Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fields

Xing Chaoping (NTU)

Joint Work with Venkat Guruswami (CMU)

to appear in SODA 2014

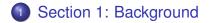
Nov 11, 2013

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト 不得 とくほと くほとう

E DQC

Outline



2 Section 2: Known Results

Section 3: Main Result

4 Section 4: Function Fields from Class Fields

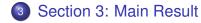
Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

4 Section 4: Function Fields from Class Fields

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト



Section 4: Function Fields from Class Fields

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

3 Section 3: Main Result

Section 4: Function Fields from Class Fields 4

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

э.

SECTION 1: BACKGROUND

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Coding channel

Channel with adversarial noise, i.e., the channel can arbitrarily corrupt any subset of up to a certain number of symbols of the codeword.

くロト (過) (目) (日)

Correct such errors and recover the original

message/codeword efficiently.

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

An error-correcting code *C* of block length *N* over a finite alphabet Σ of size *q* is a subset of Σ^N (one has to establish a bijection between the message set \mathcal{M} and *C*).

イロト 不得 とくほと くほとう

E DQC

Rate of a block code

Rate of C:

$$R := R(C) := rac{\log_q |C|}{N} = rac{\log_q |\mathcal{M}|}{N}.$$

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

<ロト <回 > < 注 > < 注 > 、

E DQC

Maximal number of corrupted symbols

Information-theoretically: we need to receive at least

 $R \times N = \log_q |\mathcal{M}|$ symbols correctly in order to recover the message.

(ロ) (同) (三) (三) (三) (○)

Maximal number of corrupted symbols

In other words, if we assume that the channel allows at

most τN errors, we must have $N - \tau N \ge RN$, i.e.,

$$\tau \le \mathbf{1} - \mathbf{R}.\tag{1}$$

This τ is called the decoding radius.

イロン 不同 とくほ とくほ とう

Maximal number of corrupted symbols

In other words, if we assume that the channel allows at

most τN errors, we must have $N - \tau N \ge RN$, i.e.,

$$\tau \le \mathbf{1} - \mathbf{R}.\tag{1}$$

This τ is called the decoding radius.

イロト 不得 とくほ とくほとう

э.

Would like both R and τ to be large for a fixed alphabet size

- think of block length $N \to \infty$;
- play a trade-off game between R and τ .

ヘロト 人間 とくほとくほとう

E DQC

Would like both R and τ to be large for a fixed alphabet size

- think of block length $N \to \infty$;
- play a trade-off game between R and τ .

ヘロト 人間 とくほとくほとう

∃ <2 <</p>

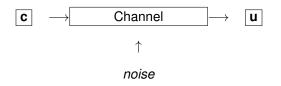
Decoding strategy

The above trade-off game depends on our decoding strategy.

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

Communication model



Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

ヘロト 人間 とくほとくほとう

E DQC

Decoding strategy

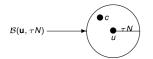
To recover **c** from **u**, we consider the intersection of the code C with the following Hamming ball:

$$\mathcal{B}(\mathbf{u}, \tau \mathbf{N}) := \{\mathbf{x} \in \Sigma^{\mathbf{N}} : d_{\mathcal{H}}(\mathbf{x}, \mathbf{u}) \leq \tau \mathbf{N}\}.$$

・ロト ・ ア・ ・ ヨト ・ ヨト

Decoding strategy

Claim: c must belong to this intersection!

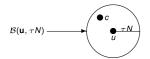


イロト イポト イヨト イヨト

Uniquely decodable

A code $C \subseteq \mathbb{F}_q^N$ is called " τ -uniquely decodable" if for every vector $\mathbf{u} \in \mathbb{F}_q^N$, the intersection $C \cap \mathcal{B}(\mathbf{u}, \tau N)$

contains at most one codeword.



<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Limit of unique decodability

If a code $C \subseteq \mathbb{F}_q^N$ with minimum distance d is " τ -uniquely decodable", then one has

$$au \leq (d-1)/2N.$$

ヘロン 人間 とくほ とくほ とう

э.

Singleton bound

Every τ -uniquely decodable code satisfies

$$\tau \leq \frac{1}{2}(1-R).$$

This is just half of the limit (1)!

イロト イポト イヨト イヨト

Question: can we decode up to τN errors with τ close to the limit 1 - R?

Answer: possible if we consider list-decoding

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

э.

