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Towers

A tower of function fields over I, is an infinite sequence

F=(F, F,...)

of function fields F;/Fg, with properties
e RCFCFC...,
o [Fi:Fi_1] >1fori>1,
o the genus g(F;) > 0 for some j.
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Towers

A tower of function fields over I, is an infinite sequence

F=(F, F,...)

of function fields F;/Fg, with properties
e RCFCFC...,
o [Fi:Fi_1] >1fori>1,
o the genus g(F;) > 0 for some j.

remark

Q g(F)) — o0 as i — oo,

@ limiF exits and called A(F).
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Definition

Let F = (Fn)n>1 be a tower of function fields over Fy. Then
e F is asymptotically good, if A\(F) > 0,
e F is asymptotically bad, if A(F) =0,
e F is optimal, if A(F) = A(q).
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Garcia-Stichtenoth optimal tower

Let T7 be a rational function field F4(x1). Then we define the
function field T, as following
Xp—1

2
Tn = Tho1(xn), where Xp+Xpg=—5——.
Xn—1 + Xn—1

FIX,Y)=(Y?*+ Y)(X+1)+ X2

@ it is optimal, in other words

. Nl(Tn)
||m == \/Z — ]_ =] 17
n—oo g(Tp)

@ genus of function field T, is

B @ = 1 if i even,
g(Th) = { (2(r+1)/2 _ 1)(2(n=1)/2 _ 1) if i odd,
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Geer-Vlugt tower

Let F = (Fn)n>1 be a tower of function field over Fg where
Fl = Fg(xl) and

Fn=Fn_1(xn), where X2 4 xp=Xp_1+141/x,_1.

So the tower F is a recursive tower given by an irreducible
polynomial

FIX,Y)=(Y?+Y)X - X? - X —1€TFg[X,Y].
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The following proposition describes the behavior of the tower and
its ramification locus.

Let F be a tower over finite field [Fg defined by the polynomial
F(X,Y). Then the following properties hold:
@ it is a good tower with limit attaining the Ihara bound
Ni(Fn) _ 2(p* - 1)

lim = =30
n—co g(Fp) p+2 /

e if @ € P(F,) is a ramification place of an extension F,/F;
then @ N Fy is either a pole of x; or a zero x; — a, where
ac {£1, p,p?}, with p> + p+1 =0,

@ genus of F, equals

e (n+ 10)27/2-1 for ieven
g(Fn) =2"""+1 {(,,+2[,-/4]+15)2("3>/2 for iodd
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tower of Kummer extensions

Let £ = (K»)n>1 be a tower of function fields over Fg where
Fl = Fg(Xl) and

Kn = Kn—1(xn), where x2=(x2_{+1)/(2xy_1).

So the tower K is a recursive optimal tower given by an absolutely
irreducible polynomial

F(X,Y)=2XY? - (X2 +1) € Fg[X, Y].
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Let T be a function field over F, then the zeta function of T is

Neo(T) Lr{x
logZT(X)ZmZ>:1 rE7)X :(1_X;((1)—qx)

where Ny, (T) is a number of Fgym—rational points of T and

L1(x) = a0+ aix + -+ + agg(7)x*&(7)
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Let T be a function field over F, then the zeta function of T is

NeoT) Lr(x
log Zr(x) = > ,E,)X :(1—x)T((1)—qX)

m>1

where Ny, (T) is a number of Fgym—rational points of T and
L1(x) = a0+ aix + -+ + agg(7)x*&(7)
For each function field in a tower 7 = (T,)n>1

Lr,(x) = a(0, n) + a(1, n)x + - - - + a(2g(T»), n)x2&(T")
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Let T be a function field over F, then the zeta function of T is

N NalT) o Lr(x)
log Z7(x) = mz>:1 m (1 —x)(1 - gx)

where Ny, (T) is a number of Fgym—rational points of T and
L1(x) = a0+ aix + -+ + agg(7)x*&(7)
For each function field in a tower 7 = (T,)n>1

Lr,(x) = a(0, n) + a(1, n)x + - - - + a(2g(T»), n)x2&(T")

Can we find explicitly functions a(i, n) as functions in i, n for at
least one given good tower?
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Asymptotic zeta function

Let 7 = (T,)n>1 be a tower. Then one can define an asymptotic
zeta function

o= lim L"(Tm)
" meoo g(Tm)
log Z7(x) = Z %X”
n>1
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Asymptotic zeta function

Let 7 = (T,)n>1 be a tower. Then one can define an asymptotic
zeta function

sy = lim No(Tm)
" meoo g(Ti)
log Z7(x) = Z %X”
n>1

Garcia-Stictenoth tower
1

v

tower of Kummer extensions

1

0=y
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Asymptotic zeta function of the Geer-Vlugt tower

Base on Lenstre relation Peter Beelen proved that locus of split
completely places is bounded and lies in V(G1F). Then according
to the Perron-Frobenius theorem it follows that number of paths of
length m in the graph G;(F) is completely determined by a
maximum eigenvalue. Therefore p;(F) is a constant.
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Asymptotic zeta function of the Geer-Vlugt tower

Base on Lenstre relation Peter Beelen proved that locus of split
completely places is bounded and lies in V(G1F). Then according
to the Perron-Frobenius theorem it follows that number of paths of
length m in the graph G;(F) is completely determined by a
maximum eigenvalue. Therefore p;(F) is a constant.

