. Find p ∈ Q∗

` such that

I∗(p) = sup
y∈Q∗`

I∗(y) := supP∗ ≤ inf P.

The minimizer u satisfies and the maximizer p satisfies the
stationarity conditions

(AΛu,Λw) + 〈`,w〉 = 0 ∀w ∈ V0,

(Λu0 −A−1p, y) = 0, ∀y ∈ Q∗
0,

where Q∗
0 :=

{
y ∈ Y∗

∣∣(y,Λw) = 0, ∀w ∈ V0

}
.

We see that AΛu ∈ Q∗
`,.
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Take

I∗(AΛu) = (AΛu,Λu0)−1

2
||| AΛu |||2∗+〈`,u0〉

and set u0 = u. We obtain

I∗(AΛu) = (AΛu,Λu)− 1

2
||| AΛu |||2∗ +〈`,u〉 ≤ supP∗.

Since ||| AΛu |||2∗= (A−1AΛu,AΛu) =||| Λu |||2, we see that

I∗(AΛu) = J(u) = inf P
Thus

supP∗ = inf P
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The relation I∗(p) = J(u) means that

(p,Λu)− 1

2
||| p |||2∗ +〈`,u〉 =

1

2
||| Λu |||2 +〈`,u〉,

which is equivalent to the relation

D(Λu,p) =
1

2
||| Λu |||2 +

1

2
||| p |||2∗ −(p,Λu) = 0.

From the above we see that Λu and p are joined by a certain
relation:

p = AΛu
This is the so–called duality relation for the pair (u,p).
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Let v ∈ V0 + u0 and y ∈ Y∗ be some approximations of u and p,
respectively. Our goal is to obtain two-sided estimates of the
quantities ||| Λ(v − u) ||| and ||| y − p |||∗ that are norms of
deviations from the exact solutions u and p.
First, we establish the following basic result.

Theorem

For any v ∈ V0 + u0 and q ∈ Q∗
`,

||| Λ(v − u) |||2 + ||| q− p |||2∗= 2 (J(v)− I∗(q)), (5.5)

||| Λ(v − u) |||2 + ||| q− p |||2∗= 2D(Λv,q). (5.6)
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Proof

By the stationarity relations, we have

1
2 ||| Λ(v − u) |||2 = J(v)− J(u) +

(AΛu,Λ(u− v)) + 〈`,u− v〉 =

= J(v)− J(u).

Analogously

1
2 ||| q− p |||2∗ = I∗(p)− I∗(q) + (Λu0 −A−1p,p− q) =

= I∗(p)− I∗(q).

Since J(u) = I∗(p), we sum two relations and obtain (5.5). For
q ∈ Q∗

` the difference J(v)− I∗(q) is equal to D(Λv,q), so that
(5.6) follows from (5.5).
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The estimates (5.5) and (5.6) are valid only for q ∈ Q∗
`, which

poses some difficulties. Below it is shown how we can overcome
this drawback. First, we establish one subsidiary result.

Theorem

Let q ∈ Q∗
`, v ∈ V0 + u0, β ∈ R+, and y ∈ Y∗. Then

J(v)− I∗(q) ≤ (1 + β)D(Λv, y) +
1 + β

2β
||| q− y |||2∗ . (5.7)

Note that

D(Λv, y) =
1

2
(AΛv,Λv) +

1

2
(A−1p,p)− (y,Λu) =

= (AΛv − y),Λv −A−1y) =

= (A(Λv −A−1y,Λv −A−1y) = ||| Λv −A−1y |||.
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Proof

For any y ∈ Y∗, we have

J(v)− I∗(q) =
1

2

(
||| Λv |||2 + ||| y |||2∗

)
+

+
1

2

(||| q |||2∗ − ||| y |||2∗
)−(Λu0,q)+〈`, v − u0〉.

Since 〈`, v − u0〉 = (q,Λ(u0 − v)) , we find that

J(v)−I∗(q)=
1

2

(||| Λv |||2 + ||| y |||2∗
)

+
1

2

(||| q |||2∗−||| y |||2∗
)− (q,Λv) =

= D(Λv, y)+
(
y − q,Λv −A−1y

)
+

1

2
||| q− y |||2∗ .

This relation yields (5.7) if we use the Young’s inequality

2
(
y − q,Λv −A−1y

)
≤ β ||| Λv −A−1y |||2 +β−1 ||| y − q |||2∗ .
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Another form of the estimate

Introduce the quantity

d2
`(y) := inf

q∈Q∗`
||| q− y |||2∗,

which is the distance to Q∗
`. Then, (5.7) imply the estimate

1

2
||| Λ(v − u) |||2≤ (1 + β)D(Λv, y) +

(
1 +

1

β

)
1

2
d`

2(y)

where v ∈ V0 + u0 and y ∈ Y∗. We rewrite this estimate as

1

2
||| Λ(v − u) |||2≤ M(v, β), ∀v ∈ V0 + u0, β ∈ R+,

where

M(v, β) := inf
y∈Y∗

{
(1 + β)D(Λv, y) +

(
1 +

1

β

)
1

2
d2

`(y)

}
.
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Above estimate is sharp for any β !

Theorem

For any β ∈ R+,

1

2
||| Λ(v − u) |||2= M(v, β).

Proof. Set y = λp + (1− λ)AΛv. Then D(Λv, y) =
1

2
λ2 ||| Λ(v − u) |||2 .

Since

d2
` (y) ≤||| p− y |||2∗=

= (1− λ)2 ||| p −AΛv |||2∗= (1− λ)2 ||| AΛ(u− v) |||2∗=
= (1− λ)2 ||| Λ(u− v) |||2,

we obtain

M(v, β) ≤ 1

2

„
(1 + β)λ2 +

„
1 +

1

β

«
(1− λ)2

«
||| Λ(v − u) |||2 .
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The right-hand side attains its minimal value at λ = 1/(1 + β), which leads to
the estimate

1

2
||| Λ(v − u) |||2≥ M(v, β), ∀v ∈ V0 + u0, β ∈ R+.

Recalling that the inverse inequality has already been established, we arrive at
the required conclusion

Now, we proceed to finding computable upper bounds for the
quantity d`. The first step is given by

Theorem
1
2d

2
`(y) = sup

w∈V0

{−1
2 ||| Λw |||2 −〈`,w〉 − (y,Λw)

}
.
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Proof

This assertion comes from that inf P = supP∗. Indeed,

1

2
d2

`(y)=− sup
η∗∈Q∗`

{
−1

2
||| y − η∗ |||2∗

}
= − sup

η∗∈Q∗`−y

{
−1

2
||| η∗ |||2∗

}
,

where Q∗` − y :=
{
η∗ ∈ Y∗

∣∣η∗ = æ∗ − y, æ∗ ∈ Q∗`
}

.
In other words, η∗ ∈ Q∗` − y if

(η∗,Λw) = −〈`,w〉 − (y,Λw), ∀w ∈ V0.

The right-hand side of this relation is a linear continuous functional. We
denote it by `y and rewrite the relation as follows:

(η∗,Λw) + 〈`y,w〉 = 0 ∀w ∈ V0.
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Then, Q∗` − y = Q∗`y
and

1

2
d2

`(y) = − sup
η∗∈Q∗`y

{
−1

2
||| η∗ |||2∗

}
.

This maximization problem is a form of Problem P∗ if set u0 = 0 and
` = `y . Since sup P∗ = inf P , we have

1

2
d2

`(y) = − inf
w∈V0

{
1

2
||| Λw |||2 +〈`y,w〉

}
=

= − inf
w∈V0

{
1

2
||| Λw |||2 +〈`,w〉+ (y,Λw)

}
=

= sup
w∈V0

{
−1

2
||| Λw |||2 −〈`,w〉 − (y,Λw)

}
.

¤
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Corollary

We arrive at the conclusion that the majorant M(v,β) has a
minimax form

M(v,β) =

inf
y∈Y∗

sup
w∈V0

{
(1+β)D(Λv, y) +

1 + β

β

(
−(y,Λw)− J(w)

)}
. (5.8)

Further,we use (5.8) for deriving upper and lower error bounds.
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Upper estimates of ||| v − u |||

In the relation

M(v,β) ≤ (1 + β)D(Λv, y)+

+

(
1 +

1

β

)
sup

w∈V0

{
−1

2
||| Λw |||2 −〈`,w〉 − (y,Λw)

}
,

we will estimate the value of supremum. Let Λ∗ be the operator
conjugate to Λ, i.e.,

(y,Λw) = 〈Λ∗y,w〉, ∀w ∈ V0.

Then

〈`, w〉+ 〈y,Λw〉 = 〈` + Λ∗y,w〉 ≤ [] ` + Λ∗y [] ‖Λw‖.
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Here

[] ` + Λ∗y [] := sup
w∈V0

〈` + Λ∗y,w〉
||| Λw ||| < +∞.

To prove that the value of the negative norm is finite we estimate the
numerator as follows:

〈` + Λ∗y,w〉 ≤ ‖`‖V∗0 ‖w‖V + ‖y‖‖Λw‖ ≤
“

c−1
3 ‖`‖V∗0 + ‖y‖

”
‖Λw‖ ≤

≤ c−1/2
1

“
c−1

3 ‖`‖V∗0 + ‖y‖
”
||| Λw ||| .

We see that

sup
w∈V0

{−1
2 ||| Λw |||2 −〈`,w〉 − (y,Λw)

} ≤
≤ sup

w∈V0

{−1
2 ||| Λw |||2 + [] ` + Λ∗y [] ‖Λw‖} ≤

≤ sup
t>0

{−1
2t

2 + [] ` + Λ∗y [] t
}

= 1
2 [] ` + Λ∗y [] 2.
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Thus, we obtain

1

2
||| Λ(v − u) |||2≤ (1 + β)D(Λv, y) +

1 + β

2β
[] ` + Λ∗y [] 2. (5.9)

This estimate contains the norm [] · [] defined via a sup-relation.
We replace it by the norm in a Hilbert space U provided that `
belongs to a narrower set. Assume that

` ∈ U ⊂ V∗0,
y ∈ Q∗ := {z∗ ∈ Y∗| Λ∗z∗ ∈ U}.

Note that Q∗ can be endowed with the norm

‖y‖2Q∗ := ‖y‖2∗ + ‖Λ∗y∗‖2U.

If ` ∈ U, then Q∗ contains the exact solution p of the dual
problem! This fact is important for the proof of the

sharpness of the Majorant.
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Majorant of the deviation

Then

〈` + Λ∗y,w〉 = (` + Λ∗y,w) w ∈ V0.

[] ` + Λ∗y [] = sup
w∈V0

〈` + Λ∗y,w〉
||| Λw ||| ≤ sup

w∈V0

‖` + Λ∗y‖ ‖w‖
||| Λw ||| ≤

≤ ‖` + Λ∗y‖c−1
1 sup

w∈V0

‖w‖
‖Λw‖ ≤ c−1

1 c−1
3 ‖` + Λ∗y‖.

Here c1 and c3 are the constants in (5.3) and (5.4). Denote

c2 = c−2
1 c−2

3 . Now, the Majorant is represented in the form

1

2
||| Λ(v − u) |||2≤ M⊕(v, β, y) :=

:= (1 + β)D(Λv, y) +
1 + β

2β
c2‖` + Λ∗y‖2. (5.10)
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Deviation Majorant for the problem Λ∗AΛu + ` = 0

(AΛ(v − u),Λ(v − u)) ≤

≤ (1 + β)
(
(AΛv,Λv) + (A−1y, y)− 2(y,Λv)

)
+

+
1 + β

β
c2‖` + Λ∗y‖2.

In the above, v ∈ V0 + u0, β > 0, y ∈ U.
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Theorem

For any v ∈ V0 + u0,

1

2
||| Λ(u− v) |||2= inf

y∈Q∗
β>0

M⊕(v,β, y).

If ` ∈ U, then p ∈ Q∗ and, therefore,

inf
y∈Q∗
β>0

M⊕(v, β, y) ≤ M⊕(v, ε,p) = (1 + ε)
1

2
||| Λ(u− v) |||2,

where ε > 0 may be taken arbitrarily small.

Hence, the majorant M⊕ is reliable and exact.
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Lower estimates

Recall the minimax form of the Majorant

M(v,β) =

inf
y∈Y∗

sup
w∈V0

{
(1+β)D(Λv, y) +

1 + β

β

(
−(y,Λw)− J(w)

)}
.

Since sup inf ≤ inf sup, we have

M(v,β) ≥ sup
w∈V0

inf
y∈Y∗

{
(1 + β)D(Λv , y)−

−
(

1 +
1

β

)(
1

2
||| Λw |||2 +〈`,w〉+ (y,Λw)

)}
.
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Thus, for any w ∈ V0

M(v,β) ≥

inf
y∈Y∗

{
(1 + β)

(
1

2
||| y |||2∗ −(y,Λv)

)
−

(
1+

1

β

)
(y,Λw)

}
+

+ (1 + β)
1

2
||| Λv |||2 −

(
1 +

1

β

)(
1

2
||| Λw |||2 +〈`,w〉

)
,

Evidently, this estimate is also valid for the function βw, which
yields

M(v,β) ≥ (1 + β) inf
y∈Y∗

{
1

2
||| y |||2∗ − ( y,Λ(v + w) )

}
+

+ (1 + β)

(
1

2
||| Λv |||2 −β

2
||| Λw |||2 −〈`,w〉

)
.
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Note that

inf
y∈Y∗

{
1

2
||| y |||2∗−( y,Λ(v+w) )

}
≥

≥ inf
y∈Y∗

{
1

2
||| y |||2∗−||| y |||∗||| Λ(v+w) |||

}
= −1

2
||| Λ(v + w) |||2 .

Thus, we obtain

M(v,β) ≥ (1 + β)
{
−1

2
||| Λ(v + w) |||2 +

+
1

2
||| Λv |||2 −β

2
||| Λw |||2 −〈`,w〉

}
=

= (1 + β)
{
−(AΛv ,Λw)− 1 + β

2
||| Λw |||2 −〈`,w〉

}
.
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In

(1 + β)
{
−(AΛv,Λw)− 1 + β

2
||| Λw |||2 −〈`,w〉

}
.

w is an arbitrary function in V0. We may replace

w by
w

1 + β
.

Such a replacement leads to the Minorant Mª(v,w) that gives a
lower bound of the deviation from exact solution:

For any w ∈ V0,

1

2
||| Λ(v−u) |||2≥ −1

2
||| Λw |||2−(AΛv,Λw)−〈`,w〉(5.11)
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Minorant is sharp

It is easy to see that

sup
w∈V0

Mª(v,w) =
1

2
||| Λ(v−u) |||2 .

Indeed, take w = u− v.

Mª(v,u− v) = −1

2
||| Λ(u− v) |||2−(AΛv,Λu− v)−〈`,u− v〉.

Represent the last two terms as follows:

−(AΛv,Λ(u− v))−〈`,u− v〉 =

= −(AΛv,Λ(u− v)) + (AΛu,Λ(u− v)) =

= (AΛ(u− v),Λ(u− v)) =||| Λ(u−v) |||2

so that this choice of w gives the true error.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Remark.

We outline that for the exact solution Mª = M⊕ = 0 ! Indeed,
assume that v coincides with u. In this case,

Mª(u,w) = −1

2
||| Λw |||2 −(AΛu,Λw)− 〈`,w〉 = −1

2
||| Λw |||2

and, therefore,
sup

w∈V0

Mª(u,w) = 0.

The same is true for the majorant. Indeed, set ŷ = AΛu. Then,

M⊕(u, β, ŷ) = (1 + β)D(Λu, ŷ) +
1 + β

2β
c2‖` + Λ∗AΛu‖2 = 0.

Thus,

inf
y∈Y∗

M⊕(u, β, y) = 0.
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Estimates of deviations in terms of the dual variable

In many cases, error estimates in terms of the dual variable
(that may represent ”flux” or ”stress”) is as important as

the error control of the primal variable.

Error estimates for the dual variable in the dual energy norm ||| · |||∗ can
be obtained by the arguments similar to those used above.
Let y ∈ Y∗ be an approximation of p. For any q ∈ Q∗` , we obtain (from
the triangle inequality and Young inequalities with γ > 0)

||| y − p |||2∗ ≤ (1 + γ) ||| y − q |||2∗ +

(
1 +

1

γ

)
||| q− p |||2∗.

Recall that (see (5.5)) ||| q− p |||2∗≤ 2 (J(v)− I∗(q)).
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Therefore,

||| y − p |||2∗ ≤ (1 + γ) ||| y − q |||2∗ +2

(
1 +

1

γ

)
( J(u)− I∗(q) ) ≤

≤ (1 + γ) ||| y − q |||2∗ +2

(
1 +

1

γ

)
( J(v)− I∗(q) ) =

Recall that

J(v)− I∗(q) ≤ (1 + β)D(Λv, y) +

(
1 +

1

β

)
1

2
d`

2(y)

so that the right–hand side is estimated by

(1+γ)

(
1+

1

γ
+

1

βγ

)
d`

2 + 2(1 + β)

(
1 +

1

γ

)
D(Λv, y).
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Therefore,

1
2 ||| y − p |||2∗ ≤ (1 + γ)

(
1 +

1

γ
+

1

βγ

)
[] ` + Λ∗y [] 2 +

+(1 + β)

(
1 +

1

γ

)
D(Λv, y). (5.12)

Rewrite this estimate as follows:

1

2
||| y − p |||2∗≤ M∗

⊕(y, v, β, γ),

where M∗⊕ denotes the right-hand side of (5.12). This estimate
holds for any y ∈ Y∗, positive parameters β, γ, and any
v ∈ V0 + u0. Here v is a ”free” function in V0 + u0. This
”freedom” can be used to make the estimate sharper.
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Computability of two–sided estimates

By computability we mean that upper and lower estimates can be
computed with any a priori given accuracy by solving

finite-dimensional problems. In the case considered, they are
certain problems for quadratic type integral functionals whose

minimization (maximization) is performed by well-known methods.
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Let {Y∗i }∞i=1 and {V0i}∞i=1 be two sequences of finite-dimensional
subspaces that are dense in Q∗ and V0, respectively, i.e., for any
given ε > 0 and arbitrary elements y ∈ Y∗ and w ∈ V0, one can
find a natural number kε such that

inf
w̃∈V0i

‖w̃ −w‖V ≤ ε, inf
ỹ∈Y∗i

||| ỹ − y |||Q∗≤ ε, ∀ i ≥ kε.

Let us show that sequences of two-sided bounds converging to the
actual error can be evaluated by minimizing the Majorant on {Y∗i }

and maximizing the Minorant on {V0i}.
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Take a small ε > 0,. Then there exists a number k and elements
wk ∈ V0k and pk ∈ Y∗0k satisfying the conditions

‖wk − (u− v)‖V ≤ ε, ||| pk − p |||Q∗≤ ε.

Define two quantities defined by solving finite–dimensional
problems, namely

Mk
⊕ = inf

yk∈Y∗k
β∈R+

M⊕(v, β, yk), Mk
ª = sup

wk∈V0k

Mª(v,wk).

By the definition

Mª(v,wk) ≤ Mk
ª ≤

1

2
||| u− v |||2≤ Mk

⊕ ≤ M⊕(v, β,pk).
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The quantities Mkª and Mk⊕ are computable (they require solving
finite dimensional problems for quadratic type functionals). We will

that

Mk
⊕ → 1

2
‖Λ(v − u)‖2,

Mk
ª → 1

2
‖Λ(v − u)‖2

as the dimensionality k tends to +∞.
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Consider the upper estimates.

M⊕(v,β,pk) = (1 + β)D(Λv,pk) +
1 + β

2β
c2‖ ` + Λ∗pk ‖2 =

= (1 + β)D(Λv,pk) +
1 + β

2β
c2‖Λ∗(pk − p)‖2.

Here

D(Λv,pk) =
1

2
(Λv −A−1pk, AΛv − pk) =

=
1

2

(
Λ(v − u)−A−1(pk − p), AΛ(v − u)− (pk − p)

)
=

=
1

2
||| Λ(v − u) |||2 + ||| pk − p |||2∗ −(Λ(v − u),pk − p).

From the latter estimate we see that

D(Λv,pk)≤ 1

2
||| Λ(v − u) |||2 +ε ||| Λ(v − u) ||| +1

2
ε2.(5.13)
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Since

‖Λ∗(pk − p)‖Q∗ ≤ ε,

we find that

Mk
⊕ ≤ M⊕(v, ε,pk) =

= (1+ε)
(1

2
||| Λ(v−u) |||2 +ε ||| Λ(v−u) ||| +1

2
ε2

)
+

1 + ε

2ε
c2ε2 =

=
1

2
||| Λ(v − u) |||2 +c4ε + o(ε2).

where c4 = 1
2

(
c + 2 ||| Λ(v − u) ||| + ||| Λ(v − u) |||2) . Thus, we

conclude that

Mk
⊕ −→

1

2
||| Λ(v − u) |||2 as k →∞.
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Remark

It is worth noting that the constant c4 in the convergence
term with ε depends on the norm of (v − u), so that we can

await that for a good approximation convergence of the
upper bounds to the exact value of the error is faster than in
the case where ||| v − u ||| is considerable. This phenomenon
was observed in many numerical experiments. In general,

finding an upper bound for a precise approximation takes less
CPU time than for a coarse one.
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Consider the lower estimates.

Mª(v,wk) = −1

2
||| Λwk |||2 − (AΛv,Λwk)− 〈`,wk〉 =

= −1

2
||| Λwk ||| +(AΛ(u− v),Λwk) =

=
1

2
||| Λ(u− v) |||2 −1

2
||| Λ(wk − (u− v)) |||2≥

≥ 1

2
||| Λ(u− v) |||2 −1

2
c2 ‖Λ(wk − (u− v))‖2 .

This implies the estimate

1

2
||| Λ(u− v) |||2≥ Mk

ª ≥
1

2
‖Λ(u− v)‖2 − c5ε

2,

where c5 > 0 depends on the norm of Λ. Thus,

Mk
ª → 1

2
||| Λ(u− v) |||2 as k →∞.
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Computable upper bound of the effectivity index

Having Mk⊕ and Mkª, one can define the number

ηk :=
Mk⊕
Mkª

≥ 1, (5.14)

which gives an idea of the quality of the error estimation. From
the above it follows that

ηk → 1, as k → +∞.
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Relationships with other methods

M⊕(v, β, y) involves an arbitrary function y. We are aimed to show
that some special choices of it lead to known error estimates. We
assume that 〈l,w〉 = (g,w), where g ∈ U, so that p ∈ Q∗ ⊂ Q∗

l
and

Q∗
` := {y ∈ Q∗ | (Λ∗y + g,w) = 0, ∀w ∈ V0}.

First, we select y as follows

y∗1 = AΛv. (5.15)

Other variants arise if we set

y = Πy∗1, (5.16)

where Π is a certain continuous mapping.
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Residual based estimate

If Π is the identity mapping of Y∗, i.e., y = y∗0, then

D(Λv, y∗0) = 0.

Use the majorant in the form (5.9):

1

2
||| Λ(v − u) |||2≤ (1 + β)D(Λv, y) +

1 + β

2β
[] ` + Λ∗y [] 2.

Now, it contains only the second term, which after the
minimization with respect to β gives

||| Λ(v − u) |||2≤ [] ` + Λ∗AΛv [] =

sup
w∈V0

(g,w) + (AΛv,Λw)

||| Λw ||| . (5.17)

If v is obtained by FEM and v = uh ∈ Vh := V0h + u0, (5.17) is
estimated by using Galerkin orthogonality.
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If in the functional a posteriori error estimate is applied to a FEM
solution uh then we may select the variable y in the simplest way
as y = Λuh. Then, if uh is a Galerkin approximation, we can use

this fact and obtain at an upper bound given by the residual type a
posteriori error estimate that involve integral terms associated with

finite elements and interelement jumps.
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Estimates using post–processing of the dual variable

In M⊕(v, β, y) the best choice is y = p ∈ Q∗. Therefore, if
y∗0 6∈ Q∗ then its mapping Q∗ could be a better approximation of
p. Let us denote such a mapping by Π1. We obtain

y∗1 = Π1y
∗
0 ∈ Q∗ (5.18)

and the quantity M⊕(v, β, y∗1), which leads to the error majorant

M
(1)
⊕ (v) = inf

β∈R+

{
(1+β)D(Λv,Π1(AΛv))+

+
1+ β

2β
c2 ‖ `+Λ∗Π1(AΛv) ‖2

}
. (5.19)
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Particular case

In the simplest case associated with the problem

∆u + f = 0, u = u0 on ∂Ω

we have

M
(1)
⊕ (uh) =

= inf
β∈R+

{
(1+β)‖∇uh−Π1(∇uh)‖2+

(1+ β)C2
Ω

2β
‖f+divΠ1(∇uh)‖2

}
.

If Π1 is a gradient averaging operator, then the first term in the
right–hand side is the difference between the original and
averaged gradient, i.e. it coincides with a gradient averaging
indicator. However, as we have seen in previous lectures, such an
indicator cannot provide a reliable upper bound of the error. The
second term in the right-hand side shows what is necessary to add
in order to provide the reliability.
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Diagram that shows connections with other methods
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Estimates based on the ”equilibration” of the dual variable

Let Π2 maps Y∗ to the set Q∗
`. Define

y∗2 = Π2y
∗
0 ∈ Q∗

`. (5.20)

Then,

Λ∗y∗2 + ` = 0,

so that the Majorant has only the first term:

M
(2)
⊕ (v) = D(Λv, y∗2).

Π2 is natural to call an equilibration operator. In general, it is
rather difficult to construct an ”exact mapping” Π2 to Q∗

`. One

may use an operator Π̃2, which provides an approximate
”equilibration”. In this case, the second term of the Majorant
does not vanish and should be taken into account.
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A priori projection type error estimates

As an exercise, we now will derive classical a priori projection type error
estimates from a functional a posteriori estimate. Let uh ∈ Vh be a
Galerkin approximation of u. We have

|||Λ(u−uh) |||≤2(1+β)D(Λuh, y)+

(
1+

1

β

)
[] Λ∗y+` [] 2

Set here y = AΛvh, where vh is an arbitrary element of Vh. Then,

[] Λ∗y + ` [] = sup
w∈V0

(y − p,Λw)

||| Λw ||| =

= sup
w∈V0

(AΛ(vh − u),Λw)

||| Λw ||| ≤||| Λ(vh − u) ||| .
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It is easy to see that

D(Λuh,AΛvh) = J(vh)− J(uh).

Indeed,

D(Λuh,AΛvh) =
1

2
(AΛvh,Λvh) + 〈`, vh〉−

− 1

2
(AΛuh,Λuh)− 〈`,uh〉+

+ (AΛuh,Λ(uh − vh)) + 〈`,uh − vh〉.
Since uh ∈ Vh is a Galerkin approximation, the last two terms
vanish and we obtain the relation.
We know that

||| Λ(uh − u) |||2= 2(J(uh)− J(u)),

||| Λ(vh − u) |||2= 2(J(vh)− J(u)).
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Therefore,

2D(Λuh,AΛvh) = 2(J(vh)− J(u))− 2(J(uh)− J(u)) =

=||| Λ(vh − u) |||2 − ||| Λ(uh − u) |||2 .

Now, the error estimate comes in the form

|||Λ(u−uh) |||≤(1+β)(||| Λ(vh − u) |||2 − ||| Λ(uh − u) |||2) +

+

(
1+

1

β

)
||| Λ(vh − u) |||2 .

Thus, we obtain

(2 + β) ||| Λ(u− uh) |||2≤

≤ (1 + β) ||| Λ(vh − u) |||2 +

(
1 +

1

β

)
||| Λ(vh − u) |||2,
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We see that

||| Λ(u− uh) |||2≤
(

1 +
1

β(2 + β)

)
||| Λ(u− vh) |||2 .

Since β is an arbitrary positive number, we arrive at the projection
type error estimate

||| Λ(u− uh) |||≤ inf
vh∈Vh

||| Λ(u− vh) ||| .
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Finally, we note that functional a posteriori estimates also imply a
projection type error estimate of a different type.
Let us set v = uh, y = yh := A∇uh. Since

D(Λuh, yh) = 0,

we have

||| Λ(uh − u) |||2≤ ||| yh − q |||2∗ ∀q ∈ Q∗
` .
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From here, it follows the estimate

||| Λ(u− uh) ||| ≤ inf
q∈Q∗`

||| yh − q |||∗,

which is in a sense dual to the first one. It shows that an upper
bound of the error is also given by the distance in the space Y∗

between the ”Galerkin flux” A∇uh and the set Q∗
` that contains

the solution of the dual problem.
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Lecture 6.
FUNCTIONAL A POSTERIORI ESTIMATES. LINEAR

ELLIPTIC PROBLEMS.
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Main goal of the lecture

In the previous lecture we have analyzed the abstract
linear problem of the form

Λ∗AΛu + ` = 0

and obtained an estimate

1

2
||| Λ(v − u) |||2≤ (1 + β)D(Λv, y) +

1 + β

2β
[] ` + Λ∗y [] 2.

In the present lecture, we discuss particular forms of
this general estimate for some elliptic type

boundary–value problems.
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Lecture plan

Diffusion equation with Dirichlét boundary conditions;

Diffusion equation with Neumann boundary conditions;

Diffusion equation with mixed boundary conditions;

Linear elasticity with mixed boundary conditions;
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Diffusion equation

Let A is produced by a matrix A = {aij} = {aji}, V = H1(Ω),
where Ω is a Lipschitz domain, U = L2(Ω,Rn), and Λw = ∇w.
Let the entries of A be bounded at almost all points of Ω and such
that

c1|ξ|2 ≤ aijξiξj ≤ c2|ξ|2, ∀ξ ∈ Rn. (6.1)

Then, the spaces Y and Y∗ have the norms

||| y |||2=
∫

Ω
Ay · y dx, ||| y |||2∗=

∫

Ω
A−1y · y dx.
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Dirichlet boundary conditions

We begin with the problem

divA∇u = f in Ω, (6.2)

u = u0 on ∂Ω. (6.3)

In this case, V0 =
◦
H1(Ω) and u meets the integral identity

∫

Ω
A∇u · ∇wdx + 〈f,w〉 = 0, ∀w ∈ V0. (6.4)

The relation (y,Λw) = 〈Λ∗y,w〉 has the form
∫

Ω
y · ∇wdx = 〈−div y,w〉,

where Λ∗ = −div and div y is in H−1(Ω).
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The operator Λ satisfies the required inequality

cΩ‖∇w‖ ≥ ‖w‖, ∀w ∈
◦
H1(Ω).

