Size and cancellations in Sato Tate sequences

Florian Luca

November 13, 2013

Example of interest for us: Elliptic curves

Let E be an elliptic curve over the field of rational numbers given by the minimal global Weierstraß equation:

$$
\begin{equation*}
E: y^{2}+A_{1} x y+A_{3} y=x^{3}+A_{2} x^{2}+A_{4} x+A_{6} \tag{1}
\end{equation*}
$$

and let Δ be its discriminant. For each prime p we put

$$
a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right),
$$

where $E\left(\mathbb{F}_{p}\right)$ is the reduction of E modulo p. If $p \mid \Delta$, then $E\left(\mathbb{F}_{p}\right)$ has a singularity and we put

$$
a_{p}=\left\{\begin{array}{cc}
0 & \text { for the case of a cusp, } \\
1 & \text { for the case of a split node, } \\
-1 & \text { for the case of a non-split node. }
\end{array}\right.
$$

We have $\left|a_{p}\right| \leq 2 \sqrt{p}$. The L-function associated to E is given by

$$
L(s, E)=\prod_{p \mid \Delta} \frac{1}{1-a_{p} p^{-s}} \prod_{p \nmid \Delta} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}}
$$

The infinite product above is convergent for $\operatorname{Re}(s)>3 / 2$ and therefore we can expand it into a series

$$
L(s, E)=\sum_{n \geq 1} a_{n} n^{-s}
$$

Other example of interest for us: The Ramanujan τ-function Let $\tau(n)$ be the Ramanujan function given by

$$
\sum_{n \geq 1} \tau(n) q^{n}=q \prod_{i \geq 1}\left(1-q^{i}\right)^{24} \quad(|q|<1)
$$

Ramanujan observed but could not prove the following three properties of $\tau(n)$:
(i) $\tau(m n)=\tau(m) \tau(n)$ whenever $\operatorname{gcd}(m, n)=1$.
(ii) $\tau\left(p^{r+1}\right)=\tau(p) \tau\left(p^{r}\right)-p^{11} \tau\left(p^{r-1}\right)$ for p prime and $r \geq 1$.
(iii) $|\tau(p)| \leq 2 p^{11 / 2}$ for all primes p.

These conjectures were proved by Mordell and Deligne.

Fibonacci numbers
Let $\left\{F_{m}\right\}_{m \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and

$$
F_{m+2}=F_{m+1}+F_{m} \quad \text { for all } \quad m \geq 0
$$

Let $\left\{a_{n}\right\}_{n \geq 1}$ be the sequence of coefficients of the L-function of an elliptic curve E.
We put

$$
\mathcal{A}_{E}=\left\{n:\left|a_{n}\right|=F_{m}\right\},
$$

and for a positive x we put $\# \mathcal{A}_{E}(x)=\#\left(\mathcal{A}_{E} \cap[1, x]\right)$.

Before we start, we remark that there could be many n such that a_{n} is a Fibonacci number simply because it may happen that $a_{p}=0$ for some prime p, in which case $n=p \ell$ with any positive integer ℓ coprime to p has the property that $a_{n}=0=F_{0}$. To discard this instance, let

$$
\mathcal{M}_{E}=\left\{n: a_{n} \neq 0\right\} .
$$

Putting $\mathcal{M}_{E}(x)=\mathcal{M}_{E} \cap[1, x]$, we have $\# \mathcal{M}_{E}(x) \gg x$ in case of non CM curves (Serre, 1981).

Theorem (L., Yalçiner)

Let E be a non-CM curve with non-trivial 2 -torsion. The estimate

$$
\# \mathcal{N}_{E}(x)=O\left(\frac{x}{(\log x)^{0.0007}}\right)=O\left(\frac{\# \mathcal{M}_{E}(x)}{\left(\log \# \mathcal{M}_{E}(x)\right)^{0.0007}}\right)
$$

holds for all $x \geq 2$. The implied constant depends on E.

Later, we proved a more general result.

Theorem (L., Oyono, Yalçiner)

Let E be an elliptic curve defined over and $\mathbf{u}=\left\{u_{m}\right\}_{m \geq 0}$ be a nondegenerate binary recurrent sequence. There is a positive number $\mathrm{c}=\mathrm{c}(E, \mathbf{u})$ depending on E and \mathbf{u} such that the estimate

$$
\# \mathcal{N}_{E}(x)=O\left(\frac{\# \mathcal{M}_{E}(x)}{(\log x)^{c}}\right)
$$

holds for all $x \geq 2$. The implied constant depends on E.

