Superspecial rank of supersingular curves

Rachel Pries

Colorado State University pries@math.colostate.edu

November 13

RICAM Algebraic Curves over Finite Fields

Abstract: A curve X of genus g over a finite field is supersingular if the Newton polygon of its L-polynomial is a line segment of slope $1 / 2$.

Equivalently, X is supersingular if and only if the $\operatorname{Jacobian~} \operatorname{Jac}(X)$ is isogenous to a product of supersingular elliptic curves.

Only in rare cases is $\operatorname{Jac}(X)$ isomorphic to a product of supersingular elliptic curves, in which case X is called superspecial.

I will define the superspecial rank, which is an invariant of the Dieudonné module or Ekedahl-Oort type of a p.p. abelian variety.

If X is a supersingular curve, then the superspecial rank determines the number of elliptic factors in the decomposition of $\operatorname{Jac}(X)$ up to isomorphism.

As examples, we compute the superspecial rank of Hermitian curves and Suzuki curves. I will describe results about the superspecial rank of curves in characteristic 2.

Overview

An elliptic curve $E / \overline{\mathbb{F}}_{p}$ can be ordinary or supersingular. How do you generalize supersingular property?
Study: abelian varieties of dimension $g>1$ and curves of genus $g>1$.
A. p-rank $f=0$
B. supersingular
C. superspecial

Today: define superspecial rank (invariant of Dieudonneé module) differentiating B and C for curves

Motivation - supersingular elliptic rank of supersingular Jacobians Examples (with Elkin, Weir, Malmskog)

Another day: Newton polygon results - differentiating A and B for curves

Supersingular elliptic curves

Let E be a smooth elliptic curve over $k=\bar{k}$, with $\operatorname{char}(k)=p$.
Let $E[p]$ be the kernel of the inseparable multiplication-by- p morphism.
E is supersingular if it satisfies the following equivalent conditions:
A. The only p-torsion point is the identity: $E[p](k)=\{\mathrm{id}\}$.
B. The Newton polygon of E is a line segment of slope $\frac{1}{2}$.

C. The group scheme $E[p]$ contains 1 copy of α_{p}, the kernel of Frobenius on \mathbb{G}_{a}.

For all p, there exists a supersingular elliptic curve E over $\mathbb{F}_{p^{2}}$ (Igusa).

These properties are not all the same when $g>1$

Let A be a p.p. abelian variety of dimension g over $k=\bar{k}, \operatorname{char}(k)=p$.
Let $A[p]$ be the kernel of the inseparable multiplication-by- p morphism.
The following conditions are all different for $g \geq 3$.
A. p-rank 0 - The only p-torsion point is the identity: $A[p](k)=\{\mathrm{id}\}$.
B. supersingular - The Newton polygon of A is a line of slope $\frac{1}{2}$.
C. superspecial - The group scheme $A[p]$ contains g copies of α_{p}, the kernel of Frobenius on \mathbb{G}_{a}.

Then $C \Rightarrow B \Rightarrow A$.

Goal: study $A \nRightarrow B \nRightarrow C$ for Jacobians of curves of genus $g \geq 3$.

B. Definition of Newton polygon

Let X be a smooth projective curve defined over \mathbb{F}_{q}.
Zeta function of X is $Z\left(X / \mathbb{F}_{q}, t\right)=L\left(X / \mathbb{F}_{q}, t\right) /(1-t)(1-q t)$
where $L\left(X / \mathbb{F}_{q}, t\right)=\prod_{i=1}^{2 g}\left(1-w_{i} t\right) \in \mathbb{Z}[t]$ and $\left|w_{i}\right|=\sqrt{q}$.
The Newton polygon of X is the NP of the L-polynomial $L(t)$.
Find p-adic valuation v_{i} of coefficient of t^{i} in $L(t)$.
Draw lower convex hull of $\left(i, v_{i} / a\right)$ where $q=p^{a}$.
Facts: The NP goes from $(0,0)$ to $(2 g, g)$.
NP line segments break at points with integer coefficients; If slope λ occurs with length m_{λ}, so does slope $1-\lambda$.

