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SECTION 1: BACKGROUND
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Coding channel

Channel with adversarial noise, i.e., the channel can

arbitrarily corrupt any subset of up to a certain number of

symbols of the codeword.
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Goal

Correct such errors and recover the original

message/codeword efficiently.
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Block Code

An error-correcting code C of block length N over a finite

alphabet Σ of size q is a subset of ΣN (one has to

establish a bijection between the message setM and C).
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Rate of a block code

Rate of C:

R := R(C) :=
logq |C|

N
=

logq |M|
N

.
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Maximal number of corrupted symbols

Information-theoretically: we need to receive at least

R × N = logq |M| symbols correctly in order to recover

the message.
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Maximal number of corrupted symbols

In other words, if we assume that the channel allows at

most τN errors, we must have N − τN ≥ RN, i.e.,

τ ≤ 1− R. (1)

This τ is called the decoding radius.
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Goal

Would like both R and τ to be large for a fixed alphabet

size

think of block length N →∞;

play a trade-off game between R and τ .
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Decoding strategy

The above trade-off game depends on our decoding

strategy.
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Communication model

c −→ Channel −→ u

↑

noise
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Decoding strategy

To recover c from u, we consider the intersection of the

code C with the following Hamming ball:

B(u, τN) := {x ∈ ΣN : dH(x,u) ≤ τN}.
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Decoding strategy

Claim: c must belong to this intersection!

&%
'$
•c

τN•
u

-B(u, τN)
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Uniquely decodable

A code C ⊆ FN
q is called "τ -uniquely decodable" if for

every vector u ∈ FN
q , the intersection C ∩ B(u, τN)

contains at most one codeword.

&%
'$
•c

τN•
u

-B(u, τN)
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Limit of unique decodability

If a code C ⊆ FN
q with minimum distance d is "τ -uniquely

decodable", then one has

τ ≤ (d − 1)/2N.
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Singleton bound

Every τ -uniquely decodable code satisfies

τ ≤ 1
2

(1− R).

This is just half of the limit (1)!
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Solution

Question: can we decode up to τN errors with τ close to

the limit 1− R?

Answer: possible if we consider list-decoding

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fields



Section 1: Background
Section 2: Known Results

Section 3: Main Result
Section 4: Function Fields from Class Fields

Solution

Question: can we decode up to τN errors with τ close to

the limit 1− R?

Answer: possible if we consider list-decoding

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fields



Section 1: Background
Section 2: Known Results

Section 3: Main Result
Section 4: Function Fields from Class Fields

List-decodable

For a positive integer L and real 0 < τ < 1, a code C ⊆ FN
q

is called "(τ, L)-list decodable" if for every vector u ∈ FN
q ,

the intersection C ∩ B(u, τN) contains at most L

codewords.

&%
'$
•c1··
•cL

τN•
u

-B(u, τN)
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Trade-off game

One can image that as the decoding radius increases, the

intersection C ∩ B(u, τN) becomes larger, i.e.,the list size

L becomes larger.
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Trade-off game

Trade-off: Optimize the rate R, decoding radius τ and list

size L!

Note that we want large rate R and decoding radius τ , but

small list size L.
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Additional requirements for list-decodable codes

small list size L (constant size or polynomial in code

length);

efficient method to find all codewords in the list.
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Performance of random codes (Peter Elias, 1991)

For given small ε > 0 and rate R ∈ (0,1), with high

probability a random code over alphabet with size

exp(O(1/ε)) has the following parameters:

Code length N: arbitrarily large and independent of ε

Decoding radius: 1− R − ε (close to the limit 1− R)

List size: O(1/ε) (constant)
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Problem for random codes

It is not known how to construct or even randomly sample

such a code for which the associated algorithmic task of

list decoding can be performed efficiently!
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Problem to be solved

Construct codes with efficient list decoding and good

parameters as random codes have!
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SECTION 2: KNOWN RESULTS
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Sudan’s list decoding of Reed-Solomon (RS) codes

