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We may understand by class field theory as the study of abelian
extensions of global and local fields. In some sense, the simplest

~ object of these two families of fields is the field of rational

The masximal numbers Q. Therefore, one of the objectives in class field

- theory is to take care of the maximal abelian extension of Q.

Introduction

WVitt vectors
and the

conductor

u]
o)
I
i
!




RICAM

SALVADOR

Introduction

Cyclotomic
function fields

The maximal
abelian
extension of
the rational
function field

The proof of
David Hayes

Witt vectors
and the
conductor

The
Kronecker—
Weber—Hayes
Theorem

Bibliography

Introduction

We may understand by class field theory as the study of abelian
extensions of global and local fields. In some sense, the simplest
object of these two families of fields is the field of rational
numbers Q. Therefore, one of the objectives in class field
theory is to take care of the maximal abelian extension of Q.
The first one to study the maximal abelian extension of Q as
such was Leopold Kronecker in 1853 [1]. He claimed that every
finite abelian extension of Q was contained in a cyclotomic
field Q(¢,) for some n € N. The proof of Kronecker was not
complete as he himself was aware.
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Introduction [3]. Weber's proof was also incomplete but the gap was not
Cyclotomic noticed up to more than ninety years later by Olaf Neuman [3].
~ The result is now known as the Kronecker—Weber Theorem.
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Number fields

Henrich Weber provided a proof of Kronecker's result in 1886
[3]. Weber's proof was also incomplete but the gap was not
noticed up to more than ninety years later by Olaf Neuman [3].
The result is now known as the Kronecker—Weber Theorem.
David Hilbert gave a new proof of Kronecker's original
statement in 1896 [4]. This was the first correct complete
proof of the theorem. However, as we mention above, Hilbert
was not aware of Weber's gap. Because of this some people
call the result the Kronecker—Weber—Hilbert Theorem.
Hilbert's Twelfth Problem is precisely to extend the
Kronecker—Weber Theorem to any base number field.
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elements k =y (7).

fields is to find explicitly the maximal abelian extension of a
rational function field with field of constants the finite field of ¢
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Congruence function fields

The analogue of the Kronecker—-Weber Theorem for function
fields is to find explicitly the maximal abelian extension of a
rational function field with field of constants the finite field of ¢
elements k = (7).

One natural question here is if there exist something similar to
cyclotomic fields in the case of function fields. Note that in full
generality we have “cyclotomic’ extensions of an arbitrary base
field F', namely, F'((,) where ¢, denotes a generator of the
group W,, = {¢£ € F | " = 1}, F denoting a fixed algebraic
closure of F'. However, in our case, k((,)/k is just an
extension of constants.
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Cyclotomic

Leonard Carlitz established an analogue of cyclotomic number
fields to the case of function fields. David Hayes [3] developed
= the ideas of Carlitz and he was able to describe explicitly the

S maximal abelian extension A of k.
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Leonard Carlitz established an analogue of cyclotomic number
fields to the case of function fields. David Hayes [3] developed
the ideas of Carlitz and he was able to describe explicitly the
maximal abelian extension A of k. His result says that the
maximal abelian extension of the rational function field Fy(T")
is the composite of three pairwise linearly disjoint extensions.
Hayes' description of A is analogous to the Kronecker—Weber
Theorem. Hayes' approach to find A is the use of the
Artin—Takagi reciprocity law in class field theory.
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Introduction Hayes' result. The main tools of this description is based on
Cyclotomic the Artin—Schreier—Witt theory of p—cyclic extensions of fields
~ of characteristic p and particularly the arithmetic of these
extensions developed by Ernest Witt and Hermann Ludwig
Schmid [2].
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Congruence function fields 3

The main purpose of this talk is to present another approach to
Hayes' result. The main tools of this description is based on
the Artin—Schreier-Witt theory of p—cyclic extensions of fields
of characteristic p and particularly the arithmetic of these
extensions developed by Ernest Witt and Hermann Ludwig
Schmid [2]. We may say that this approach is of combinatorial
nature since, based on the results of Witt and Schmid, we
compare the number of certain class of cyclic extensions with
the number of such extensions contained in A. We find then
that these two numbers are the same and from here the result
follows.
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function fieds.
Let 7" be a transcendental fixed element over the finite field of
q elements F, and consider k := (7). Here the pole divisor
Poo Of T in k is called the infinite prime. Let Ry = Fy[T| be
the ring of polynomials in 7. Here k plays the role of Q and
Rt the role of Z.
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We present the basic properties of the Carlitz—Hayes cyclotomic
function fieds.