Definition

X / \mathbb{F}_{q} is supersingular if the Newton polygon of $L\left(X / \mathbb{F}_{q}, t\right)$ is a line segment of slope $1 / 2$.

There is a partial ordering on NPs; the supersingular NP is 'smallest'.

B. Definition of supersingular abelian variety

Let A be a p.p. abelian variety of dimension g over k.
Manin: for c, d relatively prime s.t. $\lambda=\frac{c}{d} \in \mathbb{Q} \cap[0,1]$, define a p-divisible group $G_{c, d}$ of dimension c and height d.

The Dieudonné module D_{λ} for $G_{c, d}$ is a $W(k)$-module. Over $\operatorname{Frac}(W(k))$, there is a basis x_{1}, \ldots, x_{d} for D_{λ} s.t. $F^{d} x_{i}=p^{c} x_{i}$.

There is an isogeny of p-divisible groups $A\left[p^{\infty}\right] \sim \oplus_{\lambda} G_{c, d}^{m_{\lambda}}$.
Newton polygon:
lower convex hull - line segments of slope λ and length m_{λ}.
Definition: A supersingular iff $\lambda=\frac{1}{2}$ is the only slope.

Existence of supersingular objects

Abelian varieties:

For all p and g, there exists a supersingular p.p. abelian variety of dimension g, namely E^{g}.

Let \mathcal{A}_{g} be the moduli space of p.p. abelian varieties of dimension g. The supersingular locus of \mathcal{A}_{g} has dimension $\left\lfloor\frac{g^{2}}{4}\right\rfloor$.

Smooth Curves: Many experts on supersingular curves are here.

Van der Geer/Van der Vlugt:

If $p=2$, there exists a supersingular curve of every genus.

Open problem

For $p \geq 3$, it is unknown if there exists a supersingular curve of every genus.

B. Example: Hermitian curves are supersingular

Let $q=p^{n}$. The Hermitian curve X_{q} has affine equation $y^{q}+y=x^{q+1}$.
It has genus $g=q(q-1) / 2$.
It is maximal over $\mathbb{F}_{q^{2}}$ because $\# X_{q}\left(\mathbb{F}_{q^{2}}\right)=q^{3}+1$.
Ruck/Stichtenoth: X_{q} is unique curve of genus g maximal over $\mathbb{F}_{q^{2}}$.
Hansen: X_{q} is the Deligne-Lusztig variety for $\operatorname{Aut}\left(X_{q}\right)=\operatorname{PGU}(3, q)$.
The zeta function of X_{q} is $Z\left(X_{q} / \mathbb{F}_{q}, t\right)=\frac{\left(1+q t^{2}\right)^{g}}{(1-t)(1-q t)}$.
The only slope of the Newton polygon of $L(t)=\left(1+q t^{2}\right)^{g}$ is $1 / 2$.
Thus $\operatorname{Jac}\left(X_{q}\right)$ is supersingular.

C. Supersingular elliptic curve - revisited

C. The group scheme $E[p]$ contains 1 copy of α_{p}, the kernel of Frobenius on \mathbb{G}_{a}.

As a k-scheme, $\alpha_{p} \simeq \operatorname{Spec}\left(k[x] / x^{p}\right)$ with co-multiplication $m^{*}(x)=x \otimes 1+1 \otimes x$ and co-inverse $\operatorname{inv}^{*}(x)=-x$.
$E[p]$ is a group scheme of rank p^{2}, fitting in a non-split exact sequence

$$
0 \rightarrow \alpha_{p} \rightarrow E[p] \rightarrow \alpha_{p} \rightarrow 0
$$

The image of α_{p} is the kernel of F (Frobenius) and V (Verschiebung). What is a good generalization of this condition?

First approach - the a-number

Let α_{p} denote the kernel of Frobenius on \mathbb{G}_{a}.

Definition

The a-number of A is $a(A)=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, A[p]\right)$.

Computation: Let X be a curve of genus g. Let r be the rank of the Cartier operator on $H^{0}\left(X, \Omega^{1}\right)$. Then the a-number of $A=\operatorname{Jac}(X)$ is $a=g-r$.

