Garden of curves with many automorphisms

Gábor Korchmáros

Università degli Studi della Basilicata, Italy
joint work with Massimo Giulietti

Workshop on algebraic curves over finite fields, RICAM

November 11-15 2013, Linz

Outline

Outline

$\mathcal{X}:=$ (projective, non-singular, geometrically irreducible,) algebraic curve of genus $g \geq 2$, defined over an algebraically closed filed \mathbb{K} of characteristic $p>0$. $\operatorname{Aut}(\mathcal{X}):=$ the \mathbb{K}-automorphism group of \mathcal{X}.

Outline

$\mathcal{X}:=$ (projective, non-singular, geometrically irreducible,) algebraic curve of genus $g \geq 2$, defined over an algebraically closed filed \mathbb{K} of characteristic $p>0$. $\operatorname{Aut}(\mathcal{X}):=$ the \mathbb{K}-automorphism group of \mathcal{X}.

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.

Outline

$\mathcal{X}:=$ (projective, non-singular, geometrically irreducible,) algebraic curve of genus $g \geq 2$, defined over an algebraically closed filed \mathbb{K} of characteristic $p>0$. $\operatorname{Aut}(\mathcal{X}):=$ the \mathbb{K}-automorphism group of \mathcal{X}.

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank?

Outline

$\mathcal{X}:=$ (projective, non-singular, geometrically irreducible,) algebraic curve of genus $g \geq 2$, defined over an algebraically closed filed \mathbb{K} of characteristic $p>0$. $\operatorname{Aut}(\mathcal{X}):=$ the \mathbb{K}-automorphism group of \mathcal{X}.

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic

Outline

$\mathcal{X}:=$ (projective, non-singular, geometrically irreducible,) algebraic curve of genus $g \geq 2$, defined over an algebraically closed filed \mathbb{K} of characteristic $p>0$. $\operatorname{Aut}(\mathcal{X}):=$ the \mathbb{K}-automorphism group of \mathcal{X}.

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic
- p-subgroups of $\operatorname{Aut}(\mathcal{X})$ of curves with positive p-rank.

Outline

$\mathcal{X}:=$ (projective, non-singular, geometrically irreducible,) algebraic curve of genus $g \geq 2$, defined over an algebraically closed filed \mathbb{K} of characteristic $p>0$. $\operatorname{Aut}(\mathcal{X}):=$ the \mathbb{K}-automorphism group of \mathcal{X}.

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic
- p-subgroups of $\operatorname{Aut}(\mathcal{X})$ of curves with positive p-rank.

Remark

The general study of $\operatorname{Aut}(\mathcal{X})$ relies on the fundamental group of the curve,

Outline

$\mathcal{X}:=$ (projective, non-singular, geometrically irreducible,) algebraic curve of genus $g \geq 2$, defined over an algebraically closed filed \mathbb{K} of characteristic $p>0$. $\operatorname{Aut}(\mathcal{X}):=$ the \mathbb{K}-automorphism group of \mathcal{X}.

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic
- p-subgroups of $\operatorname{Aut}(\mathcal{X})$ of curves with positive p-rank.

Remark

The general study of $\operatorname{Aut}(\mathcal{X})$ relies on the fundamental group of the curve, see R. Pries and K. Stevenson, A survey of Galois theory of curves in characteristic p, Amer. Math. Soc., (2011)

Outline

$\mathcal{X}:=$ (projective, non-singular, geometrically irreducible,) algebraic curve of genus $g \geq 2$, defined over an algebraically closed filed \mathbb{K} of characteristic $p>0$. $\operatorname{Aut}(\mathcal{X}):=$ the \mathbb{K}-automorphism group of \mathcal{X}.

- Upper bounds on $|\operatorname{Aut}(\mathcal{X})|$ depending on g, a survey.
- What are the possibilities for $\operatorname{Aut}(\mathcal{X})$ when \mathcal{X} has zero p-rank? A classification in even characteristic
- p-subgroups of $\operatorname{Aut}(\mathcal{X})$ of curves with positive p-rank.

Remark

The general study of $\operatorname{Aut}(\mathcal{X})$ relies on the fundamental group of the curve, see R. Pries and K. Stevenson, A survey of Galois theory of curves in characteristic p, Amer. Math. Soc., (2011)
For further developments in specific questions and for effective constructions we need the potential of Finite Group Theory.

