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Example of interest for us: Elliptic curves

Let E be an elliptic curve over the field of rational numbers
given by the minimal global Weierstral3 equation:

E . y?+ Aixy+ Asy = x° + Aox? + Asx + Ag (1)
and let A be its discriminant. For each prime p we put
ap=p+1—#E(Fp),

where E([Fp) is the reduction of E modulo p. If p | A, then
E(Fp) has a singularity and we put

0 for the case of a cusp,
ap=14 1 for the case of a split node,
—1 for the case of a non—split node.
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We have |ap| < 2,/p. The L-function associated to E is given by

1 1
L(S7E):H - H - 1—2s
pin 1 TP a1 @p e P

The infinite product above is convergent for Re(s) > 3/2 and
therefore we can expand it into a series

L(s,E)=> ann*.

n>1
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Other example of interest for us: The Ramanujan r-function
Let 7(n) be the Ramanujan function given by
Y rme"=ql[0-a"  (lal<1).
n>1 i>1

Ramanujan observed but could not prove the following three
properties of 7(n):

(i) 7(mn) = 7(m)r(n) whenever gcd(m, n) = 1.
(i) 7(p*") = 7(p)r(p") — p''r(p"~") for p prime and r > 1.
(iii) |7(p)| < 2p'"/? for all primes p.

These conjectures were proved by Mordell and Deligne.
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Fibonacci numbers
Let {Fm}m>0 be the Fibonacci sequence given by
Fo=0, F; =1and
Fmio = Fmy1 + Fm forall m>0.

Let {an}n>1 be the sequence of coefficients of the L-function of
an elliptic curve E.
We put

A ={n:|an = Fn},

and for a positive x we put #Ag(x) = # (Ag N [1, x]).
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Before we start, we remark that there could be many n such
that a,, is a Fibonacci number simply because it may happen
that a, = 0 for some prime p, in which case n = p/ with any
positive integer £ coprime to p has the property that

an = 0 = Fy. To discard this instance, let

Mg ={n:ap # 0}.

Putting Mg(x) = Mgn[1, x|, we have #Mg(x) > x in case of
non CM curves (Serre, 1981).

Theorem ( )

Let E be a non-CM curve with non-trivial 2-torsion. The
estimate

B X B #MEe(X)
#40) = 0 ggzomm ) = © (Tgatermyoer)

holds for all x > 2. The implied constant depends on E.

Size and cancellations in Sato Tate sequences




Later, we proved a more general result.

Theorem ( )

Let E be an elliptic curve defined over andu = {un}m>0 be a
nondegenerate binary recurrent sequence. There is a positive
number ¢ = c(E, u) depending on E and u such that the

estimate 4ME(x)
EWX
#3200 = 0 (g5 )

holds for all x > 2. The implied constant depends on E.
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Squares in a certain sequence

Again, {an}n>1 is the sequence of coefficients of the L-function
of an elliptic curve E.
We studied the set

Ne={n:nrmP—ap+1=0}

The reason we studied this is because if we replace n? by p
and consider the “extreme case” ap = £2,/p, then

p—ap+1=p+2y/p+1=(/pt1)?

looks like a “perfect square”.
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Theorem ( )

Let E be a non CM curve for which the Sato—Tate conjecture
holds. The estimate

)= O g

holds for all x > 2. The implied constant depends on E.

Note thatif p | A and g, = +1,and ¢ > 1, then
ay = (ap)’ = (+1), which implies that n = p’ € Ng. Moreover
if all prime factors p of n divide A and have a, = +1, then

nENE.

However, the set of such positive integers n is very thin since
the number of such integers n < x is O((log x)¢) for some
constant ¢ < w(A).
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Elliptic Carmichael numbers

Again, {an}n>1 is the sequence of coefficients of the L-function
of an elliptic curve E.

Slightly relaxing a definition of Silverman, we say that a positive
integer nis an E-Carmichael number if

@ itis not a prime power;

@ for any prime divisor p | nwe have pt A;

@ for any point P € E(Fp) we have

(n+1—ap)P =0y, (2)

where both the equation and the group law are considered
over Fp.
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For areal x > 1, let Ng(x) be the number of E-Carmichael
numbers n < x.

Let E be a non CM curve. For a sufficiently large x

X(Iog log log x)'/2(log log log log x)'/4

Ne(x) < (log log x)1/4
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Sato—Tate sequences

Let Asr be the class of infinite sequences {an},>1 of real
numbers, which satisfy the following properties:
@ Multiplicativity:

amn = a@man, Whenever gcd(m,n)=1.

@ Sato-Tate distribution: for any prime p, a, € [—2,2], and for
the angles 9, € [0, 7) defined by

ap = 2C0s Vp,
and a € [0, 7r) we have
jim FP=X 2 pprime, dp € [0, o]} 2/ sin 9 dv.
X0 m(X) 7™ Jo

@ Growth on prime powers: There exist a constant o > 0
such that for any integer a > 2 and prime p we have

|apa‘ < p(af1)/2*Q.
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The above properties are known to hold both for the Ramanujan
function 7(n)/n'"/2 as well as for ap/n'/?, where {ap},>1 is the
sequence of coefficients arising of an L-function of an elliptic
curves with certain conditions, like a non-integral j-invariant.

Theorem ( )

For any sequence {an}n>1 € Ast, the inequality

|an| < (lOg n)—1/2+0(1)

holds for almost all positive integers n.