Question: can we decode up to τN errors with τ close to the limit 1 - R?

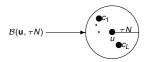
Answer: possible if we consider list-decoding

イロト イポト イヨト イヨト

E DQC

List-decodable

For a positive integer *L* and real $0 < \tau < 1$, a code $C \subseteq \mathbb{F}_q^N$ is called " (τ, L) -list decodable" if for every vector $\mathbf{u} \in \mathbb{F}_q^N$, the intersection $C \cap \mathcal{B}(\mathbf{u}, \tau N)$ contains at most *L* codewords.



<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Trade-off game

One can image that as the decoding radius increases, the intersection $C \cap \mathcal{B}(\mathbf{u}, \tau N)$ becomes larger, i.e., the list size

L becomes larger.

・ロト ・ ア・ ・ ヨト ・ ヨト

Trade-off game

Trade-off: Optimize the rate *R*, decoding radius τ and list size *L*!

Note that we want large rate R and decoding radius au, but small list size L.

イロト イポト イヨト イヨト

Trade-off game

Trade-off: Optimize the rate *R*, decoding radius τ and list size *L*!

Note that we want large rate *R* and decoding radius τ , but small list size *L*.

イロト イポト イヨト イヨト

Additional requirements for list-decodable codes

- small list size L (constant size or polynomial in code length);
- efficient method to find all codewords in the list.

イロト イポト イヨト イヨト

Additional requirements for list-decodable codes

- small list size L (constant size or polynomial in code length);
- efficient method to find all codewords in the list.

イロト イポト イヨト イヨト

Performance of random codes (Peter Elias, 1991)

For given small $\epsilon > 0$ and rate $R \in (0, 1)$, with high

probability a random code over alphabet with size

 $\exp(O(1/\epsilon))$ has the following parameters:

Code length N:	arbitrarily large and independent of ϵ
Decoding radius:	$1 - R - \epsilon$ (close to the limit $1 - R$)
List size:	$O(1/\epsilon)$ (constant)

ヘロト ヘアト ヘビト ヘビト

э.

Problem for random codes

It is not known how to construct or even randomly sample such a code for which the associated algorithmic task of list decoding can be performed efficiently!

イロト イポト イヨト イヨト

Problem to be solved

Construct codes with efficient list decoding and good

parameters as random codes have!

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

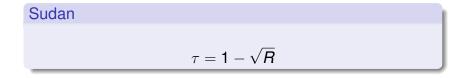
э.

SECTION 2: KNOWN RESULTS

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Sudan's list decoding of Reed-Solomon (RS) codes



Remark:

(i) It is between (1 - R)/2 and 1 - R;

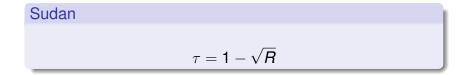
(ii) Length *N* is at most alphabet size.

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

ヘロト 人間 とくほとくほとう

E DQC

Sudan's list decoding of Reed-Solomon (RS) codes



Remark:

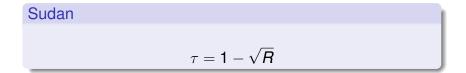
(i) It is between (1 - R)/2 and 1 - R;

(ii) Length *N* is at most alphabet size.

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Sudan's list decoding of Reed-Solomon (RS) codes



Remark:

(i) It is between (1 - R)/2 and 1 - R;

(ii) Length *N* is at most alphabet size.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Guruswami-Sudan's list decoding of

algebraic-geometry (AG) codes

Guruswami-Sudan

$$au = \mathbf{1} - \sqrt{R}$$

Remark:

(i) It is between (1 - R)/2 and 1 - R;

(ii) Length *N* is arbitrarily large.

Xing Chaoping (NTU)

Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Guruswami-Sudan's list decoding of

algebraic-geometry (AG) codes

Guruswami-Sudan

$$\tau = \mathbf{1} - \sqrt{R}$$

Remark:

(i) It is between (1 - R)/2 and 1 - R;

(ii) Length *N* is arbitrarily large.

Xing Chaoping (NTU)

Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Guruswami-Sudan's list decoding of

algebraic-geometry (AG) codes

Guruswami-Sudan

$$au = \mathbf{1} - \sqrt{R}$$

Remark:

(i) It is between (1 - R)/2 and 1 - R;

(ii) Length *N* is arbitrarily large.

Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Guruswami-Rudra's list decoding of folded RS codes

Guruswami-Rudra

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

Remark:

(i) List size is $O(N^{1/\epsilon})$;

(ii) Length *N* is at most alphabet size.

ヘロト ヘアト ヘビト ヘビト

Guruswami-Rudra's list decoding of folded RS codes

Guruswami-Rudra

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

Remark:

(i) List size is $O(N^{1/\epsilon})$;

(ii) Length *N* is at most alphabet size.

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

Guruswami-Rudra's list decoding of folded RS codes

Guruswami-Rudra

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

Remark:

(i) List size is $O(N^{1/\epsilon})$;

(ii) Length *N* is at most alphabet size.

イロト イポト イヨト イヨト

Guruswami-Rudra's list decoding of folded RS codes

After pre-encoding (i.e., choose some subset of polynomials with bounded degree), the list size can be reduced to $O(1/\epsilon)$.

<□> <同> <同> <三> <三> <三> <三> <三> <三> <○<

Guruswami-X.'s list decoding of AG subcodes

Guruswami-X.

$\tau = \mathbf{1} - \mathbf{R} - \epsilon$

Remark:

(i) List size is $O(1/\epsilon)$ (pre-encoding + Monte-Carlo);

(ii) Length *N* is arbitrarily large.

(iii) Alphabet size is $\tilde{O}(\exp(1/\epsilon^2))$.

イロト イポト イヨト イヨト

Guruswami-X.'s list decoding of AG subcodes

Guruswami-X.

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

Remark:

(i) List size is $O(1/\epsilon)$ (pre-encoding + Monte-Carlo);

(ii) Length *N* is arbitrarily large.

(iii) Alphabet size is $\tilde{O}(\exp(1/\epsilon^2))$.

イロト 不得 とくほ とくほとう

3

Guruswami-X.'s list decoding of AG subcodes

Guruswami-X.

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

Remark:

(i) List size is $O(1/\epsilon)$ (pre-encoding + Monte-Carlo);

(ii) Length *N* is arbitrarily large.

iii) Alphabet size is $\tilde{O}(\exp(1/\epsilon^2))$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Guruswami-X.'s list decoding of AG subcodes

Guruswami-X.

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

Remark:

(i) List size is $O(1/\epsilon)$ (pre-encoding + Monte-Carlo);

(ii) Length *N* is arbitrarily large.

(iii) Alphabet size is $\tilde{O}(\exp(1/\epsilon^2))$.

ヘロト ヘアト ヘビト ヘビト

3

Guruswami-X.'s list decoding of AG subcodes

As a result, Guruswami-X.'s list decoding of AG subcodes

achieves the performance of a random codes except for

(i) it is Monte-Carlo;

(ii) Alphabet size is slightly bigger than $O(\exp(1/\epsilon))$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Guruswami-X.'s list decoding of AG subcodes

As a result, Guruswami-X.'s list decoding of AG subcodes achieves the performance of a random codes except for

(i) it is Monte-Carlo;

(ii) Alphabet size is slightly bigger than $O(\exp(1/\epsilon))$.

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト 不得 とくほ とくほ とう

Guruswami-X.'s list decoding of AG subcodes

As a result, Guruswami-X.'s list decoding of AG subcodes

achieves the performance of a random codes except for

(i) it is Monte-Carlo;

(ii) Alphabet size is slightly bigger than $O(\exp(1/\epsilon))$.

ヘロト ヘアト ヘビト ヘビト

Guruswami-Kopparty's deterministic version

By removing random sampling in Guruswami-X.'s list decoding of AG subcodes, Guruswami-Kopparty got a deterministic version of list decoding of algebraic geometry codes with

ヘロト ヘアト ヘビト ヘビト

Guruswami-Kopparty's list decoding of AG subcodes

Guruswami-Kopparty.

$\tau = \mathbf{1} - \mathbf{R} - \epsilon$

Remark:

(i) List size is $O(1/\epsilon)$ (pre-encoding);

(ii) Length *N* is arbitrarily large.

Guruswami-Kopparty's list decoding of AG subcodes

Guruswami-Kopparty.

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

Remark:

(i) List size is $O(1/\epsilon)$ (pre-encoding);

(ii) Length *N* is arbitrarily large.

Guruswami-Kopparty's list decoding of AG subcodes

Guruswami-Kopparty.

