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Example of interest for us: Elliptic curves

Let E be an elliptic curve over the field of rational numbers
given by the minimal global Weierstraß equation:

E : y2 + A1xy + A3y = x3 + A2x2 + A4x + A6 (1)

and let ∆ be its discriminant. For each prime p we put

ap = p + 1−#E(Fp),

where E(Fp) is the reduction of E modulo p. If p | ∆, then
E(Fp) has a singularity and we put

ap =


0 for the case of a cusp,
1 for the case of a split node,
−1 for the case of a non–split node.

Florian Luca Size and cancellations in Sato Tate sequences



We have |ap| ≤ 2
√

p. The L-function associated to E is given by

L(s,E) =
∏
p|∆

1
1− app−s

∏
p-∆

1
1− app−s + p1−2s .

The infinite product above is convergent for Re(s) > 3/2 and
therefore we can expand it into a series

L(s,E) =
∑
n≥1

ann−s.
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Other example of interest for us: The Ramanujan τ -function

Let τ(n) be the Ramanujan function given by∑
n≥1

τ(n)qn = q
∏
i≥1

(1− qi)24 (|q| < 1).

Ramanujan observed but could not prove the following three
properties of τ(n):

(i) τ(mn) = τ(m)τ(n) whenever gcd(m,n) = 1.
(ii) τ(pr+1) = τ(p)τ(pr )− p11τ(pr−1) for p prime and r ≥ 1.
(iii) |τ(p)| ≤ 2p11/2 for all primes p.

These conjectures were proved by Mordell and Deligne.
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Fibonacci numbers

Let {Fm}m≥0 be the Fibonacci sequence given by
F0 = 0, F1 = 1 and

Fm+2 = Fm+1 + Fm for all m ≥ 0.

Let {an}n≥1 be the sequence of coefficients of the L-function of
an elliptic curve E .
We put

AE = {n : |an| = Fm},

and for a positive x we put #AE (x) = # (AE ∩ [1, x ]).
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Before we start, we remark that there could be many n such
that an is a Fibonacci number simply because it may happen
that ap = 0 for some prime p, in which case n = p` with any
positive integer ` coprime to p has the property that
an = 0 = F0. To discard this instance, let

ME = {n : an 6= 0}.
PuttingME (x) =ME ∩ [1, x ], we have #ME (x)� x in case of
non CM curves (Serre, 1981).

Theorem (L., Yalçiner)

Let E be a non-CM curve with non-trivial 2-torsion. The
estimate

#NE (x) = O
(

x
(log x)0.0007

)
= O

(
#ME (x)

(log #ME (x))0.0007

)
holds for all x ≥ 2. The implied constant depends on E.
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Later, we proved a more general result.

Theorem (L., Oyono, Yalçiner)

Let E be an elliptic curve defined over and u = {um}m≥0 be a
nondegenerate binary recurrent sequence. There is a positive
number c = c(E ,u) depending on E and u such that the
estimate

#NE (x) = O
(

#ME (x)

(log x)c

)
holds for all x ≥ 2. The implied constant depends on E.
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Squares in a certain sequence

Again, {an}n≥1 is the sequence of coefficients of the L-function
of an elliptic curve E .
We studied the set

NE = {n : n2 − an2 + 1 = �}.

The reason we studied this is because if we replace n2 by p
and consider the “extreme case” ap = ±2

√
p, then

p − ap + 1 = p ± 2
√

p + 1 = (
√

p ± 1)2

looks like a “perfect square”.

Florian Luca Size and cancellations in Sato Tate sequences



Theorem (L., Yalçiner)

Let E be a non CM curve for which the Sato–Tate conjecture
holds. The estimate

#NE (x) = O
(

x
(log x)0.00001

)
holds for all x ≥ 2. The implied constant depends on E.

Note that if p | ∆ and ap = ±1, and ` ≥ 1, then
ap` = (ap)` = (±1)`, which implies that n = p` ∈ NE . Moreover
if all prime factors p of n divide ∆ and have ap = ±1, then
n ∈ NE .