Let 7" be a transcendental fixed element over the finite field of
q elements F, and consider k := (7). Here the pole divisor
Poo of T in k is called the infinite prime. Let Ry :=Fy[T] be
the ring of polynomials in 7. Here k plays the role of Q and
R the role of Z.

Since the field & consists of two parts: F, and T', we consider
two special elements of Endg, (k): the Frobenius
automorphism ¢ of k/F,, and p multiplication by 7'. More

precisely, let o, ur € Endg, (k) be given by

o:k=k ur: k—k
u — u? u — Tu.
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ring homomorphism R i> End]Fq(l_c)

— @+ ur In M gives a
E(M(T)) = M (¢ + pr). Thatis, if u € k and M € Ry, then
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For any M € Ry, the substitution 7" — ¢ + ur in M gives a

ring homomorphism R i> End]Fq(l_c), ~
E(M(T)) = M(¢+ pr). Thatis, if u € k and M € Ry, then

E(M)(u) = aa(w + pr)¥(u) + - + ar(p + pr)(u) + agu

where M (T) = agT% +---a1T + ap. In this way k becomes an
Rp—module. The action is denoted as follows: if M € Ry and
u€k, Mou=E&M)(u) :=uM.
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This action of Ry on k is the analogue of the action of Z on

Q*: neZ, xeQ* nox:= 2" Of course the action of Ry is
an additive action on k and Z acts multiplicatively on Q*.
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Introduction This action of Rr on k is the analogue of the action of Z on

Cyclotomic Q*: neZ, x e QF now:= 2™. Of course the action 9f Rr is
- an additive action on k and Z acts multiplicatively on Q*.
- The analogy of tbese two actions runs as follows. If M € Ry,
e let Ay = {u_e k| u™ = 0} which is analogous to

- Ay i={z € Q* | 2™ =1}, m € Z. We have that Ay is an
David Hayes Rp—cyclic module. Indeed we have Ay = Ry /(M) as

W Rr-modules. A fixed generator of Aj; will be denoted by \j;.
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extension with Galois group G := Gal(

ke /k) = (R /(M)

the multiplicative group of invertible elements of Ry /(M).
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Cydlatomic the multiplicative group of invertible elements of Ry /(M).

Thus

The maximal

ks : k] = |Gue| = |(Rr/(M))7| = ®(M).
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Let ks := k(Apr) = k(Aar). Then kpr/k is an abelian
extension with Galois group Gy := Gal(ka/k) = (Rr/(M))”
the multiplicative group of invertible elements of Ry /(M).
Thus

[k 2 k] = |G| = |(Rr/(M))"| =: &(M).
We have that ®(M) is a multiplicative function:
O(MN) = ®(M)®(N) for M, N € Ry with ged(M, N) = 1.

If P € Ry is an irreducible polynomial and n € N we have
q)(Pn) _ qnd _ q(n—l)d _ q(n—l)d(qd _ 1).

11 /53



Cyclotomic function fields 5

GABRIEL
ViLLA

SALVADOR

Cyclotomic
function fields

12/53



rYerYyY] Cyclotomic function fields 5

GABRIEL
VILLA
SALVADOR

Introduction

Cyclotomic
function fields

The maximal
abelian
extension of
the rational
function field

The proof of

David Hayes

Witt vectors
and the
conductor

The
Kronecker—
Weber—Hayes
Theorem

Bibliography

The ramification in the extension kjs/k when M = P™ is given
by the following result.

Theorem

If M = P™ with P an irreducible polynomial in Ry, then P is
fully ramified in kpn /k. We have

®(P") =ep = [kpn : k] = ¢ De(¢? — 1), where d = deg P.
Any other finite prime in k is unramified in kpn /k.

IfP:poo: €p = €0 = €p, =q—1, fP:foo:fpoo =1,

hp = heo = hp,, = ®(M)/(q —1).

