Towers of function fields over finite fields and their sequences of zeta functions

Alexey Zaytsev
I. Kant Baltic Federal University
Kalinigrad
Russia

November 12, 2013
joint work with Alexey Zykin

Definition

A tower of function fields over \mathbb{F}_{q} is an infinite sequence

$$
\mathcal{F}=\left(F_{1}, F_{2}, \ldots\right)
$$

of function fields F_{i} / \mathbb{F}_{q} with properties

- $F_{1} \subset F_{2} \subset F_{3} \subset \ldots$,
- $\left[F_{i}: F_{i-1}\right]>1$ for $i>1$,
- the genus $g\left(F_{j}\right)>0$ for some j.

Towers

Definition

A tower of function fields over \mathbb{F}_{q} is an infinite sequence

$$
\mathcal{F}=\left(F_{1}, F_{2}, \ldots\right)
$$

of function fields F_{i} / \mathbb{F}_{q} with properties

- $F_{1} \subset F_{2} \subset F_{3} \subset \ldots$,
- $\left[F_{i}: F_{i-1}\right]>1$ for $i>1$,
- the genus $g\left(F_{j}\right)>0$ for some j.

remark

(1) $g\left(F_{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$,
(2) $\lim \frac{N\left(F_{n}\right)}{g\left(F_{n}\right)}$ exits and called $\lambda(\mathcal{F})$.

Definition

Let $\mathcal{F}=\left(F_{n}\right)_{n \geq 1}$ be a tower of function fields over \mathbb{F}_{q}. Then

- \mathcal{F} is asymptotically good, if $\lambda(\mathcal{F})>0$,
- \mathcal{F} is asymptotically bad, if $\lambda(\mathcal{F})=0$,
- \mathcal{F} is optimal, if $\lambda(\mathcal{F})=A(q)$.

Garcia-Stichtenoth optimal tower

Let T_{1} be a rational function field $\mathbb{F}_{4}\left(x_{1}\right)$. Then we define the function field T_{n} as following

$$
\begin{gathered}
T_{n}=T_{n-1}\left(x_{n}\right), \quad \text { where } \quad x_{n}^{2}+x_{n}=\frac{x_{n-1}^{3}}{x_{n-1}^{2}+x_{n-1}} \\
F(X, Y)=\left(Y^{2}+Y\right)(X+1)+X^{2}
\end{gathered}
$$

- it is optimal, in other words

$$
\lim _{n \rightarrow \infty} \frac{N_{1}\left(T_{n}\right)}{g\left(T_{n}\right)}=\sqrt{4}-1=1
$$

- genus of function field T_{n} is

$$
g\left(T_{n}\right)=\left\{\begin{array}{c}
\left(2^{n / 2}-1\right)^{2} \quad \text { if } i \text { even, } \\
\left(2^{(n+1) / 2}-1\right)\left(2^{(n-1) / 2}-1\right) \quad \text { if } i \text { odd, },
\end{array}\right.
$$

Geer-Vlugt tower

Let $\mathcal{F}=\left(F_{n}\right)_{n \geq 1}$ be a tower of function field over \mathbb{F}_{8} where $F_{1}=\mathbb{F}_{8}\left(x_{1}\right)$ and

$$
F_{n}=F_{n-1}\left(x_{n}\right), \quad \text { where } \quad x_{n}^{2}+x_{n}=x_{n-1}+1+1 / x_{n-1} .
$$

So the tower \mathcal{F} is a recursive tower given by an irreducible polynomial

$$
F(X, Y)=\left(Y^{2}+Y\right) X-X^{2}-X-1 \in \mathbb{F}_{8}[X, Y]
$$

The following proposition describes the behavior of the tower and its ramification locus.

Let \mathcal{F} be a tower over finite field \mathbb{F}_{8} defined by the polynomial $F(X, Y)$. Then the following properties hold:

- it is a good tower with limit attaining the Ihara bound

$$
\lim _{n \rightarrow \infty} \frac{N_{1}\left(F_{n}\right)}{g\left(F_{n}\right)}=\frac{2\left(p^{2}-1\right)}{p+2}=3 / 2
$$

