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Introduction

We may understand by class field theory as the study of abelian
extensions of global and local fields. In some sense, the simplest
object of these two families of fields is the field of rational
numbers Q. Therefore, one of the objectives in class field
theory is to take care of the maximal abelian extension of Q.

The first one to study the maximal abelian extension of Q as
such was Leopold Kronecker in 1853 [1]. He claimed that every
finite abelian extension of Q was contained in a cyclotomic
field Q(ζn) for some n ∈ N. The proof of Kronecker was not
complete as he himself was aware.
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Number fields

Henrich Weber provided a proof of Kronecker’s result in 1886
[3]. Weber’s proof was also incomplete but the gap was not
noticed up to more than ninety years later by Olaf Neuman [3].
The result is now known as the Kronecker–Weber Theorem.

David Hilbert gave a new proof of Kronecker’s original
statement in 1896 [4]. This was the first correct complete
proof of the theorem. However, as we mention above, Hilbert
was not aware of Weber’s gap. Because of this some people
call the result the Kronecker–Weber–Hilbert Theorem.
Hilbert’s Twelfth Problem is precisely to extend the
Kronecker–Weber Theorem to any base number field.
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Congruence function fields

The analogue of the Kronecker–Weber Theorem for function
fields is to find explicitly the maximal abelian extension of a
rational function field with field of constants the finite field of q
elements k = Fq(T ).

One natural question here is if there exist something similar to
cyclotomic fields in the case of function fields. Note that in full
generality we have “cyclotomic” extensions of an arbitrary base
field F , namely, F (ζn) where ζn denotes a generator of the
group Wn = {ξ ∈ F̄ | ξn = 1}, F̄ denoting a fixed algebraic
closure of F . However, in our case, k(ζn)/k is just an
extension of constants.

5 / 53



Gabriel
Villa

Salvador

Introduction

Cyclotomic
function fields

The maximal
abelian
extension of
the rational
function field

The proof of
David Hayes

Witt vectors
and the
conductor

The
Kronecker–
Weber–Hayes
Theorem

Bibliography

Congruence function fields

The analogue of the Kronecker–Weber Theorem for function
fields is to find explicitly the maximal abelian extension of a
rational function field with field of constants the finite field of q
elements k = Fq(T ).
One natural question here is if there exist something similar to
cyclotomic fields in the case of function fields. Note that in full
generality we have “cyclotomic” extensions of an arbitrary base
field F , namely, F (ζn) where ζn denotes a generator of the
group Wn = {ξ ∈ F̄ | ξn = 1}, F̄ denoting a fixed algebraic
closure of F . However, in our case, k(ζn)/k is just an
extension of constants.

5 / 53



Gabriel
Villa

Salvador

Introduction

Cyclotomic
function fields

The maximal
abelian
extension of
the rational
function field

The proof of
David Hayes

Witt vectors
and the
conductor

The
Kronecker–
Weber–Hayes
Theorem

Bibliography

Congruence function fields 2

Leonard Carlitz established an analogue of cyclotomic number
fields to the case of function fields. David Hayes [3] developed
the ideas of Carlitz and he was able to describe explicitly the
maximal abelian extension A of k.

His result says that the
maximal abelian extension of the rational function field Fq(T )
is the composite of three pairwise linearly disjoint extensions.
Hayes’ description of A is analogous to the Kronecker–Weber
Theorem. Hayes’ approach to find A is the use of the
Artin–Takagi reciprocity law in class field theory.
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Congruence function fields 3

The main purpose of this talk is to present another approach to
Hayes’ result. The main tools of this description is based on
the Artin–Schreier–Witt theory of p–cyclic extensions of fields
of characteristic p and particularly the arithmetic of these
extensions developed by Ernest Witt and Hermann Ludwig
Schmid [2].

We may say that this approach is of combinatorial
nature since, based on the results of Witt and Schmid, we
compare the number of certain class of cyclic extensions with
the number of such extensions contained in A. We find then
that these two numbers are the same and from here the result
follows.
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Cyclotomic function fields 1

We present the basic properties of the Carlitz–Hayes cyclotomic
function fieds.