Upper estimates of ||| v − u ||| for an approximation v ∈ V0 + u0

follow from the general estimate presented in Lecture 5. We have

1

2

∫

Ω
A∇(v − u) · ∇(v − u)dx ≤ M⊕(v, β, y),

where

M⊕(v,β, y) =

1 + β

2

∫

Ω

(
∇v − A−1y

)
·(A∇v − y ) dx+

1 + β

2β

c2
Ω

c2
1

‖div y−f ‖2

(6.5)
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Certainly, the above estimate is aplicable for the case f ∈ L2(Ω) so
that

〈f,w〉 =

∫

Ω
fw dx,

and for y ∈ H(Ω,div).
Let {Y∗k} be finite-dimensional subspaces of Y∗ such that

Y∗k ∈ H(Ω,div) for all k = 1, 2, ...;

dimY∗k → +∞ as k →∞.

We obtain computable upper bounds

Mk
⊕ = inf

y∈Y∗k
β∈R+

{1+β

2

∫

Ω
(∇v− A−1y) · (A∇v−y)dx+

+
1+β

2β

c2
Ω

c1
‖div y−f ‖2Ω

}
. (6.6)

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Lower estimates follow

We have

1

2

∫

Ω
A∇(v − u) · ∇(v − u)dx ≥ Mª(v,w), ∀w ∈ V0,

where

Mª(v,w)= −1

2

∫

Ω
A∇w · ∇wdx−

∫

Ω
A∇v · ∇wdx−〈f,w〉.

Let {V0k} be finite-dimensional subspaces such that

V∗0k ∈ V0 for all k = 1, 2, ...;

dimV0k → +∞ as k →∞.

Find the numbers

Mk
ª = sup

wk∈V0k

Mª(v,wk). (6.7)
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Both sequences Mkª and Mk⊕ tend to
1

2
|||v − u |||2 as k →∞,

provided that {Y∗k} and {V0k} possess necessary approximation
properties (limit density).
Note that if v is a Galerkin approximation computed on V0k, then
Mª(v,wk) = 0. This means that to obtain a sensible lower
estimate in this case, one must always use a finite-dimensional
subspace that is larger than V0k.
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Neumann boundary condition

Consider the Neumann boundary condition

ν · A∇u + F = 0 on ∂Ω, (6.8)

where ν is the vector of unit outward normal to ∂Ω. To apply the
general scheme we set

V0 :=

{
v ∈ H1(Ω)

∣∣∣
∫

Ω
v dx = 0

}

and define Λ∗y ∈ V∗0 by the relation

〈Λ∗y,w〉 =

∫

Ω
y · ∇wdx, ∀w ∈ V0.

If y is sufficiently regular then

〈Λ∗y,w〉 =

∫

Ω
(−divy)wdx +

∫

∂Ω

(y · ν)wdx.
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Therefore, in such a case

Λ∗y = [−div y |Ω; y · ν |∂Ω]

Also, we assume that F and f satisfy the equilibrium condition
∫

Ω
f dx +

∫

∂Ω

Fdx = 0.

Assume that f ∈ L2(Ω) and F ∈ L2(∂Ω). Then the Neumann
problem has a solution defined by the integral identity

∫

Ω
A∇u · ∇wdx + 〈`,w〉 = 0, ∀w ∈ V0,

where

〈`,w〉 =

∫

Ω
fw dx +

∫

∂Ω

Fwds.
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In general, [] ` + Λ∗y [] is estimated in terms of the norms

‖div y − f ‖H−1 and ‖ y · ν + F ‖H−1/2 .

However, if we assume that y possesses a certain regularity, so that

y ∈ Q∗(Ω) := {y ∈ Y∗ |div y ∈ L2(Ω), y·ν ∈ L2(∂Ω)},
then

〈` + Λ∗y,w〉 =

∫

Ω
(f − divy)wdx +

∫

∂Ω

(F + y·ν)wds

and, therefore,

|〈` + Λ∗y,w〉| ≤
≤ ‖div y − f ‖2,Ω‖w‖2,Ω + ‖y · ν + F‖2,∂Ω‖w‖2,∂Ω. (6.9)
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Let the constant cΩ be defined as

1

c2
(Ω,∂Ω)

= inf
w∈V0

∫
Ω A∇w · ∇wdx

‖w‖22,Ω + ‖w‖22,∂Ω

.

Since the trace operator is bounded, this constant is finite.
Therefore, (6.9) implies the estimate

|〈` + Λ∗y,w〉| ≤

≤ c(Ω,∂Ω)

(
‖div y − f ‖22,Ω + ‖y · ν + F‖22,∂Ω

)1/2
||| Λw |||2

and the second term of the majorant is calculated as follows:

[] ` + Λ∗y [] = sup
w∈V0

〈` + Λ∗y,w〉
||| Λw ||| ≤

≤ c(Ω,∂Ω)

(
‖div y − f ‖22,Ω + ‖y · ν + F‖22,∂Ω

)1/2
.

The term D(Λv , y) is defined as in the Dirichlét problem.
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We see that the Majorants M⊕ for the two main boundary-value
problems have different values of cΩ. In addition, the Neumann
problem majorant contains an extra term

‖y · ν + F‖2,∂Ω

that penalizes violations of the Neumann boundary condition.
It is worth noting that if the given F can be exactly reproduced by
y · ν for y in a certain finite dimensional subspace Y∗k, then one
can compute Mk⊕ as

Mk
⊕ = inf

y∈Y∗k , y·ν=F on ∂Ω
β∈R+

{1+β

2

∫

Ω
(∇v− A−1y) · (A∇v−y)dx+

+
1+β

2β
c2
(Ω,∂Ω)‖div y−f ‖2Ω

}
. (6.10)

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Mixed boundary conditions

Let ∂Ω consist of two measurable nonintersecting parts ∂1Ω and
∂2Ω, on which different boundary conditions are given:

u = u0 on ∂1Ω,

ν · A∇u + F = 0 on ∂2Ω.

Set
V0 :=

{
v ∈ H1(Ω) | v = 0 on ∂1Ω

}

and

〈Λ∗y,w〉 =

∫

Ω
y · ∇wdx, ∀w ∈ V0.
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Assume that

f ∈ L2(Ω), F ∈ L2(∂2Ω).

and y possesses an extra regularity, namely,

y ∈ Q∗(Ω) :=
{
y ∈ Y∗ |div y ∈ L2(Ω), y·ν ∈ L2(∂2Ω)

}
.

Then, for any w ⊂ V0, we have

〈` + Λ∗y,w〉 =

∫

Ω
(div y − f)wdx +

∫

∂2Ω

(y · ν + F)wds,

Note that p ∈ Q∗(Ω)!
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Now, we obtain

|〈` + Λ∗y,w〉| ≤ ‖divy − f‖2,Ω‖w‖2,Ω+

+ ‖y · ν + F‖2,∂2Ω‖w‖2,∂2Ω.

Let γ and γ∗ be two numbers such that γ > 1, γ∗ > 1,
1
γ + 1

γ∗
= 1. Use the algebraic inequality

ab + cd ≤
√

γa2 + γ∗c2

√
1

γ
b2 +

1

γ∗
d2.

Then

|〈` + Λ∗y,w〉| ≤
(

γ‖div y−f‖22,Ω+γ∗‖y·ν+F‖22,∂2Ω

)1/2
×

×
(

1

γ
‖w‖22,Ω+

1

γ∗
‖w‖22,∂2Ω

)1/2

.
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Since (Friederichs type inequality)

‖w‖22,Ω ≤ C2
F(Ω)‖∇w‖22,Ω, ∀w ∈ V0,

and (trace inequality)

‖w‖22,∂2Ω
≤ C2

tr(Ω, ∂2Ω)‖w‖21,2,Ω, ∀w ∈ V0,

we find that

1

γ
‖w‖22,Ω +

1

γ∗
‖w‖22,∂2Ω

≤

≤ C2
F
1

γ
‖∇w‖2+C2

tr
1

γ∗

(
‖w‖22,Ω+‖∇w‖22,Ω

)
≤

≤
(

C2
F
1

γ
+ C2

tr
1

γ∗

(
1 + C2

F

))
‖∇w‖22,Ω.
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Therefore, there exist a positive constant Cγ such that

1

C2
γ

= inf
w∈V0

∫
Ω A∇w · ∇wdx

1
γ ‖w‖22,Ω + 1

γ∗
‖w‖22,∂2Ω

.

The value of this constant can be estimated numerically by
minimizing the above quotient on a sufficiently representative finite
dimensional subspace. Besides, if CF and Ctr are estimated, then

C2
γ ≤ Ĉ2

γ :=

(
C2

F
1

γ
+ C2

tr(1 + C2
F)

1

γ∗

)
c−1
1 ,

so that an upper bound ofCγ is directly computed. Now,

|〈` + Λ∗y,w〉| ≤

≤ Ĉγ

(
γ‖div y − f‖22,Ω + γ∗‖y· ν + F‖22,∂2Ω

)1/2
||| ∇w ||| .
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From this estimate, we obtain

[] ` + Λ∗y [] 2 ≤ Ĉ2
γ

(
γ‖div y− f‖22,Ω +

γ

γ − 1
‖y· ν + F‖22,∂2Ω

)
.

Consider first the case, in which we simply set γ = γ∗ = 2. Then

Ĉ2
(γ=2) := Ĉ2

2 =
1

2

(
C2

F + C2
tr(1 + C2

F)
)

c−1
1 ,

[] ` + Λ∗y [] 2 ≤ 2Ĉ2
2

(
‖div y − f‖22,Ω + ‖y· ν + F‖22,∂2Ω

)
.

and we find that

M⊕(v,β, y) =
1 + β

2

∫

Ω
(∇v − A−1y) · (A∇v − y)dx+

+
1 + β

2β
Ĉ2

2

(
‖div y − f‖22,Ω + ‖y·ν + F‖22,∂2Ω

)
. (6.11)

This Majorant gives an upper bound of the deviation for any
v ∈ V0 + u0, y ∈ Q∗, and β > 0.
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A more exact estimate is obtained if we define γ by minimizing of
the quantity

(
C2

F
1

γ
+ C2

tr(1 + C2
F)

1

γ∗

) (
γ‖div y−f‖22,Ω+γ∗‖y·ν+F‖22,∂2Ω

)
=

C2
F
γ∗

γ
‖y·ν +F‖22,∂2Ω

+
γ∗

γ
C2

tr(1+C2
F)‖div y− f‖22,Ω + const(γ).

Denote

ρ1 = ‖div y − f‖22,Ω ρ2 = ‖y· ν + F‖22,∂2Ω
,

κ1 = C2
F, κ2 = C2

tr(1 + C2
F).

Then the problem is

min
γ

(κ2
1ρ

2
2

1

γ − 1
+ (γ − 1)κ2

2ρ
2
1).

Its minimum is attained at γ̂ = 1 + κ1ρ2/κ2ρ1.
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In other words, we observe that the lowest estimate of the term
[] ` + Λ∗y [] is attained if

γ = γ̂ := 1 +
‖y· ν + F‖2,∂2ΩCF

‖div y − f‖2,ΩCtr(1 + C2
F)1/2

.

Let us find the respective upper bound. We need to calculate

(
κ2

1
1

γ̂
+ κ2

2
1

γ̂∗

)
(γ̂ρ2

1 + γ̂∗ρ2
2) =

=
1

γ̂
(κ2

1 + (γ̂ − 1)κ2
2)

γ̂

γ̂ − 1
((γ̂ − 1)ρ2

1 + ρ2
2) =

=
κ2ρ1

κ1ρ2

(κ2
1+

κ1ρ2

κ2ρ1

κ2
2)(ρ

2
1
κ1ρ2

κ2ρ1

+ρ2
2) = κ2ρ1(κ1+

ρ2

ρ1

κ2)(ρ1
κ1

κ2
+ρ2) =

= (κ1ρ1 + ρ2κ2)(ρ1κ1 + ρ2κ2) = (κ1ρ1 + ρ2κ2)
2.
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M⊕ for mixed boundary conditions

By recalling the definitions of κ1, κ2, ρ1, and ρ2 we obtain

[] ` + Λ∗y [] 2 ≤
(
CF‖div y − f‖2,Ω+

+Ctr(1 + C2
F)1/2‖y·ν + F‖2,∂2Ω

)2
c−2
1

and we have

M⊕(v,β, y) =
1 + β

2

∫

Ω
(∇v − A−1y) · (A∇v − y)dx+

+
1 + β

2β

(
CF‖div y − f‖2,Ω+

+ Ctr(1 + C2
F)1/2‖y·ν + F‖2,∂2Ω

)2
c−2
1 . (6.12)

Majorant vanishes if and only if v = u and y = A∇u, it is
continuous with respect to the convergence of v in V and y in Q.
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Lower estimates

Lower estimates for the problems considered follow from the
general ones obtained in the previous lecture. They have the form

1

2

∫

Ω
A∇(v − u) · ∇(v − u)dx ≥ Mª(v,w), ∀w ∈ V0,

where

Mª(v,w) = −1

2

∫

Ω
A∇(w − v) · ∇wdx−

∫

Ω
fw dx−

∫

∂2Ω

Fwds.

Here V0 depends on the type of boundary conditions, and the
integral over ∂2Ω must be eliminated in the case of Dirichlét
problem.
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Linear elasticity

Classical statement. The classical formulation is as follows:

Find a tensor-valued function σ∗ (stress) and a vector-valued
function u (displacement) that satisfy the system of equations

σ∗ = Lε(u) in Ω, (Hooke′s law)

divσ∗ = f in Ω, (Equilibrium equation)

u = u0 on ∂1Ω,

σ∗ν + F = 0 on ∂2Ω.

where ε(u) is a symmetric part of the tensor ∇u.
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Here Ω is a bounded domain with Lipschitz boundary ∂Ω that
consists of two disjoint parts ∂1Ω and ∂2Ω, |∂1Ω| > 0, f and F are
given forces and L = {Lijkm} is the tensor of elasticity constants,
which is subject to the conditions

C1|ε|2 ≤ Lε : ε ≤ C2|ε|2, ∀ε ∈Mn×n
s ,

and

Lijkm = Ljikm = Lkmij , Lijkm ∈ L∞(Ω).
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Generalized solution

Let

f ∈ L2(Ω,Rn), F ∈ L2(∂2Ω,Rn).

Then, a generalized solution u ∈ V0 + u0 is defined by the identity

∫

Ω
L ε(u) : ε(w)dx + 〈`,w〉 = 0, ∀w ∈ V0, (6.13)

where

〈`,w〉 =

∫

Ω
f ·wdx +

∫

∂2Ω

F ·wds.
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Assume that u is a smooth function and it satisfies the identity

∫

Ω
L ε(u) : ε(w)dx + 〈`,w〉 = 0, ∀w ∈ V0,

Then,
∫

Ω
(f − div(L ε(u)) ·wdx +

∫

∂2Ω

(
(L ε(u))ν + F

)
·wds = 0,

∀w ∈ V0,

and we observe that in such a case the equilibrium equation and
the Neumann boundary condition are satisfied in the classical
sense.
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Variational formulation

Note that the relation (6.13) is the Euler’s equation for the
functional

J(v) =
1

2

∫

Ω
Lε(v) : ε(v)dx+ < `, v > .

Therefore, the respective boundary–value problem may be
considered as a minimization problem for J(v) on the set

V0 := {v ∈ H1(Ω,R n) | v = u0 on ∂1Ω}.

To prove existence of a minimizer we must show the coercivity of
J(v) on V0. The key role in this belongs to the so–called Korn’s
inequality.
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In the Dirichl et problem

J(v) =
1

2

∫

Ω
Lε(v) : ε(v)dx+ < `, v > ≥

≥ C1

2
‖ε(v)‖2 − ‖f‖‖v‖ =

=
C1

2
‖ε(u0 + w)‖2 − ‖f‖‖u0 + w‖ ≥

≥ C1

2
(‖ε(u0)‖ − ‖ε(w)‖)2 − ‖f‖‖u0‖ − ‖f‖‖w‖.

Thus, if we can prove that

‖ε(w)‖ ≥ c‖∇w‖ ∀w ∈
◦
H1(Ω),

then we would establish the coercivity of J.
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Korns’s inequality

This inequality is required in various aspects of the mathematical
analysis of elasticity problems. In the general form it states the
equivalence of two norms:

‖w‖1,2,Ω :=

(∫

Ω
(|∇w|2 + |w|2)dx

)1/2

,

and

||| w |||1,2,Ω:=

(∫

Ω
(|ε(w)|2 + |w|2)dx

)1/2

.
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Korns’s inequality in
◦
H1

For the functions in
◦
H1(Ω) this fact is not difficult to prove.

Indeed,∫

Ω
|ε(w)|2dx =

1

2
‖∇w‖2 +

1

2

∫

Ω

∑

ij

wi,jwj,idx =

=
1

2
‖∇w‖2 − 1

2

∫

Ω

∑

ij

wiwj,ijdx =
1

2
‖∇w‖2+

1

2

∫

Ω

∑

ij

wi,iwj,jdx =

=
1

2
‖∇w‖2 +

1

2

∫

Ω

∑

i

|wi,i|2dx.

Thus,

‖∇w‖ ≤
√

2‖ε(w)‖ ∀w ∈
◦
H1(Ω). (6.14)
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By (6.14) we prove that the energy functional of the elasticity
problem for the case of Dirichl’et boundary conditions is coercive,
i.e.,

J(vk) → +∞, as ‖∇vk‖ → +∞.
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Rigid deflections

In the analysis of elasticity problems one more notion is often
required. It is the so–called Space of Rigid Deflections that we
denote RD(Ω). This space is the kernel of the operator ε(w), i.e.
it contains vector–valued functions w such that

ε(w) = 0.

It can be defined as follows:

RD(Ω) := {w = w0 + ω0x | w0 ∈ R n, ω0 ∈M n×n},

where ω0(w) = 1
2(∇w − (∇w)T) is a sqew-symmetric tensor

associated with ”rigid rotations”.
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Implications of the Korn’s inequality

Theorem

Let Ω be a Lipschitz domain and ∂1Ω is a nonempty connected
part of the boundary. Then,

‖u‖1,p,Ω ≤ C




∫

Ω

|ε(u)|p dx




1
p

∀u ∈ V, p ∈ (1, 2] (6.15)

Proof. Assume the opposite. Then, for any m ∈ N we can find
v(m) such thatv(m) ∈ V and

‖v(m)‖1,p,Ω > m




∫

Ω

|ε(v(m))|p dx




1
p

.
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Set w(m) = v(m)

‖v(m)‖1,p,Ω
, then

‖w(m)‖1,p,Ω = 1 and
1

m
≥




∫

Ω

|ε(w(m)|p dx




1
p

.

Therefore,

w(m) ⇀ w in W1
p(Ω,Rn),

w(m) → w ∈ Lp(Ω,Rn),

‖ε(w(m))‖p,Ω → 0 in Lp(Ω,Rn).

From here we conclude that ε(w) = 0.
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Indeed, by the fact that a norm is weakly lower semicontinuous, we
have

0 = lim inf
m
‖ε(w(m))‖p,Ω ≥ ‖ε(w)‖p,Ω.

Thus, w ∈ RD(Ω) ∩ V. There is only one such a function: w = 0.
It means that w(m) → 0 in Lp. Now, we apply Korn’s inequality

‖w(m)‖1,p,Ω ≤ C




∫

Ω

(
|ε(w(m))|p + |w(m)|p

)
dx




1
p

−→
m→∞ 0.

which shows that ‖w(m)‖1,p,Ω tends to zero. But for any m
‖w (m)‖p,1,Ω = 1, so that such a behavior is impossible. We have
arrived at a contradiction that proves the Theorem.
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Another similar result is required for the Neumann problem. Define
the set

V =



 v ∈ W1

p(Ω) |
∫

Ω

v ·wdx = 0 ∀w ∈ RD(Ω)



 .

Theorem

Let Ω be a bounded domain with Lipschitz boundary ∂Ω. Then

‖u‖1,p,Ω ≤ C




∫

Ω

|ε(u)|p dx




1
p

∀u ∈ V. (6.16)
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Proof. By the same arguments as before, we obtain a sequence
w(m) ∈ V such that

w(m) ⇀ w in W1
p(Ω,Rn),

w(m) → w ∈ Lp(Ω,Rn),

‖ε(w(m))‖p,Ω → 0 in Lp(Ω,Rn).

By the arguments similar to those in the previous Theorem, we
find that ε(w) = 0 and, thus, w ∈ RD(Ω). In addition, for any
w̄ ∈ RD, we have

0 =

∫

Ω
w(m) · w̄ dx =

∫

Ω
w · w̄ dx.

But w ∈ RD, so that ‖w‖ = 0, and by applying Korn’s inequality
we prove that ‖w(m)‖1,p,Ω tends to zero, what leads to a
contradiction.
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Estimates of deviations

Let v and y be some approximations of u and σ∗. Estimates of
v − u and y − σ∗ follow from the general scheme if we set

U = L2(Ω,Mn×n
s ), V = H1(Ω,Rn),

V0 = {w ∈ V |w = 0 on ∂1Ω},
||| y |||2=

∫

Ω
Ly : y dx, ||| y |||2∗=

∫

Ω
L−1y : y dx,

and Λv = ε(v) := 1
2

(∇v + (∇v)T
)
. In this case,

〈Λ∗y,w〉 =

∫

Ω
y : ε(w)dx, ∀w ∈ V0,
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Now y is a tensor-valued function and yν = yijν j is a
vector–function defined on ∂Ω.
If

y ∈ Q∗ := {y ∈ Y∗ | divy ∈ L2(Ω,M n×n), yν ∈ L2(∂2Ω,R n)}.

then

〈Λ∗y,w〉 = −
∫

Ω
div y ·wdx +

∫

∂2Ω

(yν) ·wdΓ

so that

Λ∗y = {−divy |Ω, (yν) |∂2Ω}.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Upper estimates

By applying the general estimate, we obtain the following upper
estimate:

1

2

∫

Ω
L ε(v − u) : ε(v − u)dx ≤ M⊕(v, β, y),

where

M⊕(v, β, y) =
1 + β

2
D(εv, y) +

1 + β

2β
[] Λ∗y + ` [] 2

and

D(ε(v), y) =
1

2

∫

Ω

(
Lε(v) : ε(v)L−1y : y − 2ε(v) : y

)
dx =

=

∫

Ω
(ε(u)−L−1y) : (L ε(u)−y)dx.
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If y ∈ Q∗, then

[] Λ∗y + ` [] = sup
w∈V0

〈Λ∗y + `,w〉
||| Λw ||| =

= sup
w∈V0

∫
Ω (y : ε(w) + f ·w)dx +

∫
∂2Ω

F ·wds

||| ε(w) ||| =

= sup
w∈V0

∫
Ω (f − div y) ·wdx +

∫
∂2Ω

(F + yν) ·wds

||| ε(w) ||| ≤

≤ sup
w∈V0

‖f − div y‖2,Ω‖w‖2,Ω + ‖F + yν‖∂2Ω‖w‖∂2Ω

||| ε(w) ||| .
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Let CΩ be a constant in the inequality
∫

Ω
|w|2 dx +

∫

∂2Ω

|w|2 ds ≤ C2
Ω‖ε(w)‖2Ω, ∀w ∈ V0.

Note that the existence of such a constant follows from the Korn’s
inequality. Indeed, the inequality

∫

Ω
|w|2 dx +

∫

∂2Ω

|w|2 ds ≤ Ĉ2
Ω‖∇(w)‖2Ω, ∀w ∈ V0.

for the tensor–gradient ∇(w) follows from the Friederichs type
inquality for the vector–valued functions and the respective trace
theorems. By (6.15) we recall that for the functions in V0

‖∇(w)‖Ω ≤ C‖ε(w)‖Ω
with a certain constant C and the estimate follows.
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In practice, values of CΩ can be estimated by minimizing the
quotient

‖ε(w)‖2Ω∫
Ω |w|2 dx +

∫
∂2Ω

|w|2 ds

over sufficiently representative finite dimensional space V0h ⊂ V0.

Let us now return to finding an upper bound of the quantity
[] Λ∗y + ` [] .
By the inequality ab + cd ≤ √

a2 + c2
√

b2 + d2, we obtain

[] Λ∗y + ` [] ≤

≤
(
‖div y−f‖2Ω+‖F+yν‖2∂2Ω

)1/2
sup

w∈V0

(‖w‖2Ω+‖w‖2∂2Ω
)1/2

||| ε(w) ||| ≤

≤ CΩc
−1/2
1

(
‖div y − f‖2Ω + ‖F + yν‖2∂2Ω

)1/2
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Error Majorant for mixed boundary conditions

Hence, we arrive at the Majorant M⊕:

M⊕(ε(v), y) =
1+β

2

∫

Ω
(ε(u)−L−1y) : (L ε(u)−y)dx+

+
1+β

2βc1
C2

Ω

(
‖div y−f‖2Ω+‖F+yν‖2∂2Ω

)
. (6.17)

It has a clear physical meaning. The first term of M⊕ is
nonnegative and vanishes if and only if

y = Lε(v).

It penalizes violations of the Hooke’s law. The meaning of the
second term is obvious: it contains L2-norms of other two
relations, which gives errors in the equilibrium equation and
boundary condition for the stress tensor.
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Thus, the majorant not only gives an idea of the overall
value of the error, but also shows its physically sensible parts.

Let {Y∗k} ⊂ H1(Ω,Mn×n) be a collection of finite-dimensional
subspaces that satisfy the limit density condition. Then, (6.17)
generates a sequence of computable upper bounds

Mk⊕= inf
y∈Y∗k
β∈R+

{1+β

2

∫

Ω

(
L ε(v) : ε(v) + L−1y : y − 2ε(v) : y

)
dx

+
1+β

2βc1
C2

Ω

(
‖div y − f‖2Ω + ‖F + yν‖2∂2Ω

)}
,

which tends to the exact value of the error.
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Lower estimates

Lower estimates also follow from the general theory. We have

1

2

∫

Ω
L ε(v − u) : ε(v − u)dx ≥ Mª(v,w), ∀w ∈ V0,

where

Mª(v,w) = −1

2

∫

Ω
L ε(w) : ε(w)dx−

∫

Ω
L ε(v) : ε(w)dx−

−
∫

Ω
f ·wdx−

∫

∂2Ω

F ·wds.

By the same arguments as for the diffusion equation one can prove
that

1

2

∫

Ω
L ε(v − u) : ε(v − u)dx = sup

w∈V0

Mª(v,wk).
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By the maximization the functional Mª on a sequence of
finite-dimensional spaces V0k ⊂ V0, we obtain a sequence of
computable lower bounds

Mk
ª = sup

w∈V0k

Mª(v,wk).

If the spaces V0k satisfy the limit density condition stated, then
the sequence of numbers {Mª} tends to 1

2|||ε(v−u)|||2.
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FUNCTIONAL A POSTERIORI ESTIMATES. FOURTH
ORDER EQUATIONS.
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Linear elliptic equations of the fourth order

Now, we consider the problem

∇ · ∇ · (B∇∇u) = f in Ω, (6.18)

u =
∂u

∂ν
= 0 on ∂Ω. (6.19)

Here Ω ⊂ R2, ν denotes the outward unit normal to the boundary,
and B = {bijkl} ∈ L(M2×2

s ,M2×2
s ). We assume that

bijkl = bjikl = bklij,

α1|η|2 ≤ Bη : η ≤ α2|η|2, ∀η ∈M2×2
s ,

and

f ∈ L2(Ω), bijkl ∈ L∞(Ω).
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To apply the general scheme, we set

U = L2(Ω,M2×2
s ), V = H2(Ω),

V0 = {w ∈ V | w =
∂w

∂ν
= 0 on ∂Ω},

and define Λ as the Hessian operator. Now, the basic integral
identity has the form

∫

Ω
B∇∇u : ∇∇wdx =

∫

Ω
fw dx ∀w ∈ V0. (6.20)

By B−1 we denote the inverse tensor, which satisfies the double
inequality

α−1
2 |η|2 ≤ B−1η : η ≤ α−1

1 |η|2, ∀η ∈M2×2
s ,
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The spaces Y and Y∗ are equipped with norms

||| y |||2=
∫

Ω
By : y dx; ||| y |||2∗=

∫

Ω
B−1y : y dx,

〈`,w〉 = −
∫

Ω
fw dx,

and

Q∗
` = {y ∈ Y∗

∣∣∣
∫

Ω
y : ∇∇wdx =

∫

Ω
fw dx, ∀w ∈ V0}.

Since
‖∇∇w‖ ≥ α3‖w‖2,2,Ω ∀w ∈ V0,

we have the required version of the coercivity condition

‖Λw‖ ≥ c3‖w‖V.

Problem (6.18) and (6.19) is associated with two variational
problems.
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Problem P. Find u ∈ V0 such that

J(u) = inf
v∈V0

J(v),

where

J(v) =
1

2

∫

Ω
B∇∇v : ∇∇v dx−

∫

Ω
fw dx.

Problem P∗. Find p ∈ Q∗
` such that

I∗(p) = sup
∀q∈Q∗`

I∗(q),

where

I∗(q) = −1

2

∫

Ω
B−1q : qdx.
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By In this case, the two basic relations for deviations derived in
Lecture 5 come in the form:

||| ∇∇(v − u) |||2 + ||| q− p |||2∗= 2(J(v)− I∗(q)), (6.21)

and

||| ∇∇(v − u) |||2 + ||| q− p |||2∗= 2D(∇∇v,q) =

=

∫

Ω

(
B∇∇v : ∇∇v + B−1q : q− 2∇∇v : q

)
dx, (6.22)

which hold for any v ∈ V0 and q ∈ Q∗
` .

Also, from the general theory it readily follows the first a posteriori
estimate:

1

2
||| ∇∇(v − u) |||2≤ (1 + β)D(∇∇v, y) +

(
1+

1

β

)
d2

` (y)

2
, (6.23)

where d2
` (y) = inf

q∈Q∗`
||| q− y |||2∗ .
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Note that
∫

Ω
y : ∇∇wdx =

∫

Ω
(divdiv y)wdx, ∀w ∈ V0,

so that Λ∗ : Y∗ → H−2(Ω) is the operator divdiv.
Next,

〈` + Λ∗y,w〉 =

∫

Ω
(y : ∇∇w − fw)dx

and, therefore,

d2
` (y) = [] ` + Λ∗y [] = sup

w∈V0

∫
Ω (y : ∇∇w − fw)dx

||| ∇∇w ||| .
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If

y ∈ H(divdiv,Ω) :=
{
y ∈ L2(Ω,Mn×n

s ) | divdiv y ∈ L2(Ω)
}

,

then this quantity is estimated by the relation

[] ` + Λ∗y [] ≤ sup
w∈V0

‖divdiv y − f‖Ω‖w‖Ω
||| ∇∇w ||| ≤

≤ sup
w∈V0

‖divdiv y − f‖Ω‖w‖Ω
α1‖∇∇w‖ ≤ C1Ω

α1
‖divdiv y − f‖Ω,

in which C1Ω is a constant in the inequality

‖w‖Ω ≤ C1Ω‖∇∇w‖Ω ∀w ∈ V0.