However, the set of such positive integers n is very thin since
the number of such integers n ≤ x is O((log x)c) for some
constant c ≤ ω(∆).
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Elliptic Carmichael numbers

Again, {an}n≥1 is the sequence of coefficients of the L-function
of an elliptic curve E .

Slightly relaxing a definition of Silverman, we say that a positive
integer n is an E-Carmichael number if

it is not a prime power;
for any prime divisor p | n we have p - ∆;
for any point P ∈ E(Fp) we have

(n + 1− an)P = Op, (2)

where both the equation and the group law are considered
over Fp.
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For a real x ≥ 1, let NE (x) be the number of E-Carmichael
numbers n ≤ x .

Theorem (L., Shparlinski)

Let E be a non CM curve. For a sufficiently large x

NE (x)� x
(log log log x)1/2(log log log log x)1/4

(log log x)1/4 .
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Sato–Tate sequences

Let AST be the class of infinite sequences {an}n≥1 of real
numbers, which satisfy the following properties:

Multiplicativity:

amn = aman, whenever gcd(m,n) = 1.

Sato-Tate distribution: for any prime p, ap ∈ [−2,2], and for
the angles ϑp ∈ [0, π) defined by

ap = 2 cosϑp,

and α ∈ [0, π), we have

lim
x→∞

#{p ≤ x : p prime, ϑp ∈ [0, α]}
π(x)

=
2
π

∫ α

0
sin2 ϑdϑ.

Growth on prime powers: There exist a constant % > 0
such that for any integer a ≥ 2 and prime p we have

|apa | ≤ p(a−1)/2−%.
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The above properties are known to hold both for the Ramanujan
function τ(n)/n11/2 as well as for an/n1/2, where {an}n≥1 is the
sequence of coefficients arising of an L-function of an elliptic
curves with certain conditions, like a non-integral j-invariant.

Theorem (L., Shparlinski)

For any sequence {an}n≥1 ∈ AST, the inequality

|an| ≤ (log n)−1/2+o(1)

holds for almost all positive integers n.

Theorem (L., Shparlinski)

For any sequence {an}n≥1 ∈ AST, we have

∑
n≤x

an = o

∑
n≤x

|an|

 (x →∞).
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The proof of the result involving Fibonacci numbers

The proof goes in various steps.
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Removing n with a large square full part

Recall that s is a square full number if p2 | s whenever p | s.

Put y = log x . For each n we write

t(n) =
∏
p‖n

p-6∆

p and s(n) = n/t(n).

Then s(n) = ab, where a is square free and a | 6∆ and b is
squarefull up to factors of 2 and 3. We put

N1(x) = {n ≤ x : s(n) > y}. (3)

Then
#N1(x)� x

y1/2 =
x

(log x)1/2 , (4)

where we used that the counting function of the number of
square full numbers s ≤ t is O(t1/2).
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Removing smooth n

Let P(n) be the largest prime factor of n. Put

z = exp
(

log x log log log x
log log x

)
.

We let
N2(x) = {n ≤ x : P(n) ≤ z}. (5)

From known results from the distribution of smooth numbers, in
this range for z and x , it is known that

#N2(x) = x exp(−(1 + o(1))u log u) as x →∞,

where u = log x/ log z = log log x/ log log log x . Hence,

u log u = (1 + o(1)) log log x ,

as x →∞, showing that

#N2(x) = x exp(−(1 + o(1)) log log x) = O
(

x
(log x)1/2

)
. (6)
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Removing n with too few prime factors

Let α ∈ (0,1) to be found later and consider the set

N3(x) = {n ≤ x : ω(n) < (1− α) log log x}. (7)

The results from the book Divisors of Hall, Tenebaum, show
that

#N3(x)� x
(log x)β

, (8)

where

β = 1− (1− α) log
(

e
1− α)

)
.
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The final argument

Assume that

n ∈ N4(x) = NE (x)\ (N1(x) ∪N2(x) ∪N3(x)) .

Since n 6∈ N1(x), we may write

n = up1 · · · p`, u ≤ y , p1 < · · · < p`, gcd(u,p1 · · · p`) = 1.