Hence

Geer-Vlugt tower

1
Z]:(t) = m
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L-polynomials of Garcia-Stichtenoth tower

L, 1

L, 1+3T +4T2

L, (1+3T +4T12)3

L, (1T +4T??(1+3T +4T23)7

L, (1-T+4TH*A+3T +4TH)N(A+ T +4T2?)?

(14+2T + T2 +8T3+16T%)2

Ly | (L= T +4TH* QA+ T +4THOQ +2T + T2 +8T3 +16T*)°

(L4+3T+4T3)Y(1+ T — T?4+3T3—4T*+16T° +64T°)2
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Galois Group and Kani-Rosen decomposition

Proposition

If n > 3, then the extension T, over T,_5 is Galois and

Gal(Tn/Tp_2) = Z/2Z x Z/2Z.

We will always let C, denote a curve with function field T,,.

The Galois covering C,, — C,_» implies a decomposition of the
Jacobian of the curve C,. If we denote Galois automorphism group
by (o, 7) then we have the following diagram of coverings
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Galois Group and Kani-Rosen decomposition

Cn

/ P\

Co1 =2 Co/ (o) Cn/<07' (7)

n2—C/U,7’>

and the following isogeny of Jacobians
Jac(Cp) x Jac(Cp_2)? ~ Jac(Cp_1) x Jac(C,/(o7)) x Jac(C,/(T)),
which implies decomposition of L—polynomials

Lc,(T) Le, o(T)> = Le, . (T) L, jion(T) L,y (T).
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Recurrence relations and the general zeta function

Decomposition of Pic?(T,) and the L-polynomial of T,,.

Corollary

The L-polynomial of the function field T, has the following
factorization

_ 12n-3 2n—6 2n—38 . 2
Lt, = LX1 X sz,l X LY&1 X X LYn_g,v
or more precisely

Lr, = (T?+ T +4)>"5(T? +3T +4)12~%(T? — T + 4)°n—26
(T*+2T3 4+ T2 48T +16)°"2*
(TO+ T5—T*+3T3—4T2 4+ 16T +64)>" 0Ly ... 13

The order of the finite group

#PiCO(Tn)(F4) _ 258n724332n7852n710]_12Yr5‘:!—112(]_)“‘];%/,17271 (1)
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Graphs and recursive tower

Let 7 := {T,} be a recursive tower of function fields with the full
constant field IF, given by an absolutely irreducible polynomial in
two variables F(X, Y) € Fq(X,Y).
Then one can associate a sequence of directed graphs (I';)p>1 in
the following way:
@ the set of vertices V), are elements of Fg» with property not
being a coordinate of a ramification point,

@ there is a directed edge from a€ V to be V if F(a, b) =0.

Similar we can define a directed graph of ramification locus,
namely it is a directed graph R with
o V(R) vertices are elements of F, U {oo} such that each vertex
is a coordinate of a ramification point,
e there is a directed edge from a € V(R) to b € V(R) if
F(a, b) =0.
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Example, G1(7)

Let F4 = {0,1,0,0®> = a+1}. Then a — a and a — a + 1, since

a’+a= =1
a+1
and
2 o @
1 = —
(a+1) "+ (a+1) ]
Similarty a4+ 1 —aand a+1—a+1
e TH e
AT S,
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Characteristic polynomials

F4n | Characteristic polynomial

Fs | x(x—2)

Fpe | xB3(x —2)

Fas | x%1(x —2)

Fao | x337(x —2)(x — 1)(x% + 1)(x* +1)?

Fus | x(x —2)2x101 (x* +x3 + x2 + x + 1)

Fuo | x3%9(x — 2)(x + 1)%(x — 1)10(x% — x + 1)?(x®> + 1)?

(X2 + x+ 1)10(X4 o X2 + 1)2(X6 +X3 + 1)10(X12 o X6 + 1)2

Ié‘.l'o .'1615482( 60 1)22(X28 _ 1)1O(X100 _ 1)4
4 ( ) ( 310 ) ( 140 _ 1)18(X420 _ 1)2(X820 _ 1)2
( 370 1) (X980 ) ( 460 1)2(X220 _ 1)4(X660 _ 1)2
( 300 1)4(X500 ) (X200 1)6(X580 _ 1)2(X25 _ 1)24
( 1)36(X110 ) (X44 1)40(X76O o 1)2(X70 o 1)8
( 80 1)2(X180 ) ( 170 1)8(X90 _ 1)8(X340 _ 1)4

( 260 1)4(X150 ) (X80 _ 1)2(X2 _ 2X)
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Observation-I
Each eigenvalue of the graph is either 2 or zero or a root of unity.
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Generating function

Let I be a directed graph with an adjacency matrix A.
f(n) := number of all paths of lengths n =3, 4 aij.