- if $Q \in \mathbb{P}\left(F_{n}\right)$ is a ramification place of an extension F_{n} / F_{1} then $Q \cap F_{1}$ is either a pole of x_{1} or a zero $x_{1}-a$, where $a \in\left\{ \pm 1, \rho, \rho^{2}\right\}$, with $\rho^{2}+\rho+1=0$,
- genus of F_{n} equals

$$
g\left(F_{n}\right)=2^{n+2}+1-\left\{\begin{array}{cl}
(n+10) 2^{i / 2-1} & \text { for } \\
i \text { even } \\
(n+2[i / 4]+15) 2^{(i-3) / 2} & \text { for } i \text { odd }
\end{array}\right.
$$

Let $\mathcal{K}=\left(K_{n}\right)_{n \geq 1}$ be a tower of function fields over \mathbb{F}_{9} where $F_{1}=\mathbb{F}_{9}\left(x_{1}\right)$ and

$$
K_{n}=K_{n-1}\left(x_{n}\right), \quad \text { where } \quad x_{n}^{2}=\left(x_{n-1}^{2}+1\right) /\left(2 x_{n-1}\right)
$$

So the tower \mathcal{K} is a recursive optimal tower given by an absolutely irreducible polynomial

$$
F(X, Y)=2 X Y^{2}-\left(X^{2}+1\right) \in \mathbb{F}_{9}[X, Y]
$$

Goal

Let T be a function field over \mathbb{F}_{q} then the zeta function of T is

$$
\log Z_{T}(x)=\sum_{m \geq 1} \frac{N_{m}(T)}{m} x^{m}=\frac{\mathrm{L}_{T}(x)}{(1-x)(1-q x)}
$$

where $N_{m}(T)$ is a number of $\mathbb{F}_{q^{m}}$-rational points of T and

$$
\mathrm{L}_{T}(x)=a_{0}+a_{1} x+\cdots+a_{2 g(T)} x^{2 g(T)}
$$

Goal

Let T be a function field over \mathbb{F}_{q} then the zeta function of T is

$$
\log Z_{T}(x)=\sum_{m \geq 1} \frac{N_{m}(T)}{m} x^{m}=\frac{\mathrm{L}_{T}(x)}{(1-x)(1-q x)}
$$

where $N_{m}(T)$ is a number of $\mathbb{F}_{q^{m}}$-rational points of T and

$$
\mathrm{L}_{T}(x)=a_{0}+a_{1} x+\cdots+a_{2 g(T)} x^{2 g(T)}
$$

For each function field in a tower $\mathcal{T}=\left(T_{n}\right)_{n \geq 1}$

$$
\mathrm{L}_{T_{n}}(x)=a(0, n)+a(1, n) x+\cdots+a\left(2 g\left(T_{n}\right), n\right) x^{2 g\left(T_{n}\right)}
$$

Goal

Let T be a function field over \mathbb{F}_{q} then the zeta function of T is

$$
\log Z_{T}(x)=\sum_{m \geq 1} \frac{N_{m}(T)}{m} x^{m}=\frac{\mathrm{L}_{T}(x)}{(1-x)(1-q x)}
$$

where $N_{m}(T)$ is a number of $\mathbb{F}_{q^{m}}$-rational points of T and

$$
\mathrm{L}_{T}(x)=a_{0}+a_{1} x+\cdots+a_{2 g(T)} x^{2 g(T)}
$$

For each function field in a tower $\mathcal{T}=\left(T_{n}\right)_{n \geq 1}$

$$
\mathrm{L}_{T_{n}}(x)=a(0, n)+a(1, n) x+\cdots+a\left(2 g\left(T_{n}\right), n\right) x^{2 g\left(T_{n}\right)}
$$

Question

Can we find explicitly functions $a(i, n)$ as functions in i, n for at least one given good tower?

Asymptotic zeta function

Let $\mathcal{T}=\left(T_{n}\right)_{n \geq 1}$ be a tower. Then one can define an asymptotic zeta function

$$
\begin{gathered}
\mu_{n}=\lim _{m \rightarrow \infty} \frac{N_{n}\left(T_{m}\right)}{g\left(T_{m}\right)} \\
\log \mathcal{Z}_{\mathcal{T}}(x)=\sum_{n \geq 1} \frac{\mu_{n}}{n} x^{n}
\end{gathered}
$$

Asymptotic zeta function

Let $\mathcal{T}=\left(T_{n}\right)_{n \geq 1}$ be a tower. Then one can define an asymptotic zeta function

$$
\begin{gathered}
\mu_{n}=\lim _{m \rightarrow \infty} \frac{N_{n}\left(T_{m}\right)}{g\left(T_{m}\right)} \\
\log \mathcal{Z}_{\mathcal{T}}(x)=\sum_{n \geq 1} \frac{\mu_{n}}{n} x^{n}
\end{gathered}
$$