Squares in a certain sequence

Again, $\left\{a_{n}\right\}_{n \geq 1}$ is the sequence of coefficients of the L-function of an elliptic curve E.
We studied the set

$$
\mathcal{N}_{E}=\left\{n: n^{2}-a_{n^{2}}+1=\square\right\}
$$

The reason we studied this is because if we replace n^{2} by p and consider the "extreme case" $a_{p}= \pm 2 \sqrt{p}$, then

$$
p-a_{p}+1=p \pm 2 \sqrt{p}+1=(\sqrt{p} \pm 1)^{2}
$$

looks like a "perfect square".

Theorem (L., Yalçiner)

Let E be a non CM curve for which the Sato-Tate conjecture holds. The estimate

$$
\# \mathcal{N}_{E}(x)=O\left(\frac{x}{(\log x)^{0.00001}}\right)
$$

holds for all $x \geq 2$. The implied constant depends on E.
Note that if $p \mid \Delta$ and $a_{p}= \pm 1$, and $\ell \geq 1$, then $a_{p^{\ell}}=\left(a_{p}\right)^{\ell}=(\pm 1)^{\ell}$, which implies that $n=p^{\ell} \in \mathcal{N}_{E}$. Moreover if all prime factors p of n divide Δ and have $a_{p}= \pm 1$, then $n \in \mathcal{N}_{E}$.

However, the set of such positive integers n is very thin since the number of such integers $n \leq x$ is $O\left((\log x)^{c}\right)$ for some constant $c \leq \omega(\Delta)$.

Elliptic Carmichael numbers

Again, $\left\{a_{n}\right\}_{n \geq 1}$ is the sequence of coefficients of the L-function of an elliptic curve E.

Slightly relaxing a definition of Silverman, we say that a positive integer n is an E-Carmichael number if

- it is not a prime power;
- for any prime divisor $p \mid n$ we have $p \nmid \Delta$;
- for any point $P \in E\left(\mathbb{F}_{p}\right)$ we have

$$
\begin{equation*}
\left(n+1-a_{n}\right) P=O_{p}, \tag{2}
\end{equation*}
$$

where both the equation and the group law are considered over \mathbb{F}_{p}.

For a real $x \geq 1$, let $N_{E}(x)$ be the number of E-Carmichael numbers $n \leq x$.

Theorem (L., Shparlinski)

Let E be a non CM curve. For a sufficiently large x

$$
N_{E}(x) \ll x \frac{(\log \log \log x)^{1 / 2}(\log \log \log \log x)^{1 / 4}}{(\log \log x)^{1 / 4}} .
$$

Sato-Tate sequences

Let $\mathcal{A}_{\text {ST }}$ be the class of infinite sequences $\left\{a_{n}\right\}_{n \geq 1}$ of real numbers, which satisfy the following properties:

- Multiplicativity:

$$
a_{m n}=a_{m} a_{n}, \quad \text { whenever } \quad \operatorname{gcd}(m, n)=1
$$

- Sato-Tate distribution: for any prime $p, a_{p} \in[-2,2]$, and for the angles $\vartheta_{p} \in[0, \pi)$ defined by

$$
a_{p}=2 \cos \vartheta_{p}
$$

and $\alpha \in[0, \pi)$, we have

$$
\lim _{x \rightarrow \infty} \frac{\#\left\{p \leq x: p \text { prime, } \vartheta_{p} \in[0, \alpha]\right\}}{\pi(x)}=\frac{2}{\pi} \int_{0}^{\alpha} \sin ^{2} \vartheta d \vartheta
$$

- Growth on prime powers: There exist a constant $\varrho>0$ such that for any integer $a \geq 2$ and prime p we have

$$
\left|a_{p^{a}}\right| \leq p^{(a-1) / 2-\varrho}
$$

The above properties are known to hold both for the Ramanujan function $\tau(n) / n^{11 / 2}$ as well as for $a_{n} / n^{1 / 2}$, where $\left\{a_{n}\right\}_{n \geq 1}$ is the sequence of coefficients arising of an L-function of an elliptic curves with certain conditions, like a non-integral j-invariant.

Theorem (L., Shparlinski)

For any sequence $\left\{a_{n}\right\}_{n \geq 1} \in \mathcal{A}_{\mathrm{ST}}$, the inequality

$$
\left|a_{n}\right| \leq(\log n)^{-1 / 2+o(1)}
$$

holds for almost all positive integers n.

Theorem (L., Shparlinski)

For any sequence $\left\{a_{n}\right\}_{n \geq 1} \in \mathcal{A}_{\mathrm{ST}}$, we have

$$
\sum_{n<x} a_{n}=o\left(\sum_{n<x}\left|a_{n}\right|\right) \quad(x \rightarrow \infty)
$$

The proof of the result involving Fibonacci numbers
The proof goes in various steps.