Now, we obtain the first variant of a posteriori estimate for the
biharmonic type problem.
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First a posteriori estimate

1

2
||| ∇∇(v − u) |||2≤ (1 + β)D(∇∇v, y)+

+

(
1 +

1

β

)
C2

1Ω

2α2
1

‖divdiv y − f‖2Ω, (6.24)

Here, y is an arbitrary tensor-valued function from H(div div,Ω)
and β is a positive real number. However, this is rather demanding
in relation to the dual variable y (which must have square
summable divdiv). To avoid technical difficulties that rises from
this condition, we estimate the negative norm in a different way.
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[] ` + Λ∗y [] = sup
w∈V0

∫
Ω (y : ∇∇w − fw)dx

||| ∇∇w ||| =

= sup
w∈V0

∫
Ω (y : ∇∇w + η · ∇w + divηw − fw)dx

||| ∇∇w ||| =

∫
Ω (−divy · ∇w + η · ∇w + divηw − fw)dx

||| ∇∇w ||| ≤

≤ C2Ω

α1
‖div y − η‖Ω +

C1Ω

α1
‖div η − f‖Ω.

Here, η is an arbitrary vector-valued function from H(div,Ω) and
C2Ω is a constant in the inequality

‖∇w‖Ω ≤ C2Ω‖∇∇w‖Ω ∀w ∈ V0.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Second a posteriori estimate

Then, we arrive at the estimate

1

2
||| ∇∇(v − u) |||2≤ (1 + β)D(∇∇v, y)+

+

(
1 +

1

β

)
1

2α2
1

(C2Ω‖div y − η‖Ω + C1Ω‖div η − f‖Ω)2 , (6.25)

in which y ∈ Σdiv(Ω) and η ∈ H(div,Ω).

This estimate was obtained in
P. Neittaanmäki and S. Repin. A posteriori error estimates for

boundary-value problems related to the biharmonic operator, East-West

J.Numer. Math., 9(2001)
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Note that

‖w‖ ≤ CF‖∇w‖Ω ≤ CFC2Ω‖∇∇w‖Ω ∀w ∈ V0.

where CF is a constant in the Friederichs inequality. Therefore,
C1Ω ≤ CFC2Ω. In view of this, we obtain a slightly different form
of the deviation estimate:

1

2
||| ∇∇(v − u) |||2≤ (1 + β)D(∇∇v, y)+

+

(
1 +

1

β

)
C2

2Ω

2α2
1

(‖div y − η‖Ω + CF‖div η − f‖Ω)2 , (6.26)

For boundary conditions of other types, the deviation majorants
can be derived by arguments similar to those used in Lecture 6.
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Lower estimates of the deviation from u

Lower estimates follow from the general estimate discussed in
Lecture 5. We have

1

2
||| ∇∇(v −w) |||2≥ Mª(v,w) w ∈ V0, (6.27)

where

Mª(v,w) := −1

2
||| ∇∇w |||2 −

∫

Ω
(B∇∇v : ∇∇w − fw)dx.
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Lecture 7.
FUNCTIONAL A POSTERIORI ESTIMATES. STOKES

PROBLEM.
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Lecture plan

Stokes problem;

Inf-sup condition ;

A posteriori estimates for solenoidal approximations ;

A posteriori estimates for non-solenoidal approximations;

A posteriori estimates for problems with condition
divv = φ;

A posteriori estimates for problems on a subspace.
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Stokes problem

George Stokes

Classical formulation of the Stokes problem: find a vector–valued
function u (velocity) and a scalar–valued function p (pressure) that
satisfy the relations

−ν∆u = f −∇p in Ω, (7.1)

divu = 0 in Ω, (7.2)

u = u0 on ∂Ω, (7.3)

where u0 is a given function such that divu0 = 0.S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Nomenclature

Let smooth solenoidal functions with compact supports in Ω form
the set be denoted by

.
J∞(Ω). The closure of

.
J∞(Ω) with respect

to the norm ‖∇v‖ is the space
◦
J1

2(Ω).
Next, W := W1

2(Ω,R d) and Σ := L2(Ω,M d×d), where M d×d is
the space of symmetric d× d matrixes (tensors), whose scalar
product is denoted by two dots. W0 is a subspace of W that
contains functions with zero traces on ∂Ω.
W0 + u0 contains functions of the form w + u0, where w ∈ V0.

Analogously,
◦
J1

2(Ω) + u0 contains functions of the form

w + u0,w ∈◦J1
2(Ω).

The operator ε(v) := 1
2(∇v + (∇v)T) acts from W to Σ.
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We will also use the Hilbert space Σdiv(Ω), which is a subspace of
Σ that contains tensor–valued functions τ , such that divτ ∈ L2.
The scalar product in this space is defined by the relation

(τ ,η) :=

∫

Ω
(τ : η + divτ · divη)dx .

By
◦
L2 (Ω) we denote the space of square summable functions with

zero mean. Henceforth, we assume that

f ∈ L2(Ω,R d), u0 ∈ W1
2(Ω,R d),

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Generalized solution can be defined by the integral identity. It is

a function u ∈◦J1
2(Ω) + u0 that meets the relation

∫

Ω
ν∇(u) : ∇(v)dx =

∫

Ω
f · v dx ∀v ∈◦J1

2(Ω). (7.4)

It is well known that u exists and unique and can be viewed as the
minimizer of the functional

I(v) =

∫

Ω

(ν

2
|∇(v)|2 − f · v

)
dx

on the set
◦
J1

2(Ω) + u0. Thus, the problem

inf
v∈◦J12(Ω)+u0

I(v)

presents a variational formulation of the Stokes problem.
S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Existence of a minimizer follows from known properties of convex
lower semicontinuous functionals.
In addition, the Stokes problem can be presented in a minimax
form.
Let L : (W0 + u0)×

◦
L2(Ω) → R be defined as follows:

L(v,q) =

∫

Ω

(ν

2
|∇v|2 − f · v − qdivv

)
dx.

Now, u and p are defined as a saddle–point that satisfies the
relations

L(u,q) ≤ L(u,p) ≤ L(v,p) ∀v ∈ W0 + u0, p ∈ ◦
L2(Ω).

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Extension of solenoidal fields and related results

Olga Ladyzhenskaya

First, we recall some basic results that has been established when
the solvability of the Stokes problem was investigated. Works of
O.A. Ladyzhenskaya made a grate contribution to the
mathematical theory of viscous incompressible fluids.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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The first principal result states that a solenoidal field can be
extended inside a domain such that the norm of the extended field
is subject to the norm of the boundary trace (see O.A.
Ladyzhenskaya Mathematical problems in the dynamics of a viscous
incompressible fluid. Nauka, Moscow, 1970 and
O.A Ladyzhenskaya and V.A. Solonnikov Some problems of vector
analysis, and generalized formulations of boundary value problems for the
Navier-Stokes equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI), 59(1976), 81–116, 256 ).

Lemma 1.

For any vector–valued function a ∈ W
1/2
2 (∂Ω) satisfying the condition∫

∂Ω a · ν dx = 0 there exists a function ū ∈ W0 such that divū = 0 and

‖∇ū‖ ≤ κ1(Ω)‖a‖1/2,∂Ω, (7.5)

where κ1(Ω) is a positive constant that depends on Ω.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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This lemma implies another proposition, which is of grate
importance for the analysis of problems defined on solenoidal fields.

Lemma 2

For any f ∈ ◦
L2(Ω) there exists a function ū ∈ W0 satisfying the

relation divū = f and the condition

‖∇ū‖ ≤ κ2(Ω)‖f‖, (7.6)

where κ2(Ω) is a positive constant that depends on Ω.

Lemma 2 implies several important corollaries that we discuss
below.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Inf-Sup condition

Lemma 2 is related to the inequality known in the literature as the
Inf-Sup– or LBB (Ladyzhenskaya–Babuška–Brezzi)–condition
that reads: there exists a positive constant CΩ such that

inf
φ∈◦L2(Ω)

φ6=0

sup
w∈W0

w 6=0

∫

Ω
φdivw dx

‖φ‖ ‖∇w‖ ≥ CΩ . (7.7)

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Ivo Babuška Franco Brezzi

Inf-Sup condition (7.7) was established in the papers by
I. Babuška The finite element method with Lagrangian multipliers,

Numer. Math., 20(1973) and F. Brezzi, On the existence, uniqueness and

approximation of saddle-point problems arising from Lagrange multipliers,

R.A.I.R.O., Annal. Numer., 8 (1974). They used its discrete analogs for

proving the convergence of finite–dimensional approximations in various

problems related to the theory of viscous incompressible fluids.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Lemma 2 implies LBB condition

By Lemma 2, any φ ∈ ◦
L2(Ω) has a counterpart function vφ ∈ W0

that meets the conditions

divvφ = φ, ‖∇vφ‖ ≤ κ2(Ω)‖φ‖.

In this case,

sup
v∈W0,w 6=0

∫
Ω φdivv dx

‖∇v‖ ‖φ‖ ≥
∫
Ω φdivvφ dx

‖∇vφ‖ ‖φ‖ =
‖φ‖
‖∇vφ‖ ≥

1

κ2(Ω)

and, consequently, Inf-Sup condition holds with

CΩ =
1

κ2(Ω)
.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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It is easy to observe that the Inf-Sup condition can be presented in
the form

sup
w∈W0

w 6=0

∫

Ω

pdivw dx

‖∇w‖ ≥ CΩ ‖p‖ for all p ∈ ◦
L2(Ω).

We may consider the expression in the left–hand side of the above
inequality as the norm of ∇p in the space topologically dual to
W0, namely

[]∇p [] := sup
w∈W0

< ∇p,w >

‖∇w‖ .

Then, we arrive to the Nečas inequality.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Nečas inequality

Jindřich Nečas

‖p‖ ≤ κ2 []∇p [] ∀ p ∈ ◦
L2(Ω) , (7.8)

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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A simple proof of the Nečas inequality for domains with Lipschitz
boundaries can be found in the paper by
J. Bramble. A proof of the inf-sup condition for the Stokes equations on

Lipschitz domains, Math. Models Methods Appl. Sci. 13 (2003), no. 3,

361–371.
In the later paper, it is also shown that the well–known Korn’s
inequality follows from Inf-Sup condition.
Constants CΩ and κ2 play an important role in the numerical
analysis of the Stokes problem as well as in the theoretical one.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Existence of a saddle point

Existence of a saddle point of L(v,q) follows from Lemma 2 and
known results of the minimax theory. In a simplified version these
results reads:

Lagrangian L(v,q) possess a saddle point provided that
(a) it is convex and continuous with respect to the first variable
and concave and continuous with respect to the second one;

(b) for a certain q̄ the functional v 7→ L(v, q̄) is coercive (or the set
of admissible v is compact);

(c) or a certain v̄ the functional q 7→ −L(v̄,q) is coercive (or the
set of admissible q is compact.)

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Since

J(v) = sup
q∈Σ

L(v,q) ≥ L(q̄, v),

we observe that (b) means that J(v) is coercive. Analogously, (c)
means that the functional −I(q), where

I(q) = inf
q∈V0+u0

L(v,q) ≤ L(q, v̄),

is coercive.
In other words, for a continuous convex-concave Lagrangian
existence of a saddle point mainly depends on the coercivity
properties of the two dual functionals generated by it.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Let us apply these results to the Stokes problem. It is easy to see

that for any q ∈ ◦
L2(Ω) the mapping

v 7→ L(v,q) =

∫

Ω

(ν

2
|∇v|2 − f · v − qdivv

)
dx.

is convex and continuous (in W) and there exists am element

q̄ ∈ ◦
L2(Ω) (e.g., q̄ = 0) such that L(v, q̄) → +∞ if ‖v‖V → +∞.

The mapping q 7→ L(v,q) is affine and continuous (in
◦
L2(Ω)) for

any v ∈ V. Therefore, existence of a saddle point is guaranteed
provided that the coercivity condition

lim
‖q‖→+∞

inf
v∈W0+u0

L(v,q) = −∞ (7.9)

is established. By Lemma 2 we can prove this fact.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Consider the functional

I(q) := inf
v∈W0+u0

L(v,q)

and the variational problem

I(p) = sup

q∈◦L2(Ω)

I(q) (7.10)

for the pressure function. Note that the functional I has no
explicit integral-type form and is defined as a
supremum–functional. The solvability of this problem follows from
the coercivity condition (7.9). To prove (7.9) we apply Lemma 2.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Coercivity of the variational problem for the pressure function

Indeed, by Lemma 2 for any q ∈ ◦
L2(Ω) we find vq ∈ W0 such that

divvq = q and ‖∇vq‖ ≤ κ2‖q‖.
Take v = µvq+ u0 and recall that divu0 = 0. Then,

inf
v∈W0+u0

L(v,q)≤
∫

Ω

(ν

2
|∇(µvq+u0)|2−f ·(µvq+u0)−qdiv(µvq+u0)

)
dx ≤

≤
∫

Ω

(ν

2
|∇u0|2 − f · u0

)
dx + µ(ν‖∇u0‖+ CΩ‖f‖)‖∇vq‖+

+
νµ2

2
‖∇vq‖2 − µ‖q‖2 ≤

∫

Ω

(ν

2
|∇u0|2 − f · u0

)
dx+

+ µ(ν‖∇u0‖+ CΩ‖f‖)κ2‖q‖+ µ

(
νµκ2

2

2
− 1

)
‖q‖2,

where CΩ is a constant in the Friederichs inequality.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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We see that

I(q) ≤ c1(u0, f, ν) + µ(ν‖∇u0‖+ CΩ‖f‖)κ2‖q‖+

+µ

(
νµκ2

2

2
− 1

)
‖q‖2.

Set here µ = 1
νκ2

2
. Then

inf
v∈W0+u0

L(v,q) ≤ c1 + c2‖q‖ − 1

2νκ2
2

‖q‖2 → −∞ as ‖q‖ → +∞.

Thus, we observe that the constant κ2 arises in the quadratic term
that provides the required coercivity property of the pressure
functional.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Estimates of the distance to the set of solenoidal fields

Now we are concerned with the estimates of the distance between
a function v̂ ∈ H1 and the space of solenoidal functions.
Estimates in L2-norm. An estimate of the distance between v̂
and the space

J1
2(Ω) :=

{
v ∈ W1

2(Ω) | divv = 0
}

in L2–norm follow from the solvability of the Dirichlét problem for
the Lapalce operator. It is as follows:

inf
v0∈J1

2

‖v̂ − v0‖ ≤ CF‖divv̂‖,

where CF is the constant in the Friederichs inequality.
S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Proof. Indeed, since the problem

∆φ = f,

has a solution φ ∈
◦
W1

2(Ω) for any f ∈ L2(Ω), we conclude that for
any f there exists vf = ∇φ such that

divvf = f and ‖vf‖ ≤ CF‖f‖.

Set f = divv̂. Then,

div(vf − v̂) = 0,

so that v0 = vf − v̂ belongs to J1
2 and we observe that

‖v̂ − v0‖ ≤ CF‖divv̂‖.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Estimates in H1-norm. Let now v̂ ∈ W0. Set f = divv̂. Since
∫

Ω
divv̂ dx =

∫

∂Ω
v · ν ds = 0,

we see that f ∈◦L2 (Ω). Then, by Lemma 2, one can find uf ∈ W0

such that

divuf = divv̂, and ‖∇uf‖ ≤ κ2(Ω)‖divv̂‖.

In other words, there exists a solenoidal field w0 = (v̂ − uf) ∈ W0

such that

‖∇(v̂ −w0)‖ = ‖∇ûf‖ ≤ κ2(Ω)‖divv̂‖.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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This fact can be presented in another form

inf
v∈◦J12(Ω)

‖∇(v̂ − v)‖ ≤ κ2(Ω)‖divv̂‖. (7.11)

Thus, for the functions with zero traces the distance to
◦
J1

2(Ω) in a
strong norm is also measured via ‖divv̂‖, but with a different
factor: κ2(Ω).

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Comments on the value of CΩ

Note that CΩ can be estimated throughout the constant CF and
the constant CP in the Poincare inequality. Indeed,

CΩ = inf
q∈◦L2, q6=0

E(q),

E(q) = sup
w∈W0, w 6=0

∫
Ω qdivw dx

‖q‖ ‖∇w‖ .

For q ∈ ∼
W (Ω) :=

◦
L2∩W1

2(Ω) we have

E(q) = sup
w∈W0, w 6=0

∫
Ω ∇q ·wdx

‖q‖ ‖∇w‖ ≤ ‖∇q‖
‖q‖ sup

w∈W0, w 6=0

‖w‖
‖∇w‖

≤ CF
‖∇q‖
‖q‖ .

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Let CP be the smallest constant in the inequality

‖q‖ ≤ CP‖∇q‖, q ∈ ∼
W (Ω),

i.e.,

inf
q∈∼W(Ω), q6=0

‖∇q‖
‖q‖ =

1

CP
.

Then

CΩ = inf
q∈◦L2, q6=0

E(q) ≤ inf
q∈∼W(Ω), q6=0

E(q) ≤ CF

CP
.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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LBB-condition can be written in the form

‖p‖ ≤ CΩ
−1 []∇p [] ∀ p ∈◦L2,

what amounts

CΩ ≤ []∇p []

‖p‖
we see the meaning of this constant: CΩ is the infimum of H−1

norms of functions such that ‖p‖ = 1 and
∫
Ω pdx = 0.

Proposition 1

If Ω ∈ R n then

‖∇p‖(−1)

‖p‖ ≤ n ∀p ∈ L2(Ω).

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Proof.

sup
w ∈ W0

w 6= 0

∫

Ω
pdivw dx

‖∇w‖ =

sup
w ∈ W0

w 6= 0

n∑

t=1

∫

Ω
pwt,t dx

‖∇w‖ ≤
n∑

t=1

sup
wt ∈ W0

wt 6= 0

∫

Ω
pwt,t dx

‖∇w‖ .

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Since

‖∇w‖2 =

∫

Ω
(

n∑

t,s=1,n

w2
t,s)dx ≥

∫

Ω
w2

t,t dx ∀t = 1, 2, ...n

we have

sup
w ∈ W0

w 6= 0

∫

Ω
pdivw dx

‖∇w‖ ≤
n∑

t=1

sup
wt ∈ W0

wt 6= 0

∫

Ω
pwt,t dx

‖wt,t‖ ≤

≤
n∑

t=1

sup
η ∈ L2

η 6= 0

∫

Ω
pη dx

‖η‖ =
n∑

t=1

‖p‖ = n ‖p‖ .

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Proposition 2

If n = 1 then CΩ = 1.

Let Ω = (a,b). Due to Proposition 1 we see that CΩ ≤ 1. Let p

be an arbitrary function from the set
◦
L2. Then, the function

w(p) =

x∫

a

pdx ∈ W0 .

Really, w(p)(a)=0, w(p)(b)=
∫ a

b pdx= 0 and w(p)′=p ∈ L2(a,b). Thus,

sup
w ∈ W0

w 6= 0

∫

Ω

pw′ dx

‖w′‖ ≥

∫

Ω

pw(p)′ dx
∥∥w(p)′∥∥ =

∫

Ω

p2 dx

‖p‖ = ‖p‖

Thus, CΩ ≥ 1 and we arrive at the required result.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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These estimates give a certain presentation on the value of CΩ.
However, we are mainly interested in the estimate from below,
what imposes a task more complicated than the finding the
constant in the Friederichs inequality.
In principle, one could determine CΩ by the following arguments.
Let wp ∈ W0 be a function such that

∆wp = ∇p, wp = 0 on ∂Ω .

Then,

−
∫

Ω
∇wp : ∇v dx =

∫

Ω
∇p · v dx ∀v ∈ W0

and, thus, we have
∫

Ω
|∇wp|2 dx =

∫

Ω
pdivwp dx ∀v ∈ W0 .

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Therefore,

CΩ := inf

p ∈◦L2

p 6= 0

sup
w ∈ W0

w 6= 0

∫

Ω
pdivw dx

‖p‖ ‖∇w‖ ≥ inf

p ∈◦L2

p 6= 0

∫

Ω
pdivwpdx

‖p‖ ‖∇wp‖ =

= inf

p ∈◦L2

p 6= 0

‖∇wp‖
‖p‖ .

Thus, finding CΩ requires the minimization of this quotient with

respect to all p ∈◦L2, where wp is taken as the solution of the above
defined linear problem. Certainly, such a task (for some Ω) might
be solved by only analytical methods. However, the minimization

on a subspace of
◦
L2 may give a presentation on the value of CΩ.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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The value of CLBB is known for several model domains:

Rectangular domain (0, 1)× (0,L), L ≥ 1
see G. Stoyan, M. Olshanskij, E. Chizhonkov

sin π
8

L
≤ CLBB ≤ π

2
√

3L

unitary disc with radius 1
see L. Halpern

CLBB =
1√
2

Concerning numerical computation of CLBB see the works of G.
Stoyan, M. Olshanskij, E. Chizhonkov

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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On CΩ for the square domain

Let
Ω = Q := {x ∈ R n | xi ∈ (−π, π), i = 1, 2, ...n} .

We are interested in the value of the quotient

inf
p∈◦L2

[]∇p []

‖p‖Q
.

Represent p as a series with respect to the trial functions

p
(1)
ij = sin ix sin jy, p

(2)
ij = sin ix cos jy,

p
(3)
ij = cos ix sin jy, p

(4)
ij = cos ix cos jy ,

where i , j = 0, 1, 2, ... Then

p(x, y) =
∞∑

i,j=0

4∑

s=1

a
(s)
ij p

(s)
ij .
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Here, the first nonzero coefficients are

a
(4)
00 =

1

4π2

∫

Ω
p dxdy ,

a
(2)
i0 =

1

2π2

∫

Ω
p sin ix dxdy ,

a
(3)
0j =

1

2π2

∫

Ω
p sin jy dxdy ,

a
(4)
i0 =

1

2π2

∫

Ω
p cos ix dxdy ,

a
(2)
0j =

1

2π2

∫

Ω
p cos jy dxdy ,
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Other coefficients are as follows:

a
(1)
ij =

1

π2

∫

Ω
p sin ix sin jy dxdy ,

a
(2)
ij =

1

π2

∫

Ω
p sin ix cos jy dxdy ,

a
(3)
ij =

1

π2

∫

Ω
p cos ix sin jy dxdy ,

a
(4)
ij =

1

π2

∫

Ω
p cos ix cos jy dxdy .

We have

‖p‖2Q = π2
∞∑

i,j=0

λij

[(
a

(1)
ij

)2
+

(
a

(2)
ij

)2
+

(
a

(3)
ij

)2
+

(
a

(4)
ij

)2
]

,

where λ00 = 0, λ01 = 2, λ10 = 2 and λij = 1 for all i , j ≥ 1.
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Let us take a finite number of elements in the Fourier series for p:

p =
N∑

i,j=0

4∑

s=1

a
(s)
ij p

(s)
ij ,

where a
(s)
ij are the above defined coefficients. Since

[]∇p [] = sup
v∈W0

∫

Ω
pdivv dx

‖∇v‖Q
we need to introduce the system of trial functions in W0(Q). It is
given by the system of eigenfunctions for the problem

∆w = µw w|∂Q = 0 .
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This system is

φαβ = sin
α

2
(x + π) sin

β

2
(y + π) .

In this case,

φαβ,1 =
α

2
cos

α

2
(x + π) sin

β

2
(y + π) ,

φαβ,2 =
β

2
sin

i

2
(x + π) cos

β

2
(y + π) .

Take a finite number M of basic functions in the representation of v,
namely we set

v = vM = (vM
1 , vM

2 ), vM
1 =

M∑

α,β=1

bαβφαβ , vM
2 =

M∑

α,β=1

cαβφαβ .

The set of all such functions we denote WM
0 . In this case, we can obtain

a lower bound for the required norm. Really, we have
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[]∇p [] (M) := sup
vM∈WM

0

∫

Ω
pdivvM dx

‖∇vM‖Q ≤ []∇p [] = sup
v∈W0

∫

Ω
pdivv dx

‖∇v‖Q
.

Thus, we may hope to estimate the value of the quotient

inf
p∈◦L2

[]∇p []

‖p‖Q
.

by taking N,M → +∞, M = κN κ is essentially larger than 1
(typically 8-20). Numerical results for different N are exposed
below.
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Deviation estimates for the Stokes problem

In order to clarify the main ideas of our approach we rewrite the
classical Stokes system in a somewhat different form:

divσ = ∇p − f in Ω, (7.12)

divu = 0 in Ω, (7.13)

σ = ν∇u in Ω, (7.14)

u = 0 on ∂Ω. (7.15)

This system involves one additional variable σ that corresponds to
the field of stresses. Now we may regard the Stokes problem as the
problem of finding a triplet of functions (u, σ,p).
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Primal and Dual Problems

Functional formulations of the above problem are given in natural
”energy” set for this velocity–stress-pressure setting, which is

E :=
◦
J1

2(Ω)×Σ× ◦
L2 .

Problem P. Find u ∈◦J1
2(Ω) such that

J(u) ≤ J(v) for all v ∈◦J1
2(Ω) ,

where

J(v) =

∫

Ω

(ν

2
|∇v|2 − f · v

)
dx.

We denote the exact lower bound of this problem by inf P .
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Let Σ = L2(Ω,M n×n) and L :
◦
J1

2(Ω)×Σ(Ω) → R be the
Lagrangian

L(v, τ ) =

∫

Ω

(
τ : ∇v − 1

2ν
|τ |2

)
dx−

∫

Ω
fv dx

that together with Problem P generates the dual problem

sup
τ∈Σ

inf
v∈◦J12(Ω)

L(v, τ )

which is Problem P∗: find σ ∈ Σf (Ω) such that

I∗(σ) = sup
τ∈Σf(Ω)

I∗(τ ) , I∗(τ ) = − 1

2ν

∫

Ω
|τ |2 dx

where

Σf (Ω) :=

{
τ ∈ Σ(Ω) |

∫

Ω
τ : ∇wdx =

∫

Ω
fwdx for all w ∈◦J1

2(Ω)

}
.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

From the general theorems of convex analysis it follows

Theorem (1)

There exists a unique minimizer u of problem P and unique
maximizer σ of problem P∗. These two functions meet the
equalities

I∗(σ) = supP∗ = inf P = I(u), (7.16)

σ = ν∇u . (7.17)
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Basic error estimate

The basic error relation for the Stokes problem is given by the
following theorem (S. Repin, 2002).

Theorem (2)

For any v ∈◦J1
2(Ω) and any τ f ∈ Σf , we have

ν ‖∇(v − u)‖2 +
1

ν
‖τ f − σ‖2 = 2 ( J(v) − I∗(τ f) ) .(7.18)
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Proof of Theorem 2

The minimizer u of problem P satisfies the relation (??).
Therefore, we obtain

J(v)− J(u) =

∫

Ω

(ν

2
|∇v|2 − ν

2
|∇u|2 − f · (v − u)

)
dx =

=

∫

Ω

(ν

2
|∇(v − u)|2 + ν∇u : ∇(v − u)− f · (v − u)

)
dx =

=
ν

2

∫

Ω
|∇(v − u)|2 dx for all v ∈◦J1

2(Ω).

Since J(u) = inf P , we conclude that

ν

2
‖∇(v − u)‖2 = J(v) − inf P for all v ∈◦J1

2(Ω) .
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The next step is to derive a similar relation for the dual problem.
For this purpose, we note that the maximizer σ of problem P∗

satisfies the relation
∫

Ω
σ : (τ f − σ)dx = 0 for all τ f ∈ Σf(Ω) .

By virtue of this relation, we find that

sup P∗ − I∗(τ f) = I∗(σ)− I∗(τ f) =
1

2ν
‖τ f − σf‖2 τ f ∈ Σf(Ω).

Since inf P = supP∗ we sum the two equalities and obtain

ν ‖∇(v − u)‖2 +
1

ν
‖τ f − σ‖2 = 2 (J(v)−I∗(τ f)) .
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Stokes problem is a particular case of the abstract problem we
investigated in Lecture 5:

Find u ∈ V0 + u0 such that

(AΛu,Λw) + 〈`,w〉 = 0 ∀w ∈ V0.

In this case V0 =
◦
J1

2(Ω), V is a subspace of H1 containing
solenoidal fields, Λ = ∇ (tensor–gradient), U = Σ, Ay = νy, and

〈`,w〉 = −
∫

Ω
fw dx
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Thus, we can apply the estimate

1

2
||| Λ(v − u) |||2≤ (1 + β)D(Λv, y) +

1 + β

2β
[] ` + Λ∗y [] 2, (7.19)

where ||| y |||2= ∫
Ω ν|y|2dx and

[] ` + Λ∗y [] = sup
w∈V0

〈` + Λ∗y,w〉
||| Λw ||| = sup

w∈◦J12(Ω)

∫
Ω (∇w : y − fw)dx

||| ∇w ||| =

sup

w∈◦J12(Ω)

∫
Ω (∇w : y − fw − qdivw)dx

||| ∇w ||| ≤

≤ sup

w∈
◦
H1(Ω)

∫
Ω (∇w : y−fw− qdivw)dx

||| ∇w ||| ∀q ∈ L2(Ω).
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If

y ∈ Σdiv(Ω) := {y ∈ Σ | divy ∈ L2(Ω,R n)}

and q ∈ H1, we have

sup

w∈
◦
H1(Ω)

∫
Ω (∇w : y−fw−qdivw)dx

||| ∇w ||| = sup

w∈
◦
H1(Ω)

∫
Ω (f−∇q+divy) ·wdx

||| ∇w |||

Since

‖w‖ ≤ CΩ‖∇w‖ = CΩν−1/2 ||| ∇w |||,

we obtain

[] ` + Λ∗y [] ≤ CΩν−1/2‖f −∇q + divy‖
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Further,

D(∇v, y) =

∫

Ω

(
1

2
ν∇v : ∇v +

1

2
ν−1y : y −∇v : y

)
dx =

=
1

2ν
‖y − ν∇v‖2.