The classical Hurwitz bound

The classical Hurwitz bound

- $\operatorname{Aut}(\mathcal{X})$ is a finite group.
- $\operatorname{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g-1)$. (Hurwitz bound)
- $\operatorname{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g-1)$. (Hurwitz bound)
- $|\operatorname{Aut}(\mathcal{X})|<16 \mathrm{~g}^{4}$; up to one exception, the Hermitian curve, [Stichtenoth (1973)].
- $\operatorname{Aut}(\mathcal{X})$ is a finite group.
- If G is tame then $|G| \leq 84(g-1)$. (Hurwitz bound)
- $|\operatorname{Aut}(\mathcal{X})|<16 \mathrm{~g}^{4}$; up to one exception, the Hermitian curve, [Stichtenoth (1973)].
- $|\operatorname{Aut}(\mathcal{X})|<8 \mathrm{~g}^{3}$; up to four exceptions. [Henn (1976)]

Four infinite families of curves \mathcal{X} with $|\operatorname{Aut}(\mathcal{X})| \geq 8 \mathrm{~g}^{3}$

(I) $\mathbf{v}\left(Y^{2}+Y+X^{2^{k}+1}\right), p=2$, a hyperelliptic curve of genus $g=2^{k-1}$ with $\operatorname{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}. $|\operatorname{Aut}(\mathcal{X})|=2^{2 \mathrm{k}+1}\left(2^{\mathrm{k}}+1\right)$.

Four infinite families of curves \mathcal{X} with $|\operatorname{Aut}(\mathcal{X})| \geq 8 \mathrm{~g}^{3}$

(I) $\mathbf{v}\left(Y^{2}+Y+X^{2^{k}+1}\right), p=2$, a hyperelliptic curve of genus $g=2^{k-1}$ with $\operatorname{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}.

$$
|\operatorname{Aut}(\mathcal{X})|=2^{2 \mathrm{k}+1}\left(2^{\mathrm{k}}+1\right)
$$

(II) The Roquette curve:
$\mathbf{v}\left(Y^{2}-\left(X^{q}-X\right)\right)$ with $p>2$, a hyperelliptic curve of genus
$g=\frac{1}{2}(q-1) ; \operatorname{Aut}(\mathcal{X}) / \mathrm{M} \cong \operatorname{PSL}(2, q)$ or
$\operatorname{Aut}(\mathcal{X}) / \mathrm{M} \cong \operatorname{PGL}(2, q)$, where $q=p^{r}$ and $|M|=2$;

Four infinite families of curves \mathcal{X} with $|\operatorname{Aut}(\mathcal{X})| \geq 8 \mathrm{~g}^{3}$

(I) $\mathbf{v}\left(Y^{2}+Y+X^{2^{k}+1}\right), p=2$, a hyperelliptic curve of genus $g=2^{k-1}$ with $\operatorname{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}. $|\operatorname{Aut}(\mathcal{X})|=2^{2 \mathrm{k}+1}\left(2^{\mathrm{k}}+1\right)$.
(II) The Roquette curve:
$\mathbf{v}\left(Y^{2}-\left(X^{q}-X\right)\right)$ with $p>2$, a hyperelliptic curve of genus $g=\frac{1}{2}(q-1) ; \operatorname{Aut}(\mathcal{X}) / \mathrm{M} \cong \operatorname{PSL}(2, q)$ or $\operatorname{Aut}(\mathcal{X}) / \mathrm{M} \cong \operatorname{PGL}(2, q)$, where $q=p^{r}$ and $|M|=2$;
(III) The Hermitian curve:
$\mathbf{v}\left(Y^{n}+Y-X^{n+1}\right)$ with $n=p^{r}$, genus $\frac{1}{2} n(n-1)$, $\operatorname{Aut}(\mathcal{X}) \cong \operatorname{PGU}(3, \mathrm{n}), n$ a power of 2 .
$|\operatorname{Aut}(\mathcal{X})|=\left(\mathrm{n}^{3}+1\right) \mathrm{n}^{3}\left(\mathrm{n}^{2}-1\right)$.

