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Towers

Definition

A tower of function fields over Fq is an infinite sequence

F = (F1, F2, . . .)

of function fields Fi/Fq with properties

F1 ⊂ F2 ⊂ F3 ⊂ . . . ,
[Fi : Fi−1] > 1 for i > 1,

the genus g(Fj) > 0 for some j .

remark

1 g(Fi )→∞ as i →∞,
2 limN(Fn)

g(Fn) exits and called λ(F).
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Definition

Let F = (Fn)n≥1 be a tower of function fields over Fq. Then

F is asymptotically good, if λ(F) > 0,

F is asymptotically bad, if λ(F) = 0,

F is optimal, if λ(F) = A(q).
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Garcia-Stichtenoth optimal tower

Let T1 be a rational function field F4(x1). Then we define the
function field Tn as following

Tn = Tn−1(xn), where x2
n + xn =

x3
n−1

x2
n−1 + xn−1

.

F (X ,Y ) = (Y 2 + Y )(X + 1) + X 2.

it is optimal, in other words

lim
n→∞

N1(Tn)

g(Tn)
=
√

4− 1 = 1,

genus of function field Tn is

g(Tn) =

{
(2n/2 − 1)2 if i even,

(2(n+1)/2 − 1)(2(n−1)/2 − 1) if i odd,
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Geer-Vlugt tower

Let F = (Fn)n≥1 be a tower of function field over F8 where
F1 = F8(x1) and

Fn = Fn−1(xn), where x2
n + xn = xn−1 + 1 + 1/xn−1.

So the tower F is a recursive tower given by an irreducible
polynomial

F (X ,Y ) = (Y 2 + Y )X − X 2 − X − 1 ∈ F8[X ,Y ].
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The following proposition describes the behavior of the tower and
its ramification locus.

Let F be a tower over finite field F8 defined by the polynomial
F (X ,Y ). Then the following properties hold:

it is a good tower with limit attaining the Ihara bound

lim
n→∞

N1(Fn)

g(Fn)
=

2(p2 − 1)

p + 2
= 3/2,

if Q ∈ P(Fn) is a ramification place of an extension Fn/F1

then Q ∩ F1 is either a pole of x1 or a zero x1 − a, where
a ∈ {±1, ρ, ρ2}, with ρ2 + ρ+ 1 = 0,

genus of Fn equals

g(Fn) = 2n+2+1−
{

(n + 10)2i/2−1 for i even

(n + 2[i/4] + 15)2(i−3)/2 for i odd

Alexey Zaytsev Towers of function fields over finite fields and their sequences of zeta functions



tower of Kummer extensions

Let K = (Kn)n≥1 be a tower of function fields over F9 where
F1 = F9(x1) and

Kn = Kn−1(xn), where x2
n = (x2

n−1 + 1)/(2xn−1).

So the tower K is a recursive optimal tower given by an absolutely
irreducible polynomial

F (X ,Y ) = 2XY 2 − (X 2 + 1) ∈ F9[X ,Y ].
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Goal

Let T be a function field over Fq then the zeta function of T is

log ZT (x) =
∑
m≥1

Nm(T )

m
xm =

LT (x)

(1− x)(1− qx)

where Nm(T ) is a number of Fqm−rational points of T and

LT (x) = a0 + a1x + · · ·+ a2g(T )x2g(T )

For each function field in a tower T = (Tn)n≥1

LTn(x) = a(0, n) + a(1, n)x + · · ·+ a(2g(Tn), n)x2g(Tn)

Question

Can we find explicitly functions a(i , n) as functions in i , n for at
least one given good tower?
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Asymptotic zeta function

Let T = (Tn)n≥1 be a tower. Then one can define an asymptotic
zeta function

µn = lim
m→∞

Nn(Tm)

g(Tm)

logZT (x) =
∑
n≥1

µn

n
xn

Garcia-Stictenoth tower

ZT (t) =
1

(1− t)

tower of Kummer extensions

ZT (t) =
1

(1− t)2
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Asymptotic zeta function of the Geer-Vlugt tower

Base on Lenstre relation Peter Beelen proved that locus of split
completely places is bounded and lies in V (G1F). Then according
to the Perron-Frobenius theorem it follows that number of paths of
length m in the graph Gi (F) is completely determined by a
maximum eigenvalue. Therefore µi (F) is a constant.