Now, from (7.19) we obtain

ν

2
‖∇(u−v)‖2≤(1+β)

1

2ν
‖y−ν∇v‖2+

1+ β

2βν
C2

Ω‖f−∇q+divy‖2,

or

ν2‖∇(u−v)‖2≤(1+β)‖y−ν∇v‖2+
1+β

β
C2

Ω‖f−∇q+divy‖2.
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Deviation estimate for solenoidal approximations

By the minimization with respect to β we derive the first basic
estimate for the Stokes problem:

ν‖∇(u − v)‖ ≤ ‖y − ν∇v‖+ CΩ‖f −∇q + divy‖. (7.20)

Here v is any conforming approximation of u and y is any
tensor–function in Σdiv(Ω) and q ∈ H1 is an ”image” of the
pressure function.
This and the next estimate for non-solenoidal approximations has been

derived in ’99, English translation is presented in S. Repin. A posteriori

estimates for the Stokes problem, J. Math. Sci. (New York), 109 (2002).
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Non-solenoidal approximations

If the function v̂ ∈ V0 + u0 does not satisfy the incompressibility
condition, then the estimate of its deviation from u can be
obtained as follows.
By Lemma 2 for the function v̂0 := v̂ − u0 one can find a function

w0 ∈
◦
J1

2(Ω) such that

‖∇(v̂0 − ŵ0)‖ ≤ κ2(Ω)‖divv̂0‖.
Then,

ν‖∇(u− v̂)‖ = ν‖∇(u− v̂0 − u0)‖ ≤
≤ ν‖∇(u− (ŵ0 + u0))‖ + ν‖∇(v̂0 − ŵ0)‖.

Use (7.20) to estimate the first norm in the right–hand side of this
inequality.
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We obtain

ν‖∇(u− v̂)‖ ≤ ‖ν∇(ŵ0 + u0)− y‖+ CΩ‖divy + f −∇q‖+

+ν‖∇(v̂0 − ŵ0)‖ ≤ ‖ν∇v̂ − y‖+

+CΩ‖divy + f −∇q‖+ 2ν‖∇(v̂0 − ŵ0)‖.

Hence, we arrive at the estimate

ν‖∇(u−v̂)‖≤‖ν∇(v̂)−y‖+CΩ‖divy+f−∇q‖+ 2ν

CΩ
‖divv̂‖.(7.21)

Three terms in the right–hand side of the estimate present three
natural parts of the error, namely errors in the constitutive law,
differential equation and incompressibility condition.
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Another form of the Majorant

Set y = η + qI, where I is the unit tensor and η ∈ Σdiv(Ω)(Ω).
Then the Majorant comes in the form

ν ‖∇(u−v̂)‖≤‖ν∇(v̂)−η−qI‖+CΩ‖divη+f‖+ 2ν

CΩ
‖div̂v‖.(7.22)

Thus, if the constants cΩ and CΩ are known (or we know suitable
upper bounds for them), then (7.21) and (7.22) provides a way of
practical estimation the deviation of v̂ from u.
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Practical implementation

To use the above estimates in practice we should select certain
finite dimensional subspaces

Σk and Qk

for the functions y (or η ) and q, respectively.
Minimization of the right–hand side of the estimates with respect
to y and q gives an estimate of the deviation, which will be the
sharper the greater is the dimensionality of the subspaces used.
Numerical testing of the estimates has been performed in E.

Gorshkova and S. Repin. Error control of the approximate solution to the

Stokes equation using a posteriori error estimates of functional type. In

European Congress on Computational Methods in Applied Sciences and

Engineering, ECCOMAS 2004, Jyväskylä, 24-28 July, 2004 (electronic).
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Estimates for the pressure field

Let q ∈◦L2 be an approximation of the pressure field p . Then

(p− q) ∈◦L2 and the Inf-Sup condition implies the relation

sup
w∈V0, w 6=0

∫
Ω (p− q)divw dx

‖p− q‖ ‖∇w‖ ≥ CΩ .

Thus, for any small positive ε there exists a nonzero function
wε

pq ∈ V0 such that

∫

Ω
(p− q)divwε

pqdx ≥ (CΩ − ε)‖p− q‖‖∇wε
pq‖.
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Since
∫

Ω
ν∇u : ∇wε

pq dx =

∫

Ω

(
f ·wε

pq + pdivwε
pq

)
dx,

we have
∫

Ω
(p− q)div wε

pq dx =

=

∫

Ω

{
ν∇(u− v̂) : ∇wε

pq +
(
ν∇v̂ : ∇wε

pq+∇q ·wε
pq−f ·wε

pq

)}
dx

=

∫

Ω
ν∇(u− v̂) : ∇wε

pq dx +

∫

Ω
(ν∇v̂ − y : ∇wε

pq)dx

+

∫

Ω

(
y : ∇wε

pq +∇q ·wε
pq − f ·wε

pq

)
dx,

where v̂ is an arbitrary function in W0 + u0 and y as an arbitrary
tensor–valued function in Σ .
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Above relations lead to the estimates

‖p− q‖ ≤ 1

(CΩ −ε)‖∇wε
pq‖

×
[∫

Ω

(
ν∇(u− v̂) : ∇(wε

pq) + (ν∇(̂v)− y) : ∇(wε
pq)

)
dx

+

∫

Ω

(−wε
pq · divy +∇q ·wε

pq − f ·wε
pq

)
dx

]

≤ 1

(CΩ −ε)

[
ν‖∇(u −̂v)‖+‖ν∇(v̂)−y‖+CΩ‖divy+ f−∇q‖].

The first term in the right–hand side of this inequality is estimated
by (7.21).

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Deviation estimate for the pressure function

Since ε may be taken arbitrarily small, we obtain the following
estimate for the deviation from the exact pressure field:

1

2
‖p− q‖ ≤ ν

CΩ
2
‖div̂v‖+ (7.23)

+
1

CΩ
‖ν∇(̂v)− y‖+

CΩ

CΩ
‖divy + f −∇q‖.

It is easy to see that the right–hand side of (7.23) consists of the
same terms as the right–hand side of (7.21) and vanishes if and
only if, v̂ = u , y = σ and p = q . However, in this case, the
dependence of the penalty multipliers from the constant CΩ is
stronger.
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Problems with condition divu = φ.

In many cases, divergence–free condition is replaced by

divu = φ in Ω,

where φ is a given function in
◦
L2. For such functions, we have the

problem: find u that is equal to u0 on ∂Ω and

−divσ +∇p = f in Ω,

σ = ν∇u in Ω,

Let uφ ∈ W0, divuφ = φ. By setting u = ū + uφ and ū0 = u0 − uφ, we

present the boundary–value problem as follows: find ū ∈◦J1
2(Ω) + ū0 such

that

−divσ̄ +∇p = f̄ in Ω, f̄ = f + νdiv∇(uφ) ∈ H−1,

σ̄ = ν∇ū in Ω.
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Assume that u is approximated by a certain v ∈ V0 + u0. Let v be
presented in the form v = v̄ + uφ. Now. we apply (7.21) to a ”shifted”
system and obtain

‖∇(u− v)‖ = ‖∇(ū− v̄)‖ ≤

≤ ‖ν∇v̄ − y‖+ [] divy + f̄ −∇q [] +
2ν

CLBB
‖divv̄‖.

Set here y = −ν∇uφ + η, where η is a function in Σ.
Then

divy + f̄ = −νdiv∇uφ + divη + f̄ = divη + f

and ν∇v̄ − y = ν∇(v − uφ)− y = ν∇v − η. Therefore,

‖∇(u− v)‖ ≤

≤ ‖ν∇v − η‖+ [] divη + f −∇q [] +
2ν

CLBB
‖divv − φ‖.
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Problems for almost incompressible fluids

Models of almost incompressible fluids are often used for constructing
sequences of functions converging to a solution of the Stokes problem. In
this case, the incompressibility condition is replaced by the term that
contains the divergence with a large multiplier. Let us consider a model
of such a type.
We find uδ ∈ V satisfying the integral identity

∫

Ω

(
ν∇uδ : ∇w +

1

δ
divuδ divw

)
dx =

∫

Ω

f ·wdx, w ∈ W0,

and the boundary condition uδ = u0 ∂Ω. It is not difficult to show

(see, e.g., R. Temam [?]), that uδ tends to u (solution of the Stokes

problem) in H1 norm and pδ = − 1
δdivuδ ∈

◦
L2 converges to the respective

pressure function p in L2 as δ → 0.
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By (7.21) we can easily obtain an estimate of the difference
between u and uδ. Let us set in(7.21) y = τ δ := ν∇uδ and
q = pδ = −1

δ divuδ. In this case, ‖ν∇uδ − τ δ‖ = 0 and

[] divτ δ + f −∇pδ [] =

= sup
w∈V0

∫
Ω (−ν∇uδ : ∇w + f ·w + pδdivw)dx

‖∇w‖ = 0.

Thus, we conclude that

1

2
‖∇(u− uδ)‖ ≤ 1

CLBB
‖divuδ‖,

We observe that the deviation from the exact solution of the Stokes

problem is controlled by the norm of the divergence of the regularized

problem. Similar estimate can be obtained for the approximations

constructed by means of the Uzawa algorithm.
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In S. Repin. Estimates of deviations from exact solutions for some
boundary–value problems with incompressibility condition.

Algebra and Analiz (St.-Petersburg Math. J), 16(2004), 5

functional a posteriori estimates for the Stokes and some other
problems were derived by nonvariational techniques.
In particular, in this paper readers can find such estimates for
Convection–diffusion equation

−divA∇u + a · ∇u = f

and Oseen problem

−ν∆u + div(a ⊗ u) = f −∇p in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω.
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Generalizations

A posteriori estimates of the above discussed type can be derived
in the abstract form for the whole class of problems where a
solution is seeking in a subspace.
Typically, we have the following diagram:

H
B←− W0

Λ−→ U (Y,Y∗)
m

H
B∗−→ W∗

0
Λ∗←− U

Basic problem. Find p ∈ H and u ∈ V0 that satisfy the relation

(AΛu,Λw) + 〈f − B∗p,w〉 = 0 ∀w ∈ W0,

where

V0 = KerB := {v ∈ W0 | Bv = 0} .
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Assume that

ν1‖y‖2 ≤ (A y, y) ≤ ν2‖y‖2, y ∈ U,

Let the operator B possesses the following property: there exists a
constant α such that for any

g ∈ ImB := {z ∈ H | ∃v ∈ W0 : Bv = z}

one can find ug ∈ W0 such that

Bug = g and ‖ug‖W ≤ α‖g‖.

Note that such a condition is a generalization of Lemma 2.

Under the above assumption we obtain an estimate of the
deviation from u.
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Estimate of the deviation from u

||| Λ(u− v̂) |||≤
≤ 2

√
ν2α‖Bv̂‖+ ||| AΛv̂ − y |||∗ +

1√
ν1

[] f + Λ∗y − B∗q [] .

where ||| y |||:= (Ay, y)1/2, ||| y |||∗:= (A−1y, y)1/2 We see that the
terms of the estimate present errors in the basic relations




〈Λ∗σ + f − B∗p,w〉 = 0 ∀w ∈ V0,
σ = AΛu,
Bv = 0.
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For the Stokes problem Λv = ∇v, A = νI, where I denotes the
identity operator and Bv = −divv. It is easy to see that in this
case ν1 = ν2 = ν,

||| AΛv̂ − y |||∗= 1√
ν
‖ν∇v − y‖.

Since ||| Λ(u− v̂) |||= √
ν‖Λ(u− v̂)‖, we find that the general

estimate coincides with (7.21).
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Literature comments.

A significant part of the difficulties arising in the process of solving such
problems is related to the incompressibility condition. Typically, this
condition is taken into account by projecting of a discrete solution to the
set of solenoidal fields or by introducing appropriate penalty terms (see,
e.g., A. Chorin [12], E. W. and J. G. Liu [14], V. Girault, P. A. Raviart
[16], G. Heywood and R. Rannacher [17], R. Rannacher [25,26], J. Shen
[32], R. Temam [33] ). Stationary problems are often solved by passing
to a minimax formulation and using the so–called mixed approximations
for the velocity and pressure fields (see, e.g., F. Brezzi and J. Duglas [9],
F. Brezzi and M. Fortin [10]).
A posteriori error estimates for approximations of the Stokes problem
constructed by various types of finite element methods were obtained in
numerous papers (mainly in the framework of certain modifications of the
residual method (see, e.g., M. Aintworth and T. Oden [1], R. Bank and
B. Welfert [5], E. Dari, R. Duran and C. Padra [13], C. Carstensen and S.
Funken [11], G. Heywood and R. Rannacher [18], C. Johnson and
R. Rannacher [19], C. Johnson, R. Rannacher and M. Boman [20],
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J. Oden, W. Wu and M. Aintworth [24], R. Verfürth [35,36]). In these
estimates, the right–hand side is given by the sum of local quantities ηk

that include additional terms that take into account violations of the
incompressibility condition.
Functional type a posteriori error estimates for the Stokes problem were
firstly derived by the variational techniques in [27]. Later, this method
was applied to some other viscous flow problems with non-quadratic
dissipative potentials [28]. In [30], another nonvariational techniques was
used. It was shown that for the Stokes problem it leads to the same
estimates. In [31] a posteriori estimates in local norms were derived.
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Lecture 8.
ESTIMATION OF INDETERMINACY ERRORS.
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Errors arising due to data indeterminacy

IN REAL LIFE PROBLEMS ALL THE DATA ARE
INDETERMINATE!!!

Example 1.
Diffusion problem: find (temperature) T such that

divk(x)∇T(x) + f = 0 in Ω

T(x) = T0 on ∂Ω

In reality, the diffusion coefficient, temperature sources, and even
the domain are not exactly known.
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Example 2.
Stokes problem: find solenoidal u such that

−divσ = f −∇p in Ω,

ν∇u = σ in Ω,

u = u0 on ∂Ω,

In Stokes, Oseen and Navier–Stokes equations the viscosity
coefficient is never known exactly. Moreover, it is typically an
unknown function (depending both on the spatial and time
coordinates) that may depend on the temperature, contamination
and other factors.
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Uncertain data lead to a quite different analysis

Data uncertainty drastically changes some basic relations in the
numerical analysis.
For example, let v ∈ C2[a,b] and x, x + h ∈ [a,b]. Since

v(x + h) = v(x) + v′(x)h + v′′(x + θh)
h2

2
, θ ∈ (0, 1)

we have the standard finite difference quotient approximation of
the derivative

v′(x) ≈ v(x + h)− v(x)

h
,

whose error is given by the relation

|e| ≤ µh

2
, µ = max

x∈[a,b]
|v′′(x)|
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Assume now that v(x) is defined with a certain indeterminacy, so
that its real value is unknown and instead we have a function ṽ(x)
whose values lie in the interval [v(x)− ε, v(x) + ε].
If we use these data to approximate the derivative, then we arrive
at the following result:∣∣∣∣v′(x)−

ṽ(x + h)− ṽ(x)

h

∣∣∣∣ ≤
∣∣∣∣v′(x)−

v(x + h)− v(x)

h

∣∣∣∣ +
2ε

h
≤

≤ µh

2
+

2ε

h
.

We see that the error does not tend to zero as h → 0. Moreover,

min
h

(µh

2
+

2ε

h

)

is attained at

h̄ = 2

√
ε

µ
(the best accuracy).
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Therefore, in the case of not fully determinate data the highest
accuracy of the numerical differentiation is

|emin| = 2
√

εµ

For example, if ε = 10−4 and µ = 9, then the highest accuracy is

|emin| = 6 ∗ 10−2 ∼ 10−1 !!!

and it is attained for h ≈ 0.01.
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Errors in coupled problems

Effects close to those arising as a result of data indeterminacy
often appear in the process of numerical simulation of
coupled systems where certain quantities in a differential
problem are defined throughout solutions of some other
problems. In such systems a phenomenon of

”error multiplication”
may lead to a dramatic loss of the accuracy. An example
below demonstrates such type effects.
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”Baby” coupled problem. Find z(8), where z is the solution of the
problem

z′′ − 9z′ − 10z = 0, z = z(x), x ∈ [0, 8],

z(0) = 1, z′(0) = aN−1 − aN,

where a is a solution of the system of the dimensionality N

Ba = f, bij =
2S2

i S
2
j

π

π∫

0

(
sin(iξ) sin(jξ) + sin(i + j2)ξ

)
dξ,

i, j = 1, 2, ...N, fi = (i + 1)4i, Si =
+∞∑

k=0

(
i

i + 1

)k

.

For N = 10, 50, 100, 200 find z(8) analytically and compare with the

result obtained by ”purely numerical” approach in which sums, integrals

and ODE are treated numerically.
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Solution.

Si =
+∞X

k=0

„
i

i + 1

«k

=
+∞X

k=0

qk =
1

1− q
= i + 1

Sin(iξ)Sin(jξ) =
1

2
(Cos(i − j)ξ − Cos(i + j)ξ),

πZ

0

Cos((i + j)ξ)dξ =
1

i + j
Sin(i + j) |π0 = 0,

πZ

0

(Cos(i − j)ξ)dξ = π if i = j and = 0 otherwise.

Therefore,

πZ

0

sin(iξ) sin(jξ)dξ =
π

2
if i = j and = 0 otherwise.
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Thus, B is a diagonal matrix with

bii = S4
i = (i + 1)4

and

Ba = f is (i + 1)4ai = (i + 1)4i ⇒ ai = i.

Solution of the equation we find in the form z = eλx, where λ is a root of

λ2 − 9λ− 10 = 0, λ1 = −1, λ2 = 10.

We have

z = C1e
−x + C2e

10x, z(0) = C1 + C2 = 1

z′ = −C1e
−x + 10C2e

10x, z′(0) = −C1 + 10C2 = aN−1 − aN = −1

From here, C1 = 1 and C2 = 0, so that

z = e−x, z(8) ≈ 3.3546262 ∗ 10−4
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Principal question

Assume we have an approximation uh computed on a mesh Th.
The question to be answered is as follows:

WHICH ERROR:
APPROXIMATION or INDETERMINACY

IS BIGGER?

If
Indeterminacy error > Approximation error

then all further computations and mesh adaptations are senseless !
We need a practical way to explicitly evaluate errors caused
by indeterminacy in the problem data
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General framework

Consider the problem

Λ∗AΛu = ` inΩ, u = u0 on , ∂Ω. (8.1)

where the operator A and the functional ` are defined with some
indeterminacy. It means that

A ∈ UA ⊂ L(U, U),

` ∈ U` ⊂ V ∗
0 ,

where UA and U` are certain bounded sets.
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All possible solutions of the problem with such a data form the set

Υ(UA,U`) :=
{
ũ ∈ V0 + u0

∣∣∣ũ satisfies (8.1) for someA ∈ UA ` ∈ U`

}
.

Let v ∈ V0 + u0 be an approximation of an unknown exact
solution. Since the data are indeterminate, the error estimation
problem comes in two different forms.
The first problem is to find the quantity

e2
min(v,Υ) =

1

2
inf
ũ∈Υ

‖Λ(v − ũ)‖2 , (8.2)

The quantity emin measures the distance between v and the set Υ.
It is equal to zero if v satisfies (8.1) for some pair
(A, `) ∈ UA ×U`. This quantity provides the lowest possible bound
of the true error or the error in the best-case situation.
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Another task is to find the quantity

e2
max(v,Υ) =

1

2
sup
ũ∈Υ

‖Λ(v − ũ)‖2 , (8.3)

which shows the highest possible error. It takes into account
computational errors and errors caused by indeterminacy and
shows the error in the worst-case situation when the exact
solution is an element of Υ that is most distant of v.

This quantity is always positive and its value gives an idea of the
accuracy limit dictated by the effect of indeterminacy in the data.
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Thus,

emin(v,Υ) ≤ e(v) ≤ emax(v,Υ), (8.4)

where the actual error e(v) is principally unknown and we may
only hope to find its bounds. In general, the exact values of emin

and emax could hardly be found. However, using functional type a
posteriori estimates, one can find their computable bounds.
Indeed, the majorant M⊕ and the minorant Mª explicitly depend
on A and `, which opens a way for computing errors caused by the
indeterminacy in values of the problem data. Below we show how
such an account can be performed.
Assume that the set Υ is known. Our aim is to find practically
computable numbers eª(v,Υ) and e⊕(v,Υ) such that for any
v ∈ V0 + u0 the following relations hold:

eª(v,Υ) ≤ emin(v,Υ) ≤ emax(v,Υ) ≤ e⊕(v,Υ). (8.5)
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Particular problem

Consider the generalized diffusion problem

divA∇u + f = 0,

In this case,

V = H1(Ω), Y = L2 (Ω,R n), V0 :=
◦
H1(Ω),

V∗0 = H−1(Ω), Λv = ∇v, Λ∗y∗ = −divy∗,

and A is a mapping given by the relation y∗(x) → A(x)y∗(x),
where A(x) is a symmetric positive definite matrix.
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Assume the the coefficients of the differential equation are defined
by some ”mean” elements

A0 ∈ L∞(Ω;M n×n
s ) and f0 ∈ L2(Ω)

and certain (bounded) variations around these values.

UA :=
{
A ∈ L∞(Ω;M n×n

s ) | A = A0 + εE, E ∈ E}
,

Uf :=
{
f ∈ L2(Ω) | f = f0 + δϕ, ϕ ∈ F

}
,

where

E :=
{
E ∈ L∞(Ω;M n×n

s )
∣∣ ‖ |E| ‖∞,Ω ≤ 1

}
,

F :=
{

ϕ ∈ L2(Ω)
∣∣ ‖ϕ‖2,Ω ≤ 1

}
.

We will define the influence of the above indeterminacy errors. Our
analysis follows the lines of
S. Repin. A posteriori error estimates taking into account
indeterminacy of the problem data. Russian J. Numer. Anal.
Math. Modelling, 18 (2003), no. 6, 507–519.S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Let, ε and δ be small parameters characterizing the range of
indeterminacy and

UA :=
{
A ∈ L∞(Ω;M n×n

s ) | A = A0 + εE, E ∈ E}
,

Uf :=
{
f ∈ L2(Ω) | f = f0 + δϕ, ϕ ∈ F

}
,

where

E :=
{
E ∈ L∞(Ω;M n×n

s )
∣∣ ‖ |E| ‖∞,Ω ≤ 1

}
,

F :=
{

ϕ ∈ L2(Ω)
∣∣ ‖ϕ‖2,Ω ≤ 1

}
.

We assume that the parameter ε is small enough, so that the
problems remain uniformly elliptic for all possible data, so that the
relation

c1|ξ|2 ≤ A0ξ · ξ ≤ c2|ξ|2, ∀ξ ∈ R n,

implies a similar double inequality for all A ⊂ UA.
S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Since
|Eξ · ξ| = |E : (ξ ⊗ ξ)| ≤ |E| |ξ|2,

we find that

Aξ · ξ ≥ A0ξ · ξ − ε|E| |ξ|2 ≥ (c1 − ε)|ξ|2, (8.6)

Aξ · ξ ≤ A0ξ · ξ + ε|E| |ξ|2 ≤ (c2 + ε)|ξ|2. (8.7)

Therefore, we must assume that possible ”disturbances” are
sufficiently small, namely

ε < c1.

For the inverse matrix, we have

c−1
2 |ξ|2 ≤ A−1

0 ξ · ξ ≤ c−1
1 |ξ|2, (8.8)

(c2 + ε)−1|ξ|2 ≤ A−1ξ · ξ ≤ (c1 − ε)−1|ξ|2, (8.9)

where A ∈ UA.
S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Indeterminacy is explicitly accounted by the Majorant

A principle possibility to involve indeterminacy data into the
consideration is based on that external data are explicitly
presented in the Majorant.
Indeed, we have

∫

Ω
A∇(ũ− v) · ∇(ũ− v)2 ≤

(1+β)

∫

Ω

(
A∇v · ∇v+A−1y · y−2∇v · y

)
dx+

+
(1 + β)C2

Ω

β
‖divy + f‖2 .

We do not know A, f (and also u) exactly. But we can try to
express all terms in this estimate via ε, δ, A0, and f0.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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The left–hand side of the estimate is easy to estimate from below.
Indeed,

||| ∇(v − ũ) |||2=
∫

Ω
(A0 + εE)∇(v − u) · ∇(v − u)dx ≥

≥ (c1 − ε) ‖∇(v − u)‖2 .

Then, we find that

(c1 − ε) ‖∇(ũ− v)‖2 ≤
≤ sup

A∈A,f∈F
inf
y,β

{
(1+β)

∫

Ω

(
A∇v·∇v + A−1y·y−2∇v·y

)
dx +

+
(1 + β)C2

Ω

β
‖divy + f‖2

}
.

In this estimate an approximate solution v contains both
APPROXIMATION and INDETERMINACY Errors !

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Basic idea

Since sup inf ≤ inf sup, we can change the order and obtain

(c1 − ε) ‖∇(u− v)‖2 ≤
≤ inf

y,β
sup

A∈A,f∈F

{
(1+β)

∫

Ω

(
A∇v·∇v + A−1y·y−2∇v·y

)
dx +

+
(1 + β)C2(Ω,A)

β
‖divy + f‖2

}
.

Now, our aim is to find an analytical estimate for the supremum
that explicitly involves indeterminacy parameters.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Now, the upper bound of the error of an approximate solution v
with respect to the ”worst case situation” comes in the form

e2
max(v,Υ) ≤

≤ 1

c1

(
1 +

ε

c1 − ε

) {
(1+β) sup

A∈UA

D(∇v, y)+

+
(1+β)

2β
sup

A∈UA

C2(Ω,A) sup
f∈Uf

‖div y−f‖2
}

, (8.10)

which is valid for any y ∈ Q∗ and β > 0. Let us consider its terms.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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To obtain a transparent estimate we need to find upper bounds for
the quantities

sup
A∈UA

D(∇v, y),

C2(Ω,A),

sup
f ∈Uf

‖div y−f‖2.
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First, we analyze the functional

D(Λv, y) :=
1

2
(AΛv,Λv) +

1

2
(A−1y, y)− (Λv, y)

for any A ∈ UA. First, we rewrite the first term∫

Ω
A∇v · ∇v dx =

∫

Ω
(A0∇v · ∇v + εE∇v · ∇v)dx.

Now, our aim is to estimate the most complicated second term.
Present the inverse matrix as follows

A−1 = (A0 + εE)−1 =
(
A0(I+ εA−1

0 E)
)−1

= (I+ εB)−1 A−1
0 ,

where B = A−1
0 E. Note that

ε|B| = ε|A−1
0 E| ≤ ε|A−1

0 | |E| ≤ εc−1
1 < 1,

and, therefore, (I+ εB)−1 can be presented as a convergent
matrix series, namely

(I+ εB)−1 = I+
∞∑

j=1

(−1)jεjBj,
S. Repin RICAM, Special Radon Semester, Linz, 2005.
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(I+ εB)−1 = I+
∞∑

j=1

(−1)jεjBj,

Hence, we can present the second term as a combination of known
matrixes A0 and powers of ε.

A−1y ·y = (I+εB)−1A−1
0 y ·y =


I+

∞∑

j=1

(−1)jεjBj


A−1

0 y ·y =

= A−1
0 y · y − εBA−1

0 y · y +
∞∑

j=2

(−1)jεjBjA−1
0 y · y.
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Since E ∈ E , we have
∫

Ω
BjA−1

0 y · y dx ≤
∫

Ω
|A−1

0 |j+1 |E|j |y|2 dx ≤ c
−(j+1)
1 ‖y‖2

∫

Ω
A−1y · y dx ≤

∫

Ω
(A−1

0 y · y − εBA−1
0 y · y)dx+

+




∞∑

j=2

(−1)jεjc
−(j+1)
1


 ‖y‖2.
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We find that the first term D explicitly depends on ε:

D(∇v, y) ≤ D0(∇v, y) +
ε

2

∫

Ω
(E∇v · ∇v − BA−1

0 y · y)dx+

+
1

2c1
‖y‖2

∞∑

j=2

(
− ε

c1

)j

,

where

D0(∇v, y) =

∫

Ω

(
1

2
A0∇v · ∇v +

1

2
A−1

0 y · y −∇v · y
)

dx.

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Since all the matrices are symmetric, we have

E∇v · ∇v − A−1
0 EA−1

0 y · y = E(∇v − A−1
0 y) · (∇v + A−1

0 y).

Now, we obtain

D(∇v, y) ≤ D0(∇v, y)+

+
ε

2

∫

Ω
E(∇v − A−1

0 y) · (∇v + A−1
0 y)dx+

+

(
ε

c1

)2 1

2(ε + c1)
‖y‖2.

Note that the the last two terms presents a positive penalty arose
due to indeterminacy. All the terms in the right–hand side are
directly computable!
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Next,

1

C2(Ω,A)
= inf

w∈V0

∫
Ω A∇w · ∇wdx

‖w‖2 ,

where
∫

Ω
A∇w · ∇wdx ≥

∫

Ω
A0∇w · ∇wdx− ε‖∇w‖2.

Hence,

1

C2(Ω,A)
≥ (1− εc−1

1 ) inf
w∈V0

∫
Ω A0∇w · ∇wdx

‖w‖2 =
c1 − ε

c1

1

C2(Ω,A0)

and

C2(Ω,A) ≤
(

1 +
ε

c1 − ε

)
C2(Ω,A0).
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For any g ∈ L2(Ω)

sup
ϕ∈F

∫

Ω
(g − ϕ)2dx = ‖g‖2 + 2‖g‖+ 1.

By this relation, we find the value of the term

sup
ϕ∈F

∫

Ω
|div y − f0 − δϕ|2dx,

which is

‖div y − f0‖2 − 2δ‖div y − f0‖+ δ2.

Then, we arrive at the final estimate. To represent its right-hand
side of this estimate in a more transparent form, we introduce a
number of quantities.
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M00(v, β, y) := (1 + β)D0(∇v, y) +

(
1 +

1

β

)
C2(Ω,A0)

2
‖div y − f0‖2,

M10(v, β, y) :=
ε

2

(∫

Ω

∣∣(∇v − A−1
0 y) · (∇v + A−1

0 y)
∣∣dx +

+

(
1 +

1

β

)
C2(Ω,A0)

c1 − ε

∫

Ω

|div y − f0|2 dx
)
,

M01(v, β, y) := δ

(
1 +

1

β

)
C2(Ω,A0)‖div y − f0‖,

M11(v, β, y) := εδ

(
1 +

1

β

)
C2(Ω,A0)

c1 − ε
‖div y − f0‖,

M22(v, β, y) := (1 + β)

(
ε

c1

)2 ‖y‖2

2(ε + c1)
+

(
1 +

1

β

)
c1C2(Ω,A0)

2(c1 − ε)
δ2.
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We obtain an upper bound of e⊕(v,Υ) in the form

e2
⊕(v,Υ) =

1

c1 − ε
inf

y∈Q∗ ,β>0

(
M00(v, β, y)+

+ M01(v, β, y) + M10(v, β, y) + M11(v, β, y) + M22(v, β, y)
)
.