Garcia-Stictenoth tower

$$
Z_{\mathcal{T}}(t)=\frac{1}{(1-t)}
$$

tower of Kummer extensions

$$
Z_{\mathcal{T}}(t)=\frac{1}{(1-t)^{2}}
$$

Asymptotic zeta function of the Geer-Vlugt tower

Base on Lenstre relation Peter Beelen proved that locus of split completely places is bounded and lies in $V\left(G_{1} \mathcal{F}\right)$. Then according to the Perron-Frobenius theorem it follows that number of paths of length m in the graph $G_{i}(\mathcal{F})$ is completely determined by a maximum eigenvalue. Therefore $\mu_{i}(\mathcal{F})$ is a constant.

Asymptotic zeta function of the Geer-Vlugt tower

Base on Lenstre relation Peter Beelen proved that locus of split completely places is bounded and lies in $V\left(G_{1} \mathcal{F}\right)$. Then according to the Perron-Frobenius theorem it follows that number of paths of length m in the graph $G_{i}(\mathcal{F})$ is completely determined by a maximum eigenvalue. Therefore $\mu_{i}(\mathcal{F})$ is a constant.
Hence
Geer-Vlugt tower

$$
Z_{\mathcal{F}}(t)=\frac{1}{(1-t)^{3 / 2}}
$$

L-polynomials of Garcia-Stichtenoth tower

$\mathrm{L}_{\mathrm{T}_{1}}$	1
$\mathrm{~L}_{\mathrm{T}_{2}}$	$1+3 T+4 T^{2}$
$\mathrm{~L}_{\mathrm{T}_{3}}$	$\left(1+3 T+4 T^{2}\right)^{3}$
$\mathrm{~L}_{\mathrm{T}_{4}}$	$\left(1-T+4 T^{2}\right)^{2}\left(1+3 T+4 T^{2}\right)^{7}$
$\mathrm{~L}_{\mathrm{T}_{5}}$	$\left(1-T+4 T^{2}\right)^{4}\left(1+3 T+4 T^{2}\right)^{11}\left(1+T+4 T^{2}\right)^{2}$
	$\left(1+2 T+T^{2}+8 T^{3}+16 T^{4}\right)^{2}$

Galois Group and Kani-Rosen decomposition

Proposition

If $n \geq 3$, then the extension T_{n} over T_{n-2} is Galois and

$$
\operatorname{Gal}\left(\mathrm{T}_{n} / \mathrm{T}_{n-2}\right) \cong \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}
$$

We will always let C_{n} denote a curve with function field T_{n}. The Galois covering $C_{n} \rightarrow C_{n-2}$ implies a decomposition of the Jacobian of the curve C_{n}. If we denote Galois automorphism group by $\langle\sigma, \tau\rangle$ then we have the following diagram of coverings

Galois Group and Kani-Rosen decomposition

and the following isogeny of Jacobians
$\operatorname{Jac}\left(C_{n}\right) \times \operatorname{Jac}\left(C_{n-2}\right)^{2} \sim \operatorname{Jac}\left(C_{n-1}\right) \times \operatorname{Jac}\left(C_{n} /\langle\sigma \tau\rangle\right) \times \operatorname{Jac}\left(C_{n} /\langle\tau\rangle\right)$,
which implies decomposition of L -polynomials

$$
\mathrm{L}_{C_{n}}(T) \mathrm{L}_{C_{n-2}}(T)^{2}=\mathrm{L}_{C_{n-1}}(T) \mathrm{L}_{C_{n} /\langle\sigma \tau\rangle}(T) \mathrm{L}_{C_{n} /\langle\tau\rangle}(T)
$$

Recurrence relations and the general zeta function

Decomposition of $\operatorname{Pic}^{0}\left(\mathrm{~T}_{n}\right)$ and the L-polynomial of T_{n}.