Let T be a transcendental fixed element over the finite field of
q elements Fq and consider k := Fq(T ). Here the pole divisor
p∞ of T in k is called the infinite prime. Let RT := Fq[T ] be
the ring of polynomials in T . Here k plays the role of Q and
RT the role of Z.
Since the field k consists of two parts: Fq and T , we consider
two special elements of EndFq(k̄): the Frobenius
automorphism ϕ of k̄/Fq, and µT multiplication by T . More
precisely, let ϕ, µT ∈ EndFq(k̄) be given by

ϕ : k̄ → k̄ , µT : k̄ → k̄

u 7→ uq u 7→ Tu.
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Cyclotomic function fields 2

For any M ∈ RT , the substitution T 7→ ϕ+ µT in M gives a

ring homomorphism RT
ξ−→ EndFq(k̄),

ξ(M(T )) = M(ϕ+ µT ). That is, if u ∈ k̄ and M ∈ RT , then

ξ(M)(u) = ad(ϕ+ µT )d(u) + · · ·+ a1(ϕ+ µT )(u) + a0u

where M(T ) = adT
d + · · · a1T + a0. In this way k̄ becomes an

RT –module. The action is denoted as follows: if M ∈ RT and
u ∈ k̄, M ◦ u = ξ(M)(u) := uM .
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Cyclotomic function fields 3

This action of RT on k̄ is the analogue of the action of Z on
Q̄∗: n ∈ Z, x ∈ Q̄∗, n ◦ x := xn. Of course the action of RT is
an additive action on k̄ and Z acts multiplicatively on Q̄∗.

The analogy of these two actions runs as follows. If M ∈ RT ,
let ΛM := {u ∈ k̄ | uM = 0} which is analogous to
Λm := {x ∈ Q̄∗ | xm = 1}, m ∈ Z. We have that ΛM is an
RT –cyclic module. Indeed we have ΛM ∼= RT /(M) as
RT –modules. A fixed generator of ΛM will be denoted by λM .
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Cyclotomic function fields 4

Let kM := k(ΛM ) = k(λM ). Then kM/k is an abelian
extension with Galois group GM := Gal(kM/k) ∼=

(
RT /(M)

)∗
the multiplicative group of invertible elements of RT /(M).

Thus

[kM : k] = |GM | =
∣∣(RT /(M)

)∗∣∣ =: Φ(M).

We have that Φ(M) is a multiplicative function:
Φ(MN) = Φ(M)Φ(N) for M,N ∈ RT with gcd(M,N) = 1.
If P ∈ RT is an irreducible polynomial and n ∈ N we have
Φ(Pn) = qnd − q(n−1)d = q(n−1)d(qd − 1).
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Cyclotomic function fields 5

The ramification in the extension kM/k when M = Pn is given
by the following result.

Theorem

If M = Pn with P an irreducible polynomial in RT , then P is
fully ramified in kPn/k. We have
Φ(Pn) = eP = [kPn : k] = q(n−1)d(qd − 1), where d = degP .
Any other finite prime in k is unramified in kPn/k.
If P = p∞, eP = e∞ = ep∞ = q − 1, fP = f∞ = fp∞ = 1,
hP = h∞ = hp∞ = Φ(M)/(q − 1).
The extension kPn/k is a geometric extension, that is, the field
of constants of kPn is Fq and every subextension k $ K ⊆ kPn
is ramified.
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Cyclotomic function fields 6

One important fact when we consider cyclotomic function
fields, is the behavior of p∞ in any kM/k where always
e∞ = q − 1 and f∞ = 1. In particular p∞ is always tamely
ramified. Furthermore, for any subextension L/K with
k ⊆ K ⊆ L ⊆ kM for some M ∈ RT , if the prime divisors of K
dividing p∞ are unramified, then they are fully decomposed.
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The maximal abelian extension of k

Let A be the maximal abelian extension of k. The expression
of A can be given explicitly, namely, A is explicitly generated
for suitable finite extensions of k, each one of which is
generated by roots of an explicit polynomial. Indeed A is the
composite of three pairwise linearly disjoint extensions E/k,
k(T )/k and k∞/k.