(8.11)

The term M00(v, β, y) coincides with the majorant constructed for
the ”mean” problem (with A0 and f0). It represents the
approximation error. The terms M10, M01, and M11 are given by
some combinations of the weighted residual and small parameters
ε and δ. In principle, all these terms can be made arbitrarily small
by taking v close enough to the exact solution u of the problem
with A = A0 and ` = f0 and y close enough to A0∇u.
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Inherent error

In contrast, the term M22(v, β; y) is always positive. This term
contains the inherent part of the error, which does not depend on
the accuracy of numerical approximations. Indeed, in all cases we
have

M22(v, β, y) ≥ C2(Ω,A0)
c1δ

2

2(c1 − ε)
.

This quantity does not depend on the choice of v, β, and y. It
gives an idea of the accuracy limit that could be achieved within
the framework of the worst-case scenario.
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Computable upper bounds

Take {Q∗
k} ⊂ Q∗. Then,

e2
⊕(v,Υ)≤e2

k⊕(v,Υ)=

=
1

c1

(
1+

ε

c1−ε

)
inf

y∈Q∗k ,β>0





1∑

s,t=0

Mst(v, β, y)+M22(v, β, y)



 .

If Q∗
k ⊂ Q∗

k+1, then the sequence {e2
k⊕(v,Υ)} monotonically

decreases but may not tend to zero.
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Lower bound of the error

To find a lower bound, we use the relation

1

2

∫

Ω
A∇(v − ũ) · ∇(v − u)dx = sup

w∈V0

Mª(v,w),

where

Mª(v,w) = −
∫

Ω

(
1

2
A∇w · ∇w + A∇v · ∇w + fw

)
dx.

Recall that
Aξ · ξ ≤ (ε + c2) |ξ|2 .

By this inequality we can estimate the left–hand side from below,
so that for any pair

(A, f) ∈ UA × Uf

that generates the respective solution ũ we have
S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

1

2
‖∇(v − ũ)‖2 ≥ 1

2(ε + c2)

∫

Ω
A∇(v − ũ) · ∇(v − ũ)dx =

=
1

ε + c2
sup

w∈V0

Mª(v,w).

Therefore,

emin(v,Υ) = inf
ũ∈Υ

1

2
‖∇(v − ũ)‖2 ≥

≥ 1

ε + c2
inf

(A,f)∈UA×Uf

sup
w∈V0

Mª(v,w) ≥

≥ 1

ε + c2
sup

w∈V0

inf
(A,f)∈UA×Uf

Mª(v,w).
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We have

emin(v,Υ) ≥

≥ 1

ε + c2
sup

w∈V0

{
−

∫

Ω

(
1

2
A0∇w · ∇w + A0∇v · ∇w + f0w

)
dx+

+ inf
E∈E ,ϕ∈F

(
−ε

∫

Ω

(
1

2
E∇w · ∇w + E∇v · ∇w

)
dx− δ

∫

Ω
wϕdx

)}
.
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By the algebraic inequality

Ea · b + Ec · b = Eij(ajbj + cjbi) = Eij(bi(aj + cj)) = E : (b⊗ (a + c))

we find that

inf
E∈E

{
−

∫

Ω

(
1

2
E∇w · ∇w + E∇v · ∇w

)
dx

}
=

= −
∫

Ω

∣∣∣
(

1

2
∇w +∇v

)
⊗∇w

∣∣∣dx.

It is easy to see that

inf
ϕ∈F

{
−

∫

Ω
wϕdx

}
= −‖w‖.
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Now, we obtain

e2
min(v,Υ) ≥

≥ 1

ε + c2
sup

w∈V0

{
−

∫

Ω

(
1

2
A0∇w · ∇w+A0∇v · ∇w+f0w

)
dx−

− ε

∫

Ω

∣∣
(

1

2
∇w +∇v

)
⊗∇w

∣∣dx−

− δ‖w‖
}

.
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Introduce the quantities

m00(v,w) = −
∫

Ω

(
1

2
A0∇w · ∇w + A0∇v · ∇w + f0w

)
dx,

m10(v,w) = −ε

∫

Ω

∣∣
(

1

2
∇w ⊗∇w +∇v ⊗∇w

) ∣∣dx,

m01(w) = −δ‖w‖.
Then, we represent the lower bound in the form

e2
ª(v,Υ) :=

1

ε + c2
sup

w∈V0

{m00(v,w)+m01(v,w)+m10(w)} ≥ 0.

(8.12)

In this estimate, the term m00(v,w) contains the major part of the
approximation error. It vanishes if v is a solution of the ”mean”
problem with A = A0 and ` = f0. Two other terms reflect the
influence of the small parameters δ and ε.
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Computable lower bounds

Take a collection of finite-dimensional subspace V0k and solve the
problems

e2
min(v,Υ) ≥ e2

kª(v,Υ) =

=
1

ε + c2
sup

w∈V0k

{m00(v,w) + m01(v,w) + m10(w)}.

Now e2
kª(v,Υ) can be used to estimate the efficiency of further

computational efforts within the framework of the best-case
scenario.
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To refine or not to refine? That is the question.

If e2
kª(v,Υ) are large, then approximation errors are significant.

In this case, it is worth computing a new approximation on a finer
mesh.
If for a certain k the quantity e2

kª(v,Υ) is very small, then an
approximate solution computed is already close to some u ∈ Υ.
Since we do not know exactly the data (and, thus, have no way to
select the proper u) all further computations and mesh
refinements are in a sense useless because they cannot improve
our presentation on the true solution.
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Lecture 9.
A POSTERIORI ESTIMATES FOR MIXED METHODS
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Mixed approximations. A glance from the minimax theory

Consider our basic problem

divA∇u + f = 0 in Ω ,

u = u0on ∂1Ω ,

A∇u · n = Fon ∂2Ω ,

c2
1|ξ|2 ≤ A(x)ξ · ξ ≤ c2

2|ξ|2 ∀ξ ∈ Rd , for a.e. x ∈ Ω ,

where u0 ∈ H1(Ω) , f ∈ L2(Ω) , F ∈ L2(∂2Ω) . Functional spaces

V := H1(Ω) , V0 := {v ∈ V | v = 0 on ∂1Ω} , V̂ := L2(Ω) ,

Q := L2(Ω;Rd) Q̂ := H(Ω;div) ,

Q̂+ := {y ∈ Q̂ | y · n∣∣
∂2Ω

∈ L2(∂2Ω)} .
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We recall that ‖q‖div is the norm in H(Ω;div):

‖q‖div := (‖q‖2 + ‖divq‖2)1/2 ∀q ∈ Q

and

||| q |||:=



∫

Ω

Aq · qdx




1/2

, q ∈ Q

||| q |||∗:=



∫

Ω

A−1q · qdx




1/2

Note that,

c̄2
1|ξ|2 ≤ A−1(x)ξ · ξ ≤ c̄2

2|ξ|2 ∀ξ ∈ Rd , for a.e. x ∈ Ω

with c̄1 = 1/c2, c̄2 = 1/c1.
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Generalized solution of the problem considered can be viewed as
a saddle point of the Lagrangian

L(v,q) :=

∫

Ω

(
∇v · q− 1

2
A−1q · q

)
dx− `(v) ,

where `(v) =
∫
Ω fv dx +

∫
∂2Ω

Fv ds.
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In this formulation (u,p) ∈ (V0 + u0)×Q satisfies the relations

∫

Ω

(
A−1p−∇u

)
· qdx = 0 ∀q ∈ Q , (9.1)

∫

Ω

p · ∇wdx− `(w) = 0 ∀w ∈ V0 . (9.2)

Here

p = A∇u, is satisfied inL2(Ω)− sense
divp + f = 0 in Ω and
p · n = F on ∂2Ω are satisfied in a weak sense.
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As we have seen in previous lectures L generates two functionals

J(v) := sup
q∈Q

L(v,q) =
1

2
||| ∇v |||2 −`(v)

and

I∗(q) := −1

2
||| q |||2∗ −`(u0) +

∫

Ω

∇u0 · qdx .

Also, we know that

inf
v∈V0+u0

J(v) := inf P = L(u,p) = supP∗ := sup
q∈Q`

I∗(q) , (9.3)

where Q` := {q ∈ Q | ∫
Ω

q · ∇wdx = `(w) ∀w ∈ V0} .
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Primal Mixed Method (PMM)

Let Qh ⊂ Q and V0h ⊂ V0 are subspaces constructed by FE
approximation, then a discrete analog of (9.1)–(9.2) is the

Primal Mixed Finite Element Method .
See, e.g., F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element
Methods. Springer-Verlag, New York, 1991.
D. Braess. Finite elements. Cambridge University Press, Cambridge,
1997.

J. E. Roberts and J.-M. Thomas. Mixed and Hybrid Methods. In

Handbook of Numerical Analysis, II, eds. P. G. Ciarlet and J.-L. Lions,

North-Holland, Amsterdam, pp. 523–639, 1991.
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In PMM, we need to find a pair of functions
(uh,ph) ∈ (V0h + u0)×Qh such that

∫

Ω

(
A−1ph −∇uh

) · qh dx = 0 ∀qh ∈ Qh , (9.4)

∫

Ω

ph · ∇wh dx− `(wh) = 0 ∀wh ∈ V0h . (9.5)

In this formulation, uh can be constructed by means of the
Courant-type elements and ph by piecewise constant functions.
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Dual Mixed Method (DMM)

Another mixed formulation arises if we represent L in a somewhat
different form. First, we introduce the functional
g : (V0 + u0)× Q̂ → R by the relation

g(v,q) :=

∫

Ω

(∇v · q + v(divq))dx . (9.6)

We have

L(v,q) =

∫

Ω

(
∇v · q− 1

2
A−1q · q

)
dx− `(v) =

= g(v,q)−
∫

Ω

v(divq)dx− 1

2
||| q |||2∗ −`(v) .
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Introduce the set

Q̂F := {q ∈ Q̂ | g(w,q) =

∫

∂2Ω
Fwds ∀w ∈ V0} .

Note that for q ∈ Q̂F we have

g(v,q) = g(w + u0,q) = g(w,q) + g(u0,q) =

=

∫

∂2Ω
Fwds + g(u0,q) ∀w ∈ V0 .

Therefore, if the variable q is taken not from Q but from the
narrower set Q̂F , then the Lagrangian can be written as

L̂(v,q) :=

−1

2
||| q |||2∗ −

∫

Ω

v(divq)dx−
∫

Ω

fv dx−
∫

∂2Ω

Fu0 ds + g(u0,q) .
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We observe Note the new Lagrangian L̂
is defined on a wider set of primal functions v ∈ V̂, but uses
a narrower set Q̂F for the fluxes.

The problem of finding (û, p̂) ∈ V̂ × Q̂F such that

L̂(û, q̂) ≤ L̂(û, p̂) ≤ L̂(v̂, p̂) ∀q̂ ∈ Q̂F , ∀v̂ ∈ V̂ (9.7)

lead to is the so-called
Dual Mixed Formulation

of the problem in question (see, e.g., F. Brezzi and M. Fortin).
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From (9.7) we obtain the necessary conditions for the dual mixed
formulation. Since

L̂(û, q̂) ≤ L̂(û, p̂) ∀q̂ ∈ Q̂F,

we have

−1

2
||| p̂+λη |||2∗−

∫

Ω

û(div(p̂+λη)−fû)dx−
∫

∂2Ω

Fu0 ds+g(u0, p̂+λη) ≤

− 1

2
||| p̂ |||2∗ −

∫

Ω

û(divp̂)dx−
∫

Ω

fû dx−
∫

∂2Ω

Fu0 ds + g(u0, p̂),

where λ is a real number and η is a function in Q̂0 := Q̂F with
F = 0. Now, arrive at the relation

−λ

∫

Ω

(A−1p̂ · η + û(divη))dx+λg(u0,η) ≤ λ2

2

∫

Ω
A−1η · ηdx.
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Rewrite it as
∫

Ω

(A−1p̂ · η + û(divη))dx−g(u0, η) ≥ λ

2

∫

Ω
A−1η · ηdx.

Since λ > 0 can be taken arbitrarily small, the latter relation may
hold only if

∫

Ω

(A−1p̂ · η + ûdivη)dx−g(u0, η) ≥ 0.

But η is an arbitrary element of a linear manifold Q̂0, so that +η
can be replaced by −η what leads to the conclusion that

∫

Ω

(A−1p̂ · η + ûdivη)dx−g(u0,η) = 0 ∀η ∈ Q̂0.
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From

L̂(û, p̂) ≤ L̂(û + v̂, p̂) ∀v̂ ∈ V̂ := L2(Ω)

we observe that the terms of L̂ linear with respect to the
”pressure” must vanish. Namely, we obtain

∫

Ω
(v̂divp̂ + fv̂)dx = 0

Thus, we arrive at the system

∫
Ω

(
A−1p̂ · q̂ + (divq̂)û

)
dx = g(u0, q̂) ∀q̂ ∈ Q̂0 , (9.8)

∫
Ω

(divp̂ + f)v̂ dx = 0 ∀v̂ ∈ V̂ . (9.9)
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We observe that now the condition

divp̂ + f = 0

is satisfied in a ”strong” (L2) sense, the Neumann type boundary
condition is viewed as the essential boundary condition, and the
relation

p̂ = A∇û

and the Dirichlet type boundary condition are satisfied in a weak
sense.
These properties of the DMM lead to that the respective finite
dimensional formulations are better adapted to the satisfaction of
the equilibrium type relations for the fluxes. This fact is important
in many applications where a sharp satisfaction of the equilibrium
relations is required.
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The Lagrangian L̂ also generates two functionals

Ĵ(v̂) := sup
bq∈bQF

L̂(v̂, q̂) and Î∗(q̂) := inf
bv∈bV

L̂(v̂, q̂) .

The two corresponding variational problems are

inf
bv∈bV

Ĵ(v̂) and sup
bq∈bQF

Î∗(q̂).

They are called Problems P̂ and P̂∗, respectively. Note that the
functional Ĵ (unlike J) has no simple explicit form. However, we
can prove the solvability of Problem P̂ by the following Lemma.
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Lemma

For any v̂ ∈ V̂ and F ∈ L2(∂2Ω) there exists pv ∈ Q̂F such that

divpv + v̂ = 0 in Ω , (9.10)

||| pv |||∗≤ CΩ (‖v̂‖+ ‖F‖∂2Ω) . (9.11)

Proof. We know that the boundary-value problem

divA∇uv + v̂ = 0 in Ω ,

uv = 0 on ∂1Ω ,

A∇uv · n = F on ∂2Ω

possesses the unique solution uv ∈ V0.
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For it and the energy estimate

||| ∇uv |||≤ CΩ (‖v̂‖+ ‖F‖∂2Ω)

holds. Let pv := A∇uv. We have

divpv + v̂ = 0.

Obviously, pv ∈ Q̂F and, since

||| pv |||2∗=
∫

Ω

A−1(A∇uv) · (A∇uv)dx =||| ∇uv |||2 ,

we find that (9.11) also holds.
¤
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By the Lemma we can easily prove the coercivity of Ĵ on V̂.
Indeed,

Ĵ(v̂) ≥ L̂(v̂, αpv) =

−1

2
||| αpv |||2∗ −α

∫

Ω

v̂(divpv)dx−
∫

Ω

fv̂ dx−
∫

∂2Ω

Fu0 ds+g(u0, αpv) =

= −1

2
α2 ||| pv |||2∗ +α‖v̂‖2 − ‖f‖‖v̂‖+ g(u0, αpv)−

∫

∂2Ω

Fu0 ds .

Here |g(u0, αpv)| ≤ α‖pv‖div‖u0‖1,2,Ω and

‖pv‖2div = ‖pv‖2 + ‖divpv‖2 ≤ 1

c̄1
||| pv |||2∗ +‖v̂‖2 ≤

≤ 1

c̄1
C2

Ω (‖v̂‖+ ‖F‖∂2Ω)2 + ‖v̂‖2 .
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Therefore

Ĵ(v̂) ≥ −1

2
α2C2

Ω‖v̂‖2 + α‖v̂‖2 + Θ(‖v̂‖) + Θ0 ,

where Θ(‖v̂‖) contains the terms linear with respect to ‖v̂‖ and
Θ0 does not depend on v̂. Take α = 1/C2

Ω. Then

Ĵ(v̂) ≥ 1

2C2
Ω

‖v̂‖2 + Θ(‖v̂‖) + Θ0 −→ +∞ as ‖v̂‖ → ∞ .

It is not difficult to prove that the functional Ĵ is convex and lower
semicontinuous. Therefore, Problem P̂ has a solution û.
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Inf-Sup condition for the dual mixed formulation

Corollary
Lemma implies the inf-sup condition

inf
φ∈L2(Ω)

ψ∈L2(∂2Ω)

sup
q∈bQF

∫
Ω

φdivq dx +
∫
∂2Ω

ψq · nds

‖q‖div(‖φ‖2 + ‖ψ‖2∂2Ω
)1/2

≥ C0 > 0 .
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The Dual Problem with respect to the Lagrangian L̂

Let us now construct the dual functional Î∗. It is easy to see that

Î∗(q̂) = inf
bv

L̂(v̂, q̂) =

= inf
bv




−1

2
||| q̂ |||2∗−

∫

Ω

v(divq̂)dx−
∫

Ω

fvdx−
∫

∂2Ω

Fu0ds+g(u0, q̂)





=

= −1

2
||| q̂ |||2∗ +g(u0, q̂)−

∫

∂2Ω
Fu0 ds

provided that divq̂ + f = 0 (in the L2-sense). In all other cases
Î∗(q̂) = −∞.
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Recalling that divq̂ = −f (in L2(Ω)-sense), we find that the dual
functional for such a case has the form

Î∗(q) = −1

2
||| q̂ |||2∗ +

∫

Ω

(∇u0 · q̂− fu0)dx−
∫

∂2Ω

Fu0 ds

=

∫

Ω

∇u0 · q̂dx− 1

2
||| q̂ |||2∗ −`(u0) ,

Since q̂ ∈ Q̂F, we have
∫

Ω

∇w · q̂dx = −
∫

Ω

(divq̂)wdx +

∫

∂2Ω

Fwds ∀w ∈ V0 .

we see that q̂ satisfies the relation
∫

Ω

∇w · q̂dx = `(w) ∀w ∈ V0 .

In other cases, Î∗(q̂) = −∞.
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Thus, Problems P∗ and P̂∗ coincide and are reduced to the
maximization of I∗ on the set Q`. This means that

supP∗ = sup P̂∗.

Since the saddle point of L̂ exists, we have

L̂(û, p̂) = inf P̂ = sup P̂∗,
but

sup P̂∗ = supP∗ = inf P.

Thus, we infer that

inf P̂ = inf P.
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Thus, we conclude that u ∈ V0 + u0 (minimizer of P) also
minimizes Ĵ on V̂.
Analogously, if p ∈ Q` is the maximizer of Problem P∗, then

∫

Ω

∇w · pdx =

∫

Ω

fw dx +

∫

∂2Ω
Fwds ∀w ∈ V0 .

From here we see that divp + f = 0 a.e. in Ω and, hence,

∫

Ω

(∇w · p + (divp)w)dx =

∫

∂2Ω
Fwds ∀w ∈ V0 ,

that is p ∈ Q̂F. Thus, p is also the maximizer of Problem P̂∗.
The reverse statement that the solutions of P̂, P̂∗ are also the
solutions of P, P∗ is not difficult to prove as well.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Hence, both mixed formulations have the
same solution (u,p) which is in fact the

generalized solution of our problem.
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Finite dimensional formulations

Let

V̂h ⊂ V̂, Q̂0h ⊂ Q̂0 Q̂Fh ⊂ Q̂F

A discrete analog of the dual mixed formulation is: Find
(ûh, p̂h) ∈ V̂h × Q̂Fh such that

∫

Ω

(
A−1p̂h · q̂h+ûhdivq̂h

)
dx=g(u0, q̂h) ∀q̂h ∈ Q̂0h,(9.12)

∫

Ω

(divp̂h + f)v̂hdx = 0 ∀v̂h ∈ V̂h. (9.13)
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Error analysis for DMM

First we will obtain a priori error estimates for the dual mixed
method and after that we will derive computable upper bounds for
the quantities

||| ∇(u− uh) ||| , ||| p− ph |||∗ , ‖p− p̂h‖div .
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A priori error estimates for DMM

Below we will show a simple way of the derivation of projection
type error estimates for the dual mixed method. By combining
them with standard interpolation results, one can obtain known
rate convergence estimates. A detailed exposition of this subject
can be found in the above cited books.
Here, we present a simplified version, which, however contains the
main ideas of the a priori error analysis for the dual mixed
approximations.
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For the sake of simplicity we will consider the case of uniform
Dirichlét boundary conditions and a constant matrix A. In this
case, the basic system is as follows

∫
Ω

(
A−1p̂ · q̂ + (divq̂)û

)
dx = 0 ∀q̂ ∈ Q̂0 ,

∫
Ω

(divp̂ + f)v̂ dx = 0 ∀v̂ ∈ V̂ .

Since there is no Neumann part of the boundary, Q̂F and Q̂0

coincides with Q̂ := H(Ω,div).
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In the considered, case the system of DMM is as follows

∫

Ω

(
A−1p̂h · q̂h+ûhdivq̂h

)
dx=0 ∀q̂h ∈ Q̂h,

∫

Ω

(divp̂h + f)v̂hdx = 0 ∀v̂h ∈ V̂h.

Assumptions.
(a) Th is a regular triangulation of a polygonal domain Ω.
(b) V̂h = {vh ∈ L2 | vh ∈ P0(T) ∀T ∈ Th}.
(c) Q̂h = {qh ∈ H(Ω,div) |qh ∈ RT0(T) ∀T ∈ Th}.
(d) f ∈ P0(T), ∀T ∈ Th
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Note that under the assumptions made

divph + f = 0 on any T.

Indeed, this fact directly follows from the relation

∫

Ω

(divp̂h + f)v̂hdx = 0 ∀v̂h ∈ V̂h.

Therefore ph ∈ Qf .
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Compatibility and stability conditions

We need that one more condition be satisfied in order to provide
the stability of the discrete DM formulation.
We assume that a pair of finite dimensional spaces V̂h, Q̂h satisfies
the following condition:

For any vh ∈ V̂h exists qv
h ∈ Q̂h such that

divqv
h = vh (compatibility), (9.14)

‖qv
h‖ ≤ C‖vh‖ (stability). (9.15)
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Discrete Inf-Sup condition

From (9.14) and (9.15), it follows that

inf
vh∈bVh

sup
qh∈bQh

∫
Ω vhdivqh dx

‖vh‖‖qh‖div
≥ C > 0

Indeed,

sup
qh∈bQh

∫
Ω vhdivqh dx

‖vh‖‖qh‖div
≥

∫
Ω vhdivqv

h dx

‖vh‖‖qv
h‖div

=
‖vh‖
‖qh‖div

≥ 1√
1 + C2

.

Now, we refer to known results on the solvability of DMM, that
can be summarized as follows: if the triangulations are ”regular”
and the discrete Inf-Sup condition holds, then the discrete
formulation has a unique solution.
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Projection type estimate for the dual problem

Since p is a maximizer, i.e.,

−1

2
||| q |||2∗≤ −1

2
||| p |||2∗ ∀q ∈ Qf ,

we find that ∫

Ω
A−1p · qdx = 0 ∀q ∈ Q0,

where Q0 is the space of solenoidal functions. Therefore, for any
q ∈ Qf ,

1

2
||| q− p |||2∗=

1

2
||| q |||2∗ −

1

2
||| p |||2∗ +

∫

Ω
A−1p · (p− q)dx =

=
1

2
||| q |||2∗ −

1

2
||| p |||2∗ .
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Let Qfh = Qf ∩ Q̂h. Note that ph ∈ Qfh is also the maximizer of
−1

2 ||| qfh |||2∗ on Qfh, so that

1

2
||| ph − p |||2∗=

1

2
||| ph |||2∗ −

1

2
||| p |||2∗≤

1

2
||| qfh |||2∗ −

1

2
||| p |||2∗=

=
1

2
||| qfh − p |||2∗ ∀qfh ∈ Qfh.

Thus, we arrive at the first projection estimate

||| p− ph |||∗≤ inf
qfh∈Qfh

||| p− qfh |||∗ . (9.16)
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However, this projection error estimate has an obvious drawback.
It is applicable only for a very narrow class of approximations:
conforming (internal) approximations of the set Qf .

To obtain an estimate for a wider class, we first derive one
auxiliary result.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

A Modified DM problem

Take f̃ = div(q̂h − p) where q̂h ∈ Q̂h and solve the modified DM
problem

∫

Ω

(
A−1p̂f

h · q̂h+ûf
hdivq̂h

)
dx=0 ∀q̂h ∈ Q̂0h, (9.17)

∫

Ω

(divp̂f
h + f̃)v̂hdx = 0 ∀v̂h ∈ V̂h. (9.18)

Under the assumptions made f̃ ∈ P0(T), the above DM problem is
solvable, and

||| p̂f
h |||2∗ +

∫

Ω
ûf

hdivp̂f
hdx = 0,

||| p̂f
h |||2∗≤ ‖ûf

h‖‖divp̂f
h‖ = ‖ûf

h‖‖f̃‖
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From here, we observe that

c̄1‖p̂f
h‖2 ≤||| p̂f

h |||2∗≤ ‖ûf
h‖‖f̃‖. (9.19)

By (9.14) and (9.15) we conclude that for ûf
h we can find q̄h in Q̂h

such that

divq̄h + ûf
h = 0 and ‖q̄h‖ ≤ C‖ûf

h‖
Use q̄h in the first identity (9.17). We have,

∫

Ω

(
A−1p̂f

h · q̄h+ûf
hdivq̄h

)
dx=0

Thus,

‖ûf
h‖2 =

∫

Ω

ûf
hdivq̄h ≤||| p̂f

h |||∗||| q̄h |||∗≤

≤ c̄2 ||| p̂f
h |||∗ ‖q̄h‖ ≤ c̄2C ||| p̂f

h |||∗ ‖ûf
h‖.
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We observe that

‖ûf
h‖ ≤ c̄2C ||| p̂f

h |||∗ . (9.20)

Now, we use (9.19) and obtain

||| p̂f
h |||2∗≤ ‖ûf

h‖‖f̃‖ ≤ c̄2C ||| p̂f
h |||∗ ‖f̃‖.

so that

||| p̂f
h |||∗≤ c̄2C‖f̃‖. (9.21)

Hence,

‖p̂f
h‖2 = ‖p̂f

h‖2 + ‖divp̂f
h‖2 ≤ (1 +

c2
2

c2
1

C2)‖f̃‖2. (9.22)
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We note that the estimates (9.20), (9.21), and (9.22) show that
the modified DM problem is stable, i.e. its solutions (p̂f

h, û
f
h) are

bounded by the problem data uniformly with respect to h.

If replace f̃ by f, then we can derive the same stability estimate for
the functions (p̂h, ûh) that present an approximate solution of the
original DM problem.
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Projection estimates for fluxes

Now, we return to the projection error estimates. As we have seen

||| p− ph |||∗≤ inf
qfh∈Qfh

‖p− qfh‖.

This estimate did not satisfy us because the set Qfh is difficult to
construct. To avoid this drawback, we apply the following
procedure.
Let ηh = p̂f

h + q̂h, where q̂h is an arbitrary element of Q̂h.
We have,

divηh = divp̂f
h + divq̂h = −f̃ + divq̂h =

= div(p− q̂h) + divq̂h = divp = −f.

Therefore, ηh ∈ Qf
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Now, we recall the projection inequality and substitute in it ηh:

||| p− ph |||∗≤||| p− ηh |||∗=||| p− p̂f
h − q̂h |||∗≤

≤||| p− q̂h |||∗ + ||| p̂f
h |||∗

Note that in the case considered div(p− ph) = 0, so that

‖p− ph‖div = ‖p− ph‖ ≤ 1

c̄1
||| p− ph |||∗ .

Therefore, by means of (9.21) we obtain

‖p− ph‖div ≤ 1

c̄1
(||| p− q̂h |||∗ + ||| p̂f

h |||∗)

≤ 1

c̄1
(||| p− q̂h |||∗ +c̄2C‖f̃‖).

But f̃ = div(p− q̂h).
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Thus, we arrive at the estimate

‖p− ph‖div ≤
≤ 1

c̄1
(||| p− q̂h |||∗ +c̄2C‖div(p− q̂h)‖) ∀q̂h ∈ Q̂h.

and, therefore,

‖p − ph‖div ≤ C̄p inf
bqh∈bQh

{||| p− q̂h |||∗ +‖div(p− q̂h)‖} . (9.23)

where C̄p depends on C, c̄1, and c̄2 and does not depend on h.
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Projection type error estimates for û− ûh

We have
∫

Ω

(
A−1p̂h · q̂h+ûhdivq̂h

)
dx=0 ∀q̂h ∈ Q̂h.

Since Q̂h ⊂ Q, we also have
∫

Ω

(
A−1p · q̂h+udivq̂h

)
dx=0.

From here, we observe that
∫

Ω

(
A−1(p̂h − p) · q̂h+(ûh − u)divq̂h

)
dx=0 ∀q̂h ∈ Q̂h.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Denote

[u]T =
1

|T|
∫

T
udx, [u]h(x) = [u]Ti

if x ∈ Ti.

Since divq̂h is constant on each Ti, we rewrite the relation as
follows:

∫

Ω

(
A−1(p̂h − p) · q̂h+(ûh − [u]h)divq̂h

)
dx=0 ∀q̂h ∈ Q̂h.

Note that [u]h ∈ V̂h and ūh := ûh − [u]h ∈ V̂h Now, we exploit the
compatibility and stability conditions (9.14) and (9.15) again. For
ūh one can find q′h ∈ Q̂h such that

divq′h + ūh = 0 and ‖q′h‖ ≤ C‖ūh‖.
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Let us use this function q′h in the integral relation. We have

∫

Ω

(
A−1(p̂h − p) · q′h+ūhdivq′h

)
dx=0.

From here, we conclude that

‖ūh‖2 =
∣∣∣
∫

Ω

A−1(p̂h − p) · q′h
∣∣∣ ≤

≤||| p̂h − p |||∗||| q′h |||∗≤ C c̄2 ||| p̂h − p |||∗ ‖ūh‖.

Thus,

‖ūh‖ = ‖[u]h − ûh‖ ≤ C c̄2 ||| p̂h − p |||∗ .
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Since

‖u− ûh‖ ≤ ‖u− [u]h‖+ ‖[u]h − ûh‖ ≤
≤ ‖u− [u]h‖+ C c̄2 ||| p̂h − p |||∗

Note that by the definition of [u]h

‖u− [u]h‖ ≤ ‖u− vh‖ ∀vh ∈ V̂h.