Corollary

The L-polynomial of the function field T_{n} has the following factorization

$$
\mathrm{L}_{\mathrm{T}_{n}}=\mathrm{L}_{X_{1}}^{2 n-3} \times \mathrm{L}_{X_{2,1}}^{2 n-6} \times \mathrm{L}_{\mathrm{Y}_{3,1}}^{2 n-8} \times \cdots \times \mathrm{L}_{\mathrm{Y}_{n-2,1}}^{2},
$$

or more precisely

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{T}_{n}}=\left(T^{2}+T+4\right)^{2 n-8}\left(T^{2}+3 T+4\right)^{12 n-49}\left(T^{2}-T+4\right)^{6 n-26} \\
& \left(T^{4}+2 T^{3}+T^{2}+8 T+16\right)^{6 n-24} \\
& \left(T^{6}+T^{5}-T^{4}+3 T^{3}-4 T^{2}+16 T+64\right)^{2 n-10} \mathrm{~L}_{Y_{5,1}}^{2 n-12} \cdots \mathrm{~L}_{Y_{n-2,1}}^{2}
\end{aligned}
$$

The order of the finite group

$$
\# \operatorname{Pic}^{0}\left(\mathrm{~T}_{n}\right)\left(\mathbb{F}_{4}\right)=2^{58 n-243} 3^{2 n-8} 5^{2 n-10} \mathrm{~L}_{Y_{5,1}}^{2 n-12}(1) \ldots \mathrm{L}_{Y_{n-2,1}}^{2}(1)
$$

Graphs and recursive tower

Let $\mathcal{T}:=\left\{T_{n}\right\}$ be a recursive tower of function fields with the full constant field \mathbb{F}_{q}, given by an absolutely irreducible polynomial in two variables $F(X, Y) \in \mathbb{F}_{q}(X, Y)$.
Then one can associate a sequence of directed graphs $\left(\Gamma_{n}\right)_{n \geq 1}$ in the following way:

- the set of vertices V_{n} are elements of $\mathbb{F}_{q^{n}}$ with property not being a coordinate of a ramification point,
- there is a directed edge from $a \in V$ to $b \in V$ if $F(a, b)=0$.

Similar we can define a directed graph of ramification locus, namely it is a directed graph R with

- $V(R)$ vertices are elements of $\overline{\mathbb{F}}_{p} \cup\{\infty\}$ such that each vertex is a coordinate of a ramification point,
- there is a directed edge from $a \in V(R)$ to $b \in V(R)$ if

$$
F(a, b)=0
$$

Example, $G_{1}(\mathcal{T})$

Let $\mathbb{F}_{4}=\left\{0,1, \alpha, \alpha^{2}=\alpha+1\right\}$. Then $\alpha \rightarrow \alpha$ and $\alpha \rightarrow \alpha+1$, since

$$
\alpha^{2}+\alpha=\frac{\alpha^{2}}{\alpha+1}=1
$$

and

$$
(\alpha+1)^{2}+(\alpha+1)=\frac{\alpha^{2}}{\alpha+1}=1
$$

Similarly $\alpha+1 \rightarrow \alpha$ and $\alpha+1 \rightarrow \alpha+1$

Characteristic polynomials

$\mathbb{F}_{4^{n}}$	Characteristic polynomial
\mathbb{F}_{4}	$x(x-2)$
$\mathbb{F}_{4^{2}}$	$x^{13}(x-2)$
$\mathbb{F}_{4^{3}}$	$x^{61}(x-2)$
$\mathbb{F}_{4^{4}}$	$x^{237}(x-2)(x-1)\left(x^{2}+1\right)\left(x^{4}+1\right)^{2}$
$\mathbb{F}_{4}{ }^{5}$	$x(x-2)^{2} x^{1011}\left(x^{4}+x^{3}+x^{2}+x+1\right)$
$\mathbb{F}_{4}{ }^{6}$	$x^{3949}(x-2)(x+1)^{2}(x-1)^{10}\left(x^{2}-x+1\right)^{2}\left(x^{2}+1\right)^{2}$ $\left(x^{2}+x+1\right)^{10}\left(x^{4}-x^{2}+1\right)^{2}\left(x^{6}+x^{3}+1\right)^{10}\left(x^{12}-x^{6}+1\right)^{2}$
\ldots	\ldots
$\mathbb{F}_{4^{10}}$	$x^{1015482}\left(x^{60}-1\right)^{22}\left(x^{28}-1\right)^{10}\left(x^{100}-1\right)^{4}$ $\left(x^{5}-1\right)^{2}\left(x^{310}-1\right)^{8}\left(x^{140}-1\right)^{18}\left(x^{420}-1\right)^{2}\left(x^{820}-1\right)^{2}$ $\left(x^{370}-1\right)^{4}\left(x^{980}-1\right)^{2}\left(x^{460}-1\right)^{2}\left(x^{220}-1\right)^{4}\left(x^{660}-1\right)^{2}$ $\left(x^{300}-1\right)^{4}\left(x^{500}-1\right)^{2}\left(x^{200}-1\right)^{6}\left(x^{580}-1\right)^{2}\left(x^{25}-1\right)^{24}$ $\left(x^{40}-1\right)^{36}\left(x^{110}-1\right)^{4}\left(x^{44}-1\right)^{40}\left(x^{760}-1\right)^{2}\left(x^{70}-1\right)^{8}$ $\left(x^{280}-1\right)^{2}\left(x^{180}-1\right)^{2}\left(x^{170}-1\right)^{8}\left(x^{90}-1\right)^{8}\left(x^{340}-1\right)^{4}$ $\left(x^{260}-1\right)^{4}\left(x^{150}-1\right)^{4}\left(x^{80}-1\right)^{2}\left(x^{2}-2 x\right)$