14 / 53
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First component

E/k: Consider the usual cyclotomic extensions of k, that is,
the constant extensions of k. So E =

⋃∞
n=1 Fqn(T ). We have

GE := Gal(E/k) ∼= Ẑ ∼=
∏

p prime

Zp,

where Ẑ is the Prüfer ring and Zp, p a prime number, is the
ring of p–adic numbers. We have that E/k is an unramified
extension.
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Second component

k(T )/k: Now we consider all the Carlitz–Hayes cyclotomic

function fields with respect p∞, k(T ) :=
⋃
M∈RT kM . We have

GT := Gal(k(T )/k) ∼= lim←
M∈RT

(
RT /(M)

)∗
.

16 / 53
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What is missing?

k∞/k: The field Ek(T ) is an abelian extension of k but can not
be the maximal one since p∞ is tamely ramified in Ek(T )/k
and there exist abelian extensions K/k where p∞ is wildly
ramified. For instance, consider K = k(y) where yp − y = T .
Then K/k is a cyclic extension of degree p, where p is the
characteristic of k and p∞ is the only ramified prime in K/k
and it is wildly ramified.

We change our “variable” T for T ′ = 1/T and we now consider
the cyclotomic function fields corresponding to the variable T ′

instead of T . Namely

k(T ′) = k(1/T ) :=
⋃

M ′∈RT ′

k(ΛM ′), RT ′ = Fq[T ′].

17 / 53
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k(T ) and k(T ′) are not linearly disjoint

We have that k(T ′) shares much with k(T ). For instance, if

q = p2, p > 3 and zp − z = T 2+T+1
(T+1)(T+2) , then

K := k(z) ⊆ k(T ) ∩ k(T ′).

18 / 53
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Third component

In order to find some subextension of k(T ′) linearly disjoint to
k(T ), consider LT ′ :=

⋃∞
m=1 k(Λ(T ′)m). In LT ′/k the only

ramified primes are p∞, which is totally ramified, and the prime
p0 corresponding to the cero divisor of T . The prime p0 is now
the infinite prime in k(T ′) and it is tamely ramified with

ramification index q − 1.

Let G′0 = F∗q =
(
RT ′/(T

′)
)∗

be the

inertia group of p0. Then k∞ := L
G′0
T ′ is an abelian extension of

k where p∞ is the only ramified prime and it is totally wildly
ramified, that is, for any finite extension F/k, k $ F ⊆ k∞,
then p∞ is totally ramified in F and has no tame ramification.
This is equivalent to have that the Galois group and the first
ramification group are the same.
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Third component
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Why is the maximal abelian extension?

The extension B := k(T ) · k∞ · E is an abelian extension with
k(T ), k∞, E pairwise linearly disjoint. Why A = B? Hayes’
proof answers this question.
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Decomposition of the idele group

Let A = k(T )k∞E. The question is why A is the maximal
abelian extension of k. First, Hayes constructed a group
homomorphism ψ : Jk → Gal(A/k), where Jk es the idele
group of k. Since k(T ), k∞ and E are pairwise linearly disjoint,
we have Gal(A/k) ∼= G(T ) ×G∞ ×GE where
G(T ) = Gal(k(T )/k), G∞ = Gal(k∞/k) and

GE = Gal(E/k) ∼= Ẑ.

For his construction, Hayes decomposed J = Jk as the direct
product of four subgroups and defined ψ directly in each one of
the four subgroups. Indeed, the map is trivial on one factor and
the other three factors map into G(T ), G∞ and GE
respectively. The factorization was of the following type:

J ∼= k∗ × UT × k(1)p∞ × Z

both algebraically and topologically.
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Isomorphisms

The next step in Hayes’ construction consisted in proving that
there exist natural isomorphisms ψT : UT → G(T ) and

ψ∞ : k
(1)
p∞ → G∞ ∼= {f(1/T ) ∈ Fq[[1/T ]] | f(0) = 1}, both

algebraically and topologically. Now ψZ : Z→ GE ∼= Ẑ is the
map such that ψZ(1) is the Frobenius automorphism.
Therefore ψZ is a dense continuous monomorphism.