Example - the Hermitian curve

Let $q=p^{n}$. Recall that $X_{q}: y^{q}+y=x^{q+1}$ has genus $g=q(q-1) / 2$.
If $n=1$, then $a=g$. If $n=2$, then $a=g / 2$.
Gross: $a=p^{n}\left(p^{n-1}+1\right)(p-1) / 4$.

Computation of a-number of Hermitian curve

The Cartier operator C acts on $H^{0}\left(X_{q}, \Omega^{1}\right)$.
Let $\Delta=\{(i, j) \mid i, j \in \mathbb{Z}, i, j \geq 0, i+j \leq q-2\}$.
A basis for $H^{0}\left(X_{q}, \Omega^{1}\right)$ is $B=\left\{\omega_{i, j}:=x^{i} y^{j} d x \mid(i, j) \in \Delta\right\}$.
Write $i=i_{0}+p i_{n}^{T}$ and $j=j_{0}+p j_{n}^{T}$ with $0 \leq i_{0}, j_{0} \leq p-1$.

$$
\begin{aligned}
C\left(x^{i} y^{j} d x\right) & =x^{i_{n}^{T}} y^{j_{n}^{T}} C\left(x^{i_{0}}\left(x^{q+1}-y^{q}\right)^{j_{0}} d x\right) \\
& =x^{i_{n}^{T}} y^{j_{n}^{T}} \sum_{l=0}^{j_{0}}\binom{j_{0}}{I}(-1)^{I} x^{p^{n-1}\left(j_{0}-l\right)} y^{p^{n-1} l} C\left(x^{i_{0}+j_{0}-l} d x\right)
\end{aligned}
$$

$C\left(x^{k} d x\right) \neq 0$ iff $k \equiv-1 \bmod p$. Need $i_{0}+j_{0}-\ell \equiv-1 \bmod p$.
If $i_{0}+j_{0}<p-1$, then $C\left(\omega_{i, j}\right)=0$.

C. Superspecial

Let A be a p.p. abelian variety of dimension g over $k=\bar{k}, \operatorname{char}(k)=p$.
Recall $a(A)=\operatorname{dim}_{k} \operatorname{Hom}\left(\alpha_{p}, A[p]\right)$, with α_{p} kernel of Frobenius on \mathbb{G}_{a}.
Def: An abelian variety A is superspecial if $a(A)=g$.
Let E be a supersingular elliptic curve over k.

Oort

A is supersingular iff $A \sim E^{g}$ is ISOGENOUS to a product of supersingular elliptic curves.
A is superspecial iff $A \simeq \times_{i=1}^{g} E_{i}$ is ISOMORPHIC to a product of supersingular elliptic curves.

Existence of superspecial objects

Abelian varieties: The number of superspecial p.p. abelian varieties of $\operatorname{dim} g$ is finite and non-zero; (it is a class number).

The superspecial locus of \mathcal{A}_{g} has dimension 0 .
Smooth curves: Problem: there are not many superspecial curves.
Example: The Hermitian curve $X_{q}: y^{q}+y=x^{q+1}$ is supersingular for all $q=p^{n}$, but superspecial iff $n=1$.

Ekedahl

If $X / \overline{\mathbb{F}}_{p}$ is a superspecial curve of genus g, then $g \leq p(p-1) / 2$.
Upper bound realized by Hermitian curve $X_{p}: y^{p}+y=x^{p+1}$.

Another approach - Dieudonné module

The Dieudonné module $D(A[p])$ of the group scheme $A[p]$ is an E-module.

Here $\mathbb{E}=k[F, V]$ is the non-commutative ring generated by semi-linear operators F and V with relations $F V=V F=0$ and $F \lambda=\lambda^{\rho} F$ and $\lambda V=V \lambda^{p}$ for all $\lambda \in k$.