Four infinite families of curves \mathcal{X} with $|\operatorname{Aut}(\mathcal{X})| \geq 8 \mathrm{~g}^{3}$

(I) $\mathbf{v}\left(Y^{2}+Y+X^{2^{k}+1}\right), p=2$, a hyperelliptic curve of genus $g=2^{k-1}$ with $\operatorname{Aut}(\mathcal{X})$ fixing a point of \mathcal{X}.
$|\operatorname{Aut}(\mathcal{X})|=2^{2 \mathrm{k}+1}\left(2^{\mathrm{k}}+1\right)$.
(II) The Roquette curve:
$\mathbf{v}\left(Y^{2}-\left(X^{q}-X\right)\right)$ with $p>2$, a hyperelliptic curve of genus $g=\frac{1}{2}(q-1) ; \operatorname{Aut}(\mathcal{X}) / \mathrm{M} \cong \operatorname{PSL}(2, \mathrm{q})$ or $\operatorname{Aut}(\mathcal{X}) / \mathrm{M} \cong \operatorname{PGL}(2, q)$, where $q=p^{r}$ and $|M|=2$;
(III) The Hermitian curve:
$\mathbf{v}\left(Y^{n}+Y-X^{n+1}\right)$ with $n=p^{r}$, genus $\frac{1}{2} n(n-1)$, $\operatorname{Aut}(\mathcal{X}) \cong \operatorname{PGU}(3, \mathrm{n}), n$ a power of 2 .
$|\operatorname{Aut}(\mathcal{X})|=\left(\mathrm{n}^{3}+1\right) \mathrm{n}^{3}\left(\mathrm{n}^{2}-1\right)$.
(IV) The DLS curve (Deligne-Lusztig curve of Suzuki type): $\mathbf{v}\left(X^{n_{0}}\left(X^{n}+X\right)+Y^{n}+Y\right)$, with $p=2, n_{0}=2^{r} \geq 2, n=2 n_{0}^{2}$, $g=n_{0}(n-1), \operatorname{Aut}(\mathcal{X}) \cong \mathrm{Sz}(\mathrm{n})$ where $\mathrm{Sz}(n)$ is the Suzuki $\operatorname{group},|\operatorname{Aut}(\mathcal{X})|=\left(\mathrm{n}^{2}+1\right) \mathrm{n}^{2}(\mathrm{n}-1)$

Two more infinite families of curves \mathcal{X} with large $\operatorname{Aut}(\mathcal{X})$

(V) The DLR curve (the Deligne-Lusztig curve arising from the Ree group):
$\mathbf{v}\left(Y^{n^{2}}-\left[1+\left(X^{n}-X\right)^{n-1}\right] Y^{n}+\left(X^{n}-X\right)^{n-1} Y-X^{n}\left(X^{n}-\right.\right.$ $\left.X)^{n+3 n_{0}}\right)$, with $p=3, n_{0}=3^{r}, n=3 n_{0}^{2}$;
$g=\frac{3}{2} n_{0}(n-1)\left(n+n_{0}+1\right) ; \operatorname{Aut}(\mathcal{X}) \cong \operatorname{Ree}(\mathrm{n})$ where $\operatorname{Ree}(n)$ is the Ree group, $|\operatorname{Aut}(\mathcal{X})|=\left(\mathrm{n}^{3}+1\right) \mathrm{n}^{3}(\mathrm{n}-1)$.
(V) The DLR curve (the Deligne-Lusztig curve arising from the Ree group):
$\mathbf{v}\left(Y^{n^{2}}-\left[1+\left(X^{n}-X\right)^{n-1}\right] Y^{n}+\left(X^{n}-X\right)^{n-1} Y-X^{n}\left(X^{n}-\right.\right.$ $\left.X)^{n+3 n_{0}}\right)$, with $p=3, n_{0}=3^{r}, n=3 n_{0}^{2}$;
$g=\frac{3}{2} n_{0}(n-1)\left(n+n_{0}+1\right) ; \operatorname{Aut}(\mathcal{X}) \cong \operatorname{Ree}(\mathrm{n})$ where $\operatorname{Ree}(n)$ is the Ree group, $|\operatorname{Aut}(\mathcal{X})|=\left(\mathrm{n}^{3}+1\right) \mathrm{n}^{3}(\mathrm{n}-1)$.
(VI) The G.K curve:
$\mathbf{v}\left(Y^{n^{3}+1}+\left(X^{n}+X\right)\left(\sum_{i=0}^{n}(-1)^{i+1} X^{i(n-1)}\right)^{n+1}\right)$, a curve of genus $g=\frac{1}{2}\left(n^{3}+1\right)\left(n^{2}-2\right)+1$ with $\operatorname{Aut}(\mathcal{X})$ containing a subgroup isomorphic to $\operatorname{SU}(3, n), n=p^{r}$.
$|\operatorname{Aut}(\mathcal{X})|=\left(\mathrm{n}^{3}+1\right) \mathrm{n}^{3}(\mathrm{n}-1)$.