Root of unities

n	roots of unity
1	-
2	-
3	-
4	$(2)^{3}$
5	(5)
6	$(2)^{2}(3)^{2}$
7	$(2)^{2}(3)^{2}(5)(7)$
8	$(2)^{7}(5)(7)(11)$
9	$(2)^{3}(3)^{3}(5)(7)(11)(13)(17)(31)$
10	$(2)^{4}(3)^{2}(5)^{3}(7)^{2}(11)(13)(17)(19)(23)(29)(31)(37)(41)$

Root of unities

n	roots of unity
1	-
2	-
3	-
4	$(2)^{3}$
5	(5)
6	$(2)^{2}(3)^{2}$
7	$(2)^{2}(3)^{2}(5)(7)$
8	$(2)^{7}(5)(7)(11)$
9	$(2)^{3}(3)^{3}(5)(7)(11)(13)(17)(31)$
10	$(2)^{4}(3)^{2}(5)^{3}(7)^{2}(11)(13)(17)(19)(23)(29)(31)(37)(41)$

Observation-I

Each eigenvalue of the graph is either 2 or zero or a root of unity.

Generating function

Let Γ be a directed graph with an adjacency matrix A. $f(n):=$ number of all paths of lengths $n=\sum_{a_{i, j} \in A^{n}} a_{i, j}$.

$$
G(x)=\sum_{m \geq 0} f(n) x^{n}=\sum_{m \geq 0} \frac{\sum_{i, j} \operatorname{det}(I-x A ; i, j)}{\operatorname{det}(I-x A)}
$$

$G_{1}(\mathcal{T})$	$\frac{-1}{x-1 / 2}$
$G_{2}(\mathcal{T})$	$8 x+12+\frac{-1}{x-1 / 2}$
$G_{3}(\mathcal{T})$	$24 x^{2}+48 x+60+\frac{-1}{x-1 / 2}$
$G_{4}(\mathcal{T})$	$128 x^{5}+192 x^{4}+160 x^{3}+80 x^{2}+24 x-4+\frac{-256}{x-1}+\frac{-1}{x-1 / 2}$
$G_{5}(\mathcal{T})$	$320 x^{3}+680 x^{2}+800 x-\frac{160}{x-1}-\frac{2}{2 x-1}$

$$
\begin{aligned}
& \frac{-1}{x-1 / 2}=2+4 x+\ldots+2^{n+1} x^{n}+\ldots \\
& 8 x+12+\frac{-1}{x-1 / 2}=14+12 x+8 x^{2}+\ldots+2^{n+1} x^{n}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-1}{x-1 / 2}=2+4 x+\ldots+2^{n+1} x^{n}+\ldots \\
& 8 x+12+\frac{-1}{x-1 / 2}=14+12 x+8 x^{2}+\ldots+2^{n+1} x^{n}+\ldots \\
& N_{1}\left(T_{n}\right)=2^{n}+n+2 \\
& N_{2}\left(T_{1}\right)=17, N_{2}\left(T_{2}\right)=16, N_{2}\left(T_{n}\right)=2^{n}+n+2, n>2 \\
& N_{3}\left(T_{1}\right)=65, N_{3}\left(T_{2}\right)=56, N_{3}\left(T_{n}\right)=37, \\
& N_{3}\left(T_{n}\right)=2^{n}+n+2, n>3
\end{aligned}
$$