Let $(R)=\mathbb{E} R$ be the left ideal of \mathbb{E} generated by R.
Let E be a supersingular elliptic curve.
Let $I_{1,1}$ be the isomorphism class of the rank p^{2} group scheme $E[p]$.
The Dieudonné module of $I_{1,1}$ is $\mathbb{E} /(F+V)$

Fact:

A is superspecial if and only if $A[p] \simeq\left(l_{1,1}\right)^{g}$.
A is superspecial if and only if $D(A[p])=(\mathbb{E} /(F+V))^{g}$

Example - Hermitian curve

Let $q=p^{n}$. Recall that $X_{q}: y^{q}+y=x^{q+1}$ has genus $g=q(q-1) / 2$. Let $\mathbb{D}\left(X_{q}\right)$ denote the Dieudonné module of $\operatorname{Jac}\left(X_{q}\right)[p]$.

Theorem -Pries/Weir

We determine the Dieudonné module $D\left(X_{q}\right)$ for all $q=p^{n}$, complementing earlier work of Dummigan. Its distinct indecomposable factors are in bijection with orbits of $\mathbb{Z} /\left(2^{n}+1\right)-\{0\}$ under $\times 2$.

Examples:

$\mathbb{D}\left(X_{p}\right)=(\mathbb{E} /(F+V))^{g}$.
$\mathbb{D}\left(X_{p^{2}}\right)=\left(\mathbb{E} /\left(F^{2}+V^{2}\right)\right)^{g / 2}$.
$\mathbb{D}\left(X_{p^{3}}\right)=\left(\mathbb{E} / \mathbb{E}\left(F^{3}+V^{3}\right)\right)^{r_{3,2}} \oplus(\mathbb{E} / \mathbb{E}(F+V))^{g-3 r_{3,2}}$,
where $r_{3,2}=p^{3}(p+1)^{2}(p-1) / 2^{3}$.

Goal

Let X be a supersingular curve of genus g.
Recall that $\operatorname{Jac}(X) \sim E^{g}$ with E supersingular elliptic curve.
But, almost always, $\operatorname{Jac}(X) \nsimeq \times{ }_{i=1}^{g} E_{i}$.
Find an invariant that measures the extent to which $\operatorname{Jac}(X)$ decomposes up to isomorphism.

The a-number is not good.
Could have large a-number even when $\operatorname{Jac}(X)$ indecomposable.
The Dieudonné module is too complicated. There are 2^{g} options for the DM, 2^{g-1} when the p-rank is $f=0$. The DM could have many factors even when $\operatorname{Jac}(X)$ indecomposable.

Superspecial rank

Let A be a p.p. abelian variety of dimension g over k.

Definition

The superspecial rank $s(A)$ is the multiplicity of $\mathbb{E} /(F+V)$ in the Dieudonné module of $A[p]$.

Fact: $s(A)$ is the dimension of $\operatorname{Ker}(F+V)$ on $H_{\mathrm{dR}}^{1}(A)$.
If A ordinary, then $s(A)=0$.
In fact, $0 \leq s(A) \leq a(A) \leq g-f(A)$
because each factor of $\mathbb{E} /(F+V)$ contributes to the a-number and because $f(A)$ is the multiplicity of $\mathbb{Z} / p \oplus \mu_{p}$ in $A[p]$.

Also $s(A)=g$ iff A is superspecial.

Example - dimension $g=1$:

Name	cod	f	a	v	μ	Dieudonné module	$\mathrm{s}(\mathrm{A})$
L	0	1	0	$[1]$	0	$\mathbb{E} /(F, 1-V) \oplus \mathbb{E} /(V, 1-F)$	0
$I_{1,1}$	1	0	1	$[0]$	$\{1\}$	$\mathbb{E} /(F+V)$	1

The isomorphism type of the p-torsion of an elliptic curve E is: $L=\mathbb{Z} / p \oplus \mu_{p}$ if E is ordinary $I_{1,1}$ if E is supersingular

Here \mathbb{E} is the non-commutative ring generated by semi-linear operators F and V with the relations $F V=V F=0$ and $F \lambda=\lambda^{p} F$ and $\lambda V=V \lambda^{p}$ for all $\lambda \in k$; and (ρ) denotes the left ideal of \mathbb{E} generated by ρ.