., > det(l — xA; i, ))
Glx) = Z;Of(”)x - z;o det(l — xA)
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generating function of graphs and F4.-points

-1
&l X — 1/2
T 12
G2(7) 8x + 12+ o 1/2
G3(7) 24x2 + 48x + 60 + 1)
—7%56 -1

G4(T) | 128x5 +192x* + 160x> + 80x2 + 24x — 4 + +

x—1 x- 1/2

160 D

Gs(7) 320x3 + 680x2 + 800x — e L
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x—1/2
8x + 12 +

=24 4x+ .. 42" x4

=144+ 12x+8x% ... 2
12 +12x +8x" + ... + x" 4

Alexey Zaytsev Towers of function fields over finite fields and their sequences of



x—1/2

8x—|—12—|—_71 =14+ 12x +8x% 4+ ... + 2" 1" 4 .
x—1/2

Ni(T,)=2"+n+2

N2(T1) =17, N2(T2) =16, NQ(T,,) =2"4+n+2,n>2

N3(Ty) = 65, N3(T2) =56, N3(T,) = 37,

N3(Tp)=2"+n+2,n>3

=24 4x+ .. 42" x4
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x—1/2

8x—|—12—|—_71 =14+ 12x +8x% 4+ ... + 2" 1" 4 .
x—1/2

Ni(Tp)=2"+n+2

N2(T1) =17, N2(T2) =16, NQ(T,,) =2"4+n+2,n>2

N3(Ty) = 65, N3(T2) =56, N3(T,) = 37,

N3(Tp)=2"+n+2,n>3

=24 4x+ .. 42" x4

Observation-I|

Nm(T,) = 2"+polynomial in n
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coefficients of L-polynomials

a2,n) = 3(2")°+(n-3)

aB,m) = ")+ (5 -1+ (30— 30— 5)2"+
+(zn® —n — %5n -3)

3(4’ n) - i4(12r24 +3(%n _61%)(2,23_‘_ 1.3 3,2 61 21
(g —an—24)(2")°+ (5 — 4" —pn — 7)2"+
—i—(%n4 - %n3 - g—lnz - Tln +61)

a(5,n) = ﬁ(ﬁ”f +1(2—l4n —23§ (29’;)4 + (21i2n2 —n—3)(2")°+
+f ﬁlln _1 Z?)n _23§2n _9?)(22)15—9’—
(ggn* —m —Fn° —Hn+55)2"+

1 5. 1 37 95 5 '1150 .
(g™ — 240" — 53n° — 530" + 55 n — 163)
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coefficients of L-polynomials

a2,n) = 3(2")°+(n-3)

aB,m) = ")+ (5 -1+ (30— 30— 5)2"+
Jr(%n3 —n?—2p— 3)

3(4’ n) - %(312”24 +3(%n _611)(2,23_‘_ 1.3 3,2 61 21
(g —an—24)(2")°+ (5 — 4" —pn — 7)2"+
—i—(%n4 - %n3 - %nz 2lp 1 61)

a(5,n) = ﬁ(ﬁ”f +1(2—;4n ;3%)(29’;)4 + (21i2n2 - %n - 2)(2")3+
+f ﬁlln _1 Z?)n _23§2n _9?)(22)15—9’—
(ggn* —m —Fn° —Hn+55)2"+

1 .5 1.4 2337 95 3 1150
(g™ — 240" — 53n° — 530" + 55 n — 163)

Observation-|II
a(m, n) =Y (a polynomial in n of degree i over Q) -(2")
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Optimal towers and basic inequality

Basic inequality

Z ann/2 <1

n>1
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Optimal towers and basic inequality

Basic inequality

> ung"? <1

n>1

If T/F 2 is optimal then it implies that
tm = 1 for all m

and
1

Zrt) = vt
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Optimal towers and basic inequality

Basic inequality

> ung"? <1

n>1

If T/F 2 is optimal then it implies that
tm = 1 for all m

and
1

Zrt) = vt

Does the equality 3, ~; 1ng™? =1 imply T /F g2 is optimal?
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Zeta functions of Galois closure of Garcia-Stichtenoth
tower

Let T = (T,)n is a Galois closure of the Garcia-Stichtenoth tower
over Fp2 (p > 2). Then for each m there exists M(m) such that if
n > M(m) then

Nim(Tp) = p"=* — p*"=° 4+ p?"=° 4 p?"~°
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Zeta functions of Galois closure of Garcia-Stichtenoth
tower

Let T = (T,)n is a Galois closure of the Garcia-Stichtenoth tower
over Fp2 (p > 2). Then for each m there exists M(m) such that if
n > M(m) then

Nim(Tp) = p"=* — p*"=° 4+ p?"=° 4 p?"~°

Hence for each n there exists N(n) such that

N(n) 3p-4 _ 3n-5_, _2n-5 2n—6 N
log Z, = ) £ AR A a—— mlTn) m
m>1 m m>N(n) m

and N(n) — oo as n — oo
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Thank your for your attention! |
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