From here, we observe that

‖u− ûh‖ ≤ C c̄2 ||| p̂h − p |||∗ + inf
vh∈bVh

‖u− vh‖

Recall that

||| p− ph |||∗≤||| p− q̂h |||∗ + ||| p̂f
h |||∗≤

||| p− q̂h |||∗ +c̄2 C ‖div(p− q̂h)‖.
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Then, we arrive at the projection type error estimate for the primal
variable

‖u− ûh‖ ≤
≤ Cu inf

bqh∈bQh

{
||| p− q̂h |||∗ +‖div(p− q̂h)‖+

+ inf
vh∈bVh

‖u− vh‖
}

, (9.24)

where Cu depends on C, c̄1, and c̄2 and does not depend on h.
Estimates (9.23) and (9.25) lead to a qualified a priori convergence
estimates provided that the solution possesses proper regularity.
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A posteriori estimates for the primal mixed formulation

Further analysis follows the lines of the paper
S. Repin and A. Smolianski, A Functional-type a posteriori error

estimates for mixed finite element methods. Russian J. Numer. Anal.

Math. Modelling 20 (2005), no. 4, 365–382.

A posteriori estimates for the mixed formulation are based on the
relation that we have already derived:

||| p− q |||2∗ + ||| ∇(u− v) |||2= 2(J(v)− I∗(q)) , (9.25)

where q ∈ Q` and v ∈ V0 + u0.
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Since the difference of the functionals in the right–hand side can
be estimated by the known way, we arrive at the estimate

||| p− q |||2∗ + ||| ∇(u− v) |||2≤ 2(1 + β)D(∇v, y)

+

(
1 +

1

β

)
C2

(
‖divy + f‖2 + ‖y · n− F‖2∂2Ω

)
, (9.26)

where y ∈ Q̂+, q ∈ Q` and v ∈ V0 + u0 are arbitrary functions and
β is any positive number.
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Thus, for the error in the primal variable we have

||| ∇(u− uh) |||2≤ 2(1 + β)D(∇uh, y)

+

(
1 +

1

β

)
C2

(
‖divy + f‖2 + ‖y · n− F‖2∂2Ω

)
. (9.27)

where C is a constant in the inequality

‖w‖2 + ‖w‖2∂2Ω
≤ C2 ||| ∇w |||2 ∀w ∈ V0 .
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A posteriori estimate for the dual variable

By using the general estimate derived in Lecture 4, we find that

||| p− ph |||∗≤
√

2D1/2(∇v, y)+ ||| y − ph |||∗
+ 2C

(
‖divy + f‖2 + ‖y · n− F‖2

)1/2
. (9.28)

Here v is an arbitrary function from V0 + u0 and y is an arbitrary
function from Q̂+. If y = A∇u and v = u, then the right-hand
side of (9.37) coincides with the left-hand side, i.e. is exact in the
sense that there exist such ”free variables” that the inequality
holds as the equality.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

A directly computable upper bound of ||| p− ph |||∗ is given by
(9.37), if we set

v = uh, and y = Ghph,

where Gh : Qh → Q̂+ is a certain projection operator (some
examples such operators has been already discussed in the previous
lectures).
We have

||| p− ph |||∗≤
√

2D1/2(∇uh,Ghph)+ ||| Ghph − ph |||∗
+ 2C

(
‖divGhph + f‖2 + ‖Ghph · n− F‖2

)1/2
.
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Projection from Qh onto Q̂+

If ph is a piecewise-constant vector field on a simplicial mesh Th,
then, Raviart–Thomas elements (e.g., RT0–elements) can be used
in order to define the mapping G.
Assume that the Ω has a polygonal boundary, and the latter is
exactly matched by the triangulation Th. Let Ti and Tj be two
neighboring simplexes with the common edge Eij. Let qh be a
piecewise constant vector-valued function that has the values qi

and qj on Ti and Tj respectively. Let Eij be the common edhge
with the unit normal nij oriented from Ti to Tj if i > j.

How to define the common value q̃ij · nij on Eij?
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One possible option is as follows:

q̃ij · nij =
1

2
(qi + qj) · nij ,

Another option is

q̃ij · nij =
|Ti|qi + |Tj|qj

|Ti|+ |Tj| · nij ,

where |Ti| and |Tj| are the areas of Ti and Tj. We repeat this
procedure for all internal edges of Th.
If Ei0 ∈ ∂1Ω, then we set q̃i0 · ni0 = qi0 · ni0. If Ei0 ∈ ∂2Ω, then

q̃i0 · ni0 =
1

|Ei0|
∫

Ei0

Fds .

Here |Ei0| is the length of the edge Ei0.
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Thus, all the normal components q̃ij · nij on internal and external
edges are defined. By prolongation inside all Ti, with the help of
RT0-approximations we obtain the function a piecewise affine
function, which has continuous normal components at all the edges
and piecewise constant normal components on ∂Ω.
Therefore, we, in fact, have constructed a mapping qh → q̃h such
that

q̃h = Ghqh ∈ Q̂+ .
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A posteriori estimates for DMM

An a posteriori estimate for the flux p̂h readily follows from the
general estimate

1
2 ||| y − p |||2∗ ≤ (1 + γ)

(
1 +

1

γ
+

1

βγ

)
[] ` + Λ∗y [] 2 +

+(1 + β)

(
1 +

1

γ

)
D(Λv, y).

that we have derived in Lecture 5. We set y = p̂h ∈ Q̂+. Since p̂h

is a piecewise polynomial function, it has a summable trace on
∂2Ω. Then, we estimate [] ` + Λ∗y [] from above in the same way
we did it in Lecture 6. Minimization with respect to γ and β leads
to the estimate
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||| p− p̂h |||∗≤
√

2D1/2(∇v, p̂h) + (9.29)

+2C
(
‖divp̂h + f‖2 + ‖p̂h · n− F‖2∂2Ω

)1/2
,

where v is an arbitrary function from V0 + u0.
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For the sake of simplicity we assume that Ω is a polygonal domain
decomposed into a regular collection of simplexes. If p̂h is
constructed by means of RT0-elements, then

∫

Ω

(divp̂h + f)wh dx = 0 ∀wh ∈ V̂h ⊂ V̂ , (9.30)

where the subspace V̂h contains piecewise constant functions.
Therefore, on each element Ti

divp̂h = − 1

|Ti|
∫

Ti

f dx . (9.31)

Let us define by [f] the function that belongs to V̂h and whose
values on Ti coincide with the mean values of f on Ti. Then, we
have

divp̂h = −[f] on every Ti.
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Remark. We observe that estimate (9.30) is valid for any
approximate flux p̂h from Q̂+. If p̂h were in the narrower set Q̂F

(as it is supposed to be in the discrete dual mixed method) the last
norm in (9.30) would be identically zero.
It cannot, however, be expected, when p̂h is constructed in the
space RT0, unless the function F is a constant on ∂2Ω.
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The problem of taking into account the essential boundary
condition for the flux variable

p̂ · n = F on ∂2Ω

in the dual mixed method is not easy and, usually, leads to a
non-conforming approximation p̂h (see, e.g.,
I. Babuska and G. N. Gatica, On the mixed finite element method with

Lagrange multipliers. Numer. Meth. Partial Diff. Eq. 19(2) (2003),

192–210 ).
Since (9.30) still works for such approximations of the flux, we
propose a simple modification of the discrete dual method,
particularly suited for the lowest-order Raviart-Thomas
approximation.
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Namely, instead of requiring p̂h ∈ Q̂F, we impose a weaker
condition

p̂h · n
∣∣
Ei0

=
1

|Ei0|
∫

Ei0

Fds (9.32)

on every edge Ei0 ∈ ∂2Ω. The space of test functions Q̂0h ⊂ Q̂0

will obviously consist of the RT0-approximations q̂h such that
q̂h · n = 0 on each edge Ei0 ∈ ∂2Ω.
If now we denote by [F] the piecewise constant function defined on
the set of edges forming ∂2Ω and whose value on every edge
Ei0 ∈ ∂2Ω is equal to the mean value of F on that edge, we can
write that p̂h · n = [F] for all Ei0 ∈ ∂2Ω.
As a result, we obtain from (9.30)

||| p−p̂h |||∗≤
√

2D1/2(∇v, p̂h)+2C
(
‖f − [f]‖2 + ‖F− [F]‖2∂2Ω

)1/2
.

(9.33)
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The question that now arises is how to choose in (9.33) the
function v ∈ V0 + u0. The simplest way is to use the function
ûh ∈ V̂h available from the solution of the discrete dual mixed
problem and to construct a suitable projection operator
Ph : V̂h → V0 + u0. Again, the projection can be easily
accomplished with a simple averaging.

Projection from V̂h onto V0 + u0.
In order to find v ∈ V0 + u0, it is sufficient to find w ∈ V0 in the
representation v = w + u0 (the function u0 is given). Using the
computed piecewise-constant function ûh, we define wh ∈ V0 as
follows.
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We set

wh(xk) =

Nk∑
s=1

|T(k)
s | · ûh

∣∣
T

(k)
s

Nk∑
s=1

|T(k)
s |

− u0(xk) (9.34)

for any internal node xk and when xk ∈ ∂2Ω. Here T
(k)
s , s = 1,Nk,

are the elements containing the vertex xk, and we have assumed
that the function u0 has a sufficient regularity, so that its point
values are defined.
If the node xk ∈ ∂1Ω, we simply set wh(xk) = 0.
Thus, using the nodal values of wh and the piecewise-linear
continuous finite element approximation on the mesh Th we define
the function

wh + u0 = Phûh ∈ V0 + u0 .
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Hence, from (9.33) one obtains

c̄1‖p− p̂h‖ ≤||| p− p̂h |||∗≤
√

2D1/2(∇(Phûh), p̂h) + 2C
(
‖f − [f]‖2 + ‖F− [F]‖2∂2Ω

)1/2
,

(9.35)

which, together with the obvious relation

‖div(p̂− p̂h)‖ = ‖ − f − divp̂h‖ = ‖f − [f]‖

leads to the upper bound for ‖p̂− p̂h‖div:
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Theorem

Let (û, p̂) ∈ V̂ × Q̂F be the exact solution of the dual mixed
problem and (ûh, p̂h) ∈ V̂h × Q̂Fh the solution of the discrete dual
mixed problem with Q̂Fh being the Raviart-Thomas space RT0.
Then, the following estimate holds true:

‖p̂− p̂h‖div ≤
||| A∇(Phûh)− p̂h |||∗ +(2C + 1)‖f − [f]‖+ 2C‖F− [F]‖∂2Ω ,

(9.36)

where Ph : V̂h → V0 + u0 is the projection (averaging) operator
introduced above and [f] and [F] are the averaged functions.

Remark. The first and the second terms in (9.36), being
computed elementwise, can serve as local error indicators.
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A sharper estimate can be obtained by the minimization of the
Majorant with respect to v. Here, we can restrict ourselves to
certain subspace Vh, i.e.,

‖p̂− p̂h‖div ≤
inf

vh∈Vh

||| A∇(vh)− p̂h |||∗ +(2C + 1)‖f − [f]‖+ 2C‖F− [F]‖∂2Ω .

(9.37)
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By (9.28) we can also the squared norm of the error of the
averaged solution Phûh using the computed flux approximation p̂h:

||| ∇(u− Phûh) |||2≤ 2(1 + β)D(∇(Phûh), p̂h)

+

(
1 +

1

β

)
C2(‖f − [f]‖2 + ‖F− [F]‖2∂2Ω

) , (9.38)

where β > 0 is an arbitrary number that can be used to minimize
the right-hand side of (9.38) and to obtain the estimate for the
norm of the error.
A sharper estimate may be obtained, if one spends some time on
the minimization of the right-hand side of (9.38) with respect to
the dual variable y over some finite-dimensional subspace of Q̂+.
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Remark.
If one has the solutions of both the primal and the dual mixed
problems, the flux approximation p̂h can be substituted into (9.28)
to immediately yield the error estimate for the primal variable
(which is the most important in the primal mixed method), while
the approximation uh can be used in (9.36) to bring the error
estimate for the dual variable (which is the most important in the
dual mixed method).
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Lecture 10.
A POSTERIORI ERROR ESTIMATES FOR ITERATION

METHODS
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Lecture plan

Banach fixed point theorem;

Two-sided error estimates by A. Ostrovski;

Advanced two-sided estimates;

Applications to matrix equations;

Positivity methods and a posteriori error bounds.

Applications to integral equations;

Applications to ordinary differential equations.
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Fixed point theorem

Consider a Banach space (X,d) and a continuous operator

T : X → X.

Definition

A point x¯ is called a fixed point of T if

x¯ = Tx¯ . (10.1)

Approximations of a fixed point are usually constructed by the
iteration sequence

xi = Txi−1 i = 1, 2, ... . (10.2)
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Contractive mappings

Two basic tasks:

(a) find the conditions that guarantee convergence of xi to x¯,

(b) find computable estimates of the error ei = d(xi, x¯).

These problems possess solutions provided, that T is subject to the
following additional condition.

Definition

An operator T : X → X is called q-contractive on a set S ⊂ X if
there exists a positive real number q such that the inequality

d(Tx, Ty) ≤ qd(x, y) (10.3)

holds for any elements x and y of the set S.
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Stefan Banach

Theorem (S. Banach)

Let T be a q-contractive mapping of a closed nonempty set S ⊂ X
to itself with q < 1. Then, T has a unique fixed point in S and the
sequence xi obtained by (10.2) converges to this point.
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Proof. It is easy to see that

d(xi+1, xi) = d(Txi, Txi−1)≤ qd(xi, xi−1)≤ ...≤ qid(x1, x0).

Therefore, for any m > 1 we have

d(xi+m, xi) ≤
≤ d(xi+m, xi+m−1) + d(xi+m−1, xi+m−2) + ... + d(xi+1, xi) ≤

≤ qi(qm−1 + qm−2 + ... + 1)d(x1, x0) . (10.4)
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Since

m−1∑

k=0

qk ≤ 1

1− q
,

(10.4) implies the estimate

d(xi+m, xi) ≤ qi

1− q
d(x1, x0). (10.5)

Let i →∞, then the right-hand side of (10.5) tends to zero, so
that {xi} is a Cauchy sequence. It has a limit in y ∈ X.
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Then, d(xi, y) → 0 and

d(Txi, Ty) ≤ qd(xi, y) → 0

so that d(Txi, Ty) → 0 and Txi → Ty. Pass to the limit in
(10.2) as i → +∞. We observe that

Ty = y.

Hence, any limit of such a sequence is a fixed point.
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It is easy to prove that a fixed point is unique.
Assume that there are two different fixed points x1

¯ and x2
¯, i.e.

Txk
¯ = xk

¯, k = 1, 2.

Therefore,

d(x1
¯, x2

¯) = d(Tx1
¯, Tx2

¯) ≤ qd(x1
¯, x2

¯) .

But q < 1, and thus such an inequality cannot be true.
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A priori convergence estimate

Let

ej = d(xj, x¯)

denote the error on the j-th step. Then

ej = d(Txj−1,Tx¯) ≤ qej−1 ≤ qje0.

This estimate gives a certain presentation on that how the error
decreases. However, as we will see later, this a priori upper bound
may be rather coarse.
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A posteriori estimates

The proposition below furnishes upper and lower estimates of ej,
which are easy to compute provided, that the number q (or a good
estimate of it) is known.

Theorem (A. Ostrowski)

Let {xj}∞j=0 be a sequence obtained by the iteration process (10.2)
with a mapping T satisfying the condition (10.3). Then, for any
xj, j > 1, the following estimate holds:

Mj
ª :=

1

1+q
d(xj+1, xj) ≤ ej ≤ Mj

⊕ :=
q

1−q
d(xj, xj−1).(10.6)
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A. Ostrowski

A. Ostrowski. Les estimations des erreurs a posteriori dans les procédés
itératifs, C.R. Acad.Sci. Paris Sér. A–B, 275(1972), A275-A278.
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Proof. The upper estimate in (10.6) follows from (10.5). Indeed, put
i = 1 in this relation. We have

d(x1+m, x1) ≤ q

1− q
d(x1, x0) .

Since x1+m → x¯ as m → +∞, we pass to the limit with respect to m
and obtain

d(x¯, x1) ≤ q

1− q
d(x1, x0) .

We may view xj−1 as the starting point of the sequence. Then, in the
above relation x0 = xj−1 and x1 = xj and we arrive at the following upper
bound of the error:

d(x¯, xj) ≤ q

1− q
d(xj, xj−1) .
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The lower bound of the error follows from the relation

d(xj, xj−1) ≤ d(xj, x¯) + d(xj−1, x¯) ≤ (1 + q)d(xj−1, x¯),

which shows that

d(xj−1, x¯) ≥ 1

1 + q
d(xj, xj−1) .

Note that

Mj
⊕

Mj
ª

=
q(1 + q)

1− q

d(xj, xj−1)

d(xj+1, xj)
≥ 1 + q

1− q
,

we see that that the efficiency of the upper and lower bounds given
by (10.6) deteriorates as q → 1.
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Remark. If X is a normed space, then

d(xj+1, xj) = ‖R(xj)‖ ,

where
R(xj) := Txj − xj

is the residual of the basic equation (10.1). Thus, the upper and
lower estimates of errors are expressed in terms of the residuals of
the respective iteration equation computed for two neighbor
steps:

1

1 + q
‖R(xj)‖ ≤ ej = d(xj, x¯) ≤ q

1− q
‖R(xj−1)‖ .
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Corollaries

In the iteration methods, it is often easier to analyze the operator

T = Tn := TT...T︸ ︷︷ ︸
n times

where T is a certain mapping.

Proposition (1)

Let T : S → S be a continuous mapping such that T is a q-contractive
mapping with q ∈ (0, 1). Then, the equations

x = Tx and x = Tx

have one and the same fixed point, which is unique and can be found by
the above described iteration procedure.
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Proof. By the Banach Theorem, we observe that the operator T

has a unique fixed point ξ¯.
Let us show that ξ¯ is a fixed point of T, we note that

Tξ¯ = T(Tξ¯) = TT2ξ¯ = ...

= TTiξ¯ = T(1+in)ξ¯ = TinTξ¯. (10.7)

Denote x0 = Tξ¯. By (10.7) we conclude that for any i

Tξ¯ = Tix0. (10.8)

Passing to the limit on the right-hand side in (10.8), we arrive at
the relation Tξ¯ = ξ¯, which means that ξ¯ is a fixed point of
the operator T.
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Let x̃¯ be a fixed point of T. Then,

x̃¯ = T2x̃¯ = .. = Tnx̃¯ = Tx̃¯

and we observe that x̃¯ is a fixed point of T. Since the saddle
point of T exists and is unique, we conclude that

x¯ = x̃¯.

Remark. This assertion may be practically useful if it is not
possible to prove that T is q–contractive, but this fact can be
established for a certain power of T.
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Advanced two–sided a posteriori estimates

Advanced two–sided a posteriori estimates

We can derive more accurate bounds of errors if we use more terms of
the sequence {xj}.
Indeed,

d(xj, x¯) ≤ d(xj, xj+1) + d(xj+1, x¯) ≤
≤ d(xj, xj+1) +

q

1− q
d(xj, xj+1),

and we obtain another upper bound

d(xj, x¯) ≤ 1

1− q
d(xj, xj+1). (10.9)

It estimates the error on j-th step by xj and xj+1.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Advanced two–sided a posteriori estimates

Which bound is sharper: (10.9) or Mj
⊕?

Since

1

1− q
d(xj, xj+1) ≤ q

1− q
d(xj−1, xj),

we observe that this bound is sharper than Mj
⊕.

Obviously, (10.9) can also be applied to any subsequence of {xj}. For
example, we can take {x`s}, s = 0, 1, 2... with some fixed `. In this case,
we obtain various upper bounds of d(xj, x¯) computed on the basis of
some terms of the sequence {xj}:

d(xj, x¯) ≤ Mj,`
⊕ :=

1

1− q`
d(xj, xj+`).

Note that the right-hand side of this estimate tends to d(xj, x¯) as

` → +∞. Thus, for a sufficiently large ` the bound will be accurate even

if q is close to 1.
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Advanced two–sided a posteriori estimates

The lower estimates can be improved by similar arguments. We have the
estimate

d(xj, x¯) ≥ Mj,`
ª :=

1

1 + q`
d(xj, xj+`)

whose right-hand side also tends to the exact value of the error as
` → +∞.
Let L be a given number that indicates the number of successive elements
used in the evaluation of error bounds for xj. Compute the quantities

M̄j,L
ª := sup

`=1,2,...L

{
1

1 + q`
d(xj, xj+`)

}
, (10.10)

M̄j,L
⊕ := inf

`=1,2,...L

{
1

1− q`
d(xj, xj+`)

}
. (10.11)

These upper and lower bounds are the sharper, the greater is L.
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Advanced two–sided a posteriori estimates

Another sequence of upper bounds follows from the relation

d(xj, x¯) ≤ d(xj, xj+1) + d(xj+1, x¯) ≤

≤ Mj,2
⊕ (xj, xj+1, xj+2) := d(xj, xj+1) +

1

1− q
d(xj+1, xj+2). (10.12)

Note that

Mj,2
⊕ ≤ d(xj, xj+1) +

q

1− q
d(xj, xj+1) =

=
1

1− q
d(xj, xj+1) := Mj,1

⊕ .

Similarly, we can obtain lower bounds of the error computed by xj, xj+1,

and xj+2.
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Iteration methods for bounded linear operators

Consider a bounded linear operator L : X → X, where X is a Banach
space. Given b ∈ X, the iteration process is defined by the relation

xj = L xj−1 + b. (10.13)

Let x¯ be a fixed point of (10.13) and

‖L‖ = q < 1.
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By applying the Banach Theorem it is easy to show that

{xj} → x¯.

Indeed, let x̄j = xj − x¯. Then

x̄j = Lxj−1 + b− x¯ = L(xj−1 − x¯) = Lx̄j−1 .(10.14)

Since
0X = L 0X,

we note that the zero element 0X is a unique fixed point of the
operator L.
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Therefore, we have an a priori estimate

‖xj − x¯‖X = ‖x̄j − 0X‖X ≤

≤ qj

1− q
‖x̄1 − x̄0‖X =

qj

1− q
‖R(x0)‖X (10.15)

and the a posteriori one

‖xj − x¯‖X ≤
q

1− q
‖R(xj−1)‖X , (10.16)

where R(z) = Lz + b− z is the residual of the functional equation
considered.
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By applying the general theory, we also obtain a lower bound of
the error

‖xj − x¯‖X ≥ 1

1 + q
‖xj+1 − xj‖X =

1

1 + q
‖R(xj)‖X . (10.17)

Hence, we arrive at the following estimates for the error in the
linear operator equation:

1− q

q
‖xj − x¯‖X ≤ ‖R(xj−1)‖X ≤ (1 + q) ‖xj−1 − x¯‖X .

Advanced estimates that provide sharper bounds can be easily
obtained by applying (10.10) and (10.11).
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Iteration methods in linear algebra

Important applications of the above results are associated with
systems of linear simultaneous equations and other algebraic
problems. Set X = Rn and assume that L is defined by a
nondegenerate matrix A ∈M n×n decomposed into three matrixes

A = A` + Ad + Ar,

where A`, Ar, and Ad are certain lower, upper, and diagonal
matrices, respectively.
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Iteration methods for systems of linear simultaneous equations associated
with A are often represented in the form

B
xi − xi−1

τ
+ Axi−1 = f . (10.18)

In (10.18), the matrix B and the parameter τ may be taken in various
ways (depending on the properties of A). We consider three frequently
encountered cases:

(a) B = Ad,

(b) B = Ad + A`,

(c) B = Ad + ωA`, τ = ω.

For τ = 1, (a) and (b) lead to the methods of Jacobi and Zeidel,

respectively. In (c), the parameter ω must be in the interval (0, 2). If

ω > 1, we have the so-called ”upper relaxation method”, and ω < 1

corresponds to the ”lower relaxation method”.
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The method (10.18) is reduced to (10.13) if we set

L = I− τB−1A and b = τB−1f , (10.19)

where I is the unit matrix. It is known that xi converges to x¯
that is a solution of the system

Ax¯ = f (10.20)

if an only if all the eigenvalues of L are less than one.
Obviously, B and τ should be taken in such a way that they
guarantee the fulfillment of this condition.
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Assume that ‖L‖ ≤ q < 1. In view of (10.15)-(10.17), the
quantities

Mi⊕ = q(1− q)−1 ‖R(xi−1)‖ , (10.21)

M0i⊕ = qi(1− q)−1 ‖R(x0)‖ , (10.22)

Miª = (1 + q)−1 ‖R(xi)‖ (10.23)

furnish upper and lower bounds of the error for the vector xi. The
validity of them is demonstrated with an example below.
It is worth noting that from the practical viewpoint finding an
upper bound for ‖L‖ and proving that it is less than 1 presents a
special and often not easy task.
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Remark. If q is very close to 1, then the convergence of an iteration
process may be very slow. As we have seen, in this case, the quality of
error estimates is also degraded. A well–accepted way for accelerating the
convergence consists of using a modified system obtained from the
original one by means of a suitable preconditioner P−1 and solving the
system (

P−1A
)
x = P−1f

with a smaller condition number. Of cause, the best preconditioner is the
unknown matrix A−1. Therefore, a preconditioner is often constructed
from the parts of A that are not difficult to invert (e.g., in the simplest
case it is taken as the matrix inverse to the diagonal part of A). This
iteration technique is well presented in the literature: see, e.g.,

O. Axelsson. Iterative solution methods. Cambridge University Press,

Cambridge, 1994.
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Examples

Consider the problem Ax = f for a symmetric matrix A with
coefficients aij = 0.8/ij if i 6= j and aii = i. The system is solved by
the method

xi+1 = (I− τB−1A) xi + τB−1F

with B = AD and x0 = {0, 0, ...0}.
In this example n = 200, q= 0.662, and τ = 0.760. The values of
the error and the estimates are presented below.
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Table:

i Mi
ª ‖e‖ Mi

⊕ M0i
⊕

1 .187145E+03 .412471E+03 .245893E+04 .245893E+04
2 .452820E+02 .104019E+03 .610732E+03 .162904E+04
3 .123433E+02 .311517E+02 .147774E+03 .107924E+04
4 .405504E+01 .116679E+02 .402813E+02 .714995E+03
5 .166633E+01 .517711E+01 .132333E+02 .473684E+03
6 .767379E+00 .244532E+01 .543792E+01 .313815E+03
7 .366283E+00 .117450E+01 .250428E+01 .207902E+03
8 .176340E+00 .566166E+00 .119533E+01 .137735E+03
16 .515722E-03 .165576E-02 .349042E-02 .511127E+01
17 .248671E-03 .798371E-03 .168302E-02 .338621E+01
18 .119903E-03 .384956E-03 .811515E-03 .224336E+01
19 .578146E-04 .185617E-03 .391295E-03 .148623E+01
20 .278769E-04 .895001E-04 .188673E-03 .984624E+00
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Figure: A priori and a posteriori estimates for an iteration process:
1 – Mi

ª, 2 – ‖e‖, 3 – Mi
⊕, 4 – M0i

⊕.
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Positivity methods and a posteriori error bounds.

In some cases, one can obtain two-sided estimates for each
component of a solution. The respective methods can be viewed as
a simplest example of the so–called positivity methods widely used
in the analysis of differential equations.
Let x¯ be a solution of the system of linear simultaneous equations

x¯ = Ax¯ + f,

where
A = A⊕ − Aª

and

Aª = {aªij } ∈M n×n, aªij ≥ 0,

A⊕ = {a⊕ij } ∈M n×n, a⊕ij ≥ 0.
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We may partially order the space R n by saying that x ≤ y if and
only if xi ≤ yi for i = 1, 2, ...n.
Assume that the vectors xª0 and x⊕0 are ordered such that

xª0 ≤ x¯ ≤ x⊕0 .

The vectors xª0 and x⊕0 are considered as the initial guesses for the
bounds of the solution components.
Compute xª1 and x⊕1 by the relations

xª1 = A⊕xª0 − Aªx⊕0 + f,

x⊕1 = A⊕x⊕0 − Aªxª0 + f.
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It is easy to see that

xª1 − x¯ = A⊕(xª0 − x¯)− Aª(x⊕0 − x¯) ≤ 0,

x⊕1 − x¯ = A⊕(x⊕0 − x¯)− Aª(xª0 − x¯) ≥ 0.

Hence,

xª1 ≤ x¯ ≤ x⊕1 .

and we observe that xª1 and x⊕1 also give componentwise bounds
for the exact solution.
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Quite similarly, we observe that the subsequent elements of the
iteration process

xªk+1 = A⊕xªk − Aªx⊕k + f

x⊕k+1 = A⊕x⊕k − Aªxªk + f,

possess the same properties. Therefore, for the ith component we
find the following two-sided bounds:

max
j=0,1,...k+1

(
xªj

)
i
≤ (x¯)i ≤ min

j=0,1,...k+1

(
x⊕j

)
i
.
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Similar methods can be applied to functional equations, provided
that the operator A is presented as the sum of

A⊕ and (−Aª)

which are certain monotone operators defined on a partially
ordered space:
see, e.g.,
L. Collatz. Funktionanalysis und numerische mathematik.

Springer-Verlag, Berlin, 1964.
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Applications to integral equations

Many problems in science and engineering can be stated in terms of
integral equations. One of the most typical cases is to find a function
x¯(t) ∈ C[a,b] such that

x¯(t) = λ

∫ b

a

K(t, s) x¯(s)ds + f(t), (10.24)

where λ ≥ 0, K (the kernel) is a continuous function for

(x, t) ∈ Q := {a ≤ s ≤ b, a ≤ t ≤ b}

and

|K(t, s)| ≤ M, ∀(t, s) ∈ Q.

Also, we assume that f ∈ C[a,b].
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Let us define the operator T as follows:

y(t) := Tx(t) := λ

∫ b

a
K(t, x)x(s)ds + f(t) (10.25)

and show that T maps continuous functions to continuous ones.
Let t0 and t0 + ∆t belong to [a,b]. Then,

|y(t0 + ∆t)− y(t0)| ≤

≤ |λ|
∫ b

a
|K(t0 + ∆t, s)−K(t0, s)||x(s)|ds+

+ |f(t0 + ∆t)− f(t0)|.