In short, we have

ψT : UT
∼=−→ G(T ), ψ∞ : k

(1)
p∞

∼=−→ G∞ and ψZ : Z ↪→ Ẑ.
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End of the Hayes’ proof

The final step in Hayes’ proof was to show that with these
isomorphisms, the Reciprocity Law of Artin–Takagi gives that
A is the maximal abelian extension of k.

Hayes also proved that A = k(T )k(T ′) with T ′ = 1/T . However,
as we have noticed, k(T ) and k(T ′) are not linearly disjoint.
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The conductor

Let K = k(~y) be such that ℘~y = ~yp
•
− ~y = ~β ∈Wn(k),(

βi
)

= ci
pλi

with λi ≥ 0 and if λi > 0, then gcd(ci, p) = 1 and

gcd(λi, p) = 1 where p is the prime divisor associated to P .
Let Mn := max

1≤i≤n
{pn−iλi}. Note that Mi = max{pMi−1, λi},

M1 < M2 < · · · < Mn. Then
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The conductor according to Schmid

Theorem (Schmid [2])

With the above conditions we have that the conductor of K/k
is

fK = PMn+1.

Corollary

Let K/k be a cyclic extension of degree pn with K ⊆ k(λPα)
for some α ∈ N. Then Mn + 1 ≤ α.

25 / 53



Gabriel
Villa

Salvador

Introduction

Cyclotomic
function fields

The maximal
abelian
extension of
the rational
function field

The proof of
David Hayes

Witt vectors
and the
conductor

The
Kronecker–
Weber–Hayes
Theorem

Bibliography

The conductor according to Schmid

Theorem (Schmid [2])

With the above conditions we have that the conductor of K/k
is

fK = PMn+1.

Corollary

Let K/k be a cyclic extension of degree pn with K ⊆ k(λPα)
for some α ∈ N. Then Mn + 1 ≤ α.

25 / 53



Gabriel
Villa

Salvador

Introduction

Cyclotomic
function fields

The maximal
abelian
extension of
the rational
function field

The proof of
David Hayes

Witt vectors
and the
conductor

The
Kronecker–
Weber–Hayes
Theorem

Bibliography

The Kronecker–Weber–Hayes Theorem

To prove the Kronecker–Weber–Hayes Theorem it suffices to
prove that any finite abelian extension of k is contained in
kNFqmkn for some N ∈ RT , m,n ∈ N and where

kn :=
(⋃n+1

r=1 k(λT−r)
)G′0 = k(λT−n−1)G

′
0 .

It suffices to prove this when the abelian extension is cyclic of
order either relatively prime to p or of order pu for some u ∈ N.
The Kronecker–Weber Theorem will be a consequence of the
following facts.
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Reduction steps

2 (a) If K/k is a finite tamely ramified abelian extension
where P1, . . . , Pr ∈ R+

T and possibly p∞ are the ramified
primes, then

K ⊆ Fqmk(ΛP1···Pr) for some m ∈ N.

2 (b) If K/k is a cyclic extension of degree pn where
P ∈ R+

T is the only ramified prime, P is totally ramified
and p∞ is fully decomposed, then K ⊆ k(ΛPα) for some
α ∈ N.

2 (c) If K/k is a cyclic extension of degree pn where
P ∈ R+

T is the only ramified prime, then K ⊆ Fqpmk(ΛPα)
for some m,α ∈ N.

2 (d) Similarly for p∞, that is, if K/k is a cyclic extension of
degree pn and p∞ is the only ramified prime, then
K ⊆ Fqpmkα for some m,α ∈ N.
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Tame ramification

For the part (a), first we observe

Proposición

Let P ∈ R+
T tamely ramified in K/k. If e is the ramification

index of P in K, we have e|qd − 1 where d = degP .