Problems on curves with large automorphism groups, $\gamma=0$

Remark

All the above examples have zero p-rank.

Problems on curves with large automorphism groups, $\gamma=0$

Remark

All the above examples have zero p-rank.

- Problem 1: Find a function $f(g)$ such that if $|\operatorname{Aut}(\mathcal{X})|>f(g)$ then $\gamma=0$.

Remark

All the above examples have zero p-rank.

- Problem 1: Find a function $f(g)$ such that if $|\operatorname{Aut}(\mathcal{X})|>f(g)$ then $\gamma=0$.
- Problem 2: Determine the structure of large automorphism groups of curves with $\gamma=0$. This includes the study of large automorphism groups of maximal curves over a finite field.

Problems on curves with large automorphism groups, $\gamma=0$

Remark

All the above examples have zero p-rank.

- Problem 1: Find a function $f(g)$ such that if $|\operatorname{Aut}(\mathcal{X})|>f(g)$ then $\gamma=0$.
- Problem 2: Determine the structure of large automorphism groups of curves with $\gamma=0$. This includes the study of large automorphism groups of maximal curves over a finite field.
- Problem 3: \exists simple or almost simple groups, other than those in the examples (II),...(VI), occurring as an automorphism group of a maximal curve?

Problems on zero p-rank curves with very large p-group of automorphisms

- Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).

Problems on zero p-rank curves with very large p-group of automorphisms

- Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).
- Problem 4: "Big action problem" (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms?

Problems on zero p-rank curves with very large p-group of automorphisms

- Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).
- Problem 4: "Big action problem" (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms? $|S| \geq\left(4 g^{2}\right) /(p-1)^{2} \Rightarrow$ $\mathcal{X}=\mathbf{v}\left(Y^{q}-Y+f(X)\right)$ s. t. $f(X)=X P(X)+c X, q=p^{h}$ and $P(X)$ is an additive polynomial of $\mathbb{K}[X]$, (Lehr-Matignon 2005).

Problems on zero p-rank curves with very large p-group of automorphisms

- Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).
- Problem 4: "Big action problem" (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms? $|S| \geq\left(4 g^{2}\right) /(p-1)^{2} \Rightarrow$ $\mathcal{X}=\mathbf{v}\left(Y^{q}-Y+f(X)\right)$ s. t. $f(X)=X P(X)+c X, q=p^{h}$ and $P(X)$ is an additive polynomial of $\mathbb{K}[X]$, (Lehr-Matignon 2005).
- Generalizations for $|S| \geq 4 g^{2} /\left(p^{2}-1\right)^{2}$ by Matignon-Rocher 2008, Rocher 2009.

Problems on zero p-rank curves with very large p-group of automorphisms

- Curves with a very large p-group S of automorphisms have p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).
- Problem 4: "Big action problem" (Lehr-Matignon): What about zero p-rank curves with very large p-group S of automorphisms? $|S| \geq\left(4 g^{2}\right) /(p-1)^{2} \Rightarrow$ $\mathcal{X}=\mathbf{v}\left(Y^{q}-Y+f(X)\right)$ s. t. $f(X)=X P(X)+c X, q=p^{h}$ and $P(X)$ is an additive polynomial of $\mathbb{K}[X]$, (Lehr-Matignon 2005).
- Generalizations for $|S| \geq 4 g^{2} /\left(p^{2}-1\right)^{2}$ by Matignon-Rocher 2008, Rocher 2009.
- If $\operatorname{Aut}(\mathcal{X})$ fixes no point and $|S|>p g /(p-1)$ then \mathcal{X} is one of the curves (II) ... (VI). (Giulietti-K. 2010).

Large p-subgroups of automorphisms of zero p-rank curves

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma]

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_{p} of a finite group G is a trivial intersection set if S_{p} meets any other Sylow p-subgroup of G trivially.

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_{p} of a finite group G is a trivial intersection set if S_{p} meets any other Sylow p-subgroup of G trivially. If this is the case, G has the $T l$-condition with respect to the prime p.