Hence

Geer-Vlugt tower

ZF (t) =
1

(1− t)3/2
.
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L-polynomials of Garcia-Stichtenoth tower

LT1 1

LT2 1 + 3T + 4T 2

LT3 (1 + 3T + 4T 2)3

LT4 (1− T + 4T 2)2(1 + 3T + 4T 2)7

LT5 (1− T + 4T 2)4(1 + 3T + 4T 2)11(1 + T + 4T 2)2

(1 + 2T + T 2 + 8T 3 + 16T 4)2

LT6 (1− T + 4T 2)4(1 + T + 4T 2)10(1 + 2T + T 2 + 8T 3 + 16T 4)6

(1 + 3T + 4T 2)17(1 + T − T 2 + 3T 3 − 4T 4 + 16T 5 + 64T 6)2
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Galois Group and Kani-Rosen decomposition

Proposition

If n ≥ 3, then the extension Tn over Tn−2 is Galois and

Gal(Tn/Tn−2) ∼= Z/2Z× Z/2Z.

We will always let Cn denote a curve with function field Tn.
The Galois covering Cn → Cn−2 implies a decomposition of the
Jacobian of the curve Cn. If we denote Galois automorphism group
by 〈σ, τ〉 then we have the following diagram of coverings
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Galois Group and Kani-Rosen decomposition

Cn

2:1

uukkkkkkkkkkkkkkkk

2:1
��

2:1

((PPPPPPPPPPPPPP

Cn−1
∼= Cn/〈σ〉

2:1

))SSSSSSSSSSSSSS
Cn/〈στ〉

2:1
��

Cn/〈τ〉
2:1

wwnnnnnnnnnnnn

Cn−2
∼= Cn/〈σ, τ〉

and the following isogeny of Jacobians

Jac(Cn)×Jac(Cn−2)2 ∼ Jac(Cn−1)×Jac(Cn/〈στ〉)×Jac(Cn/〈τ〉),

which implies decomposition of L−polynomials

LCn(T ) LCn−2(T )2 = LCn−1(T ) LCn/〈στ〉(T ) LCn/〈τ〉(T ).
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Recurrence relations and the general zeta function

Decomposition of Pic0(Tn) and the L-polynomial of Tn.

Corollary

The L-polynomial of the function field Tn has the following
factorization

LTn = L2n−3
X1

× L2n−6
X2,1

× L2n−8
Y3,1

× · · · × L2
Yn−2,1

,

or more precisely

LTn = (T 2 + T + 4)2n−8(T 2 + 3T + 4)12n−49(T 2 − T + 4)6n−26

(T 4 + 2T 3 + T 2 + 8T + 16)6n−24

(T 6 + T 5 − T 4 + 3T 3 − 4T 2 + 16T + 64)2n−10L2n−12
Y5,1

· · ·L2
Yn−2,1

The order of the finite group

#Pic0(Tn)(F4) = 258n−24332n−852n−10L2n−12
Y5,1

(1)...L2
Yn−2,1

(1).
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Graphs and recursive tower

Let T := {Tn} be a recursive tower of function fields with the full
constant field Fq, given by an absolutely irreducible polynomial in
two variables F (X , Y ) ∈ Fq(X ,Y ).
Then one can associate a sequence of directed graphs (Γn)n≥1 in
the following way:

the set of vertices Vn are elements of Fqn with property not
being a coordinate of a ramification point,

there is a directed edge from a ∈ V to b ∈ V if F (a, b) = 0.

Similar we can define a directed graph of ramification locus,
namely it is a directed graph R with

V (R) vertices are elements of F̄p ∪ {∞} such that each vertex
is a coordinate of a ramification point,

there is a directed edge from a ∈ V (R) to b ∈ V (R) if
F (a, b) = 0.

Alexey Zaytsev Towers of function fields over finite fields and their sequences of zeta functions



Example, G1(T )

Let F4 = {0, 1, α, α2 = α+ 1}. Then α→ α and α→ α+ 1, since

α2 + α =
α2

α + 1
= 1

and

(α + 1)2 + (α + 1) =
α2

α + 1
= 1.

Similarly α + 1→ α and α + 1→ α + 1

•%% (( •hh
yy
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Characteristic polynomials

F4n Characteristic polynomial

F4 x(x − 2)

F42 x13(x − 2)

F43 x61(x − 2)

F44 x237(x − 2)(x − 1)(x2 + 1)(x4 + 1)2

F45 x(x − 2)2x1011(x4 + x3 + x2 + x + 1)

F46 x3949(x − 2)(x + 1)2(x − 1)10(x2 − x + 1)2(x2 + 1)2

(x2 + x + 1)10(x4 − x2 + 1)2(x6 + x3 + 1)10(x12 − x6 + 1)2

. . . . . .