Example - dimension $g=2$:

Name	cod	f	a	v	μ	Dieudonné module	$s(\mathrm{~A})$
L^{2}	0	2	0	$[1,2]$	0	$D(L)^{2}$	0
$L \oplus I_{1,1}$	1	1	1	$[1,1]$	$\{1\}$	$D(L) \oplus \mathbb{E} /(F+V))$	1
$I_{2,1}$	2	0	1	$[0,1]$	$\{2\}$	$\mathbb{E} /\left(F^{2}+V^{2}\right)$	0
$I_{1,1}^{2}$	3	0	2	$[0,0]$	$\{2,1\}$	$(\mathbb{E} /(F+V))^{2}$	2

The supersingular locus contains both types $\left(I_{1,1}\right)^{2}$ and $I_{2,1}$.

Dimension $g=3$:

Name	cod	f	a	v	Dieudonné module	$s(A)$
L^{3}	0	3	0	$[1,2,3]$	$D(L)^{3}$	0
$L^{2} \oplus I_{1,1}$	1	2	1	$[1,2,2]$	$D(L)^{2} \oplus \mathbb{E} /(F+V)$	1
$L \oplus I_{2,1}$	2	1	1	$[1,1,2]$	$D(L) \oplus \mathbb{E} /\left(F^{2}+V^{2}\right)$	0
$L \oplus I_{1,1}^{2}$	3	1	2	$[1,1,1]$	$D(L) \oplus(\mathbb{E} /(F+V))^{2}$	2
$I_{3,1}$	3	0	1	$[0,1,2]$	$\mathbb{E} /\left(F^{3}+V^{3}\right)$	0
$I_{3,2}$	4	0	2	$[0,1,1]$	$\mathbb{E} /\left(F^{2}-V\right) \oplus \mathbb{E} /\left(V^{2}-F\right)$	0
$I_{1,1} \oplus I_{2,1}$	5	0	2	$[0,0,1]$	$\mathbb{E} /(F+V) \oplus \mathbb{E} /\left(F^{2}+V^{2}\right)$	1
$I_{1,1}^{3}$	6	0	3	$[0,0,0]$	$(\mathbb{E} /(F+V))^{3}$	3

The group scheme $A[p]$ does not determine the NP of A when $g \geq 3$.
If $A[p] \simeq I_{3,1}$, then the NP of A is usually $G_{1,2}+G_{2,1}$ (three slopes of $1 / 3$ and $2 / 3$) but it can also be $3 G_{1,1}$ (supersingular).

The Ekedahl-Oort type

The p-torsion $A[p]$ is a group scheme of rank $p^{2 g}$.
The isomorphism class of $A[p]$ is determined by its Ekedahl-Oort type.
Find final filtration $N_{1} \subset \cdots \subset N_{2 g}$ of $D(A[p])$ as k-vector space, stable under the action of V and F^{-1} such that $i=\operatorname{dim}\left(N_{i}\right)$.

The Ekedahl-Oort type is $v=\left[v_{1}, \ldots, v_{g}\right]$ where $v_{i}=\operatorname{dim}\left(V\left(N_{i}\right)\right)$.
There are nec/suff conditions $v_{i} \leq v_{i+1} \leq v_{i}+1$ on v.
There are 2^{g} possibilities for the isomorphism class of $A[p]$.

Superspecial rank zero

Lemma

For all p and $g \geq 2$, a generic supersingular p.p. abelian variety has superspecial rank 0 .

Proof: A generic supersingular p.p. abelian variety has p-rank 0 and a-number $1 \mathrm{Li} / O o r t$.

This forces DM to be $\mathbb{E} /\left(F^{g}+V^{g}\right)$, thus superspecial rank 0 for $g \geq 2$.
Remark:
Most abelian varieties with $\mathrm{DM}=\mathbb{E} /\left(F^{g}+V^{g}\right)$ are not supersingular. An EO strata is fully contained in supersingular locus iff smaller than $\left[0,0, \ldots, 0,1,2, \ldots,\left\lfloor\frac{g}{2}\right\rfloor\right]$.

