Towers of function fields over finite fields and their sequences of zeta functions

Alexey Zaytsev

I. Kant Baltic Federal University Kalinigrad Russia

November 12, 2013

joint work with Alexey Zykin

Alexey Zaytsev Towers of function fields over finite fields and their sequences of

Definition

A *tower* of function fields over \mathbb{F}_q is an infinite sequence

$$\mathcal{F}=(F_1,\,F_2,\,\ldots)$$

of function fields F_i/\mathbb{F}_q with properties

•
$$F_1 \subset F_2 \subset F_3 \subset \ldots$$

•
$$[F_i : F_{i-1}] > 1$$
 for $i > 1$,

• the genus
$$g(F_j) > 0$$
 for some j .

御 と く ヨ と く ヨ と

э

Definition

A *tower* of function fields over \mathbb{F}_q is an infinite sequence

$$\mathcal{F}=(F_1,\,F_2,\,\ldots)$$

of function fields F_i/\mathbb{F}_q with properties

•
$$F_1 \subset F_2 \subset F_3 \subset \ldots$$

•
$$[F_i : F_{i-1}] > 1$$
 for $i > 1$,

• the genus
$$g(F_j) > 0$$
 for some j .

remark

g(F_i) → ∞ as i → ∞,
 lim
$$\frac{N(F_n)}{g(F_n)}$$
 exits and called $\lambda(\mathcal{F})$.

Definition

Let $\mathcal{F} = (F_n)_{n \ge 1}$ be a tower of function fields over \mathbb{F}_q . Then

- $\mathcal F$ is asymptotically good, if $\lambda(\mathcal F) > 0$,
- \mathcal{F} is asymptotically bad, if $\lambda(\mathcal{F}) = 0$,

•
$$\mathcal{F}$$
 is optimal, if $\lambda(\mathcal{F}) = A(q)$.

伺 と く ヨ と く ヨ と … ヨ

Garcia-Stichtenoth optimal tower

Let T_1 be a rational function field $\mathbb{F}_4(x_1)$. Then we define the function field T_n as following

$$T_n = T_{n-1}(x_n),$$
 where $x_n^2 + x_n = \frac{x_{n-1}^3}{x_{n-1}^2 + x_{n-1}}.$

$$F(X, Y) = (Y^2 + Y)(X + 1) + X^2.$$

• it is optimal, in other words

$$\lim_{n\to\infty}\frac{N_1(T_n)}{g(T_n)}=\sqrt{4}-1=1,$$

• genus of function field T_n is

$$g(T_n) = \begin{cases} (2^{n/2} - 1)^2 & \text{if } i \text{ even}, \\ (2^{(n+1)/2} - 1)(2^{(n-1)/2} - 1) & \text{if } i \text{ odd}, \end{cases}$$

Let $\mathcal{F} = (F_n)_{n \geq 1}$ be a tower of function field over \mathbb{F}_8 where $F_1 = \mathbb{F}_8(x_1)$ and

$$F_n = F_{n-1}(x_n),$$
 where $x_n^2 + x_n = x_{n-1} + 1 + 1/x_{n-1}.$

So the tower $\ensuremath{\mathcal{F}}$ is a recursive tower given by an irreducible polynomial

$$F(X,Y)=(Y^2+Y)X-X^2-X-1\in\mathbb{F}_8[X,Y].$$

ゆ く き と く き とう

-

The following proposition describes the behavior of the tower and its ramification locus.

Let \mathcal{F} be a tower over finite field \mathbb{F}_8 defined by the polynomial F(X, Y). Then the following properties hold:

• it is a good tower with limit attaining the Ihara bound

$$\lim_{n \to \infty} \frac{N_1(F_n)}{g(F_n)} = \frac{2(p^2 - 1)}{p + 2} = 3/2$$

- if Q ∈ P(F_n) is a ramification place of an extension F_n/F₁ then Q ∩ F₁ is either a pole of x₁ or a zero x₁ − a, where a ∈ {±1, ρ, ρ²}, with ρ² + ρ + 1 = 0,
- genus of *F_n* equals

$$g(F_n) = 2^{n+2} + 1 - \begin{cases} (n+10)2^{i/2-1} & \text{for } i \text{ even} \\ (n+2[i/4]+15)2^{(i-3)/2} & \text{for } i \text{ odd} \end{cases}$$