$\frac{-1}{x-1 / 2}=2+4 x+\ldots+2^{n+1} x^{n}+\ldots$
$8 x+12+\frac{-1}{x-1 / 2}=14+12 x+8 x^{2}+\ldots+2^{n+1} x^{n}+\ldots$
$N_{1}\left(T_{n}\right)=2^{n}+n+2$
$N_{2}\left(T_{1}\right)=17, N_{2}\left(T_{2}\right)=16, N_{2}\left(T_{n}\right)=2^{n}+n+2, n>2$
$N_{3}\left(T_{1}\right)=65, N_{3}\left(T_{2}\right)=56, N_{3}\left(T_{n}\right)=37$,
$N_{3}\left(T_{n}\right)=2^{n}+n+2, n>3$
Observation-II
$N_{m}\left(T_{n}\right)=2^{n}+$ polynomial in n

coefficients of L-polynomials

$$
\begin{aligned}
& \hline a(1, n)= 2^{n}+(n-3) \\
& \hline a(2, n)= \frac{1}{2}\left(2^{n}\right)^{2}+(n-3) \\
& \hline a(3, n)= \frac{1}{6}\left(2^{n}\right)^{3}+\left(\frac{n}{2}-1\right)\left(2^{n}\right)^{2}+\left(\frac{1}{2} n^{2}-\frac{3}{4} n-\frac{61}{24}\right) 2^{n}+ \\
&+\left(\frac{1}{6} n^{3}-n^{2}-\frac{25}{6} n-3\right) \\
& \hline a(4, n)= \frac{1}{24}\left(2^{n}\right)^{4}+\left(\frac{1}{6} n-\frac{1}{4}\right)\left(2^{n}\right)^{3}+ \\
&+\left(\frac{1}{4} n^{2}-\frac{3}{4} n-\frac{61}{24}\right)\left(2^{n}\right)^{2}+\left(\frac{1}{6} n^{3}-\frac{3}{4} n^{2}-\frac{61}{12} n-\frac{21}{4}\right) 2^{n}+ \\
&+\left(\frac{1}{24} n^{4}-\frac{1}{4} n^{3}-\frac{61}{24} n^{2}-\frac{21}{4} n+61\right) \\
& \hline a(5, n)= \frac{1}{120}\left(2^{n}\right)^{5}+\left(\frac{1}{24} n-\frac{1}{24}\right)\left(2^{n}\right)^{4}+\left(\frac{1}{12} n^{2}-\frac{1}{6} n-\frac{23}{24}\right)\left(2^{n}\right)^{3}+ \\
&+\left(\frac{1}{12} n^{3}-\frac{1}{4} n^{2}-\frac{23}{8} n-\frac{95}{24}\right)\left(2^{n}\right)^{2}+ \\
&\left(\frac{1}{24} n^{4}-\frac{1}{6} n^{3}-\frac{23}{8} n^{2}-\frac{95}{12} n+\frac{1159}{20}\right) 2^{n}+ \\
&+\left(\frac{1}{120} n^{5}-\frac{1}{24} n^{4}-\frac{23}{24} n^{3}-\frac{95}{24} n^{2}+\frac{1159}{20} n-163\right) \\
& \hline
\end{aligned}
$$