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_{p} of a finite group G is a trivial intersection set if S_{p} meets any other Sylow p-subgroup of G trivially. If this is the case, G has the Tl-condition with respect to the prime p.

Theorem (Giulietti-K. 2005)

Let \mathcal{X} be a curve with $\gamma=0$. Then every wild subgroup G of $\operatorname{Aut}(\mathcal{X})$ satisfies the Tl-condition for its p-subgroups of Sylow.

Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let \mathcal{X} be a zero p-rank curve, i.e. $\gamma=0$. Let $S \leq \operatorname{Aut}(\mathcal{X})$ with $|S|=p^{h}$. Then S fixes a point of P of \mathcal{X}, and no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup S_{p} of a finite group G is a trivial intersection set if S_{p} meets any other Sylow p-subgroup of G trivially. If this is the case, G has the Tl-condition with respect to the prime p.

Theorem (Giulietti-K. 2005)

Let \mathcal{X} be a curve with $\gamma=0$. Then every wild subgroup G of $\operatorname{Aut}(\mathcal{X})$ satisfies the Tl-condition for its p-subgroups of Sylow.

Theorem (Burnside-Gow, 1976)

Finite groups satisfying Tl-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the Tl-condition for p. Then a Sylow p-subgroup S_{p} is either normal or cyclic, or $p=2$ and S_{2} is a generalized quaternion group.

Finite groups satisfying Tl-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the Tl-condition for p. Then a Sylow p-subgroup S_{p} is either normal or cyclic, or $p=2$ and S_{2} is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The known examples include the simple groups involved in the examples (II) ... (VI).

Finite groups satisfying Tl-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the Tl-condition for p. Then a Sylow p-subgroup S_{p} is either normal or cyclic, or $p=2$ and S_{2} is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The known examples include the simple groups involved in the examples (II) ... (VI).
Their complete classification is not done yet,

Finite groups satisfying TI-condition for some prime p

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the TI-condition for p. Then a Sylow p-subgroup S_{p} is either normal or cyclic, or $p=2$ and S_{2} is a generalized quaternion group.

Remark

Non-solvable groups satisfying the Tl-condition are also exist. The known examples include the simple groups involved in the examples (II) ... (VI).
Their complete classification is not done yet, Important partial classifications (under further conditions) were given by Hering, Herzog, Aschbacher, and more recently by Guralnick-Pries-Stevenson.

Theorem (Giulietti-K. 2010)

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.
(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groupsn: $\operatorname{PSL}(2, n), \operatorname{PSU}(3, n), \operatorname{SU}(3, n), \operatorname{Sz}(n)$ with $n=2^{r} \geq 4$; Here N coincides with the commutator subgroup G^{\prime} of G.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.
(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groupsn: $\operatorname{PSL}(2, n), \operatorname{PSU}(3, n), \mathrm{SU}(3, n), \mathrm{Sz}(n)$ with $n=2^{r} \geq 4$; Here N coincides with the commutator subgroup G^{\prime} of G.
(b) G fixes no point of \mathcal{X} and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_{2} of G is either a cyclic group or a generalized quaternion group.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.
(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groupsn: $\operatorname{PSL}(2, n), \operatorname{PSU}(3, n), \operatorname{SU}(3, n), \operatorname{Sz}(n)$ with $n=2^{r} \geq 4$; Here N coincides with the commutator subgroup G^{\prime} of G.
(b) G fixes no point of \mathcal{X} and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_{2} of G is either a cyclic group or a generalized quaternion group.
Furthermore, either $G=O(G) \rtimes S_{2}$, or $G / O(G) \cong \operatorname{SL}(2,3)$, or $G / O(G) \cong G L(2,3)$, or $G / O(G) \cong \mathcal{G}_{48}$.