Let $\mathcal{K} = (\mathcal{K}_n)_{n \geq 1}$ be a tower of function fields over \mathbb{F}_9 where $F_1 = \mathbb{F}_9(x_1)$ and

$$K_n = K_{n-1}(x_n),$$
 where $x_n^2 = (x_{n-1}^2 + 1)/(2x_{n-1}).$

So the tower ${\mathcal K}$ is a recursive optimal tower given by an absolutely irreducible polynomial

$$F(X,Y)=2XY^2-(X^2+1)\in\mathbb{F}_9[X,Y].$$

Let T be a function field over \mathbb{F}_q then the zeta function of T is

$$\log Z_T(x) = \sum_{m \ge 1} \frac{N_m(T)}{m} x^m = \frac{\mathrm{L}_T(x)}{(1-x)(1-qx)}$$

where $N_m(T)$ is a number of \mathbb{F}_{q^m} -rational points of T and

$$\mathcal{L}_T(x) = a_0 + a_1 x + \dots + a_{2g(T)} x^{2g(T)}$$

伺 と く ヨ と く ヨ と …

э

Let T be a function field over \mathbb{F}_q then the zeta function of T is

$$\log Z_T(x) = \sum_{m \ge 1} \frac{N_m(T)}{m} x^m = \frac{L_T(x)}{(1-x)(1-qx)}$$

where $N_m(T)$ is a number of \mathbb{F}_{q^m} -rational points of T and

$$\mathcal{L}_{T}(x) = a_0 + a_1 x + \dots + a_{2g(T)} x^{2g(T)}$$

For each function field in a tower $T = (T_n)_{n \ge 1}$

$$L_{\mathcal{T}_n}(x) = a(0,n) + a(1,n)x + \cdots + a(2g(\mathcal{T}_n),n)x^{2g(\mathcal{T}_n)}$$

伺 と く ヨ と く ヨ と

3

Let T be a function field over \mathbb{F}_q then the zeta function of T is

$$\log Z_T(x) = \sum_{m \ge 1} \frac{N_m(T)}{m} x^m = \frac{L_T(x)}{(1-x)(1-qx)}$$

where $N_m(T)$ is a number of \mathbb{F}_{q^m} -rational points of T and

$$\mathcal{L}_{\mathcal{T}}(x) = a_0 + a_1 x + \dots + a_{2g(\mathcal{T})} x^{2g(\mathcal{T})}$$

For each function field in a tower $T = (T_n)_{n \ge 1}$

$$L_{\mathcal{T}_n}(x) = a(0,n) + a(1,n)x + \cdots + a(2g(\mathcal{T}_n),n)x^{2g(\mathcal{T}_n)}$$

Question

Can we find explicitly functions a(i, n) as functions in i, n for at least one given good tower?

(4 同) (4 日) (4 日)

ъ

Asymptotic zeta function

Let $T = (T_n)_{n \ge 1}$ be a tower. Then one can define an asymptotic zeta function

$$\mu_n = \lim_{m \to \infty} \frac{N_n(T_m)}{g(T_m)}$$
$$\log \mathcal{Z}_T(x) = \sum_{n \ge 1} \frac{\mu_n}{n} x^n$$

э

Asymptotic zeta function

Let $\mathcal{T} = (\mathcal{T}_n)_{n \ge 1}$ be a tower. Then one can define an asymptotic zeta function

$$\mu_n = \lim_{m \to \infty} \frac{N_n(T_m)}{g(T_m)}$$
$$\log \mathcal{Z}_T(x) = \sum_{n \ge 1} \frac{\mu_n}{n} x^n$$

Garcia-Stictenoth tower

$$Z_{\mathcal{T}}(t) = \frac{1}{(1-t)}$$

tower of Kummer extensions

$$Z_{\mathcal{T}}(t) = \frac{1}{(1-t)^2}$$

□ ▶ < □ ▶ < □</p>

э

Base on Lenstre relation Peter Beelen proved that locus of split completely places is bounded and lies in $V(G_1\mathcal{F})$. Then according to the Perron-Frobenius theorem it follows that number of paths of length *m* in the graph $G_i(\mathcal{F})$ is completely determined by a maximum eigenvalue. Therefore $\mu_i(\mathcal{F})$ is a constant. Base on Lenstre relation Peter Beelen proved that locus of split completely places is bounded and lies in $V(G_1\mathcal{F})$. Then according to the Perron-Frobenius theorem it follows that number of paths of length *m* in the graph $G_i(\mathcal{F})$ is completely determined by a maximum eigenvalue. Therefore $\mu_i(\mathcal{F})$ is a constant. Hence