The proof of this proposition is similar to that of the classical
case.
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Tame ramification 2

Now we consider a tamely ramified abelian extension K/k
where P1, . . . , Pr are the finite prime divisors ramified in K/k.
Let P ∈ {P1, . . . , Pr} and with ramification index e. We
consider k ⊆ E ⊆ k(ΛP ) with [E : k] = e. In E/k the prime
divisor P has ramification e. Consider the composite KE.

K KE

H

R

k E

From Abyankar’s Lemma we obtain that the ramification of P
in KE/k is e, so if we consider H, the inertia group of P in
KE/k and R := (KE)H . Then P is unramified in R/k. Then
it can be proved that K ⊆ Rk(ΛP ).
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Proof of the tame ramification

Continuing with this process r times we obtain that
K ⊆ R0k(ΛP1···Pr) and where R0/k is an extension such that
the only possible ramified prime is p∞. Part (a) is consequence
of

Proposición

Let K/k be an abelian extension where at most a prime divisor
p of degree one is ramified and it is tamely ramified. Then K/k
is an extension of constants.
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Key fact: wild ramification

Wild ramification is the key fact that distinguishes the positive
characteristic case from the classical one in the proof of the
Kronecker–Weber Theorem. In the classical case, the proof is
based in the fact that for p ≥ 3, there is only one cyclic
extension of degree p over Q where p is the only ramified
prime. The case p = 2 is slightly harder since there are three
quadratic extensions where 2 is the only finite prime ramified.
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Number fields vs function fields 1

In the function field case the situation is different. Fix a monic
irreducible polynomial P ∈ R+

T of degree d. Consider the
Galois extension k(ΛP 2)/k. Then Gal(k(ΛP 2)/k) = GP 2 . We
have that GP 2 is isomorphic to the direct product of
Gal(k(ΛP 2)/k) = DP,P 2 with H := Gal(k(ΛP )/k) ∼= Cqd−1.

F
H

DP,P2

k(ΛP 2)

DP,P2

k
H

k(ΛP )
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Number fields vs function fields 2

If F := k(ΛP 2)H , then Gal(F/k) ∼= DP,P 2 . Note that

DP,P 2
∼= {A mod P 2 | A ∈ RT , A ≡ 1 mod P}

is an elementary abelian p–group so that DP,P 2
∼= Cup where

u = sd, q = ps. In F/k the only ramified prime is P , it is
wildly ramified and u can be as large as we want. This is one
of the reasons that the proof of the classical case using
ramification groups seems not to be applicable here.
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Main reduction step 1

We now study wild ramification. Thus, we have to show that if
L/k is a cyclic extension of degree pn for some n ∈ N we have
to show that L ⊆ FqpnkPαkm for some α,m ∈ N.
The main simplification is given next on Witt generation of
cyclic extensions where we separate the ramification prime by
prime.
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Main reduction step 2

Theorem

Let K/k be a cyclic extension of degree pn where
P1, . . . , Pr ∈ R+

T and possibly p∞, are the ramified prime
divisors. Then K = k(~y) where

~yp
•
− ~y = ~β = ~δ1

•
+ · · ·

•
+ ~δr

•
+ ~µ,

with βp1 − β1 /∈ ℘(k), δij =
Qij

P
eij
i

, eij ≥ 0, Qij ∈ RT and if

eij > 0, then p - eij , gcd(Qij , Pi) = 1 and
deg(Qij) < deg(P

eij
i ), and µj = fj(T ) ∈ RT with p - deg fj

when fj 6∈ Fq.
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What remains to prove

Cases (c) and (d) follow from (b) and the above theorem, so
the Kronecker–Weber Theorem will follow if we prove:

“Every cyclic extension K/k
of degree pn where P ∈ R+

T is
the only ramified prime, P is
fully ramified and p∞ is fully
decomposed, satisfies that
K ⊆ kPβ = k(ΛPβ) for some
β ∈ N.”
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Elements of order pn in GPα

Let P ∈ R+
T , α ∈ N and let d := degP . First we compute how

many cyclic extensions of degree pn are contained in k(ΛPα).
Note that p∞ is fully decomposed in K/k where K is any of
these extensions.
By direct computation we obtain that the number of elements
of order pn in Gal(k(ΛPα)/k) is equal to

qd(α−
⌈

α
Pn−1

⌉
)
(
q
d(
⌈

α
pn−1

⌉
−
⌈
α
pn

⌉
) − 1

)
. (6.1)
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Subgroups of order pn in GPα