The extension kpn /k is a geometric extension, that is, the field
of constants of kpn is F, and every subextension k ; K C kpn
is ramified. O

12/53
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' fields, is the behavior of pu in any ks /k where always
oo = q— 1 and fo, = 1. In particular p is always tamely
ramified. Furthermore, for any subextension L/K with

k C K C L C kys for some M € Ry, if the prime divisors of K
dividing poo are unramified, then they are fully decomposed.
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Cyclotomic Let A be the maximal abelian extension of k. The expression

- of Acan be given explicitly, namely, A is explicitly generated
Toaimel for suitable finite extensions of k, each one of which is
he ratons! generated by roots of an explicit polynomial. Indeed A is the

function field

composite of three pairwise linearly disjoint extensions E/k,
k(T)/k and koo/k.
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- E/k: Consider the usual cyclotomic extensions of k, that is,
Cyclotomic the constant extensions of k. So E = |5~ Fgn(T'). We have

function fields

The maximal ~ A ~

elelfer Gp:=Gal(E/k)=Z= H L,
extension of

the rational p prime
function field

where Z is the Priifer ring and Z,, p a prime number, is the
ring of p—adic numbers. We have that E/k is an unramified
extension.
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k(ry/k: Now we consider all the Carlitz—Hayes cyclotomic

. function fields with respect poo, k(1) := Uprep, k. We have
abelian
extension of .
s, Gr = Gal(kr) /k) = Mlg (Rr/(M))".
T
=} = = = 9ac
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and there exist abelian extensions K /k where po is wildly

S ramified. For instance, consider K = k(y) where y? —y =T.

~ Then K/k is a cyclic extension of degree p, where p is the

e characteristic of k and po is the only ramified prime in K/k
and it is wildly ramified.
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be the maximal one since p is tamely ramified in Ek(7)/k

koo/k: The field Ekp) is an abelian extension of £ but can not

and there exist abelian extensions K /k where p is wildly
ramified. For instance, consider K = k(y) where y? —y =T,
Then K/k is a cyclic extension of degree p, where p is the
characteristic of k and po is the only ramified prime in K/k
and it is wildly ramified.

We change our “variable” T for T' = 1/T and we now consider
the cyclotomic function fields corresponding to the variable 7"
instead of T". Namely

kay =kamy = |J k@), Rp=TFgT].
M'eRpy

17/53
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- We have that k() shares much with k(7). For instance, if

abelian — D _ _ T2+T+1
e:telnsion of q=p,Dp >3 and z z = (T+1)(T+2)' then

the rational

function field K o= k(Z) g k(T) N k(T’)

o = = = = 9ac
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k‘(T), consider Ly := U k:(A(T/)m) (In)LT//k; the only
ramified primes are poo, wh|ch is totally ramified, and the prime
po corresponding to the cero divisor of T. The prime pg is now
the infinite prime in k(7/y and it is tamely ramified with

ramification index ¢ — 1.
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In order to find some subextension of k(7 linearly disjoint to
k(T), consider L+ := Uf:;zl k(A(T/)m). In LT//]C the only
ramified primes are po, which is totally ramified, and the prime
Ppo corresponding to the cero divisor of T'. The prime pg is now
the infinite prime in k(7/y and it is tamely ramified with
ramification index g — 1. Let Gj = F; = (Rr+/(T"))" be the

inertia group of pg. Then ks = Lg}’ is an abelian extension of
k where p is the only ramified prime and it is totally wildly
ramified, that is, for any finite extension F/k, k G F C koo,
then poo is totally ramified in F' and has no tame ramification.
This is equivalent to have that the Galois group and the first
ramification group are the same.
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i The extension B := k(1) - ks - E is an abelian extension with
L k1), koo, £ pairwise linearly disjoint. Why A = B? Hayes'

the rational

ation: proof answers this question.
function field
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Introduction group of k. Since k(T), kso and E are pairwise linearly disjoint,

Cyclotomic we have Gal(A/k) = G(T) X Goo X G where

G ) = Gal(k(r/k), G = Gal(koo/k) and

Gg = Gal(E/k) = Z.
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Let A = k(r)kooE. The question is why A is the maximal
abelian extension of k. First, Hayes constructed a group
homomorphism v : J, — Gal(A/k), where Jj; es the idele
group of k. Since k(r), ko and E are pairwise linearly disjoint,
we have Gal(A/k) = G(1y x Go X G where

Gy = Ca‘ral(k(T)/k;)L Goo = Gal(ks/k) and

Gp = Gal(E/k) = Z.