Geer-Vlugt tower

$$Z_{\mathcal{F}}(t) = rac{1}{(1-t)^{3/2}}.$$

L-polynomials of Garcia-Stichtenoth tower

L_{T_1}	1
L_{T_2}	$1 + 3T + 4T^2$
L _{T3}	$(1+3T+4T^2)^3$
L_{T_4}	$(1 - T + 4T^2)^2(1 + 3T + 4T^2)^7$
L_{T_5}	$(1 - T + 4T^2)^4 (1 + 3T + 4T^2)^{11} (1 + T + 4T^2)^2$
	$(1 + 2T + T^2 + 8T^3 + 16T^4)^2$
L_{T_6}	$(1 - T + 4T^2)^4(1 + T + 4T^2)^{10}(1 + 2T + T^2 + 8T^3 + 16T^4)^6$
	$(1+3T+4T^2)^{17}(1+T-T^2+3T^3-4T^4+16T^5+64T^6)^2$

- ∢ ≣ ▶

Proposition

If $n \ge 3$, then the extension T_n over T_{n-2} is Galois and

$\operatorname{Gal}(\operatorname{T}_n/\operatorname{T}_{n-2})\cong \mathbf{Z}/2\mathbf{Z}\times\mathbf{Z}/2\mathbf{Z}.$

We will always let C_n denote a curve with function field T_n . The Galois covering $C_n \rightarrow C_{n-2}$ implies a decomposition of the Jacobian of the curve C_n . If we denote Galois automorphism group by $\langle \sigma, \tau \rangle$ then we have the following diagram of coverings

Galois Group and Kani-Rosen decomposition

and the following isogeny of Jacobians

 $\operatorname{Jac}(C_n) \times \operatorname{Jac}(C_{n-2})^2 \sim \operatorname{Jac}(C_{n-1}) \times \operatorname{Jac}(C_n/\langle \sigma \tau \rangle) \times \operatorname{Jac}(C_n/\langle \tau \rangle),$

which implies decomposition of L-polynomials

$$\mathrm{L}_{C_n}(T) \, \mathrm{L}_{C_{n-2}}(T)^2 = \mathrm{L}_{C_{n-1}}(T) \, \mathrm{L}_{C_n/\langle \sigma \tau \rangle}(T) \, \mathrm{L}_{C_n/\langle \tau \rangle}(T).$$

Recurrence relations and the general zeta function

Decomposition of $Pic^{0}(T_{n})$ and the L-polynomial of T_{n} .

Corollary

The L-polynomial of the function field T_n has the following factorization

$$L_{T_n} = L_{X_1}^{2n-3} \times L_{X_{2,1}}^{2n-6} \times L_{Y_{3,1}}^{2n-8} \times \dots \times L_{Y_{n-2,1}}^2$$

or more precisely

$$\begin{split} \mathrm{L}_{\mathrm{T}_n} &= (T^2 + T + 4)^{2n-8} (T^2 + 3T + 4)^{12n-49} (T^2 - T + 4)^{6n-26} \\ (T^4 + 2T^3 + T^2 + 8T + 16)^{6n-24} \\ (T^6 + T^5 - T^4 + 3T^3 - 4T^2 + 16T + 64)^{2n-10} \mathrm{L}_{Y_{5,1}}^{2n-12} \cdots \mathrm{L}_{Y_{n-2,1}}^2 \end{split}$$

The order of the finite group

$$\#\operatorname{Pic}^{0}(\mathbf{T}_{n})(\mathbb{F}_{4}) = 2^{58n-243}3^{2n-8}5^{2n-10}\operatorname{L}^{2n-12}_{Y_{5,1}}(1)...\operatorname{L}^{2}_{Y_{n-2,1}}(1).$$

Let $\mathcal{T} := \{T_n\}$ be a recursive tower of function fields with the full constant field \mathbb{F}_q , given by an absolutely irreducible polynomial in two variables $F(X, Y) \in \mathbb{F}_q(X, Y)$.