Theorem (

For any sequence {an}n>1 € Ast, we have
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The proof of the result involving Fibonacci numbers

The proof goes in various steps.
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Removing n with a large square full part
Recall that s is a square full number if p? | s whenever p | s.
Put y = log x. For each n we write

ttn)=[p and  s(n)=n/t(n).

plin
pI6A

Then s(n) = ab, where ais square free and a | 6A and b is
squarefull up to factors of 2 and 3. We put

Ni(x) = {n < x: s(n) > y}. (3)

Then
X X
y1/2 - (Iog X)1/2’
where we used that the counting function of the number of
square full numbers s < tis O(t'/2).

Size and cancellations in Sato Tate sequences

#N1(x) <



Removing smooth n
Let P(n) be the largest prime factor of n. Put

7 ex log x log log log x ‘
log log x

We let
No(x)={n<x:P(n) <z} (5)

From known results from the distribution of smooth numbers, in
this range for z and x, it is known that

#No(x) = xexp(—(1+o(1))ulogu) as  x — oo,
where u = log x/ log z = log log x/ log log log x. Hence,
ulogu = (1+ o(1))loglog x,
as x — oo, showing that

HNo(x) = x exp(—(1 + o(1)) loglog x) = O (W) . (6)
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Removing n with too few prime factors

Let o € (0, 1) to be found later and consider the set

N3(x) ={n < x:w(n) < (1-a)loglogx}. (7)
The results from the book Divisors of Hall, Tenebaum, show
that
#Ns(X) L 57— (Iog ) (8)
where

ﬁ:1—(1—a)log<1_ea)>.
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The final argument
Assume that

n € Na(x) = Ne(x)\ (N1(x) UN2(x) UN3(x)).
Since n ¢ N1(x), we may write

n=upt---pp, U<y, p1<---<pp ged(u,pi---p;)=1.

Furthermore, p; 1 6A forany i =1,...,¢. Assume that x is large
enough so that z > y. Then P(n) = p,.
Write

Fm:an:auap1 ape
Let € > 0 be arbitrary. Note that since

log u logy
= I
w(u) < loglog U < loglog y o(loglog x) as X — 00,
it follows that w(u) < eloglog x holds whenever x is sufficiently

large.
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Put
L=[(1—a—c¢)loglogx|.
Note that ¢ = w(n/u) > L since n ¢ N3(x). Note also that since
E has 2-torsion, it follows that #E(Fp) is always even. Since
#E(FP) =p- ap+ 17

it follows that ap, is even whenever p is odd. In particular, 2 | ap,
foralli=1,...,¢ Thus, 25| a, | Fm. Since the inequality

lan| < d(n)v/n < x
holds for all sufficiently large x, where d(n) is the number of
divisors of n, it follows that F;, < x. Since

m 5m

Fn="—""  where (v,0)= (

y—0 2 2

it follows that m < clog x holds with some positive absolute

constant ¢ which can be taken to be any constant larger than
1/log~ provided that x is sufficiently large.
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We now exploit the condition 2L | Fp,. It is known that this
implies that 3 x 2t-2 | m. Thus, m = 3 x 2.2k for some
positive integer k satisfying the bound

K< O log x

< 3oz = cllog x)1-(1-a=e)log2

where ¢, = 8¢1/3. Let M be the above upper bound. Fix
k < M.
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NSNS
Also fix v = n/py. Put P = p,. We then have

Zl:Fm == an == avaP

Since v and m are fixed with a, # 0, Fp, # 0, it follows that
ap = +Fp/ay takes one of two fixed values. Since also

P < x/v, it follows, by a result of Serre, that the number of
possibilities for P is of order at most

ﬂ(x/v)(IOg log(x/v))?/3(log log log(x/v))!/3 < x(loglog x)3/4 |
(log(x/v))'/3 v(log(x/v))*/3
Using the fact that x/v > P > z, so
(log x)(log log log x)
log log x
we get that the number shown above is bounded above by
x(loglog x)?
v(log x)4/3
whenever x is large enough.

log(x/v) >logz =

Y




Summing over all possibilities for v < x/z and k, we get that

x(log log x)*M 1 x(log log x)?

~ (logx)*3 2y (log x)(1—a—<)log2-2/3"
9)

Comparing (4), (6), (8) and (9), it follows that we must choose «

such that

#Na(x) <

v<Xx/z

1-(1 —a)log<1 fa) = (1-a)log2—2/3,

giving a = 0.0371929 with corresponding common values of
the above expression equal to 0.00070394.

Taking ¢ sufficiently small, we get the desired estimate.
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What about Sato-Tate sequences?

One might wonder where do we get the exponent —1/2 on the
log n.

Well, we get it from the improper integral

s 1
/ sin? 9 log |2 cos ¥|dY = 77/ sin?(nw)log |2 cos mw|dw = —%.
0 0

Namely take some 6. Take all primes p dividing n with

Op € [0,0 + db)].
By Sato-Tate, the relative density of such primes in the set of all
primes is
2 sin2 0do.
T

Since most n have log log n primes, then most n have

% sin? #dé(log log n)

such prime factors.
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So, say assuming that n is square-free, in the product
an == H ap,

the primes in [0, 0 + d6] will participate with the multiplicative
amount

‘20030’ sin® 9dfloglogn __ (Iog n) sin? 9|og|2cos€|d6

Varying 0, we get that the exponent above is exactly

2 [™ ., 1
— sin“flog|2cosf|dfd = —~.
= [ sin2o10gi2cos sl = 3
The rest is just technicalities, making dé of the form 1/K for
some large K, using sieves and results from the theory of
discrepancy of sequences to control the error of approximating
the integral with the corresponding Riemann sum.,
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THANK YOU!
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	The final argument