Furthermore, pi - 6∆ for any i = 1, . . . , `. Assume that x is large
enough so that z > y . Then P(n) = p`.

Write
Fm = an = auap1 · · · ap` .

Let ε > 0 be arbitrary. Note that since

ω(u)� log u
log log u

� log y
log log y

= o(log log x) as x →∞,

it follows that ω(u) < ε log log x holds whenever x is sufficiently
large.
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Put
L = b(1− α− ε) log log xc.

Note that ` = ω(n/u) ≥ L since n 6∈ N3(x). Note also that since
E has 2-torsion, it follows that #E(Fp) is always even. Since

#E(Fp) = p − ap + 1,

it follows that ap is even whenever p is odd. In particular, 2 | api

for all i = 1, . . . , `. Thus, 2L | an | Fm. Since the inequality

|an| ≤ d(n)
√

n < x

holds for all sufficiently large x , where d(n) is the number of
divisors of n, it follows that Fm < x . Since

Fm =
γm − δm

γ − δ
, where (γ, δ) =

(
1 +
√

5
2

,
1−
√

5
2

)
,

it follows that m < c log x holds with some positive absolute
constant c which can be taken to be any constant larger than
1/ log γ provided that x is sufficiently large.
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We now exploit the condition 2L | Fm. It is known that this
implies that 3× 2L−2 | m. Thus, m = 3× 2L−2k for some
positive integer k satisfying the bound

k ≤ c1 log x
3× 2L−2 ≤ c2(log x)1−(1−α−ε) log 2,

where c2 = 8c1/3. Let M be the above upper bound. Fix
k ≤ M.
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Also fix v = n/p`. Put P = p`. We then have

±Fm = an = av aP .

Since v and m are fixed with av 6= 0, Fm 6= 0, it follows that
aP = ±Fm/av takes one of two fixed values. Since also
P ≤ x/v , it follows, by a result of Serre, that the number of
possibilities for P is of order at most

π(x/v)
(log log(x/v))2/3(log log log(x/v))1/3

(log(x/v))1/3 � x(log log x)3/4

v(log(x/v))4/3 .

Using the fact that x/v > P > z, so

log(x/v) > log z =
(log x)(log log log x)

log log x
,

we get that the number shown above is bounded above by

x(log log x)2

v(log x)4/3

whenever x is large enough.
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Summing over all possibilities for v < x/z and k , we get that

#N4(x)� x(log log x)2M
(log x)4/3

∑
v<x/z

1
v
� x(log log x)2

(log x)(1−α−ε) log 2−2/3 .

(9)
Comparing (4), (6), (8) and (9), it follows that we must choose α
such that

1− (1− α) log
(

e
1− α

)
= (1− α) log 2− 2/3,

giving α = 0.0371929 with corresponding common values of
the above expression equal to 0.00070394.

Taking ε sufficiently small, we get the desired estimate.
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What about Sato-Tate sequences?

One might wonder where do we get the exponent −1/2 on the
log n.

Well, we get it from the improper integral∫ π

0
sin2 ϑ log |2 cosϑ|dϑ = π

∫ 1

0
sin2(πω) log |2 cosπω|dω = −π

4
.

Namely take some θ. Take all primes p dividing n with

θp ∈ [θ, θ + dθ].

By Sato-Tate, the relative density of such primes in the set of all
primes is

2
π

sin2 θdθ.

Since most n have log log n primes, then most n have
2
π

sin2 θdθ(log log n)

such prime factors.
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So, say assuming that n is square-free, in the product

an =
∏
p|n

ap,

the primes in [θ, θ + dθ] will participate with the multiplicative
amount

|2 cos θ|
2
π

sin2 θdθ log log n = (log n)
2
π

sin2 θ log |2 cos θ|dθ.

Varying θ, we get that the exponent above is exactly

2
π

∫ π

0
sin2 θ log |2 cos θ|dθ = −1

2
.

The rest is just technicalities, making dθ of the form 1/K for
some large K , using sieves and results from the theory of
discrepancy of sequences to control the error of approximating
the integral with the corresponding Riemann sum.
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THANK YOU!
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	The final argument