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

Remark:

- (i) List size is $O(1/\epsilon)$ (pre-encoding);
- (ii) Length *N* is arbitrarily large.

Guruswami-Kopparty's list decoding of AG subcodes

Guruswami-Kopparty.

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

Remark:

- (i) List size is $O(1/\epsilon)$ (pre-encoding);
- (ii) Length *N* is arbitrarily large.

SECTION 3: MAIN RESULT

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Guruswami-X.'s list decoding of folded AG codes

Guruswami-X.

$\tau = \mathbf{1} - \mathbf{R} - \epsilon$

(i) List size is polynomial in length N (no pre-encoding,

no Monte-Carlo);

(ii) Length *N* is arbitrarily large.

(iii) Alphabet size is $\tilde{O}(\exp(1/\epsilon^2))$.

イロト イポト イヨト イヨト

Guruswami-X.'s list decoding of folded AG codes

Guruswami-X.

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

(i) List size is polynomial in length *N* (no pre-encoding, no Monte-Carlo);

(ii) Length *N* is arbitrarily large.

(iii) Alphabet size is $\tilde{O}(\exp(1/\epsilon^2))$.

イロト イポト イヨト イヨト

ъ

Guruswami-X.'s list decoding of folded AG codes

Guruswami-X.

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

(i) List size is polynomial in length N (no pre-encoding,

no Monte-Carlo);

(ii) Length *N* is arbitrarily large.

(iii) Alphabet size is $\tilde{O}(\exp(1/\epsilon^2))$.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Guruswami-X.'s list decoding of folded AG codes

Guruswami-X.

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

(i) List size is polynomial in length N (no pre-encoding,

no Monte-Carlo);

(ii) Length *N* is arbitrarily large.

(iii) Alphabet size is $\tilde{O}(\exp(1/\epsilon^2))$.

イロト イポト イヨト イヨト

Guruswami-X.'s list decoding of folded AG codes

As a result, Guruswami-X.'s list decoding of folded AG codes achieves the performance of a random codes except for

(i) efficient encoding is needed;

(ii) Alphabet size is slightly bigger than $O(\exp(1/\epsilon))$.

イロト 不得 とくほと くほとう

æ –

Guruswami-X.'s list decoding of folded AG codes

As a result, Guruswami-X.'s list decoding of folded AG

codes achieves the performance of a random codes except for

(i) efficient encoding is needed;

(ii) Alphabet size is slightly bigger than $O(\exp(1/\epsilon))$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Guruswami-X.'s list decoding of folded AG codes

As a result, Guruswami-X.'s list decoding of folded AG

codes achieves the performance of a random codes except for

(i) efficient encoding is needed;

(ii) Alphabet size is slightly bigger than $O(\exp(1/\epsilon))$.

イロト イポト イヨト イヨト

Guruswami-X.'s list decoding of folded AG codes

Remark:

(i) The underlying function field is constructed through class field theory, need to get an efficient encoding.
(ii) As long as encoding is efficient, decoding is efficient

イロト 不得 とくほ とくほとう

Guruswami-X.'s list decoding of folded AG codes

Remark:

(i) The underlying function field is constructed through class field theory, need to get an efficient encoding.(ii) As long as encoding is efficient, decoding is efficient

as well!

ヘロト 人間 ト ヘヨト ヘヨト

Folded AG codes by Guruswami-X.

Let F/\mathbb{F}_q be a function field and let σ be an automorphism of F/\mathbb{F}_q . Assume that we have *mN* rational places

$$P_1, P_1^{\sigma}, \ldots, P_1^{\sigma^{m-1}}, \ldots, P_N, P_N^{\sigma}, \ldots, P_N^{\sigma^{m-1}}$$

with $m \approx \Theta(1/\epsilon^2)$ and $mN = N(F/\mathbb{F}_q)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Folded AG codes by Guruswami-X.

Let *D* be a divisor of *F* such that $D^{\sigma} = D$. Consider the

Riemann-Roch space $\mathcal{L}(D)$. Then

$$f^{\sigma^i} \in \mathcal{L}(D)$$

for any $f \in \mathcal{L}(D)$.

<□> <同> <同> <三> <三> <三> <三> <三> <三> <○<

Folded AG codes by Guruswami-X.