Sudan

τ = 1−
√

R

Remark:

(i) It is between (1− R)/2 and 1− R;

(ii) Length N is at most alphabet size.
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Guruswami-Sudan’s list decoding of

algebraic-geometry (AG) codes

Guruswami-Sudan

τ = 1−
√

R

Remark:

(i) It is between (1− R)/2 and 1− R;

(ii) Length N is arbitrarily large.
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Guruswami-Rudra’s list decoding of folded RS codes

Guruswami-Rudra

τ = 1− R − ε

Remark:

(i) List size is O(N1/ε);

(ii) Length N is at most alphabet size.
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Guruswami-Rudra’s list decoding of folded RS codes

After pre-encoding (i.e., choose some subset of

polynomials with bounded degree), the list size can be

reduced to O(1/ε).
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Guruswami-X.’s list decoding of AG subcodes

Guruswami-X.

τ = 1− R − ε

Remark:

(i) List size is O(1/ε) (pre-encoding + Monte-Carlo);

(ii) Length N is arbitrarily large.

(iii) Alphabet size is Õ(exp(1/ε2)).
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Guruswami-X.’s list decoding of AG subcodes

As a result, Guruswami-X.’s list decoding of AG subcodes

achieves the performance of a random codes except for

(i) it is Monte-Carlo;

(ii) Alphabet size is slightly bigger than O(exp(1/ε)).
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Guruswami-Kopparty’s deterministic version

By removing random sampling in Guruswami-X.’s list

decoding of AG subcodes, Guruswami-Kopparty got a

deterministic version of list decoding of algebraic

geometry codes with

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fields



Section 1: Background
Section 2: Known Results

Section 3: Main Result
Section 4: Function Fields from Class Fields

Guruswami-Kopparty’s list decoding of AG subcodes

Guruswami-Kopparty.

τ = 1− R − ε

Remark:

(i) List size is O(1/ε) (pre-encoding );

(ii) Length N is arbitrarily large.

(iii) Alphabet size is polynomial in length.
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Guruswami-X.’s list decoding of folded AG codes

Guruswami-X.

τ = 1− R − ε

(i) List size is polynomial in length N (no pre-encoding,

no Monte-Carlo);

(ii) Length N is arbitrarily large.

(iii) Alphabet size is Õ(exp(1/ε2)).
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Guruswami-X.’s list decoding of folded AG codes

As a result, Guruswami-X.’s list decoding of folded AG

codes achieves the performance of a random codes

except for

(i) efficient encoding is needed;

(ii) Alphabet size is slightly bigger than O(exp(1/ε)).
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Guruswami-X.’s list decoding of folded AG codes

Remark:

(i) The underlying function field is constructed through

class field theory, need to get an efficient encoding.

(ii) As long as encoding is efficient, decoding is efficient

as well!
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Folded AG codes by Guruswami-X.

Let F/Fq be a function field and let σ be an automorphism

of F/Fq. Assume that we have mN rational places

P1,Pσ
1 , . . . ,P

σm−1

1 , . . . ,PN ,Pσ
N , . . . ,P

σm−1

N

with m ≈ Θ(1/ε2) and mN = N(F/Fq).
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Folded AG codes by Guruswami-X.

Let D be a divisor of F such that Dσ = D. Consider the

Riemann-Roch space L(D). Then

f σ
i ∈ L(D)

for any f ∈ L(D).
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Folded AG codes by Guruswami-X.