Removing n with a large square full part

Recall that s is a square full number if $p^{2} \mid s$ whenever $p \mid s$.
Put $y=\log x$. For each n we write

$$
t(n)=\prod_{\substack{p \| n \\ p \mid 6 \Delta}} p \quad \text { and } \quad s(n)=n / t(n) \text {. }
$$

Then $s(n)=a b$, where a is square free and $a \mid 6 \Delta$ and b is squarefull up to factors of 2 and 3 . We put

$$
\begin{equation*}
\mathcal{N}_{1}(x)=\{n \leq x: s(n)>y\} . \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\# \mathcal{N}_{1}(x) \ll \frac{x}{y^{1 / 2}}=\frac{x}{(\log x)^{1 / 2}}, \tag{4}
\end{equation*}
$$

where we used that the counting function of the number of square full numbers $s \leq t$ is $O\left(t^{1 / 2}\right)$.

Removing smooth n

Let $P(n)$ be the largest prime factor of n. Put

$$
z=\exp \left(\frac{\log x \log \log \log x}{\log \log x}\right) .
$$

We let

$$
\begin{equation*}
\mathcal{N}_{2}(x)=\{n \leq x: P(n) \leq z\} . \tag{5}
\end{equation*}
$$

From known results from the distribution of smooth numbers, in this range for z and x, it is known that

$$
\# \mathcal{N}_{2}(x)=x \exp (-(1+o(1)) u \log u) \quad \text { as } \quad x \rightarrow \infty,
$$

where $u=\log x / \log z=\log \log x / \log \log \log x$. Hence,

$$
u \log u=(1+o(1)) \log \log x
$$

as $x \rightarrow \infty$, showing that

$$
\begin{equation*}
\# \mathcal{N}_{2}(x)=x \exp (-(1+o(1)) \log \log x)=O\left(\frac{x}{(\log x)^{1 / 2}}\right) \tag{6}
\end{equation*}
$$

Removing n with too few prime factors
Let $\alpha \in(0,1)$ to be found later and consider the set

$$
\begin{equation*}
\mathcal{N}_{3}(x)=\{n \leq x: \omega(n)<(1-\alpha) \log \log x\} . \tag{7}
\end{equation*}
$$

The results from the book Divisors of Hall, Tenebaum, show that

$$
\begin{equation*}
\# \mathcal{N}_{3}(x) \ll \frac{x}{(\log x)^{\beta}}, \tag{8}
\end{equation*}
$$

where

$$
\beta=1-(1-\alpha) \log \left(\frac{e}{1-\alpha)}\right) .
$$

The final argument

Assume that

$$
n \in \mathcal{N}_{4}(x)=\mathcal{N}_{E}(x) \backslash\left(\mathcal{N}_{1}(x) \cup \mathcal{N}_{2}(x) \cup \mathcal{N}_{3}(x)\right)
$$

Since $n \notin \mathcal{N}_{1}(x)$, we may write

$$
n=u p_{1} \cdots p_{\ell}, \quad u \leq y, \quad p_{1}<\cdots<p_{\ell}, \quad \operatorname{gcd}\left(u, p_{1} \cdots p_{\ell}\right)=1
$$

Furthermore, $p_{i} \nmid 6 \Delta$ for any $i=1, \ldots, \ell$. Assume that x is large enough so that $z>y$. Then $P(n)=p_{\ell}$.
Write

$$
F_{m}=a_{n}=a_{u} a_{p_{1}} \cdots a_{p_{\ell}} .
$$

Let $\varepsilon>0$ be arbitrary. Note that since
$\omega(u) \ll \frac{\log u}{\log \log u} \ll \frac{\log y}{\log \log y}=o(\log \log x) \quad$ as $\quad x \rightarrow \infty$,
it follows that $\omega(u)<\varepsilon \log \log x$ holds whenever x is sufficiently large.

Put

$$
L=\lfloor(1-\alpha-\varepsilon) \log \log x\rfloor .
$$

Note that $\ell=\omega(n / u) \geq L$ since $n \notin \mathcal{N}_{3}(x)$. Note also that since E has 2-torsion, it follows that $\# E\left(\mathbb{F}_{p}\right)$ is always even. Since

$$
\# E\left(\mathbb{F}_{p}\right)=p-a_{p}+1
$$

it follows that a_{p} is even whenever p is odd. In particular, $2 \mid a_{p_{i}}$ for all $i=1, \ldots, \ell$. Thus, $2^{L}\left|a_{n}\right| F_{m}$. Since the inequality

$$
\left|a_{n}\right| \leq d(n) \sqrt{n}<x
$$

holds for all sufficiently large x, where $d(n)$ is the number of divisors of n, it follows that $F_{m}<x$. Since

$$
F_{m}=\frac{\gamma^{m}-\delta^{m}}{\gamma-\delta}, \quad \text { where } \quad(\gamma, \delta)=\left(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right)
$$

it follows that $m<c \log x$ holds with some positive absolute constant c which can be taken to be any constant larger than $1 / \log \gamma$ provided that x is sufficiently large.