Since K and f are continuous on the compact sets Q and [a,b],
respectively, they are uniformly continuous on these sets.
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Therefore, for any given ε one can find a small number δ such that

|f(t0 + ∆t)− f(t0)| < ε

and
|K(t0 + ∆t, s)−K(t0, s)| < ε,

provided that |∆t| < δ.
Thus, we have

|y(t0 + ∆t)− y(t0)| ≤ |λ|ε(|x||b− a| max
s∈[a,b]

|x(s)|+ 1) = Cε,

and, consequently, y(t0 + ∆t) tends to y(t0) as |∆t| → 0.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

T : C[a,b] → C[a,b] is a contractive mapping. Indeed,

d(Tx,Ty) = max
a≤t≤b

|Tx(t)−Ty(t)| =

= max
a≤t≤b

∣∣∣∣λ
∫ b

a
K(t, s)(x(s)− y(s))ds

∣∣∣∣ ≤

≤ |λ|M(b− a) max
a≤s≤b

|x(s)− y(s)| = |λ|M(b− a)d(x, y),

so that T is a q-contractive operator with

q = |λ|M(b− a), (10.26)

provided that

|λ| < 1

M(b− a)
. (10.27)
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Numerical procedure

An approximate solution of (10.24) can be found by the iteration
method

xi+1(t) = λ

∫ b

a
K(t, s)xi(s)ds + f(t). (10.28)

If (10.27) holds, then from the Banach theorem it follows that the
sequence {xi} converges to the exact solution.
We apply the theory exposed above and find that the accuracy of
xi is subject to the estimate

1

1 + q

∫ b

a
K(t, s)(xi+1(s)− xi(s))ds ≤

≤ max
a≤t≤b

|xi(t)− x¯(t)| ≤ q

1− q

∫ b

a
K(t, s)(xi(s)− xi−1(s))ds.

(10.29)

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Applications to Volterra type equations

Consider the fixed point problem

x¯(t) = λ

∫ t

a

K(t, s) x¯(s)ds + f(t), (10.30)

where

|K(t, s)| ≤ M, ∀(t, s) ∈ Q

and f ∈ C[a,b].
Define the operator T as follows:

Tx(t) = λ

∫ t

a

K(t, s) x(s)ds + f(t).

Similarly, to the previous case we establish that

d(Tx,Ty) ≤ |λ|M(t− a)d(x, y).
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By the same arguments we find that

d(Tnx,Tny) ≤ |λ|nMn (t− a)n

n!
d(x, y),

Thus, the operator T := Tn is q-contractive with a certain q < 1,
provided that n is large enough.
In view of Proposition 1, we conclude that the iteration method
converges to x¯ and the errors are controlled by the two–sided
error estimates.
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Applications to ordinary differential equations

Let u be a solution of the simplest initial boundary-value problem

du

dt
= ϕ(t,u(t)), u(t0) = a, (10.31)

where the solution u(t) is to be found on the interval [t0, t1].
Assume that the function ϕ(t, p) is continuous on the set

Q = {t0 ≤ t ≤ t1, a−∆ ≤ p ≤ a + ∆}

and

|ϕ(t,p1)− ϕ(t,p2)| ≤ L|p1 − p2|, ∀(t,p) ∈ Q. (10.32)
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Problem (10.31) can be reduced to the integral equation

u(t) =

∫ t

t0

ϕ(s,u(s))ds + a (10.33)

and it is natural to solve the latter problem by the iteration method

uj(t) =

∫ t

t0

ϕ(s,uj−1(s))ds + a. (10.34)

To justify this procedure, we must verify that the operator

Tu :=

∫ t

t0

ϕ(s,u(s))ds + a

is q-contractive with respect to the norm

‖u‖ := max
t∈[t0,t1]

|u(t)|. (10.35)
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We have

‖Tz−Ty‖ = max
t∈[t0,t1]

∣∣∣∣
∫ t

t0

(ϕ(s, z(s))− ϕ(s, y(s))ds

∣∣∣∣ ≤

≤ max
t∈[t0,t1]

L

∫ t

t0

|z(s)− y(s)|ds ≤ L

∫ t1

t0

|z(s)− y(s)|ds ≤

≤ L(t1 − t0) max
s∈[t0,t1]

|z(s)− y(s)| = L(t1 − t0)‖z− y‖.

We see that if
t1 < t0 + L−1, (10.36)

then the operator T is q-contractive with

q := L(t1 − t0) < 1.
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Therefore, if the interval [t0, t1] is small enough (i.e., it satisfies
the condition (10.36), then the existence and uniqueness of a
continuous solution u(t) follows from the Banach theorem. In this
case, the solution can be found by the iteration procedure whose
accuracy is explicitly controlled by the two–sided error estimates.

For a more detailed investigation of the fixed point methods for
integral and differential equations see
A. N. Kolmogorov and S. V. Fomin. Introductory real analysis. Dover
Publications, Inc., New York, 1975.

E. Zeidler. Nonlinear functional analysis and its applications. I.

Fixed-point theorems. Springer-Verlag, New York, 1986.
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Lecture 11.
A POSTERIORI ESTIMATES FOR VARIATIONAL

INEQUALITIES

S. Repin RICAM, Special Radon Semester, Linz, 2005.
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Lecture plan

Variational inequalities. Background;

Deviation estimates for variational inequalities;

Obstacle problem;

Functional type a posteriori estimates for problems with
two obstacles;

Examples;

Elasto-plastic torsion problem;

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Variational inequalities

Variational inequalities provide a mathematical description of a
vide spectrum of nonlinear boundary–value problems that arise in
various applications (see, e.g., G. Duvant and J.-L. Lions. Les

inequations en mecanique et en physique, Dunod, Paris, 1972. )

First we establish the relationship between variational
inequalities and certain variational problems. Consider the
functional

J(v) = J0(v) + j(v),

where J0 : V → R is a convex, continuous, and
Gateaux-differentiable functional and j(v) : V → R is a convex and
continuous functional.
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Let K be a convex closed subset of a reflexive Banach space V.
Consider the following problem: find u ∈ K such that

J(u) = inf
v∈K

J(v), J(v) = J0(v) + j(v). (11.1)

Hereafter, we assume that J is coercive on V, so that the above
problem has a solution u.
Moreover, the minimizer satisfies the relation

(
J′0(u),u− v

)
+ j(u)− j(v) ≤ 0 ∀v ∈ K (11.2)

Theorem (1)

Relations (11.1 ) and (11.2) are equivalent.
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Proof

1. Let(11.1) holds, i.e.

J0(v) + j(v) ≥ J0(u) + j(u) ∀v ∈ K.

Take v = u + λ(w − u), w ∈ K, λ ∈ [0, 1].
Then

J0 (u + λ(w − u))− J0(u) + j(v)− j(u) ≥ 0 ∀u ∈ K.

By the convexitity of j we have

j(v) = j (u + λ(w − u)) = j (λw + (1− λ)u)

≤ λj(w) + (1− λ)j(u).
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Thus, for any w ∈ K we have

J0 (u + λ(w − u))− J0(u) + λj(w)

+(1− λ)j(u)− j(u) ≥ 0 ∀w ∈ K,

1

λ
(J0 (u + λ(w − u))− J0(u))

+j(w)− j(u) ≥ 0 ∀u ∈ K.

Passing to the limit as λ → 0 we obtain

(
J′0(u),w − u

)
+ j(w)− j(u) ≥ 0 ∀w ∈ K.
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2. Assume now that (11.2) holds For a convex functional J0 we
have the relation

J0(v) ≥ J0(u) +
(
J′0(u), v − u

)
.

Since
(
J′0(u),u− v

)
+ j(u)− j(v) ≤ 0 ∀v ∈ K

and
(J′0(u),u− v) ≥ J0(u)− J0(v)

we find that

−J0(v) + J0(u) + j(u)− j(v) ≤ 0 ∀v ∈ K,

what means that

J(u) ≤ J(v) ∀v ∈ K.
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Variational inequalities can be regarded as Euler’s equations to
certain convex variational problems with nondifferentiable
functionals defined on convex subsets. If the nondifferentiable part
of such a functional vanishes and the set coincide with the whole
space, then the respective variational inequality converts to a
variational equality (integral identity). However, in many
practically interesting problems it is impossible to define a
mininimizer throughout an integral identity. This fact stimulated
the development of the theory of variational inequalities and their
numerical analysis (see, e.g.,
R. Glowinski. Numerical methods for nonlinear variational problems.

Springer-Verlag, New-York, 1982.
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Obstacle problem. Introduction

Let Ω be a bounded domain in R n (n = 1, 2) with L–continuous
boundary ∂Ω and

f ∈ L2(Ω),

ϕ ∈ H2(Ω), ϕ(x) ≤ 0 on ∂Ω.

”Admissible” functions belong to the set

Kϕ := {v ∈ V | v(x) ≥ ϕ(x) a. e. in Ω},

where

V := {v ∈ H1(Ω) | v = 0 on ∂Ω}.
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Let

a(u, v) :=

∫

Ω
∇u · ∇v dx,

(u, v) :=

∫

Ω
uv dx.

Then, the problem has a variational form

Problem P. Find u ∈ Kϕ such that

J(u) = inf
v∈Kϕ

J(v),

J(v) =
1

2
a(v, v)− (f, v)
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Physical interpretation

This problem can be interpreted as the one for an elastic
membrane deformed at the neighborhood of an obstacle ϕ(x).

OBSTACLE
φ

u

1

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Existence of a minimizer

Theorem (Lions – Stampacchia)

Under the above assumptions Problem P possesses a unique
solution u.

Problem P is, in fact, a free boundary problem:

Ω = Ωϕ ∪Ω0 coincidenceset

where
Ωϕ := {x ∈ Ω | u(x) = ϕ(x)}

and
Ω0 := {x ∈ Ω | u(x) > ϕ(x)}

Minimizer u satisfies the variational inequality

a(u, v − u) ≥ (f, v − u) ∀v ∈ Kϕ.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

If u is sufficiently regular, then directly from the variational
inequality we derive the following relations that must hold for the
solution:

∆u + f = 0 on Ω0,

∆u + f ≤ 0 u ≥ ϕ a. e. in Ω,

(∆u + f)(u−ϕ) = 0 a. e. in Ω,
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Regularity estimates for obstacle problems

In the papers by H. Brezis, D. Kinderlehrer, H. Lewy,
G. Stampacchia and others, it was shown that

If f ∈ L2 and ϕ ∈ H2(Ω) then u ∈ H2(Ω).

Moreover, if f ∈ C1(Ω), Ω is a bounded domain with smooth
boundary, and ϕ ∈ C2 than the respective solution possesses
second derivatives bounded in L∞.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Coincidence set

If Ω ⊂ R2 is strictly convex with smooth boundary and if ϕ ∈ C2

is strictly concave, then the coincidence set is connected and its
boundary is smooth and homeomorphic to the unit circle.

In general, for any Ω one can point out such an obstacle ϕ that
Ωϕ has any number of disjoint subsets.
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Summary

Problem P is related to a variational inequality.

The coincidence set Ωϕ is unknown a priori, so that a solution
has a free boundary.

Solutions of Problem P have a bounded regularity even for
smooth external data (in the best case scenario the second
derivatives are summable, but the third ones are only
distributions).
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A priori convergence estimates

A priori convergence estimates for problems with obstacles were
derived in:
R. S. Falk, Math. Comp. 28 (1974),
U. Mosco and G. Strang, Bull. AMS 80 (1974),

F. Brezzi, W.W. Hager, P.A. Raviart, Numer.Math.28(1997)

It was shown that for regular FE approximations of u ∈ H2 :

‖∇(u− uh)‖Ω ≤ C(u, f, ϕ)h
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A posteriori error estimates for FEM

Two methods usually applied for linear PDEs, namely residual
method and gradient averaging methods are difficult to directly
apply because:

There is no differential equation whose ”residual” could
control the error in the sense of residual method.

The applicability of averaging (post–processing) is based on
higher regularity of exact solutions that implies the
superconvergence phenomenon. Typically, solutions of
variational inequalities have bounded regularity and, therefore,
we cannot await such type effects.
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Below we show that by the functional method it is possible to
derive a posteriori estimates of the difference between the exact

solution of an obstacle problem and any conforming approximation.
This estimate does not require a priori knowledge on the

configuration of the coincidence set.
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Basic deviation estimate for variational inequalities

Let a : V × V → R be a bilinear V-elliptic form and
j : V → R be a given convex continuous functional.

Consider the following problem: find u ∈ K such that the inequality

a(u,w − u) + j(w)− j(u) ≥ 〈f,w − u〉 (11.3)

holds for any w ∈ K, where K is a convex closed subset of V and
f ∈ V∗.
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The solution u of (11.3 is a minimizer of the following variational
problem P: Find u ∈ K such that

J(u) = inf
w∈K

J(w), (11.4)

J(w) =
1

2
a(w,w) + j(w) − 〈f,w〉 .

Our aim is to derive a computable upper bound for the
quantity 1

2a(u− v,u− v) where v is any element of the set K.
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Further analysis follows the lines of the paper
S. Repin. Estimates of deviations from exact solutions of elliptic

variational inequalities, Zapiski Nauchn. Semin. V.A. Steklov

Mathematical Institute in St.-Petersburg (POMI), 271(2000), 188-203.
First, we use (11.3) to obtain the inequality

J(v)− J(u) =
1

2
a(v − u, v − u) + a(u, v − u)− 〈f, v − u〉+

+ j(v)− j(u) ≥ 1

2
a(v − u, v − u),

which implies the basic deviation estimate.

1

2
||| v − u |||2≤ J(v)− J(u), ∀v ∈ K , (11.5)

where ||| w |||2:= a(v, v).
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For linear problems we have derived deviation estimates by means
of the inequality

1

2
||| v − u |||2≤ J(v)− J(u) = J(v)− I∗(p∗).

In Lectures 4 and 5 we have shown how to find a directly
computable and physically meaningful upper bound of
J(v)− I∗(q∗).
For variational inequalities, deviation estimates are obtained in a
similar way, but with some complications caused by the fact that
the problem dual to P has a more cumbersome form.
Below, we show how we can circumvent this difficulty by using the
so-called perturbed functionals.
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Problems with two obstacles

Consider a bilinear form a : V0 × V0 → R defined by the relation

a(v,w) :=

∫

Ω
A∇v · ∇wdx , (11.6)

where Ω is a bounded domain in R2 with Lipschitz continuous

boundary ∂Ω, V0 :=
◦
H1(Ω), and A = {aij} is a symmetric matrix

satisfying the conditions

ν1 |ξ|2 ≤ Aξ · ξ ≤ ν2 |ξ|2 , ∀ξ ∈ R n , ν2 ≥ ν1 > 0.
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Let K = Kfp := {v ∈ V0 | ϕ(x) ≤ v(x) ≤ ψ(x) a.e. in Ω} ,
where ϕ, ψ ∈ H2(Ω) are two given functions such that

ϕ(x) ≤ ψ(x), ∀x ∈ Ω,

Set in the general setting

j ≡ 0 and 〈f, v〉 =

∫

Ω
fv dx.

Then Problem P is the classical obstacle problem. A solution u
minimizes the functional

J(v) =

∫

Ω
A∇v · ∇vdx−

∫

Ω
fvdx on Kfp.
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In general, Ω is devided into three sets:

Ωu⊕ := {x ∈ Ω | u(x) = ψ(x)} (upper coincidence set) ,

Ωuª := {x ∈ Ω | u(x) = ϕ(x)} (lower coincidence set) ,

Ωu
0 := {x ∈ Ω | ϕ(x) < u(x) < ψ(x)} .

Here, Ωu
0 is an open set, where a solution satisfies the differential

equation. Thus, we see that this problem involves free boundaries,
which are unknown a priori.
Differentiability properties of solutions to linear and quasiliniear
problems with obstacles were investigated by many authors. In
particular, it was proved that, under natural assumptions on
external data u ∈ H2(Ω) and even for very smooth data, solutions
have a limited regularity (which is W2,∞). We assume that these
assumptions are fulfilled and the solutions are H2-regular.
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Perturbed problem

To estimate the difference J(v)− J(u) we introduce the perturbed
functional

Jλ(v) := J(v)−
∫

Ω
λ · (υ −Φ)dx,

where Φ = (ϕ,−ψ) and υ = ( v, −v),

λ ∈ ℵ⊕ :=
{

(λ1, λ2) | λi ∈ L2(Ω), λi(x) ≥ 0 a.e. in Ω, i = 1, 2
}

.

It is easy to see that

sup
λ∈ℵ⊕

Jλ(v) = J(v)− inf
λ∈ℵ⊕

∫

Ω
λ · (υ −Φ)dx

=

{
J(v) if v ∈ Kfp,
+∞ if v 6∈ Kfp.

(11.7)
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With Jλ we associate a perturbed variational problem.
Problem Pλ. Find uλ ∈ V0 such that

Jλ(uλ) = inf
v∈V0

Jλ(v) := inf Pλ. (11.8)

Since

inf
v∈V0

Jλ(v) ≤ inf
v∈Kfp

Jλ(v) = inf
v∈Kfp

J(v) = inf P,

we see that

inf Pλ ≤ inf P, ∀λ ∈ ℵ⊕. (11.9)
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It follows from (11.5) and (11.9) that

1

2
||| v − u |||2≤ J(v) − inf Pλ, λ ∈ ℵ⊕. (11.10)

To estimate the right-hand side of (11.9), we introduce a dual
counterpart of Problem Pλ.
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Dual perturbed problem

By the Lagrangian

L(v, τ , λ) :=

∫

Ω

(
τ · ∇v − 1

2
A−1τ · τ − fv − λ · (υ −Φ)

)
dx,

we define the perturbed functional as follows:

Jλ(v) = sup
τ∈Y∗

L(v, τ ,λ), Y∗ := L2(Ω,R2).

Problem P∗λ. Find τλ such that

J∗λ(τλ) = sup
q∈Q∗fλ

J∗λ(q),

where J∗λ(q) =
∫
Ω

(− 1
2A

−1q · q + λ ·Φ)
dx and

Q∗fλ :=

{
q ∈ Y∗|

∫

Ω

q·∇v dx=

∫

Ω

(fv + λ·υ)dx ∀v ∈ V0

}
.
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Q∗
fλ is a closed affine manifold in Y∗ and the functional −J∗λ is

convex and continuous on Y∗.
Therefore, Problem P∗λ has a solution and

inf Pλ = supP∗λ. (11.11)
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Estimates of the deviation

By means of (11.5) and (11.11) we obtain

1

2
||| v − u |||2≤ J(v)− supP∗λ ≤ J(v)− J∗λ(q) .(11.12)

Here

v ∈ Kfp, q ∈ Q∗
fλ, λ ∈ ℵ⊕.

Rewrite J(v)− J∗λ(q) in a more transparent form. We have

1

2
||| v − u |||2≤

∫

Ω

(
1

2
A∇v · ∇v − fv

)
dx +

∫

Ω

1

2
A−1τ · τ dx

+
1

2

∫

Ω

(
A−1q · q− A−1τ · τ

)
dx−

∫

Ω
λ ·Φdx.
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In view of the relation

A−1a · a− A−1b · b = A−1(a− b) · (a− b) + 2A−1b · (a− b)

and the integral identity
∫

Ω
fv dx =

∫

Ω
q · ∇v dx−

∫

Ω
λ · υ dx, ∀q ∈ Q∗

fλ ,

we obtain

1

2
||| v − u |||2≤ 1

2

∫

Ω
(A∇v−τ )·(∇v−A−1τ )dx

+

∫

Ω
λ · (υ −Φ)dx +

1

2

∫

Ω
A−1(q− τ ) · (q− τ )

+

∫

Ω
(∇v − A−1τ ) · (τ − q)dx.
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The last integral can be estimated as follows:

∫

Ω
(∇v − A−1τ ) · (τ − q)dx

≤ β
2

∫

Ω
A(∇v − A−1τ ) · (∇v − A−1τ )dx

+ 1
2β

∫

Ω
A−1(q− τ ) · (q− τ )dx,

where β is any positive number.
Introduce the quantity

d2(τ ,Q∗
fλ) := inf

q∈Q∗fλ

∫

Ω
A−1(q− τ ) · (q− τ )dx ,

which is the distance between τ and the set Q∗
fλ.
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Now, we rewrite the estimate as follows:

||| v − u |||2≤

≤ (1 + β)d2(τ ,Q∗
fλ) +

(
1 +

1

β

)
||| ∇v − A−1τ |||2 +

+ 2

∫

Ω
λ · (υ −Φ)dx. (11.13)
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Recall some relations that has been established in Lecture 5. We
have proved that

d(y,Q∗
`) = [] ` + Λ∗y [] := sup

w∈V0

〈` + Λ∗y,w〉
||| Λw ||| ,

where Q∗
` := {y ∈ Y∗ | (y,Λw) + 〈`,w〉 = 0, ∀w ∈ V0} .

In our case, y = τ , Λ = ∇, Λ∗ = −div, and Q∗
` = Q∗

f λ if set

〈`,w〉 = −
∫

Ω
(fw + λ · υ)dx.

Therefore,

d(y,Q∗
`) = sup

w∈V0

∫
Ω (−f − λ1 + λ2 − divy)wdx

||| w ||| .
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Assume that τ ∈ Q∗ := H(Ω,div). Then,

∫

Ω
(−f − λ1 + λ2 − divy)wdx ≤ CΩ,A‖f + λ1 − λ2 + divy‖ ||| w |||

and we obtain

d(τ ,Q∗
λ) ≤ CΩ,A ‖div τ + f + λ1 − λ2‖ , (11.14)

where CΩ,A is a constant in the inequality

‖w‖2,Ω ≤ CΩ,A ||| w |||, ∀w ∈ V0.
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Thus, for y∗ ∈ Q∗ we obtain the estimate

||| v − u |||2≤C2
Ω,A(1 + β) ‖div τ +f+λ1−λ2‖2

+

(
1 +

1

β

)
||| ∇v − A−1τ |||2 +2

∫

Ω
λ·(υ −Φ)dx. (11.15)

In this estimate, λ is a ”free” vector–valued function. We use this
freedom to obtain the most accurate upper bound for the deviation

||| v − u |||.
Below we consider two options that lead to two different a
posteriori error estimates for the obstacle problem.
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The first option is as follows. Let v ∈ V be an approximate solution. For
almost all points of Ω the function v(x) is either equal to ϕ, or ψ or lies
between these two values. Thus, almost all points of Ω can be referred
to one of the three sets:

Ω v
0 := {x ∈ Ω | ϕ(x) < v(x) < ψ(x)} ,

Ω v
ª := {x ∈ Ω | v(x) = ϕ(x)} ,

Ω v
⊕ := {x ∈ Ω | v(x) = ψ(x)} .

Now, we can choose λ as follows:

λ1 = λ2 = 0 a.e. in Ω v
0,

λ1 = −〈div τ + f 〉ª, λ2 = 0 a.e. in Ω v
ª,

λ1 = 0, λ2 = 〈div τ + f 〉⊕, a.e. in Ω v
⊕.

Here 〈 z 〉⊕ is zero if z ≤ 0 and z if z > 0.
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As a result of such a choice of λ, we obtain the estimate

||| v − u |||2 ≤ M1(v, τ , β) :=

(
1 +

1

β

)
||| ∇v − A−1τ |||2

+C2
Ω,A(1+β)

[ ∫

Ω v
0

|r(τ )|2 dx+

∫

Ω v
⊕

〈 r(τ ) 〉2ª dx+

∫

Ω v
ª

〈 r(τ ) 〉2⊕ dx
]
,

(11.16)

where
r(τ ) = div τ + f

and 〈 〉ª and 〈 〉⊕ denote the negative and positive parts of a
quantity, respectively.
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What is the meaning of the four terms of the Majorant?

The first term ||| ∇v − A−1τ |||2 penalizes the error in the
duality relation

∇v = A−1τ .

Other terms penalize ”improper” behavior of r(τ ) on the sets
Ω v

0, Ω v⊕, and Ω vª, respectively. Indeed, on Ω v
0 the differential

equation must be satisfied. Therefore, the term

∫

Ω v
0

|r(τ )|2 dx

can be viewed as a penalty, which is nonzero if the variable τ (flux
image) does not satisfy the differential equation.
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By the necessary conditions for the obstacle problem, we find that

div A∇u(x) + f(x) ≤ 0, for a. e. x ∈ Ω v
ª,

div A∇u + f(x) ≥ 0 for a. e. x ∈ Ω v
⊕.

Thus, the terms
∫

Ω v
⊕

〈 r(τ ) 〉2ªdx and
∫

Ω v
ª

〈 r(τ ) 〉2⊕dx

are certain penalties for the violation of above conditions.
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We see that the majorant M1 is a nonnegative functional, which
vanishes if and only if

∇v(x) = A−1τ (x) for a. e. x ∈ Ω, (11.17)

div τ (x) + f(x) ≤ 0, for a. e. x ∈ Ω v
ª, (11.18)

div τ (x) + f(x) = 0, for a. e. x ∈ Ω v
0, (11.19)

div τ (x) + f(x) ≥ 0 for a. e. x ∈ Ω v
⊕. (11.20)

Let us show that in this case v = u and τ = A∇u.
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Assume that (11.17)–(11.20) hold. Then for any w ∈ Kfp, we have

∫

Ω
A∇v · ∇(w − v)dx −

∫

Ω
f(w − v)dx

=

∫

Ω
(div τ + f)(v −w)dx =

∫

Ω v
ª

(div τ + f)(ϕ−w)dx

+

∫

Ω v
0

(div τ + f)(v −w)dx +

∫

Ω v
⊕

(div τ + f)(ψ −w)dx ≥ 0.

This inequality means that

a(v,w − v) ≥
∫

Ω
f(w − v)dx, ∀w ∈ Kfp ,

so that v coincides with the exact solution u (which is unique!).
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All said above can be summarized as follows:

Theorem

For any β > 0, M1(v, τ , β) is a nonnegative functional that
majorizes ||| v − u |||2 and vanishes if and only if

v = u and τ = A∇u,

where u is a solution of the variational inequality

a(u,w − u) ≥
∫

Ω
f(w − u)dx, ∀w ∈ Kfp ,
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To obtain a more rigorous upper bound of ||| v − u |||, we should
find λ by minimizing the right-hand side of the estimate

||| v − u |||2≤C2
Ω,A(1 + β) ‖div τ +f+λ1−λ2‖2

+

(
1 +

1

β

)
||| ∇v − A−1τ |||2 +2

∫

Ω
λ·(υ −Φ)dx.

Note that it leads to a quadratic type minimization problem in L2

that can be solved analytically. On this way, we arrive at the
estimate

||| v − u |||2≤ M2(v, τ ,β) := (1 +
1

β
) ||| ∇v − A−1τ |||2

+

∫

Ω
R(v,div τ + f, β)dx , (11.21)

where
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R(v, r,β) =





− (ϕ−v)2

cβ
+ 2r(ϕ− v) if cβr + v ≤ ϕ,

cβr2 if ϕ < cβr + v < ψ,

− (ψ−v)2

cβ
+ 2r(ψ − v) if cβr + v ≥ ψ

and cβ = C2
Ω,A(1 + β).
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Let us show that the term R(v, r, β) is equal to zero in the
following three cases:

(I) r = 0, (II) v = ϕ and r < 0, (III) v = ψ and r > 0.

Assume that r = 0. If ϕ < v < ψ, then the second branch is realized and
we see that R = 0. If ϕ = v (or ψ = v), then the first (third) branch is
realized and also R = 0.
Let r > 0 (the case r < 0 is considered quite similar). Then the first
branch is impossible. On the second one we have only positive values.
For the third branch we have

r ≥ ψ − v

cβ
and, therefore, − (ψ − v)2

cβ
+ 2r(ψ − v) ≥ (ψ − v)2

cβ
.

We see that this quantity can be zero if and only if v = ψ.
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This behavior of R(v, r, β) is clearly observed on the figure below, where
ϕ = 0 and ψ = 1.

 

v 

R
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The functional M2 is defined for any v ∈ Kfp, τ ∈ Q∗, and β > 0.
It is clear that

M2(v, τ , β) ≤ M1(v, τ , β).

This fact immediately implies the following assertion.

Theorem

For any β > 0, M2(v, τ , β) is a nonnegative functional that
majorizes ||| v − u |||2 and vanishes if and only if

v = u and τ = A∇u,

where u is a solution of the obstacle problem.
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Approximative properties

It is not difficult to prove that for any β > 0 the functional
M2(v, τ , β) possesses necessary continuity properties with respect
to the first and second arguments. Namely,

M2(vk, τ k,β) → 0

if
vk → u in V0

and
τ k → A∇u in Q∗.
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If the problem contains only one obstacle (e.g., if ψ = +∞), then
the function R has a more compact form:

R(v, τ , β) = cβ

[
|r|2 − 〈 v −ϕ

cβ
+ r 〉2ª

]
.

For a membrane problem, this case was analyzed in
H. Buss and S. Repin. A posteriori error estimates for boundary-value

problems with obstacles. In Proceedings of 3d European Conference on

Numerical Mathematics and Advanced Applications, Jyuvaskyla, 1999,

162-170, World Scientific, 2000.
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Numerical tests. Example 1

We start with simple 1D tests, where the equation is u′′ = f on
(0, 1) and the boundary conditions are homogeneous.
An approximate solution was computed for a uniform mesh with 60
intervals. In this example,

f = −2.0, ϕ(x) = −0.16,

and the coincidence set is [.400, .600]. The minimal value of the
functional is −.149.
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Exact solution, obstacle and approximate solution
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In this case, the error is 0.000118.
M⊕ computed for y∗ = Gh(∇uh) (when the dual variable y∗ is
computed by a simple gradient averaging procedure)
gives the first upper bound 0.000647. Thus, without noticeable
additional expenditures, we obtain an estimate with

Ieff = 5.473.

In this case, two parts of the Majorant have the following values:
0.000164 (duality term) and
0.000483 (generalized residual term).

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Then, M⊕ was minimized with respect to the dual variable. In the table,
we present values of the Majorant obtained in this process.
Computational expenditures are measured by the ”time unit”, which is
the time required for computing the approximate solution.

Table:

Iteration The majorant Ieff Expenditures
1 .000214 1.804802 .448
2 .000163 1.379279 .660
3 .000152 1.281185 .787
4 .000146 1.232812 .881
5 .000143 1.209496 .977
6 .000140 1.185637 1.073
7 .000137 1.158350 1.169
8 .000136 1.148871 1.243
9 .000134 1.134931 1.336
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This process is depicted below
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Error indication

Distributions of subinterval errors and errors computed by the
Majorant are depicted on the next picture. We see that M⊕
provides a good representation of the error distribution.
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Figure: Example 1. Error and Duality Majorant
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Numerical tests. Example 2

Take the same problem with f = −2.0 and

ϕ(x) = −0.3x2 − 0.06.