Theorem (Giulietti-K. 2010)

Let $p=2$ and \mathcal{X} a zero 2-rank algebraic curve of genus $g \geq 2$. Let $G \leq \operatorname{Aut}(\mathcal{X})$ with $2||G|$. Then one of the following cases holds.
(a) G fixes no point of \mathcal{X} and the subgroup N of G generated by all its 2-elements is isomorphic to one of the groupsn : $\operatorname{PSL}(2, n), \operatorname{PSU}(3, n), \operatorname{SU}(3, n), \operatorname{Sz}(n)$ with $n=2^{r} \geq 4$; Here N coincides with the commutator subgroup G^{\prime} of G.
(b) G fixes no point of \mathcal{X} and it has a non-trivial normal subgroup of odd order. A Sylow 2-subgroup S_{2} of G is either a cyclic group or a generalized quaternion group.
Furthermore, either $G=O(G) \rtimes S_{2}$, or $G / O(G) \cong \operatorname{SL}(2,3)$, or $G / O(G) \cong \mathrm{GL}(2,3)$, or $G / O(G) \cong \mathcal{G}_{48}$.
(c) G fixes a point of \mathcal{X}, and $G=S_{2} \rtimes H$, with a subgroup H of odd order.

Corollary

Let \mathcal{X} be a zero 2-rank curve such that the subgroup G of $\operatorname{Aut}(\mathcal{X})$ fixes no point of \mathcal{X}.

Corollary

Let \mathcal{X} be a zero 2-rank curve such that the subgroup G of $\operatorname{Aut}(\mathcal{X})$ fixes no point of \mathcal{X}.

- If G is a solvable, then the Hurwitz bound holds for G; more precisely $|G| \leq 72(g-1)$.

Corollary

Let \mathcal{X} be a zero 2 -rank curve such that the subgroup G of $\operatorname{Aut}(\mathcal{X})$ fixes no point of \mathcal{X}.

- If G is a solvable, then the Hurwitz bound holds for G; more precisely $|G| \leq 72(g-1)$.
- If G is not solvable, then G is known and the possible genera of \mathcal{X} are computed from the order of its commutator subgroup G^{\prime} provided that G is large enough, namely whenever $|G| \geq 24 g(g-1)$.
- Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\operatorname{Aut}(\mathcal{X})| \geq 24 \mathrm{~g}(\mathrm{~g}-1)$.
- Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\operatorname{Aut}(\mathcal{X})| \geq 24 \mathrm{~g}(\mathrm{~g}-1)$.
- Problem 6: Characterize such examples using their automorphism groups.
- Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\operatorname{Aut}(\mathcal{X})| \geq 24 \mathrm{~g}(\mathrm{~g}-1)$.
- Problem 6: Characterize such examples using their automorphism groups.
- Problem 7: How extend the above results to zero p-rank curves for $p>2$?
- Problem 5: Find some more examples of zero 2-rank curves of genus g with $|\operatorname{Aut}(\mathcal{X})| \geq 24 \mathrm{~g}(\mathrm{~g}-1)$.
- Problem 6: Characterize such examples using their automorphism groups.
- Problem 7: How extend the above results to zero p-rank curves for $p>2$?
- Problem 7 (essentially) solved by Guralnick-Malmskog-Pries 2012.

Maximal curves with few orbits on rational points

Maximal curves with few orbits on rational points

Remark

Maximal curves with few orbits on rational points

Remark

- For the Hermitian curve, $\operatorname{Aut}(\mathcal{X})$ is transitive on $\mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$.

Maximal curves with few orbits on rational points

Remark

- For the Hermitian curve, $\operatorname{Aut}(\mathcal{X})$ is transitive on $\mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$.
- For other two classical maximal curves, $\operatorname{Aut}(\mathcal{X})$ has two orbits on the set of rational points.

Maximal curves with few orbits on rational points

Remark

- For the Hermitian curve, $\operatorname{Aut}(\mathcal{X})$ is transitive on $\mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$.
- For other two classical maximal curves, $\operatorname{Aut}(\mathcal{X})$ has two orbits on the set of rational points.

Theorem (Giulietti-K. 2009)

Let $p=2$. Let \mathcal{X} be an $\mathbb{F}_{q^{2}}$-maximal curve of genus $g \geq 2$. Then Aut (\mathcal{X}) acts on $\mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$ as a transitive permutation group if and only if \mathcal{X} is the Hermitian curve $\mathbf{v}\left(Y^{n}+Y-X^{n+1}\right)$, with $q=n$.

Maximal curves with few orbits on rational points

Remark

- For the Hermitian curve, $\operatorname{Aut}(\mathcal{X})$ is transitive on $\mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$.
- For other two classical maximal curves, $\operatorname{Aut}(\mathcal{X})$ has two orbits on the set of rational points.