Then one can associate a sequence of directed graphs $(\Gamma_n)_{n\geq 1}$ in the following way:

 the set of vertices V_n are elements of 𝔽_{qⁿ} with property not being a coordinate of a ramification point,

• there is a directed edge from $a \in V$ to $b \in V$ if F(a, b) = 0. Similar we can define a directed graph of ramification locus, namely it is a directed graph R with

- V(R) vertices are elements of 𝔽_p ∪ {∞} such that each vertex is a coordinate of a ramification point,
- there is a directed edge from $a \in V(R)$ to $b \in V(R)$ if F(a, b) = 0.

・同・ ・ヨ・ ・ヨ・ ・ヨ

Example, $G_1(\mathcal{T})$

Let $\mathbb{F}_4 = \{0, 1, \alpha, \alpha^2 = \alpha + 1\}$. Then $\alpha \to \alpha$ and $\alpha \to \alpha + 1$, since

$$\alpha^2 + \alpha = \frac{\alpha^2}{\alpha + 1} = 1$$

and

$$(\alpha + 1)^2 + (\alpha + 1) = \frac{\alpha^2}{\alpha + 1} = 1.$$

Similarly $\alpha + 1 \rightarrow \alpha$ and $\alpha + 1 \rightarrow \alpha + 1$

◎ ▶ ▲ ∃ ▶ ▲ ∃ ▶ → 目 → の Q ()

Characteristic polynomials

\mathbb{F}_{4^n}	Characteristic polynomial
\mathbb{F}_4	x(x-2)
\mathbb{F}_{4^2}	$x^{13}(x-2)$
\mathbb{F}_{4^3}	$x^{61}(x-2)$
\mathbb{F}_{4^4}	$x^{237}(x-2)(x-1)(x^2+1)(x^4+1)^2$
\mathbb{F}_{4^5}	$x(x-2)^2x^{1011}(x^4+x^3+x^2+x+1)$
\mathbb{F}_{4^6}	$x^{3949}(x-2)(x+1)^2(x-1)^{10}(x^2-x+1)^2(x^2+1)^2$
	$(x^{2} + x + 1)^{10}(x^{4} - x^{2} + 1)^{2}(x^{6} + x^{3} + 1)^{10}(x^{12} - x^{6} + 1)^{2}$
$\mathbb{F}_{4^{10}}$	$x^{1015482}(x^{60}-1)^{22}(x^{28}-1)^{10}(x^{100}-1)^4$
	$(x^5-1)^2(x^{310}-1)^8(x^{140}-1)^{18}(x^{420}-1)^2(x^{820}-1)^2$
	$(x^{370}-1)^4(x^{980}-1)^2(x^{460}-1)^2(x^{220}-1)^4(x^{660}-1)^2$
	$(x^{300} - 1)^4 (x^{500} - 1)^2 (x^{200} - 1)^6 (x^{580} - 1)^2 (x^{25} - 1)^{24}$
	$(x^{40}-1)^{36}(x^{110}-1)^{4}(x^{44}-1)^{40}(x^{760}-1)^{2}(x^{70}-1)^{8}$
	$(x^{280} - 1)^2 (x^{180} - 1)^2 (x^{170} - 1)^8 (x^{90} - 1)^8 (x^{340} - 1)^4$
	$(x^{260} - 1)^4 (x^{150} - 1)^4 (x^{80} - 1)^2 (x^2 - 2x)$

n	roots of unity
1	-
2	_
3	_
4	$(2)^{3}$
5	(5)
6	$(2)^2(3)^2$
7	$(2)^2(3)^2(5)(7)$
8	$(2)^{7}(5)(7)(11)$
9	$(2)^{3}(3)^{3}(5)(7)(11)(13)(17)(31)$
10	$(2)^{4}(3)^{2}(5)^{3}(7)^{2}(11)(13)(17)(19)(23)(29)(31)(37)(41)$

聞 と く き と く き と

э

Observation-I

Each eigenvalue of the graph is either 2 or zero or a root of unity.