Supersingular ranks of supersingular abelian varieties

Classify all the supersingular ranks which occur for supersingular abelian varieties

Proposition

For all p and g, there exists a supersingular abelian variety of dimension g over $\overline{\mathbb{F}}_{p}$ with superspecial rank s if and only if $0 \leq s \leq g-2$ or $s=g$.

Proof sketch:

There exists a supersingular abelian variety A_{1} of $\operatorname{dim} g-s$ with $a=1$.
The DM is $\mathbb{E} /\left(F^{g-s}+V^{g-s}\right)$ so $s\left(A_{1}\right)=0$ as long as $s \neq g-1$.
Let $A=E^{s} \times A_{1}$ where E is a supersingular elliptic curve.

Application of superspecial rank to Selmer groups

Let K be the function field of a curve over k and v place of K.
Let $f: A \rightarrow A^{\prime}$ be an isogeny of abelian varieties over K.

Motivation - superspecial rank

Let A be a constant supersingular elliptic curve over K and $f=[p]$. Ulmer: The rank of $\operatorname{Sel}(K,[p])$ is the superspecial rank.

Tate-Shafarevich group: $Ш(K, A)_{f}=\operatorname{Ker}\left(Ш(K, A) \rightarrow Ш\left(K, A^{\prime}\right)\right)$ where $\amalg(K, A)=\operatorname{Ker}\left(H^{1}(K, A) \rightarrow \Pi_{v} H^{1}\left(K_{v}, A\right)\right)$.

Selmer group: $\operatorname{Sel}(K, f)$ is subset of $H^{1}(K, \operatorname{Ker}(f))$ s.t. restriction is in image of $\operatorname{Sel}\left(K_{v}, f\right)=\operatorname{Im}\left(A^{\prime}\left(K_{v}\right) \rightarrow H^{1}\left(K_{v}, \operatorname{Ker}(f)\right)\right)$ for all v.

Exact sequence $0 \rightarrow A^{\prime}(K) / f(A(K)) \rightarrow \operatorname{Sel}(K, f) \rightarrow Ш(K, A)_{f} \rightarrow 0$.

(supersingular)-Elliptic rank

Let A be an abelian variety of dimension g over k.

Definition

The supersingular elliptic rank $e(A)$ of A is

$$
e(A):=\max \left\{e \mid \imath: A \xrightarrow{\simeq} B \times\left(\times_{i=1}^{e} E_{i}\right)\right\},
$$

E_{i} supersingular elliptic curves, B abelian variety of dimension $g-e$, and t an isomorphism of abelian varieties.

Note: $0 \leq e(A) \leq s(A)$ because each E_{i} contributes a factor of $\mathbb{E} /(F+V)$ to the Dieudonné module

If A absolutely simple, then $e(A)=0$.
Lenstra/Oort: If η non-supersingular symmetric formal isogeny type, there exists a simple abelian variety A with isogeny type η.
There are many A with $s(A)>0$ and $e(A)=0$.

Motivation for superspecial rank

An observation of Oort

If A is supersingular, then the supersingular elliptic rank $e(A)$ of A equals the superspecial rank $s(A)$ of A.

Proof sketch: Know $e \leq s$. Let E be supersingular elliptic curve.
Write $A\left[p^{\infty}\right] \simeq G_{1,1}^{s} \times Z$ with $s(Z)=0$. Since A supersingular, there exists a finite group scheme $N \hookrightarrow G_{1,1}^{g-s}$ s.t. $Z \simeq G_{1,1}^{g-s} / N$.

Now E^{g-s} and $G_{1,1}^{g-s}$ have the same finite subgroup schemes.
So $N \hookrightarrow E^{g-s}$; it follows that $A \simeq E^{s} \times\left(E^{b} / N\right)$ and $e(A) \geq s$.

Supersingular, but not superspecial

Proposition - revised

For all p and $g \geq 2$ and $0 \leq s \leq g-2$, there exists a supersingular abelian variety of dimension g over $\overline{\mathbb{F}}_{p}$ with supersingular elliptic rank s.