As a consequence we obtain

Proposición

The number vn(α) of cyclic groups of order pn contained in(
RT /(P

α)
)∗

is

vn(α) =
q
d(α−

⌈
α

pn−1

⌉
)(
q
d(
⌈

α
pn−1

⌉
−
⌈
α
pn

⌉
) − 1

)
pn−1(p− 1)

.
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Artin–Schreier extensions

Note that any K ⊆ k(ΛPα) has conductor fK a divisor of Pα.
Next, we compute the number of cyclic extensions K of k of
degree p using the Theory of Artin–Schreier, such that P is the
only ramified prime, p∞ decomposes and the conductor fK
divides Pα. Any such extension, written in normal form, is
given by an equation

℘y = yp − y =
Q

P λ
, λ > 0, p - λ, degQ < degP λ

and the conductor is fK = P λ+1, so that λ ≤ α− 1.
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Number of Artin–Schreier extensions with given
conductor and in normal form

Now given another equation ℘z = zp − z = a written also in
normal form and such that k(y) = k(z), satisfies that
a = j QP γ + ℘c with j ∈ {1, . . . , p− 1} and c = h

P γ with
pγ < λ. From these considerations, one may deduce that the
number of different cyclic extensions K/k of degree p such

that the conductor K is fK = P λ+1 is equal to 1
p−1Φ(P

λ−
[
λ
p

]
)

where [x] denotes the integer function. So, the number of

these extensions with conductor a divisor of Pα is ω(α)
p−1 where

ω(α) =
α−1∑
λ=1

gcd(λ,p)=1

Φ(P
λ−
[
λ
p

]
). (6.2)

Computing (6.2) and comparing with last proposition we

obtain ω(α)
p−1 = v1(α).
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Case n = 1

In other words, every cyclic extensions K/k of degree p such
that P is the only ramified prime, p∞ decomposes fully in K/k
and fK | Pα is contained in k(ΛPα). Therefore the
Kronecker–Weber Theorem holds in this case.

Now we proceed with the cyclic case of degree pn. In other
words, we want to prove that any cyclic extensions of degree pn

of conductor a divisor Pα and where p∞ decomposes fully, is
contained in k(ΛPα).
The proof is on induction on n. The case n = 1 is the case of
Artin–Schreier extensions.

41 / 53



Gabriel
Villa

Salvador

Introduction

Cyclotomic
function fields

The maximal
abelian
extension of
the rational
function field

The proof of
David Hayes

Witt vectors
and the
conductor

The
Kronecker–
Weber–Hayes
Theorem

Bibliography

Case n = 1

In other words, every cyclic extensions K/k of degree p such
that P is the only ramified prime, p∞ decomposes fully in K/k
and fK | Pα is contained in k(ΛPα). Therefore the
Kronecker–Weber Theorem holds in this case.
Now we proceed with the cyclic case of degree pn. In other
words, we want to prove that any cyclic extensions of degree pn

of conductor a divisor Pα and where p∞ decomposes fully, is
contained in k(ΛPα).

The proof is on induction on n. The case n = 1 is the case of
Artin–Schreier extensions.

41 / 53



Gabriel
Villa

Salvador

Introduction

Cyclotomic
function fields

The maximal
abelian
extension of
the rational
function field

The proof of
David Hayes

Witt vectors
and the
conductor

The
Kronecker–
Weber–Hayes
Theorem

Bibliography

Case n = 1

In other words, every cyclic extensions K/k of degree p such
that P is the only ramified prime, p∞ decomposes fully in K/k
and fK | Pα is contained in k(ΛPα). Therefore the
Kronecker–Weber Theorem holds in this case.
Now we proceed with the cyclic case of degree pn. In other
words, we want to prove that any cyclic extensions of degree pn

of conductor a divisor Pα and where p∞ decomposes fully, is
contained in k(ΛPα).
The proof is on induction on n. The case n = 1 is the case of
Artin–Schreier extensions.