Alexey Zaytsev Towers of function fields over finite fields and their sequences of

Let Γ be a directed graph with an adjacency matrix A. f(n) := number of all paths of lengths $n = \sum_{a_{i,j} \in A^n} a_{i,j}$.

$$G(x) = \sum_{m \ge 0} f(n) x^n = \sum_{m \ge 0} \frac{\sum_{i,j} \det(I - xA; i, j)}{\det(I - xA)}$$

• • = • • = •

generating function of graphs and \mathbb{F}_{4^n} -points

$$\frac{-1}{x-1/2} = 2 + 4x + \dots + 2^{n+1}x^n + \dots$$

$$8x + 12 + \frac{-1}{x-1/2} = 14 + 12x + 8x^2 + \dots + 2^{n+1}x^n + \dots$$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

$$\frac{-1}{x-1/2} = 2 + 4x + \dots + 2^{n+1}x^n + \dots$$

$$8x + 12 + \frac{-1}{x-1/2} = 14 + 12x + 8x^2 + \dots + 2^{n+1}x^n + \dots$$

$$N_1(T_n) = 2^n + n + 2$$

$$N_2(T_1) = 17, N_2(T_2) = 16, N_2(T_n) = 2^n + n + 2, n > 2$$

$$N_3(T_1) = 65, N_3(T_2) = 56, N_3(T_n) = 37,$$

$$N_3(T_n) = 2^n + n + 2, n > 3$$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

$$\frac{-1}{x-1/2} = 2 + 4x + \dots + 2^{n+1}x^n + \dots$$

$$8x + 12 + \frac{-1}{x-1/2} = 14 + 12x + 8x^2 + \dots + 2^{n+1}x^n + \dots$$

$$N_1(T_n) = 2^n + n + 2$$

$$N_2(T_1) = 17, N_2(T_2) = 16, N_2(T_n) = 2^n + n + 2, n > 2$$

$$N_3(T_1) = 65, N_3(T_2) = 56, N_3(T_n) = 37,$$

$$N_3(T_n) = 2^n + n + 2, n > 3$$

Observation-II

 $N_m(T_n) = 2^n + \text{polynomial in } n$

回 と く ヨ と く ヨ と

æ

$$\frac{a(1,n) = 2^{n} + (n-3)}{a(2,n) = \frac{1}{2}(2^{n})^{2} + (n-3)} \\
\frac{a(3,n) = \frac{1}{6}(2^{n})^{3} + (\frac{n}{2}-1)(2^{n})^{2} + (\frac{1}{2}n^{2} - \frac{3}{4}n - \frac{61}{24})2^{n} + (\frac{1}{6}n^{3} - n^{2} - \frac{25}{6}n - 3)}{a(4,n) = \frac{1}{24}(2^{n})^{4} + (\frac{1}{6}n - \frac{1}{4})(2^{n})^{3} + (\frac{1}{4}n^{2} - \frac{3}{4}n - \frac{61}{24})(2^{n})^{2} + (\frac{1}{6}n^{3} - \frac{3}{4}n^{2} - \frac{61}{12}n - \frac{21}{4})2^{n} + (\frac{1}{24}n^{4} - \frac{1}{4}n^{3} - \frac{61}{24}n^{2} - \frac{21}{4}n + 61)}{a(5,n) = \frac{1}{120}(2^{n})^{5} + (\frac{1}{24}n - \frac{1}{24})(2^{n})^{4} + (\frac{1}{12}n^{2} - \frac{1}{6}n - \frac{23}{24})(2^{n})^{3} + (\frac{1}{12}n^{3} - \frac{1}{4}n^{2} - \frac{23}{8}n - \frac{95}{24})(2^{n})^{2} + (\frac{1}{120}n^{5} - \frac{1}{24}n^{4} - \frac{23}{8}n^{2} - \frac{95}{24}n^{2} + \frac{1159}{20}n - 163)$$