Thus $A \sim E^{g}$ with E ss, and $A \simeq B \times\left(\times{ }_{i=1}^{s} E_{i}\right)$ but $A \not 千 C \times\left(\times{ }_{i=1}^{s+1} E_{i}\right)$.

Question

Given p and $g \geq 2$ and $0 \leq s \leq g-2$, does there exist a supersingular curve X over $\overline{\mathbb{F}}_{p}$ with genus g whose Jacobian has supersingular elliptic rank s ?

Supersingular elliptic rank of Hermitian curves

The Hermitian curve $X_{q}: y^{q}+y=x^{q+1}$ with $q=p^{n}$ is supersingular with genus $g=q(q-1) / 2$.

P/Weir: The distinct indecomposable factors of Dieudonné module $D\left(X_{q}\right)$ are in bijection with orbits of $\mathbb{Z} /\left(2^{n}+1\right)-\{0\}$ under $\times 2$. Example: $D\left(X_{p^{2}}\right)=\left(\mathbb{E} /\left(F^{2}+V^{2}\right)\right)^{g / 2}$.

Check: if n even, then $\mathbb{E} /(F+V)$ is not a factor of $D\left(X_{p^{n}}\right)$.
Combinatorial reason: n odd iff there is an element of order three in $\mathbb{Z} /\left(2^{n}+1\right)$ iff there is an orbit of length 2 in $\mathbb{Z} /\left(2^{n}+1\right)$ under $\times 2$.

Application: P/Weir

If n is even, the supersingular elliptic rank of $\operatorname{Jac}\left(X_{p^{n}}\right)$ equals 0 . If n is odd, the supersingular elliptic rank of $\operatorname{Jac}\left(X_{p^{n}}\right)$ equals $\left(\frac{p(p-1)}{2}\right)^{n}$.

Computing the superspecial rank

Let X be a smooth projective curve over k.
Let $D(X)$ be the Dieudonné module of the p-torsion of $\operatorname{Jac}(X)$.
Oda: isomorphism of \mathbb{E}-modules between $D(X)$ and $H_{\mathrm{dR}}^{1}(X)$.
Exact sequence:

$$
0 \rightarrow H^{0}\left(X, \Omega^{1}\right) \rightarrow H_{\mathrm{dR}}^{1}(X) \rightarrow H^{1}(X, O) \rightarrow 0 .
$$

Compute the structure of $H_{\mathrm{dR}}^{1}(X)$ under F and V.
Write $(f, \omega) \in H_{\mathrm{dR}}^{1}(X)$ where $d \phi=\omega_{1}-\omega_{2}$.
Then $F(f, \omega):=\left(f^{p}, 0\right)$ and $V(f, \omega):=(0, C(\omega))$,
where C is the Cartier operator on Ω^{1}.

ss-Elliptic rank of hyperelliptic curves when $p=2$

Let Y be a hyperelliptic curve of genus g over $k=\overline{\mathbb{F}}_{2}$.
Then $Y: y^{2}+y=h(x)$ for some $h(x) \in k(x)$.

Theorem - Elkin/P

We determine structure of Dieudonné module of $\operatorname{Jac}(Y)$. It depends only on the orders of the poles of $h(x)$.
E.g., p-rank 0 iff $h(x) \in k[x]$ iff the EO type is $\left[0,1,1,2,2, \ldots,\left\lfloor\frac{g}{2}\right\rfloor\right]$.

Application: Elkin/P

Let Y be a supersingular hyperelliptic curve of genus g over $\overline{\mathbb{F}}_{2}$. Let e be the supersingular elliptic rank of $\operatorname{Jac}(Y)$. Then $e=1$ when $g \equiv 1 \bmod 3$ and $e=0$ otherwise.

Such curves exist: if $h(x)=x R(x)$ for an additive polynomial $R(x)$ of degree 2^{s}, then Y is supersingular of genus $2^{s-1} \mathrm{VdG} / \mathrm{VdV}$.