A function $f \in \mathcal{L}(D)$ is encoded to

$$\pi(f) := \left(\begin{bmatrix} f(P_1) \\ f(P_1^{\sigma}) \\ \vdots \\ f(P_1^{\sigma^{m-1}}) \end{bmatrix}, \dots, \begin{bmatrix} f(P_N) \\ f(P_N^{\sigma}) \\ \vdots \\ f(P_N^{\sigma^{m-1}}) \end{bmatrix} \right).$$
(2)

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

Interpolation equation

Assume that $\pi(f)$ is sent out, then *f* satisfies an equation

$$A_0 + A_1 f + A_2 f^{\sigma} + \dots + A_s f^{\sigma^{s-1}} = 0, \qquad (3)$$

where $s \approx \Theta(1/\epsilon)$ and A_i are functions determined by $\pi(f)$.

<□> <同> <同> <三> <三> <三> <三> <三> <三> <○<

Thus, the list size is the number of solutions of (3).

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

3

Conversion through Frobenius

Consider a cyclic extension F/L and assume that σ fixes

L, i.e., $\sigma \in \text{Gal}(F/L)$. Furthermore, assume

(i) Q₁,..., Q_t are places of F of degree r[F : L] that are completely insert in F/L;

(ii) σ is the Frobebius of Q_i for all $1 \le i \le t$.

Conversion through Frobenius

Equation (3) becomes

$$A_0 + A_1 f + A_2 f^{q'} + \dots + A_s f^{q^{r(s-1)}} \equiv 0 \mod Q_i$$
 (4)

for i = 1, 2, ..., t.

Conversion through Frobenius

By the Chinese Remainder Theorem, the list size is at most

$$q^{rt(s-1)}$$

if
$$rt[F:L] > mN = N(F) \ge \deg(D)$$
.

くロト (過) (目) (日)

æ

Conclusion: If rt is $O(\log N)$, then the list size is

polynomial in N!

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

E DQC

Decoding radius

The decoding radius satisfies

$$\tau = 1 - R - \epsilon - \frac{g(F)}{N(F)},$$

where *R* is the rate of the folded code.

イロト イポト イヨト イヨト

Decoding radius

Assume that
$$\frac{g(F)}{N(F)} \rightarrow 1/q^{\lambda}$$
 for some $\lambda \in (0, 1/2]$.

Conclusion: The decoding radius satisfies

$$\tau = \mathbf{1} - \mathbf{R} - \epsilon$$

if we let $q = (1/\epsilon)^{1/\lambda}$.

<□> <同> <同> <三> <三> <三> <三> <三> <三> <○<

Code alphabet size

Conclusion: The code alphabet size is now

$$q^m = q^{1/\epsilon^2} = (1/\epsilon)^{O(1/\epsilon^2)} = ilde{O}(\exp(1/\epsilon^2)).$$

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

Construction of function fields

Thus, we need a function field F/\mathbb{F}_q satisfying

- (a) $N(F)/g(F) \rightarrow 1/q^{\lambda}$ for some $\lambda \in (0, 1/2]$.
- (b) There exists a subfield L/\mathbb{F}_q such that F/L is a cyclic

extension and $[F: L] \approx N/\Theta(\log N)$.

(c) Let $rt = O(\log N)$. There exist places Q_1, \ldots, Q_t of F

of degree r[F:L] that are completely insert in F/L

such that σ is the Frobebius of Q_i for all $1 \leq i \leq t_i$, z = 2000

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fig

Construction of function fields

Thus, we need a function field *F*/𝔽_q satisfying
(a) *N*(*F*)/*g*(*F*) → 1/*q*^λ for some λ ∈ (0, 1/2].
(b) There exists a subfield *L*/𝔽_q such that *F*/*L* is a cyclic extension and [*F* : *L*] ≈ *N*/Θ(log *N*).

(c) Let $rt = O(\log N)$. There exist places Q_1, \ldots, Q_t of F

of degree r[F:L] that are completely insert in F/L

such that σ is the Frobebius of Q_i for all $1 \leq i \leq t_i$, z = 2000

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

Construction of function fields

Thus, we need a function field F/\mathbb{F}_q satisfying

(a) $N(F)/g(F) \rightarrow 1/q^{\lambda}$ for some $\lambda \in (0, 1/2]$.

(b) There exists a subfield L/\mathbb{F}_q such that F/L is a cyclic extension and $[F : L] \approx N/\Theta(\log N)$.