< ∃ →

$$\frac{a(1,n) = 2^{n} + (n-3)}{a(2,n) = \frac{1}{2}(2^{n})^{2} + (n-3)} \\
\frac{a(3,n) = \frac{1}{6}(2^{n})^{3} + (\frac{n}{2}-1)(2^{n})^{2} + (\frac{1}{2}n^{2} - \frac{3}{4}n - \frac{61}{24})2^{n} + (\frac{1}{6}n^{3} - n^{2} - \frac{25}{6}n - 3)}{a(4,n) = \frac{1}{24}(2^{n})^{4} + (\frac{1}{6}n - \frac{1}{4})(2^{n})^{3} + (\frac{1}{4}n^{2} - \frac{3}{4}n - \frac{61}{24})(2^{n})^{2} + (\frac{1}{6}n^{3} - \frac{3}{4}n^{2} - \frac{61}{12}n - \frac{21}{4})2^{n} + (\frac{1}{24}n^{4} - \frac{1}{4}n^{3} - \frac{61}{24}n^{2} - \frac{21}{4}n + 61)}{a(5,n) = \frac{1}{120}(2^{n})^{5} + (\frac{1}{24}n - \frac{1}{24})(2^{n})^{4} + (\frac{1}{12}n^{2} - \frac{1}{6}n - \frac{23}{24})(2^{n})^{3} + (\frac{1}{12}n^{3} - \frac{1}{4}n^{2} - \frac{23}{8}n - \frac{95}{24})(2^{n})^{2} + (\frac{1}{120}n^{4} - \frac{1}{6}n^{3} - \frac{23}{8}n^{2} - \frac{95}{12}n + \frac{1159}{20})2^{n} + (\frac{1}{120}n^{5} - \frac{1}{24}n^{4} - \frac{23}{24}n^{3} - \frac{95}{24}n^{2} + \frac{1159}{20}n - 163)$$

 $a(m,n) = \sum_{i=0}^{m} (a \text{ polynomial in } \mathbf{n} \text{ of degree } \mathbf{i} \text{ over } \mathbb{Q}) \cdot (2^{\mathbf{n}})^{\mathbf{m}-\mathbf{i}}$

Alexey Zaytsev

Towers of function fields over finite fields and their sequences of

Optimal towers and basic inequality

Basic inequality

$$\sum_{n\geq 1}\mu_n q^{n/2}\leq 1$$

/□ ▶ < 글 ▶ < 글

Optimal towers and basic inequality

Basic inequality

$$\sum_{n\geq 1}\mu_n q^{n/2}\leq 1$$

If $\mathcal{T}/\mathbb{F}_{q^2}$ is optimal then it implies that

$$\mu_m = \mu_1$$
 for all m

and

$$Z_{\mathcal{T}}(t)=rac{1}{(1-t)^{\sqrt{q}-1}}$$

□ > < E > < E >

Optimal towers and basic inequality

Basic inequality

$$\sum_{n\geq 1}\mu_n q^{n/2}\leq 1$$

If $\mathcal{T}/\mathbb{F}_{q^2}$ is optimal then it implies that

$$\mu_m = \mu_1$$
 for all m

and

$$Z_{\mathcal{T}}(t) = \frac{1}{(1-t)^{\sqrt{q}-1}}$$

Question

Does the equality
$$\sum_{n\geq 1} \mu_n q^{n/2} = 1$$
 imply $\mathcal{T}/\mathbb{F}_{q^2}$ is optimal?

Zeta functions of Galois closure of Garcia-Stichtenoth tower

Theorem

Let $\tilde{T} = (\tilde{T}_n)_n$ is a Galois closure of the Garcia-Stichtenoth tower over \mathbb{F}_{p^2} (p > 2). Then for each m there exists M(m) such that if $n \ge M(m)$ then

$$N_m(\tilde{T}_n) = p^{3n-4} - p^{3n-5} + p^{2n-5} + p^{2n-6}$$

Zeta functions of Galois closure of Garcia-Stichtenoth tower

Theorem

Let $\tilde{T} = (\tilde{T}_n)_n$ is a Galois closure of the Garcia-Stichtenoth tower over \mathbb{F}_{p^2} (p > 2). Then for each m there exists M(m) such that if $n \ge M(m)$ then

$$N_m(\tilde{T}_n) = p^{3n-4} - p^{3n-5} + p^{2n-5} + p^{2n-6}$$

Hence for each n there exists N(n) such that

$$\log Z_{\tilde{T}_n} = \sum_{m \ge 1}^{N(n)} \frac{p^{3n-4} - p^{3n-5} + p^{2n-5} + p^{2n-6}}{m} x^m + \sum_{m \ge N(n)} \frac{N_m(\tilde{T}_n)}{m} x^m$$

and $N(n) \to \infty$ as $n \to \infty$

Thank your for your attention!