We now exploit the condition $2^{L} \mid F_{m}$. It is known that this implies that $3 \times 2^{L-2} \mid m$. Thus, $m=3 \times 2^{L-2} k$ for some positive integer k satisfying the bound

$$
k \leq \frac{c_{1} \log x}{3 \times 2^{L-2}} \leq c_{2}(\log x)^{1-(1-\alpha-\varepsilon) \log 2},
$$

where $c_{2}=8 c_{1} / 3$. Let M be the above upper bound. Fix $k \leq M$.

Also fix $v=n / p_{\ell}$. Put $P=p_{\ell}$. We then have

$$
\pm F_{m}=a_{n}=a_{v} a_{P}
$$

Since v and m are fixed with $a_{v} \neq 0, F_{m} \neq 0$, it follows that $a_{P}= \pm F_{m} / a_{v}$ takes one of two fixed values. Since also $P \leq x / v$, it follows, by a result of Serre, that the number of possibilities for P is of order at most

$$
\pi(x / v) \frac{(\log \log (x / v))^{2 / 3}(\log \log \log (x / v))^{1 / 3}}{(\log (x / v))^{1 / 3}} \ll \frac{x(\log \log x)^{3 / 4}}{v(\log (x / v))^{4 / 3}}
$$

Using the fact that $x / v>P>z$, so

$$
\log (x / v)>\log z=\frac{(\log x)(\log \log \log x)}{\log \log x}
$$

we get that the number shown above is bounded above by

$$
\frac{x(\log \log x)^{2}}{v(\log x)^{4 / 3}}
$$

whenever x is large enough.

Summing over all possibilities for $v<x / z$ and k, we get that

$$
\begin{equation*}
\# \mathcal{N}_{4}(x) \ll \frac{x(\log \log x)^{2} M}{(\log x)^{4 / 3}} \sum_{v<x / z} \frac{1}{v} \ll \frac{x(\log \log x)^{2}}{(\log x)^{(1-\alpha-\varepsilon) \log 2-2 / 3}} \tag{9}
\end{equation*}
$$

Comparing (4), (6), (8) and (9), it follows that we must choose α such that

$$
1-(1-\alpha) \log \left(\frac{e}{1-\alpha}\right)=(1-\alpha) \log 2-2 / 3
$$

giving $\alpha=0.0371929$ with corresponding common values of the above expression equal to 0.00070394 .

Taking ε sufficiently small, we get the desired estimate.

What about Sato-Tate sequences?

One might wonder where do we get the exponent $-1 / 2$ on the $\log n$.
Well, we get it from the improper integral
$\int_{0}^{\pi} \sin ^{2} \vartheta \log |2 \cos \vartheta| d \vartheta=\pi \int_{0}^{1} \sin ^{2}(\pi \omega) \log |2 \cos \pi \omega| d \omega=-\frac{\pi}{4}$.
Namely take some θ. Take all primes p dividing n with

$$
\theta_{p} \in[\theta, \theta+d \theta] .
$$

By Sato-Tate, the relative density of such primes in the set of all primes is

$$
\frac{2}{\pi} \sin ^{2} \theta d \theta .
$$

Since most n have $\log \log n$ primes, then most n have

$$
\frac{2}{\pi} \sin ^{2} \theta d \theta(\log \log n)
$$

such prime factors.

So, say assuming that n is square-free, in the product

$$
a_{n}=\prod_{p \mid n} a_{p}
$$

the primes in $[\theta, \theta+d \theta]$ will participate with the multiplicative amount

$$
|2 \cos \theta|^{\frac{2}{\pi} \sin ^{2} \theta d \theta \log \log n}=(\log n)^{\frac{2}{\pi} \sin ^{2} \theta \log |2 \cos \theta| d \theta}
$$

Varying θ, we get that the exponent above is exactly

$$
\frac{2}{\pi} \int_{0}^{\pi} \sin ^{2} \theta \log |2 \cos \theta| d \theta=-\frac{1}{2}
$$

The rest is just technicalities, making $d \theta$ of the form $1 / K$ for some large K, using sieves and results from the theory of discrepancy of sequences to control the error of approximating the integral with the corresponding Riemann sum.

THANK YOU!