For his construction, Hayes decomposed J = Ji as the direct
product of four subgroups and defined 4 directly in each one of
the four subgroups. Indeed, the map is trivial on one factor and
the other three factors map into G(1), G and Gg
respectively. The factorization was of the following type:

21/53
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Let A = k(r)kooE. The question is why A is the maximal
abelian extension of k. First, Hayes constructed a group
homomorphism v : J, — Gal(A/k), where Jj; es the idele
group of k. Since k(r), ko and E are pairwise linearly disjoint,
we have Gal(A/k) = G(1y x Go X G where

Gy = Ca‘ral(k(T)/k;)L Goo = Gal(kso/k) and

Gp = Gal(E/k) = Z.

For his construction, Hayes decomposed J = Ji as the direct
product of four subgroups and defined 4 directly in each one of
the four subgroups. Indeed, the map is trivial on one factor and
the other three factors map into G(1), G and Gg
respectively. The factorization was of the following type:

T2k x Up x kY x 2z

both algebraically and topologically.
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The next step in Hayes' construction consisted in proving that
there exist natural isomorphisms ¢r: Ur — G(7) and

Voot ko) = Goo = {f(1/T) € F[[L/T]] | F(0) = 1}, both
algebraically and topologically. Now vz : Z — Gg = Z is the

map such that ¢z(1) is the Frobenius automorphism.
Therefore 17 is a dense continuous monomorphism.
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The next step in Hayes' construction consisted in proving that
there exist natural isomorphisms ¢r: Ur — G(7) and

Yoot kg = Goo 2 {f(1/T) € Fy[[1/T]] | £(0) =1}, both
algebraically and topologically. Now ¢z: Z — Gg = 7 is the
map such that ¢z(1) is the Frobenius automorphism.
Therefore 17 is a dense continuous monomorphism.

In short, we have

u]
o)
I
i
!




FRYeYY Isomorphisms

GABRIEL
VILLA
SALVADOR

Introduction

Cyclotomic
function fields

The maximal

funrt\on fl:“d

The proof of
David Hayes

Witt vectors
and the
conductor

The
Kronecker—
Weber—Hayes

Theorem

Bibliography

The next step in Hayes' construction consisted in proving that
there exist natural isomorphisms ¢r: Ur — G(7) and

oot ko — Goo = {f(1/T) € F[[L/T]] | £(0) = 1}, both
algebraically and topologically. Now ¢z: Z — Gg = 7 is the
map such that ¢z(1) is the Frobenius automorphism.
Therefore 17 is a dense continuous monomorphism.

In short, we have

'LbT:UT g G( T)> ’(/)oo (1)—>G and wz:Z%Z.
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The final step in Hayes’ proof was to show that with these

isomorphisms, the Reciprocity Law of Artin—Takagi gives that
A is the maximal abelian extension of k.
The proof of

2a¢
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~ Thefinal step in Hayes' proof was to show that with these
NN isomorphisms, the Reciprocity Law of Artin—Takagi gives that
. A is the maximal abelian extension of k.

- Hayes also proved that A = k¢p)k(ry with 7" = 1/T. However,

The proof of as we have noticed, k(r) and k(v are not linearly disjoint.
David Hayes
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Let K = k(i) be such that pij = i? — = € W (k).
(B) = p‘;’i with \; > 0 and if \; > 0, then gcd(c;, p) = 1 and
ged(Ai, p) = 1 where p is the prime divisor associated to P.

Let M, := 11211_&%{]9"_1')\1-}. Note that M; = max{pM;_1, \;},

M; < My < --- < M,. Then
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With the above conditions we have that the conductor of K /k
is

fgg = PMatl O
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To prove the Kronecker—-Weber—Hayes Theorem it suffices to
prove that any finite abelian extension of & is contained in
knFgnk, for some N € R, m,n € N and where

n G ’
kn = (U2 k(Ap=r)) ™ = k(Ap—n-1)%.
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To prove the Kronecker—-Weber—Hayes Theorem it suffices to
prove that any finite abelian extension of & is contained in
knFgnk, for some N € R, m,n € N and where

ko = (U k(=) 90 = k(Ap—n-1)Co.

It suffices to prove this when the abelian extension is cyclic of
order either relatively prime to p or of order p* for some u € N.
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To prove the Kronecker—-Weber—Hayes Theorem it suffices to
prove that any finite abelian extension of & is contained in
kEnFqmky, for some N € Ry, m,n € N and where

kn = (U k(Ap=r)) 90 = k(Ap—n-1)Co.