Theorem (Giulietti-K. 2009)

Let $p=2$. Let \mathcal{X} be an $\mathbb{F}_{q^{2}}$-maximal curve of genus $g \geq 2$. Then Aut (\mathcal{X}) acts on $\mathcal{X}\left(\mathbb{F}_{q^{2}}\right)$ as a transitive permutation group if and only if \mathcal{X} is the Hermitian curve $\mathbf{v}\left(Y^{n}+Y-X^{n+1}\right)$, with $q=n$.

- Problem 8: Prove a similar characterization theorem for the other "classical" maximal curves.

Curves with large p-groups of automorphisms, case $\gamma>0$

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima's bound, or $|S|$ is closed to it.

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima's bound, or $|S|$ is closed to it.

Hypothesis (I): $|S|>2(g-1)$ (and $|S| \geq 8)$,

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima's bound, or $|S|$ is closed to it.

Hypothesis (I): $|S|>2(g-1)$ (and $|S| \geq 8)$,
$\Rightarrow p=2,3$.

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima's bound, or $|S|$ is closed to it.
Hypothesis (I): $|S|>2(g-1)$ (and $|S| \geq 8)$,
$\Rightarrow p=2,3$.
If S fixes a point then $|S| \leq p g /(p-1)$.

Curves with large p-groups of automorphisms, case $\gamma>0$

$\mathcal{X}:=$ curve with genus g and p-rank $\gamma>0$.
$S:=p$-subgroup of $\operatorname{Aut}(\mathcal{X})$;
Nakajima's bound (1987):

$$
|S| \leq\left\{\begin{array}{l}
4(\gamma-1) \text { for } p=2, \gamma>1 \\
\frac{p}{p-2}(\gamma-1) \text { for } p \neq 2, \gamma>1 \\
g-1 \text { for } \gamma=1
\end{array}\right.
$$

Problem 9: Determine the possibilities for the structures of S when \mathcal{X} extremal w.r. Nakajima's bound, or $|S|$ is closed to it.
Hypothesis (I): $|S|>2(g-1)$ (and $|S| \geq 8)$,
$\Rightarrow p=2,3$.
If S fixes a point then $|S| \leq p g /(p-1)$.
Hypothesis (II): S fixes no point on \mathcal{X}.

Case $p=3$

Theorem (Giulietti-K. 2013)

Case $p=3$

> Theorem (Giulietti-K. 2013)
> Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

Case $p=3$

Theorem (Giulietti-K. 2013)
Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);
- S is generated by two elements,

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);
- S is generated by two elements, S is abelian only for $|S|=3,9$;

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);
- S is generated by two elements, S is abelian only for $|S|=3,9$;
- S has two short orbits on \mathcal{X} each of size $|S| / 3$;

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);
- S is generated by two elements, S is abelian only for $|S|=3,9$;
- S has two short orbits on \mathcal{X} each of size $|S| / 3$;
- S has a normal subgroup M such that $S=M \rtimes\langle\varepsilon\rangle$ with $\varepsilon^{3}=1$ and M semiregular on \mathcal{X};

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);
- S is generated by two elements, S is abelian only for $|S|=3,9$;
- S has two short orbits on \mathcal{X} each of size $|S| / 3$;
- S has a normal subgroup M such that $S=M \rtimes\langle\varepsilon\rangle$ with $\varepsilon^{3}=1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\overline{\mathcal{X}}$ with $\operatorname{Gal}(\mathcal{X} \mid \overline{\mathcal{X}})=M$;

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);
- S is generated by two elements, S is abelian only for $|S|=3,9$;
- S has two short orbits on \mathcal{X} each of size $|S| / 3$;
- S has a normal subgroup M such that $S=M \rtimes\langle\varepsilon\rangle$ with $\varepsilon^{3}=1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\overline{\mathcal{X}}$ with $\operatorname{Gal}(\mathcal{X} \mid \overline{\mathcal{X}})=M ; \quad M=\langle\alpha, \beta\rangle ;$

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);
- S is generated by two elements, S is abelian only for $|S|=3,9$;
- S has two short orbits on \mathcal{X} each of size $|S| / 3$;
- S has a normal subgroup M such that $S=M \rtimes\langle\varepsilon\rangle$ with $\varepsilon^{3}=1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\overline{\mathcal{X}}$ with $\operatorname{Gal}(\mathcal{X} \mid \overline{\mathcal{X}})=M ; \quad M=\langle\alpha, \beta\rangle ;$
- if M is abelian then $|Z(S)|=3$ and S has maximal (nilpotency) class.