(c) Let $rt = O(\log N)$. There exist places Q_1, \ldots, Q_t of F

of degree r[F:L] that are completely insert in F/L

such that σ is the Frobebius of Q_i for all $1 \leq i \leq t_i$, z = 2000

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

Construction of function fields

- Thus, we need a function field F/\mathbb{F}_q satisfying
- (a) $N(F)/g(F) \rightarrow 1/q^{\lambda}$ for some $\lambda \in (0, 1/2]$.
- (b) There exists a subfield L/\mathbb{F}_q such that F/L is a cyclic extension and $[F : L] \approx N/\Theta(\log N)$.

(c) Let $rt = O(\log N)$. There exist places Q_1, \ldots, Q_t of F

of degree r[F:L] that are completely insert in F/L

such that σ is the Frobebius of Q_i for all $1 \le i \le t$;

Construction of function fields

Part (c) is easily satisfied by the Chebotarev density

theorem which says:

The number of unramified places of L of degree r

with Frobenius equal to the generator of Gal(F/L)

is roughly $q^r/r[F:L]$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Construction of function fields

Question: How to construct a function field F/\mathbb{F}_q

satisfying

(a) $N(F)/g(F) \rightarrow 1/q^{\lambda}$ for some $\lambda \in (0, 1/2]$.

(b) There exists a subfield L/\mathbb{F}_q such that F/L is a cyclic extension and $[F : L] \approx N/\Theta(\log N)$.

SECTION 4: FUNCTION FIELDS FROM CLASS FIELDS

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

イロト イポト イヨト イヨト

E DQC

Currently available function fields

All currently available function field towers are not suitable:

(i) Garcia-Stichtenoth towers and their Galois closures;

(ii) Modular curves;

(iii) Class field towers.

イロト イポト イヨト イヨト

Currently available function fields

All currently available function field towers are not suitable:

- (i) Garcia-Stichtenoth towers and their Galois closures;
- (ii) Modular curves;

(iii) Class field towers.

イロト イポト イヨト イヨト

Currently available function fields

All currently available function field towers are not suitable:

- (i) Garcia-Stichtenoth towers and their Galois closures;
- (ii) Modular curves;
- (iii) Class field towers.

・ 同 ト ・ ヨ ト ・ ヨ ト

Currently available function fields

All currently available function field towers are not suitable:

- (i) Garcia-Stichtenoth towers and their Galois closures;
- (ii) Modular curves;
- (iii) Class field towers.

・ 同 ト ・ ヨ ト ・ ヨ ト

Construction

(i) Starting with any good tower or family $\{E/\mathbb{F}_{\ell}\}$ such that $N(E)/g(E) \rightarrow \sqrt{\ell} - 1$. Put $q = \ell^2$.

Construction

(ii) Choose a place *Q* of degree *e* = Θ(*N*(*E*)) and consider the narrow ray class field *K*/(𝔽_{*q*} · *E*) with conductor *Q*. Then *K*/*H* is a cyclic extension of degree *q^e* − 1, where *H* is the Hilbert class field of *K*/(𝔽_{*q*} · *E*).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Construction

(iii) Take a subgroup *G* of $\operatorname{Gal}(K/(\mathbb{F}_q \cdot E))$ such that $\operatorname{Gal}(K/(\mathbb{F}_q \cdot E))/G$ is a cyclic group of order $(\ell^e - 1)/(\ell - 1)$ such that *G* contains all places of *E*. Then all place of *E* split completely in *F*, where $F = K^G$.

Construction

(iv) It can be easily shown that if $e/g(E) \rightarrow 2c$, then

$$N(F)/g(F) o rac{\sqrt{\ell}-1}{1+c} = rac{q^{0.25}-1}{1+c}.$$

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Construction

Conclusion: we have a function field family $\{F/\mathbb{F}_q\}$ such that

(i)
$$N(F)/g(F) \rightarrow q^{\lambda}$$
 for some $\lambda \in (0, 1/2]$.

(ii) Let $L = \mathbb{F}_q \cdot E$. Let $N = \epsilon^2 N(F) = \Theta(e[F:L])$ be our

code length. Then F/L is a cyclic extension and

 $[F:L] = N/\Theta(\log N).$

THANKS!

Xing Chaoping (NTU) Optimal Rate Algebraic List Decoding Using Narrow Ray Class Fi

ヘロト 人間 とくほとくほとう