A function f ∈ L(D) is encoded to

π(f ) :=





f (P1)

f (Pσ
1 )

...

f (Pσm−1

1 )


, . . . ,



f (PN)

f (Pσ
N)

...

f (Pσm−1

N )




. (2)
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Interpolation equation

Assume that π(f ) is sent out, then f satisfies an equation

A0 + A1f + A2f σ + · · ·+ Asf σ
s−1

= 0, (3)

where s ≈ Θ(1/ε) and Ai are functions determined by

π(f ).
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List size

Thus, the list size is the number of solutions of (3).
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Conversion through Frobenius

Consider a cyclic extension F/L and assume that σ fixes

L, i.e., σ ∈ Gal(F/L). Furthermore, assume

(i) Q1, . . . ,Qt are places of F of degree r [F : L] that are

completely insert in F/L;

(ii) σ is the Frobebius of Qi for all 1 ≤ i ≤ t .
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Conversion through Frobenius

Equation (3) becomes

A0 + A1f + A2f qr
+ · · ·+ Asf qr(s−1) ≡ 0 mod Qi (4)

for i = 1,2, . . . , t .
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Conversion through Frobenius

By the Chinese Remainder Theorem, the list size is at

most

qrt(s−1)

if rt [F : L] > mN = N(F ) ≥ deg(D).
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List size

Conclusion: If rt is O(log N), then the list size is

polynomial in N!
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Decoding radius

The decoding radius satisfies

τ = 1− R − ε− g(F )

N(F )
,

where R is the rate of the folded code.
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Decoding radius

Assume that g(F )
N(F )
→ 1/qλ for some λ ∈ (0,1/2].

Conclusion: The decoding radius satisfies

τ = 1− R − ε

if we let q = (1/ε)1/λ.
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Code alphabet size

Conclusion: The code alphabet size is now

qm = q1/ε2 = (1/ε)O(1/ε2) = Õ(exp(1/ε2)).
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Construction of function fields

Thus, we need a function field F/Fq satisfying

(a) N(F )/g(F )→ 1/qλ for some λ ∈ (0,1/2].

(b) There exists a subfield L/Fq such that F/L is a cyclic

extension and [F : L] ≈ N/Θ(log N).

(c) Let rt = O(log N). There exist places Q1, . . . ,Qt of F

of degree r [F : L] that are completely insert in F/L

such that σ is the Frobebius of Qi for all 1 ≤ i ≤ t ;
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Construction of function fields

Part (c) is easily satisfied by the Chebotarev density

theorem which says:
The number of unramified places of L of degree r

with Frobenius equal to the generator of Gal(F/L)

is roughly qr/r [F : L].
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Construction of function fields

Question: How to construct a function field F/Fq

satisfying

(a) N(F )/g(F )→ 1/qλ for some λ ∈ (0,1/2].

(b) There exists a subfield L/Fq such that F/L is a cyclic

extension and [F : L] ≈ N/Θ(log N).
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SECTION 4: FUNCTION FIELDS FROM CLASS FIELDS
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Currently available function fields

All currently available function field towers are not

suitable:

(i) Garcia-Stichtenoth towers and their Galois closures;

(ii) Modular curves;

(iii) Class field towers.
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Construction

(i) Starting with any good tower or family {E/F`} such

that N(E)/g(E)→
√
`− 1. Put q = `2.
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Construction

(ii) Choose a place Q of degree e = Θ(N(E)) and

consider the narrow ray class field K/(Fq · E) with

conductor Q. Then K/H is a cyclic extension of

degree qe − 1, where H is the Hilbert class field of

K/(Fq · E).
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Construction

(iii) Take a subgroup G of Gal(K/(Fq · E)) such that

Gal(K/(Fq · E))/G is a cyclic group of order

(`e − 1)/(`− 1) such that G contains all places of E .

Then all place of E split completely in F , where

F = K G.
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Construction

(iv) It can be easily shown that if e/g(E)→ 2c, then

N(F )/g(F )→
√
`− 1

1 + c
=

q0.25 − 1
1 + c

.
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Construction

Conclusion: we have a function field family {F/Fq} such

that

(i) N(F )/g(F )→ qλ for some λ ∈ (0,1/2].

(ii) Let L = Fq · E . Let N = ε2N(F ) = Θ(e[F : L]) be our

code length. Then F/L is a cyclic extension and

[F : L] = N/Θ(log N).
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THANKS!
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