In this case Ωϕ = [.215, .474] and the lower bound of the primal
variational problem is equal to −.125. An approximate solution
was computed for the uniform mesh with 60 subintervals.
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Figure: Example 2. Approximate solution of an obstacle problem

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

In this example, the error is 0.000158. The value of M⊕
computed for y∗ = Gh(∇uh) gives the first ( rough ) upper bound
of the error 0.000861. Thus, without serious additional
expenditures, we obtain an estimate with

Ieff = 5.457.

Two parts of the Majorant are as follows:
0.000156 (duality term) and 0.000704 (generalized residual
term).
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Then, the Majorant was minimized with respect to y. The
respective results are presented below

Table:

Iteration The majorant Ieff Expenditures

1 .000296 1.877766 .625
2 .000245 1.551655 .842
3 .000240 1.521251 .938
4 .000235 1.492785 1.033
5 .000227 1.439252 1.165
6 .000218 1.379380 1.287
7 .000212 1.343913 1.383
8 .000210 1.334278 1.457
9 .000209 1.322333 1.542
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In the next figure, we show the distribution of actual errors on the
intervals and those computed by the Majorant.
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Numerical tests. Example 3

Now we consider a 2-dimensional obstacle problem with a plane
obstacle and take Ω as a unit square. In the figure below, we
present an approximate solution computed by the finite element
method on a uniform mesh. The elements that belong to Ωϕ are
colored black.
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Below it is shown the distribution of local (elementwise) errors and
those given by the integrand of the Majorant ( for t = 1).

ERROR

  

0

2e-07

4e-07

6e-07

8e-07

1e-06

1.2e-06

1.4e-06

1.6e-06

D E M (time = 1)

  

0

5e-07

1e-06

1.5e-06

2e-06

2.5e-06

3e-06

3.5e-06

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

If we spend more efforts on the minimization of the Majorant
(t = 3), then the computed error distribution is practically the
same as the true one.
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Below we show the dependence of the effectivity index with respect
to the CPU time used for the minimization of the Majorant
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The elasto-plastic torsion problem

Let Ω be a bounded domain in R2 with Lipschitz continuous
boundary ∂Ω. Consider the torsion problem for a long
elasto-plastic bar whose cross-section is the domain Ω. If such a
bar is made of an isotropic material, then the torsion problem is
reduced to the following variational inequality: find u ∈ K such
that

∫

Ω
∇u · ∇(v − u)dx ≥ µ

∫

Ω
(v − u)dx, ∀v ∈ K,(11.22)

where µ is a positive parameter,

K := {v ∈ V0 | |∇v| ≤ 1 a.e. in Ω} ,

See, e.g., G. Duvaut and J.-L. Lions, Inequalities in mechanics and

physics. Springer, Berlin-New York, 1976
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Elasto–plastic torsion problem has a unique solution with a free
boundary that separates the sets

Ωe := {x ∈ Ω | |∇u| < 1}

and

Ωp := {x ∈ Ω | |∇u| = 1} ,

which are called elastic and plastic sets, respectively.
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If Ω is a 1-connected domain, then u coincides with a solution of
the following obstacle problem (see, e.g.,
A. Friedman. Variational principles and free-boundary problems.
Wiley, NY, 1982.).
Problem. Find u ∈ Kd such that

J(u) = inf
v∈Kd

J(v), J(v) =
1

2

∫

Ω
(|∇v|2 − µv)dx,

where

Kd := {v ∈ V0 | |v| ≤ d(x, ∂Ω) for a. e. x ∈ Ω}

and d(x, ∂Ω) denotes the distance between x and ∂Ω.
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It is easy to see that we arrived at a special type obstacle problem.
Now, we can use the estimates (11.16) or (11.21) with

ϕ = −d(x, ∂Ω) ψ = d(x, ∂Ω).

In particular, if v has a fixed sign in Ω (e.g., v ≥ 0), then (11.16)
implies the estimate

||| v − u |||2 ≤
(

1 +
1

β

)
||| ∇v − τ |||2

+ C2
Ω(1 + β)

[ ∫

Ωe(v)

(divτ + µ)2 dx +

∫

Ωp(v)

〈divτ + µ 〉2ª dx
]
.

(11.23)

In (11.23), Ωe(v) and Ωp(v) are the elastic and plastic sets defined by

the approximate solution v ∈ K and CΩ is a constant in the

Friedrichs–Poincaré inequality.
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We end up this lecture with several pictures that show some results
for the elasto–plastic torsion problem.

Figure: Elastic and plastic zones for f = 5 computed on two different
meshes
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Below it is shown the distribution of local error and the distribution
computed by the integrand of the Majorant for t = 1.
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On this figure, it is shown the distribution of local error and the
distribution computed by the integrand of the Majorant for t = 3.
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On this picture, we present the dependence of the effectivity index
with respect to CPU time.
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Lecture 12.
FUNCTIONAL A POSTERIORI ESTIMATES FOR

NONLINEAR VARIATIONAL PROBLEMS
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The objective of this lecture is to introduce a general scheme for
deriving a posteriori error estimates by using duality theory of the

calculus of variations. We consider variational problems of the form

inf
v∈V

{F(v) + G(Λv)},

where F : V → R is a convex lower semicontinuous functional,
G : Y → R is a uniformly convex functional, V and Y are reflexive

Banach spaces and Λ : V → Y is a bounded linear operator.
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General variational problem

Consider the general variational problem: find u in a Banach space
V such that

J(u,Λu) = inf
v∈V

J(v,Λv), (12.1)

where J(v) = F(v) + G(Λv), F is a convex, lower semicontinuous
functional, G is a uniformly convex functional and Λ : V → Y is a
bounded linear operator.
V and Y are reflexive Banach spaces endowed with the norms ‖.‖V

and ‖.‖, respectively.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Dual spaces are denoted by V∗ and Y∗ with duality pairings 〈., .〉
and 〈〈., .〉〉, respectively. The spaces Y and Y∗ are endowed with
the norms ‖.‖ and ‖.‖∗.
We assume that

‖Λw‖ ≥ c0 ‖w‖V ∀w ∈ V , (12.2)

where c0 is a positive constant independent of w.
In addition to Λ, we introduce its conjugate Λ∗ : Y∗ → V∗. This
amounts to say that

〈〈y∗,Λv〉〉 = 〈Λ∗y∗, v〉 ∀y∗ ∈ Y∗, v ∈ V . (12.3)

J(v,Λv) := F(v) + G(Λv) . is assumed to be coercive on V, i.e.

J(v,Λv) → +∞ if ‖v‖V → +∞.
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Primal and Dual Problems

Problem P. Find u ∈ V such that

J(u,Λu) = inf P := inf
v∈V

J(v,Λv). (12.4)

The problem dual to (12.4 is (see e.g.
I. Ekeland and R. Temam Convex analysis and variational problems.

North-Holland, Amsterdam, 1976.)

Problem P∗. Find p∗ ∈ Y∗ such that

− J∗(Λ∗p∗,−p∗) = supP∗ := sup
y∗∈Y∗

−J∗(Λ∗y∗,−y∗),(12.5)

J∗(Λ∗y∗,−y∗) := F∗(Λ∗y∗) + G∗(−y∗),

where F∗ and G∗ are the functionals conjugate of F and G,
respectively.
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Theorem (1)

If the functional F is finite at some u0 ∈ V and the functional G is
continuous and finite at Λu0 ∈ Y, then there exists a minimizer u
to Problem P and a maximizer p∗ to Problem P∗. Besides,

inf P = supP∗ (12.6)

and the following duality relations hold

(i) F(u) + F∗(Λ∗p∗)− 〈Λ∗p∗,u〉 = 0,

(ii) G(Λu) + G∗(−p∗) + 〈〈p∗,Λu〉〉 = 0. (12.7)

Above relations are equivalent to

(i) Λ∗p∗ ∈ ∂F(u), (ii) − p∗ ∈ ∂G(Λu).
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Problems with uniformly convex functionals

We recall (see Lecture 4) that a continuous functional G : Y → R
is uniformly convex in a ball B(0, δ) := {y ∈ Y | ‖y‖ < δ} if there
exists a continuous functional Φδ : Y → R+ such that Φδ(y) = 0
only if y = Oy is and

G(y1+y2
2 ) + Φδ(y2 − y1) ≤ 1

2 (G(y1) + G(y2)) ∀ y1, y2 ∈ B(0, δ).

Usually, Φδ is given by a continuous strictly increasing function of
the norm ‖y‖.
General form of a posteriori estimates for uniformly convex
variational problems was established in
S. Repin. A posteriori error estimation for variational problems with

uniformly convex functionals, Math. Comput., 69(230), 2000, 481-500.
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General form of the functional a posteriori estimate

Theorem (2)

Assume that the above conditions on F and G are satisfied and
(i) G is uniformly convex on a ball B(0, δ),
(ii) the solution u of Problem P and an element v ∈ V are such,
that Λu, Λv ∈ B(0, δ).
Then, for any y∗ ∈ Y∗

Φδ (Λ(v − u)) ≤ M⊕ (v, y∗) := DF(Λ∗y∗, v) + DG(y∗,Λv)(12.8)

where

DF(Λ∗y∗, v) := 1
2 (F(v) + F∗(Λ∗y∗)− 〈Λ∗y∗, v〉 ) ,

DG(y∗,Λv) := 1
2 (G(Λv) + G∗(−y∗) + 〈〈y∗,Λv〉〉 ) .
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Proof

Since F is convex and G is uniformly convex we obtain

Φδ (Λ(v − u)) + G(Λ( v+u
2 )) + F( v+u

2 ) ≤
1
2

[
(F(v) + G(Λv)) + (F(u) + G(Λu))

]
.

The element u is a minimizer, therefore

G(Λu) + F(u) = J(u) ≤ G(Λ
(

u+v
2

)
) + F(u+v

2 )

and we have

Φδ (Λ(v − u)) + G(Λu) + F(u) ≤
1
2

[
(F(v) + G(Λv)) + (F(u) + G(Λu))

]
.
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From the above we observe that

Φδ (Λe) ≤ 1
2

[
(F(v) + G(Λv))− (F(u) + G(Λu))

]
=

= 1
2(J(v,Λv)− J(u,Λu)) ∀v ∈ B(0, δ) .

In view of Theorem 1,

J(u,Λu) = inf P = supP∗ = −F∗(Λ∗p∗)− G∗(−p∗).

Since p∗ is a solution of the dual problem, we have

−J∗(Λ∗p∗,−p∗) ≥ −J∗(Λ∗y∗,−y∗) ∀y∗ ∈ Y∗,

so that

J(u,Λu) ≥ −F∗(Λ∗y∗)− G∗(−y∗).
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Therefore

Φδ (Λe) ≤ 1
2 (F(v) + G(Λv) + F∗(Λ∗p∗) + G∗(−p∗)) ≤

≤ 1
2 (F(v) + G(Λv) + F∗(Λ∗y∗) + G∗(−y∗)) .

However, by (12.3) we observe that

〈〈y∗,Λv〉〉 − 〈Λ∗y∗, v〉 = 0 ∀y∗ ∈ Y∗, v ∈ V .

We add this zero term to the above relation and obtain the
required estimate.

¤
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Comments

The right–hand side of (12.8 is the sum of two compound
functionals

MF : V∗ × V → R and MG : Y∗ × Y → R.

They are nonnegative and vanishes if and only if v and y∗ satisfy
the relations (12.7)(i)–(ii).

Therefore, M⊕(v, y∗) is, in fact, a measure of the error in the
duality relations for the pair (v, y∗).

It vanishes if and only if v = u and y∗ = p∗.
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Let the functional F be uniformly convex on V with a forcing
functional ϕδ. Then the ”forcing functional” has the form we have

Φδ (Λe) + ϕδ(e) ≤ 1
2(J(v,Λv)− J(u,Λu)) (12.9)

and, as a result, (12.8) is replaced by the strengthened estimate

Φδ (Λe) + ϕδ(e) ≤ M⊕ (v, y∗) ∀y∗ ∈ Y∗ . (12.10)
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It is not difficult to verify that

M⊕(v, y∗)−M⊕(v,p∗) =

= 1
2 (F(v)+F∗(Λ∗y∗)−〈Λ∗y∗, v〉+G(Λv)+G∗(−y∗)+〈〈y∗,Λv〉〉)−

1
2 (F(v)+F∗(Λ∗p∗)−〈Λ∗p∗, v〉+G(Λv)+G∗(−p∗)+〈〈p∗,Λv〉〉) =

= J∗(Λ∗y∗,−y∗)− J∗(Λ∗p∗,−p∗) =≥ 0.

Therefore, for any v the right-hand side of (12.8) is minimal if y∗ = p∗.
Consequently, to make the estimate effective we have to find some y∗

close to p∗ in Y∗. A simple way to obtain a function ”close” to p∗ it to
use duality relations. To this end, we set y∗ = σ∗(v), where

−σ∗(v) ∈ ∂G(Λv) ⊂ Y∗.
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In this case,
MG(σ∗(v),Λv) = 0

and we get the estimate

Φδ (Λe) ≤ MF(Λ∗σ∗(v), v) (12.11)

whose right–hand side depends on v only.
However, the estimate (12.11) cannot be directly applied in one
practically important case which we consider below.
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Problems with linear functional F

Let

F(v) = 〈`∗, v〉, `∗ ∈ V∗. (12.12)

Since

F∗(v∗) = sup
v∈V

〈v∗ − `∗, v〉 =

{
0 if v∗ = `∗,
+∞ if v∗ 6= `∗

we see that

MF = 〈`∗, v〉+ F∗(Λ∗y∗)− 〈Λ∗y∗, v〉 =

= 〈`∗ − Λ∗y∗, v〉+ F∗(Λ∗y∗).
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MF(Λ∗y∗, v) = F∗(Λ∗y∗) + 〈`∗ − Λ∗y∗, v〉 =

{
0 if y∗ ∈ Q∗

`,
+∞ if y∗ 6∈ Q∗

` ,

where

Q∗
` := {y∗ ∈ Y∗ | 〈Λ∗y∗,w〉 = 〈`∗,w〉 ∀w ∈ V} .

In general, above defined σ∗ does not belong to Q∗
`, so that the

right hand side of (12.11) can become infinite. Therefore, the aim
of our subsequent analysis is to obtain a modified error majorant
M̃⊕(v, y∗) which is finite for all v ∈ V and all y∗ ∈ Y∗.
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Let Π(y) ≥ 0 for all y Π(0) = 0. By Π∗ : Y∗ → R+ we denote
the functional conjugate of Π. For this pair the Joung–Fenchel
inequality

〈〈ξ∗, ξ〉〉 ≤ Π∗(ξ∗) + Π(ξ) ∀ξ ∈ Y, ξ∗ ∈ Y∗

holds.
For the sake of simplicity, we set

Π(y) = π(‖y‖) and Π∗(y∗) = π∗(‖y∗‖∗).
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General form of the Deviation Majorant

Φδ (Λ(v − u)) ≤ MD(y∗,Λv) + MR(y∗) , (12.13)

where

MD(y∗,Λv) = DG(y∗,Λv) + 1
2π (‖G∗′(−y∗)− Λv‖) , (12.14)

MR(y∗) = inf
q∗∈Q∗`

π∗(‖q∗ − y∗‖∗). (12.15)
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Examples

Set Λv := ∇v and consider variational problems for the functional

J(v,∇v) =

∫

Ω
(g(∇v) + f(v))dx .

Now G and F are integral functionals whose integrands
g : R d → R and f : R → R are convex differentiable functions.
Denote their conjugate functions g∗ and f∗, respectively. The
spaces Y and Y∗ we identify with the Lebesque spaces Lα(Ω,R d)
and Lα∗(Ω,R d), where α∗ = α

α−1 , α > 1 is taken such that the
above integral has sense. In the considered case,

〈y∗, y〉 :=

∫

Ω
y∗ · y dx and Λ∗y∗ := −divy∗ ∈ V∗.
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Example 1.

Let g(y) = 1
2Ay · y, where A is a symmetric real matrix satisfying

the conditions

ν1 |η|2 ≤ Aη · η ≤ ν2 |η|2 ∀η ∈ R d ,

for some ν2 ≥ ν1 > 0. It is straightforward to check that the
functional G is uniformly convex on any ball. The two parts of the
error majorant M⊕ (cf. (12.8) are given by the relations

DG(y∗,Λv) = 1
4

∫

Ω
(A∇v · ∇v + A−1y∗ ·y∗ −∇v·y∗)dx,

DF(Λ∗y∗, v)= 1
2

∫

Ω
(f(v)−y∗ ·∇v)dx + 1

2 sup
w∈V

∫

Ω
(y∗ ·∇w−f(w))dx.
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If the function f∗(−divy∗) is summable then we arrive at a more
symmetric expression

DF(v, y∗) ≤ 1
2

∫

Ω
(f(v) + f∗(−divy∗)− y∗ · ∇v)dx .

In particular, if f(v) = λ
2 v2 + µv, where µ ∈ R and λ ∈ R+, then

f∗(v∗) = 1
2λ(v∗ − µ)2.

We note that this case is related to the equation

divA∇u− λu + µ = 0.
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In this case, α = 2 and for any

y∗ ∈ H(Ω,div)

we obtain

MF(v, y∗) ≤ 1
4λ ‖λv + divy∗ + µ‖2Ω ,

Both functionals G and F are uniformly convex and we can take

Φ(∇e) = 1
4

∫

Ω
A∇e · ∇e dx,

ϕ(e) = λ
4

∫

Ω
|e|2 dx.
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Thus, we arrive at the estimate of deviation in the following form:

∫

Ω
A∇(v − u) · ∇(v − u)dx + λ ‖v − u‖2Ω ≤

≤
∫

Ω
(A−1y∗ +∇v) · (y∗ + A∇v)dx+

+ 1
λ ‖λv + divy∗ + µ‖2

Ω .
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Example 2

Consider the problem with

G(y) = 1
2(Ay, y) + Ψ(y), F(v) =< `, v >,

where Ψ : Y → R is a convex continuous functional. Note that if
Ψ ≡ 0, then

DG(Λv,p∗) = 1
2(AΛv,Λv) + 1

2(AΛu,Λu)− (Λv,AΛu)

= 1
2 ||| Λ(v − u) |||2 .

We will measure the error in terms of the above norm generated by
the operator A.
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In this case, the deviation estimate is as follows:

1
2 ||| Λ(v − u) |||2≤ (1 + β)DG(Λv, y∗)+

+
(
1 + 1

β

)
C2

Ω‖Λ∗y∗ + `‖2,

where CΩ depends on Ω and A.
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A consequent exposition functional type a posteriori error estimates
for nonlinear variational problems can be found in the papers
S. Repin. A posteriori error estimation for variational problems with
uniformly convex functionals, Math. Comput., 69(230), 2000, 481-500.

S. Repin. Two-sided estimates for deviation from an exact solution to

uniformly elliptic equation. Trudi St.-Petersburg Math. Society, 9(2001),

148-179 (in Russian, translated in American Mathematical Translations

Series 2, 9(2003)

and in the book
P. Neittaanmaki and S. Repin. Reliable methods for computer

simulation. Error control and a posteriori estimates. Elsevier, NY, 2004.
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We end up this lecture course with concise exposition of two
important problems closely related with functional type a posteriori
estimates.

Evaluation of errors in terms of local quantities;

Evaluation of modeling errors.
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Indication of local errors

Integrand of the Majorant is a good error indicator.

M⊕ =

∫

Ω
µ(x)dx.
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It is proved that if M⊕ →||| u− v |||, then

µ(x) → e(x) := |∇(u− v)|(x) in the sense of measures

This means that for any δ > 0

measEδ → 0

where Eδ := {x ∈ Ω | |µ(x)− e(x)| > δ}.
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Guaranteed upper bounds of local errors

GENERAL PRINCIPLE: Guaranteed upper bounds for

Φ(u− v) = ‖u− v‖ω and Φ(u− v) = (`,u− v), ` ∈ V∗

are obtained by projection of the functional a posteriori estimate
onto a certain subspace.

S. Repin. A posteriori estimates in local norms. J. Math. Sci. (N. Y.)
124 (2004), no. 3, 5026–5035.

S. Repin. Local a posteriori estimates for the Stokes problem. Zap.

Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 318

(2004), 35, 233–245, 312–313.
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Example. Local estimate for diffusion problem

Let ω ⊂ Ω and Vω := {H1
0(Ω) | v = const in ω}. An upper bound

of the local error is given by the estimate

‖∇(u− v)‖2ω ≤ M⊕ω :=

:= inf
w∈Vω

{
(1 + β)‖∇(v −w)− y‖2 +

1 + β

β
C2

Ω‖divy + f‖2
}

.

(12.16)

Here β > 0 and y ∈ H(div,Ω).
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Quality of the estimate

||| ∇(u− v) |||2ω ≤ M⊕
ω(v) ≤ ||| ∇(u− v) |||2ω +Iω(v),

where

Iω(v) := inf
φ∈Vω

||| ∇(u− v − φ) |||2Ω\ω

If v − u = µ = const on ∂ω, then the function

φ̄ :=

{
u − v in Ω \ ω;
µ in ω

belongs to Vω and, therefore, Iω(v) = 0.
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Errors in terms of goal oriented quantities

In the two above cited papers a guaranteed upper bounds for
goal–oriented errors were also derived.
Basic observation

| 〈`,u− v〉 |=| 〈`,u− v + ϕ〉 | ∀ϕ ∈ V0`(Ω),

where V0`(Ω) := {ϕ ∈ H1
0(Ω) | 〈`,ϕ〉 = 0}. Therefore,

| 〈`,u− v〉 | ≤ || ` || inf
ϕ∈V0`

‖u− v + ϕ‖.

Since v −ϕ can be viewed as a certain approximation, we apply
the functional error estimate to the left hand side and obtain a
guaranteed bound for the goal–oriented quantity.
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Modeling errors

Since there are no ”absolutely exact” mathematical
models, modeling errors always exist in real life

mathematical modeling.
How to estimate their influence?
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Let us shortly consider this question in connection with one type of
modeling errors that arise in dimension reduction models.

Ω = Ω̂× (−d, +d) ,

Ω̂ ∈ R2 with boundary γ,

d ¿ diam(Ω̂) := sup
(x1,x2)∈ bΩ

|x1 − x2| .
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A more detailed exposition can be found in
S. Repin, S. Sauter and A. Smolianski. A posteriori estimation
of dimension reduction errors for elliptic problems in thin domains.
SIAM J. Numer. Anal., 42 (2004), no. 4, 1435–1451.
S. Repin, S. Sauter and A. Smolianski. A Posteriori Control of
Dimension Reduction Errors on Long Domains. Proceedings in
Applied Mathematics and Mechanics, 4, No. 1, 714–715 (2004).
S. Repin, S. Sauter and A. Smolianski. A posteriori estimation
of dimension reduction errors. In Proc. 5th European Conference
on Numerical Mathematics and applications, Prague 2004,
717–725.
S. Repin. Estimates for errors in two-dimensional models of
elasticity theory. J. Math. Sci. (New York), 106 (2001), 3,
3027–3041.

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Key idea

We can consider a solution of a d− 1 –dimensional model as
an approximate solution of the d–dimensional one. Since

deviation estimates are valid for all conforming approximations
in the energy space, we may somehow project

d− 1–dimensional solution to the energy space of the
d–dimensional problem and use the Deviation Estimate for the

estimation of the respective error.
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Example. Plain stress problem as a model of 3D linear elasticity one

Here, 3D solution (u,σ) is approximated by the 2D one (û, σ̂),
where û = (û1, û2) and σ̂ is a 2× 2 tensor. Let

ũ = (û1, û2, φ(x1, x2, x3)); σ̃αβ = σ̂αβ , σ̃3α = 0,

where ϕ ∈ H1(Ω) and meets boundary conditions (u03) on the
Dirichlet part of ∂Ω. Then, we have
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An estimate of the dimension reduction error

Cε ‖ ε(ũ− u)‖2Ω + Cτ ‖ σ̃ − σ‖2Ω ≤

≤
(

K0

2
+

2µ

3

)∫

Ω

(
ρ(û1,1 + û2,2) + ϕ,3

)2
dx+

µ

2

∫

Ω

(
ϕ2

,1 + ϕ2
,2

)
dx

See the proof in
S. Repin. J. Math. Sci. New York, v. 106,3, 2001.
Here µ and K0 are elasticity coefficients ρ = 3K0−2µ

3K0+4µ ,,

Cε = min{ 1

µ
,

2

3µ
}, Cτ = min{4µ, 6K0}.
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General diffusion type equations. Non-plane domains

In
S. Repin, S. Sauter, A. Smolianski. SIAM J. Numer. Anal. 2004.
computable estimates for dimension reduction models we derived
for general diffusion type problem

div(A∇u) + f = 0, u = u0 ∂Ω

for ”thin” domains of the form Ω = Γ× [−d,d], where Γ is a
certain surface in 3D.
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Below is the list of publications related to the topics
discussed in the Lectures. In brackets, it shown the number

of a lecture related to a particular publication.
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Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of
finite volume discretizations of Darcy’s equations. Numer. Math. 96(1)
(2003), 17–42.

M. Ainsworth and J. T. Oden. A posteriori error estimation in the finite
element method, Numer. Math., 60(1992) 429-463. (L2)

M. Ainsworth and J. T. Oden. A unified approach to a posteriori error
estimation using element residual methods, Numer. Math., 65(1993)
23-50. (L2)

M. Ainsworth and J. T. Oden, A posteriori error estimation in finite
element analysis, Wiley and Sons, New York, 2000. (L2)

M. Ainsworth, J. T. Oden and C. Y. Lee. Local a posteriori error
estimators for variational inequalities, Numer. Methods for PDE, 9(1993),
23-33. (L2)

M. Ainsworth, J. Z. Zhu, A. W. Craig and O. C. Zienkiewicz. Analysis of
the Zienkiewicz-Zhu a posteriori error estimator in the finite element
method, Int. J. Numer. Methods Engrg., 28(1989), 2161-2174. (L2)
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A. Alonso, Error estimators for a mixed method. Numer. Math. 74 (1996),
385–395.

M. Amara, M. Ben Younes and C. Bernardi. Error indicators for the
Navier-Stokes equations in stream function and vorticity formulation,
Numer. Math., 80(1998), 181-206. (L2)

A. Arkhipova. On the best possible smoothness of the problem with
two-side constraints, Vestnik Leningr. Univ., ser. Math., 7 (1984), 5-9 (in
Russian). (L11)

A. M. Arthurth. Complementary variational principles, Clarendon Press,
Oxford, 1980. (L2)

G. Auchmuty. A posteriori error estimates for linear equations, Numer.
Math., 61(1992), 1-6. (L2)

O. Axelsson. Iterative solution methods. Cambridge University Press,
Cambridge, 1994. (L10)
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I. Babuška. Courant element: before and after, in Fifty years of Courant
element, M. Kř ižek, P. Neittaanmäki and R. Stenberg (Eds.), Marcel
Dekker, 1994, 37-51. (L1,2)

I. Babuška. The finite element method with Lagrangian multipliers,
Numer. Math., 20(1973), 179-192. (L7)

I. Babuška, R. Duran and R. Rodriguez. Analysis of the efficiency of a
posteriori error estimator for linear triangular elements, SIAM J. Numer.
Anal. 29(1992), 947-964. (L2)

I. Babuška, F. Ihlenburg, T. Strouboulis and S. K. Gangaraj. A posteriori
error estimation for finite element solutions on Helmholtz’ equation–Part
II: estimation of the pollution error, Int. J. Numer. Meth. Engrg.,
40(1997), 3883-3900. (L2, a posteriori estimate for pollution errors, local
estimates)

I. Babuška and J. E. Osborn. Can a finite element method perform
arbitrarily badly?, Math. Comput., 69(2000), 230, 443-462. (L1)
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I. Babuška and W. C. Rheinboldt. A-posteriori error estimates for the
finite element method. Internat. J. Numer. Meth. Engrg., 12(1978)
1597-1615. (L2)
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element computations. SIAM J.Numer. Anal., 15(1978), 736-754. (L2)

I. Babuška and R. Rodriguez. The problem of the selection of an a
posteriori error indicator based on smoothing techniques, Internat. J.
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I. Babuška and T. Strouboulis. The finite element method and its
reliability. The Clarendon Press, Oxford University Press, New York, 2001.
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I. Babuška, T. Strouboulis, C. S. Upadhyay and S. K. Gangaraj. A
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h-version of the FEM, Int. J. Numer. Meth. Engrg., 38(1995), 4207-4235.
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I. Babuška, T. Strouboulis, S. K. Gangaraj and C. S. Upadhyay.
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recovered derivatives, Comput. Methods Appl. Mech. Engrg.,140(1997),
1-37. (L2)

I. Babuška, T. Strouboulis, A. Mathur and C. S. Upadhyay. Pollution error
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quality of a posteriori error estimators for linear elliptic problems. Error
estimation in the interior of patchwise uniform grids of triangles, Comp.
Meth. Appl. Mech. Engrg. , 114(1994), 307-378. (L2)

I. Babuska and G. N. Gatica, On the mixed finite element method with
Lagrange multipliers. Numer. Meth. Partial Diff. Eq. 19(2) (2003),
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R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic
partial differential equations, Math. Comput., 44(1985), 283-301. (L2)

R. E. Bank and B. D. Welfert. A posteriori error estimates for the Stokes
problem, SIAM J. Numer. Anal., 28(1991), 591-623. (L2)

W. Bangerth and R. Rannacher. Adaptive finite element methods for
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York, 1998, 81-100. (L2)

R. Stenberg. Some new families of finite elements for the Stokes
equations. Numer. Math. 56 (1990), no. 8, 827–838. (L7, Taylor-Hood
elements, inf-sup condition)

R. Stenberg. Error analysis of some finite element methods for the Stokes
problem. Math. Comp. 54 (1990), no. 190, 495–508. (L7)

G. Strang and G. Fix. An analysis of the finite element method. Prentice
Hall, Englewood Cliffs, 1973. (L1)

T. Strouboulis and J. T. Oden. A posteriori error estimation of finite
element approximations in fluid mechanics, Comput. Meth. Appl. Mech.
Engrg., 78(1990), 201-242. (L2)

J. L. Synge. The hypercircle method. In Studies in numerical analysis
(papers in honour of Cornelius Lanczos on the occasion of his 80th
birthday), 201-217. Academic Press, London, 1974. (L2)
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M. Zlámal. Some superconvergence results in the finite element method.
Mathematical aspects of finite element methods. In Proc. Conf., Consiglio

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

Naz. delle Ricerche (C.N.R.), Rome, 1975. Lecture Notes in Math., Vol.
606, Springer-Verlag, Berlin, 1977, 353-362. (L2)

S. Repin RICAM, Special Radon Semester, Linz, 2005.

LECTURES ON A POSTERIORI ERROR CONTROL