It suffices to prove this when the abelian extension is cyclic of
order either relatively prime to p or of order p* for some u € N.
The Kronecker—-Weber Theorem will be a consequence of the
following facts.
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B e (c) If K/k is a cyclic extension of degree p™ where
- Pe R; is the only ramified prime, then K C F ,mk(Apa)
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For the part (a), first we observe

Proposiciéon

Let P € R} tamely ramified in K /k. If e is the ramification
index of P in K, we have ¢|q? — 1 where d = deg P. O
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Now we consider a tamely ramified abelian extension K /k
where Py, ..., P, are the finite prime divisors ramified in K/k.
Let P € {P,..., P} and with ramification index e. We
consider k C E C k(Ap) with [E : k] =e. In E/k the prime
SHESEEEES divisor P has ramification e. Consider the composite K F.
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From Abyankar’'s Lemma we obtain that the ramification of P

The

Kronecker— in KE/k is e, so if we consider H, the inertia group of P in
Weber—Hayes

Theorem KE/k and R := (KE)H Then P is unramified in R/k. Then
0 it can be proved that K C Rk(Ap).
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Wild ramification is the key fact that distinguishes the positive
characteristic case from the classical one in the proof of the
Kronecker—Weber Theorem. In the classical case, the proof is
based in the fact that for p > 3, there is only one cyclic
extension of degree p over Q where p is the only ramified
prime. The case p = 2 is slightly harder since there are three
quadratic extensions where 2 is the only finite prime ramified.
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If F:=k(Ap2)f, then Gal(F/k) = Dp p2. Note that
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Main reduction step 2

Theorem

Let K/k be a cyclic extension of degree p™ where
P,...,P € R} and possibly poo, are the ramified prime
divisors. Then K = k(i) where

Prg=F=0+ 15 T,
with IB{) = ﬁl ¢ p(k), 5ij = %, €ij >0, Qij € Ry and if
eij > 0, then p 1 e;;, ged(Qij, P;) = 1 and
deg(Qij) < deg(P;*), and p; = f;j(T) € Ry with p{ deg f;
when f; € F,.
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Cases (c) and (d) follow from (b) and the above theorem, so
S the Kronecker—-Weber Theorem will follow if we prove:
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“Every cyclic extension K /k
of degree p" where P € R7. is
the only ramified prime, P is
fully ramified and p. is fully
decomposed, satisfies that

K C kps = k(Apg) for some
B eN.”
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Let P € R}' « € N and let d := deg P. First we compute how
many cyclic extensions of degree p™ are contained in k(Apo).
Note that po is fully decomposed in K/k where K is any of
these extensions.

By direct computation we obtain that the number of elements
of order p™ in Gal(k(Ap«)/k) is equal to

e[l (1 [l _ 1). (6.1)
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Number of Artin—Schreier extensions with given

conductor and in normal form

normal form and such that k(y) = k(z), satisfies that
a:j%—l—pcwithj e{l,...,p—1}and c= % with
py < A. From these considerations, one may deduce that the
number of different cyclic extensions K /k of degree p such

A
that the conductor K is fr = P 1 is equal to ﬁ@(P)‘_ [p])
where [z] denotes the integer function. So, the number of

these extensions with conductor a divisor of P¢ is (O‘) where
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conductor and in normal form

Now given another equation pz = 2P — z = a written also in
normal form and such that k(y) = k(z), satisfies that
azj%—l—pcwithj e{l,...,p—1}and c= % with

py < A. From these considerations, one may deduce that the
number of different cyclic extensions K /k of degree p such

A
that the conductor K is fr = P 1 is equal to ﬁ@(P)‘_ [p])
where [z] denotes the integer function. So, the number of
W(a)
p—

these extensions with conductor a divisor of P¢ is where

w(a) = Z o(P [%]). (6.2)
gcd(/\,p)

Computing (6.2) and comparing with last proposition we

obtain g = v1(@).
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Casen=1

In other words, every cyclic extensions K /k of degree p such
that P is the only ramified prime, po, decomposes fully in K/k
and fx | P is contained in k(Apa). Therefore the
Kronecker—Weber Theorem holds in this case.

Now we proceed with the cyclic case of degree p™. In other
words, we want to prove that any cyclic extensions of degree p
of conductor a divisor P* and where p., decomposes fully, is
contained in k(Apa).

The proof is on induction on n. The case n = 1 is the case of
Artin—Schreier extensions.
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