41 / 53



Gabriel
Villa

Salvador

Introduction

Cyclotomic
function fields

The maximal
abelian
extension of
the rational
function field

The proof of
David Hayes

Witt vectors
and the
conductor

The
Kronecker–
Weber–Hayes
Theorem

Bibliography

Induction hypothesis

We consider Kn a cyclic extension of k of degree pn such that
P is the only ramified prime, P is fully ramified, p∞ is fully
decomposed and fKn | Pα. Let Kn−1 be the subfield of Kn of
degree pn−1 over k. Let Kn/k be generated by the Witt vector
~β = (β1, . . . , βn), that is, Kn = k(~y) with ℘~y = ~yp − ~y = ~β
and ~β written is the normal form described by Schmid. Then
Kn−1/k is given by the Witt vector ~β′ = (β1, . . . , βn−1).
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Case n− 1

Let ~λ = (λ1, . . . , λn−1, λn) be the Schmid’s vector of
invariants, that is, each βi is given by

βi =
Qi
P λi

where Qi = 0, that is, βi = 0 or

gcd(Qi, P ) = 1, degQi < degP λi ,

λi > 0 and gcd(λi, p) = 1.

Since P is fully ramified, λ1 > 0. The next step is to find the
number of different extensions Kn/Kn−1 that can be
constructed by means of βn. If βn 6= 0, each equation in
normal form is given by
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Witt equation

℘yn = ypn − yn = zn−1 + βn (6.3)

where zn−1 is the element of Kn−1 obtained by the Witt’s
generation of Kn−1 with the vector ~β′. In fact, formally, zn−1
is given by

zn−1 =

n−1∑
i=1

1

pn−1

[
yp

n−i

i + βp
n−1

i −
(
yi + βi + zi−1

)pn−i]
with z0 = 0.
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Case n− 1 second part

As in the case n = 1, we have that there exist at most

Φ(P
λn−
[
λn
p

]
) fields Kn with λn > 0. The conductor of Kn is

PMn+1 with
Mn = max{pMn−1, λn}

and PMn−1+1 is the conductor of Kn−1.

It follows that

pMn−1 ≤ α− 1, λn ≤ α− 1 and

fKn−1 | P δ with δ =

[
α− 1

p

]
+ 1.

By the induction hypothesis, the number of such fields Kn−1 is
vn−1(δ).
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Case n

Let tn(α), n, α ∈ N be the number of cyclic extensions Kn/k
of degree pn with P the only ramified prime, fully ramified, p∞
fully decomposed and fKn | Pα. To prove the
Kronecker–Weber Theorem it suffices to show tn(α) ≤ vn(α).

We have t1(α) = v1(α) = ω(α)
p−1 . By induction hypothesis we

assume tn−1(δ) = vn−1(δ). In general we have tn(α) ≥ vn(α).
Now we obtain by direct computation

vn(α)

vn(δ)
=
q
d(α−

⌈
α
p

⌉
)

p
. (6.4)
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Repetitions

Considering the case βn = 0, the number of fields Kn

containing a fixed field Kn−1 obtained in (6.2) is

1 + ω(α) = q
d(α−

⌈
α
p

⌉
)
.

Finally, with the substitution yn 7→ z := yn + jy1,
j = 0, 1, . . . , p− 1 in (6.2) we obtain

℘z = zp − z = βn + jβ1.
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The miracle

That is, each extension obtained in (6.2) is obtained p times
or, equivalently, for each βn the same extension is obtained
with βn, βn + β1, . . . , βn + (p− 1)β1. It follows that for each

Kn−1 there are at most 1+ω(α)
p = 1

pq
d(α−

⌈
α
p

⌉
)

of such
extensions Kn. From equation (6.4) we obtain

tn(α) ≤ tn−1(δ)
(1

p
q
d(α−

⌈
α
p

⌉
)
)

= vn−1(δ)
(1

p
q
d(α−

⌈
α
p

⌉
)
)

= vn(α).

This proves part (b) and the Theorem of Kronecker–Weber.
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