Supersingular elliptic rank of Suzuki curves

Let $p=2$, let $q_{0}=2^{m}$ and let $q=2^{2 m+1}$.
The Suzuki curve S_{q} has equation $y^{q}+y=x^{q_{0}}\left(x^{q}+x\right)$. It is supersingular with genus $q_{0}(q-1)$.

Furlmann/Torres: S_{q} is the unique \mathbb{F}_{q}-optimal curve of genus g.
Hansen92: S_{q} is the Deligne-Lusztig curve for group $S z(q)={ }^{2} B_{2}(q)$.

Application: Malmskog/P/Weir

The ss-elliptic rank of $\operatorname{Jac}\left(S_{q}\right)$ is 1 when m even and is 0 when m odd.

Proof - supersingular elliptic rank of S_{q}

The Suzuki curve S_{q} has genus $q_{0}(q-1)$ where $q_{0}=2^{m}, q=2^{2 m+1}$.

Application: Malmskog/P/Weir

The ss-elliptic rank of $\operatorname{Jac}\left(S_{q}\right)$ is 1 when m even and is 0 when m odd.
Proof: Consider tame action of $T \simeq \mathbb{Z} /(q-1)$ on S_{q}.
Giulietti, Korchmaros, Torres: The quotient S_{q} / T is a supersingular hyperelliptic curve of genus q_{0}. (must also have p-rank 0).

Applying Elkin/P to S_{q} / T, the old ss-elliptic rank is 1 when $q_{0} \equiv 1 \bmod 3($ even $m)$ and is 0 when $q_{0} \equiv 2 \bmod 3(\operatorname{odd} m)$.

The new elliptic rank is zero: the orbits of action of F on non-trivial eigenspaces of $H_{\mathrm{dR}}^{1}\left(S_{q}\right)$ are too long.

Work in progress - 1

Supersingular curves with ss-elliptic rank 0 when $p=2$
P: Let $p=2$. Let $r, s \in \mathbb{N}$ with s even. Let $q=2^{r}$.
There exists a supersingular curve Y of genus $g=2^{s-1}(q-1)$ with ss-elliptic rank 0.

If s odd, let $\alpha=\operatorname{val}_{3}(q-1)$ and $\beta=\operatorname{val}_{3}\left(2^{s}+1\right)$. Then ss-elliptic rank of Y is bounded by $3^{\alpha}\left(3^{\beta}-1\right) / 2$.

Proof: Use VdG/VdV to construct supersingular curve of genus g, with automorphism of large prime-to-p order.

Old elliptic rank bounded by that of quotient curve. New elliptic rank zero because orbits of action of F on non-trivial eigenspaces of $H_{d R}^{1}(Y)$ too long.

Work in progress - 2

With Malmskog and Weir, computing the DM of the Suzuki curves.
Examples If $m=1$, then $\mathrm{DM}=\mathbb{E} /\left(F^{2}+V^{2}\right) \oplus\left(\mathbb{E} /\left(F^{3}+V^{3}\right)\right)^{4}$.
If $m=2$, then $\mathrm{DM}=\mathbb{E} /(F+V) \oplus \mathbb{E} /\left(F^{3}+V^{3}\right) \oplus D^{4} \oplus\left(\mathbb{E} /\left(F^{5}+V^{5}\right)\right)^{16}$
where D has 3 generators (given by word $F^{-4} V^{3} F^{-3} V^{4} F^{-3} V^{3}$).
Strategy: find structure in general using representation theory.

Conclusion

The superspecial rank is an invariant of the DM of abelian variety A.
If A supersingular, then it equals the number of superspecial elliptic factors in the decomposition of A up to isomorphism.

Superspecial rank is generically 0 for supersingular abelian varieties.
Expect same is true for supersingular Jacobians of curves

Questions

(1) The supersingular locus S_{g} of \mathcal{A}_{g} can be stratified by superspecial rank into subspaces $S_{g, s}$.
For $0 \leq s \leq g-2$, what is the geometry of $S_{g, s}$?
(2) What superspecial ranks occur for supersingular curves?
(If A supersingular, understand connection between superspecial rank and properties of the isogeny $A \sim E^{g}$.

Thanks!