coefficients of L-polynomials

$$
\begin{aligned}
& \hline a(1, n)= 2^{n}+(n-3) \\
& \hline a(2, n)= \frac{1}{2}\left(2^{n}\right)^{2}+(n-3) \\
& \hline a(3, n)= \frac{1}{6}\left(2^{n}\right)^{3}+\left(\frac{n}{2}-1\right)\left(2^{n}\right)^{2}+\left(\frac{1}{2} n^{2}-\frac{3}{4} n-\frac{61}{24}\right) 2^{n}+ \\
&+\left(\frac{1}{6} n^{3}-n^{2}-\frac{25}{6} n-3\right) \\
& \hline a(4, n)= \frac{1}{24}\left(2^{n}\right)^{4}+\left(\frac{1}{6} n-\frac{1}{4}\right)\left(2^{n}\right)^{3}+ \\
&+\left(\frac{1}{4} n^{2}-\frac{3}{4} n-\frac{61}{24}\right)\left(2^{n}\right)^{2}+\left(\frac{1}{6} n^{3}-\frac{3}{4} n^{2}-\frac{61}{12} n-\frac{21}{4}\right) 2^{n}+ \\
&+\left(\frac{1}{24} n^{4}-\frac{1}{4} n^{3}-\frac{61}{24} n^{2}-\frac{21}{4} n+61\right) \\
& \hline a(5, n)= \frac{1}{120}\left(2^{n}\right)^{5}+\left(\frac{1}{24} n-\frac{1}{24}\right)\left(2^{n}\right)^{4}+\left(\frac{1}{12} n^{2}-\frac{1}{6} n-\frac{23}{24}\right)\left(2^{n}\right)^{3}+ \\
&+\left(\frac{1}{12} n^{3}-\frac{1}{4} n^{2}-\frac{23}{8} n-\frac{95}{24}\right)\left(2^{n}\right)^{2}+ \\
&\left(\frac{1}{24} n^{4}-\frac{1}{6} n^{3}-\frac{23}{8} n^{2}-\frac{95}{12} n+\frac{1159}{20}\right) 2^{n}+ \\
&+\left(\frac{1}{120} n^{5}-\frac{1}{24} n^{4}-\frac{23}{24} n^{3}-\frac{95}{24} n^{2}+\frac{1159}{20} n-163\right) \\
& \hline
\end{aligned}
$$

Observation-III

$a(m, n)=\sum_{i=0}^{m}($ a polynomial in \mathbf{n} of degree \mathbf{i} over $\mathbb{Q}) \cdot\left(2^{\mathbf{n}}\right)^{\mathbf{m - i}}$

Optimal towers and basic inequality

Basic inequality

$$
\sum_{n \geq 1} \mu_{n} q^{n / 2} \leq 1
$$

Optimal towers and basic inequality

Basic inequality

$$
\sum_{n \geq 1} \mu_{n} q^{n / 2} \leq 1
$$

If $\mathcal{T} / \mathbb{F}_{q^{2}}$ is optimal then it implies that

$$
\mu_{m}=\mu_{1} \text { for all } m
$$

and

$$
Z_{\mathcal{T}}(t)=\frac{1}{(1-t)^{\sqrt{q}-1}}
$$

Optimal towers and basic inequality

Basic inequality

$$
\sum_{n \geq 1} \mu_{n} q^{n / 2} \leq 1
$$

If $\mathcal{T} / \mathbb{F}_{q^{2}}$ is optimal then it implies that

$$
\mu_{m}=\mu_{1} \text { for all } m
$$

and

$$
Z_{\mathcal{T}}(t)=\frac{1}{(1-t)^{\sqrt{q}-1}}
$$

Question

Does the equality $\sum_{n \geq 1} \mu_{n} q^{n / 2}=1$ imply $\mathcal{T} / \mathbb{F}_{q^{2}}$ is optimal?

Zeta functions of Galois closure of Garcia-Stichtenoth

 tower
Theorem

Let $\tilde{\mathcal{T}}=\left(\tilde{T}_{n}\right)_{n}$ is a Galois closure of the Garcia-Stichtenoth tower over $\mathbb{F}_{p^{2}}(p>2)$. Then for each m there exists $M(m)$ such that if $n \geq M(m)$ then

$$
N_{m}\left(\tilde{T}_{n}\right)=p^{3 n-4}-p^{3 n-5}+p^{2 n-5}+p^{2 n-6}
$$

Zeta functions of Galois closure of Garcia-Stichtenoth

 tower
Theorem

Let $\tilde{\mathcal{T}}=\left(\tilde{T}_{n}\right)_{n}$ is a Galois closure of the Garcia-Stichtenoth tower over $\mathbb{F}_{p^{2}}(p>2)$. Then for each m there exists $M(m)$ such that if $n \geq M(m)$ then

$$
N_{m}\left(\tilde{T}_{n}\right)=p^{3 n-4}-p^{3 n-5}+p^{2 n-5}+p^{2 n-6}
$$

Hence for each n there exists $N(n)$ such that
$\log Z_{\tilde{T}_{n}}=\sum_{m \geq 1}^{N(n)} \frac{p^{3 n-4}-p^{3 n-5}+p^{2 n-5}+p^{2 n-6}}{m} x^{m}+\sum_{m \geq N(n)} \frac{N_{m}\left(\tilde{T}_{n}\right)}{m} x^{m}$
and $N(n) \rightarrow \infty$ as $n \rightarrow \infty$

Thank your for your attention!