F410 x1015482(x60 − 1)22(x28 − 1)10(x100 − 1)4

(x5 − 1)2(x310 − 1)8(x140 − 1)18(x420 − 1)2(x820 − 1)2

(x370 − 1)4(x980 − 1)2(x460 − 1)2(x220 − 1)4(x660 − 1)2

(x300 − 1)4(x500 − 1)2(x200 − 1)6(x580 − 1)2(x25 − 1)24

(x40 − 1)36(x110 − 1)4(x44 − 1)40(x760 − 1)2(x70 − 1)8

(x280 − 1)2(x180 − 1)2(x170 − 1)8(x90 − 1)8(x340 − 1)4

(x260 − 1)4(x150 − 1)4(x80 − 1)2(x2 − 2x)
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Root of unities

n roots of unity

1 −
2 −
3 −
4 (2)3

5 (5)

6 (2)2(3)2

7 (2)2(3)2(5)(7)

8 (2)7(5)(7)(11)

9 (2)3(3)3(5)(7)(11)(13)(17)(31)

10 (2)4(3)2(5)3(7)2(11)(13)(17)(19)(23)(29)(31)(37)(41)

Observation-I

Each eigenvalue of the graph is either 2 or zero or a root of unity.
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Generating function

Let Γ be a directed graph with an adjacency matrix A.
f (n) := number of all paths of lengths n =

∑
ai,j∈An ai ,j .

G (x) =
∑
m≥0

f (n)xn =
∑
m≥0

∑
i ,j det(I − xA; i , j)

det(I − xA)
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generating function of graphs and F4n-points

G1(T )
−1

x − 1/2

G2(T ) 8x + 12 +
−1

x − 1/2

G3(T ) 24x2 + 48x + 60 +
−1

x − 1/2

G4(T ) 128x5 + 192x4 + 160x3 + 80x2 + 24x − 4 +
−256

x − 1
+

−1

x − 1/2

G5(T ) 320x3 + 680x2 + 800x − 160

x − 1
− 2

2x − 1
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−1

x − 1/2
= 2 + 4x + . . .+ 2n+1xn + . . .

8x + 12 +
−1

x − 1/2
= 14 + 12x + 8x2 + . . .+ 2n+1xn + . . .

N1(Tn) = 2n + n + 2
N2(T1) = 17, N2(T2) = 16, N2(Tn) = 2n + n + 2, n > 2
N3(T1) = 65, N3(T2) = 56, N3(Tn) = 37,
N3(Tn) = 2n + n + 2, n > 3

Observation-II

Nm(Tn) = 2n+polynomial in n
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coefficients of L-polynomials

a(1, n) = 2n + (n − 3)

a(2, n) = 1
2 (2n)2 + (n − 3)

a(3, n) = 1
6 (2n)3 + (n

2 − 1)(2n)2 + ( 1
2 n2 − 3

4 n − 61
24 )2n+

+( 1
6 n3 − n2 − 25

6 n − 3)

a(4, n) = 1
24 (2n)4 + ( 1

6 n − 1
4 )(2n)3+

+( 1
4 n2 − 3

4 n − 61
24 )(2n)2 + ( 1

6 n3 − 3
4 n2 − 61

12 n − 21
4 )2n+

+( 1
24 n4 − 1

4 n3 − 61
24 n2 − 21

4 n + 61)

a(5, n) = 1
120 (2n)5 + ( 1

24 n − 1
24 )(2n)4 + ( 1

12 n2 − 1
6 n − 23

24 )(2n)3+
+( 1

12 n3 − 1
4 n2 − 23

8 n − 95
24 )(2n)2+

( 1
24 n4 − 1

6 n3 − 23
8 n2 − 95

12 n + 1159
20 )2n+

+( 1
120 n5 − 1

24 n4 − 23
24 n3 − 95

24 n2 + 1159
20 n − 163)

Observation-III

a(m, n) =
∑m

i=0(a polynomial in n of degree i over Q) ·(2n)m−i
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Optimal towers and basic inequality

Basic inequality ∑
n≥1

µnqn/2 ≤ 1

If T /Fq2 is optimal then it implies that

µm = µ1 for all m

and

ZT (t) =
1

(1− t)
√

q−1

Question

Does the equality
∑

n≥1 µnqn/2 = 1 imply T /Fq2 is optimal?
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Zeta functions of Galois closure of Garcia-Stichtenoth
tower

Theorem

Let T̃ = (T̃n)n is a Galois closure of the Garcia-Stichtenoth tower
over Fp2 (p > 2). Then for each m there exists M(m) such that if
n ≥ M(m) then

Nm(T̃n) = p3n−4 − p3n−5 + p2n−5 + p2n−6

Hence for each n there exists N(n) such that

log ZT̃n
=

N(n)∑
m≥1

p3n−4 − p3n−5 + p2n−5 + p2n−6

m
xm+

∑
m≥N(n)

Nm(T̃n)

m
xm

and N(n)→∞ as n→∞
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Thank your for your attention!
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