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);
- S is generated by two elements, S is abelian only for $|S|=3,9$;
- S has two short orbits on \mathcal{X} each of size $|S| / 3$;
- S has a normal subgroup M such that $S=M \rtimes\langle\varepsilon\rangle$ with $\varepsilon^{3}=1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\overline{\mathcal{X}}$ with $\operatorname{Gal}(\mathcal{X} \mid \overline{\mathcal{X}})=M ; \quad M=\langle\alpha, \beta\rangle ;$
- if M is abelian then $|Z(S)|=3$ and S has maximal (nilpotency) class. \Rightarrow the structure of S is known.

Case $p=3$

Theorem (Giulietti-K. 2013)

Let $p=3$. If $|S|>2(g-1)$ and S fixes no point on \mathcal{X}, then

- $g=\gamma$;
- $|S|=3(\gamma-1)$ (Extremal curve w.r. Nakajima's bound);
- S is generated by two elements, S is abelian only for $|S|=3,9$;
- S has two short orbits on \mathcal{X} each of size $|S| / 3$;
- S has a normal subgroup M such that $S=M \rtimes\langle\varepsilon\rangle$ with $\varepsilon^{3}=1$ and M semiregular on \mathcal{X};
- \mathcal{X} is an unramified Galois extension of an ordinary genus 2 curve $\overline{\mathcal{X}}$ with $\operatorname{Gal}(\mathcal{X} \mid \overline{\mathcal{X}})=M ; \quad M=\langle\alpha, \beta\rangle ;$
- if M is abelian then $|Z(S)|=3$ and S has maximal (nilpotency) class. \Rightarrow the structure of S is known.

Problem 10: Find examples where S has not maximal class,

Case $p=3$, Examples for small genera

Case $p=3$, Examples for small genera

- If $|S|=3$ then $\mathcal{X}=\mathbf{v}\left(\left(X\left(Y^{3}-Y\right)-X^{2}+c\right)\right.$ with $c \in \mathbb{K}^{*}$.

Case $p=3$, Examples for small genera

- If $|S|=3$ then $\mathcal{X}=\mathbf{v}\left(\left(X\left(Y^{3}-Y\right)-X^{2}+c\right)\right.$ with $c \in \mathbb{K}^{*}$.
- If $|S|=9$ then $S=C_{3} \times C_{3}$ and
$\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(\left(Y^{3}-Y\right)+c\right)\right.$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=4$.

Case $p=3$, Examples for small genera

- If $|S|=3$ then $\mathcal{X}=\mathbf{v}\left(\left(X\left(Y^{3}-Y\right)-X^{2}+c\right)\right.$ with $c \in \mathbb{K}^{*}$.
- If $|S|=9$ then $S=C_{3} \times C_{3}$ and $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(\left(Y^{3}-Y\right)+c\right)\right.$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=4$.
- If $|S|=27$ then $S=U T(3,3)$ and $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(Y^{3}-Y\right)+c, Z^{3}-Z-X^{3} Y+Y X^{3}\right)$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=10$.

Case $p=3$, Examples for small genera

- If $|S|=3$ then $\mathcal{X}=\mathbf{v}\left(\left(X\left(Y^{3}-Y\right)-X^{2}+c\right)\right.$ with $c \in \mathbb{K}^{*}$.
- If $|S|=9$ then $S=C_{3} \times C_{3}$ and $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(\left(Y^{3}-Y\right)+c\right)\right.$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=4$.
- If $|S|=27$ then $S=U T(3,3)$ and $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(Y^{3}-Y\right)+c, Z^{3}-Z-X^{3} Y+Y X^{3}\right)$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=10$.
- For $|S|=81$ an explicit example: $S \cong \operatorname{Syl}_{3}\left(\operatorname{Sym}_{9}\right)$, $\mathcal{X}=\mathbf{v}\left(\left(X^{3}-X\right)\left(Y^{3}-Y\right)+c, U^{3}-U-X\right.$, $\left.(U-Y)\left(W^{3}-W\right)-1,(U-(Y+1))\left(T^{3}-T\right)-1\right)$ with $c \in \mathbb{K}^{*}, g(\mathcal{X})=28$.

Case $p=3$, infinite families of examples

Case $p=3$, infinite families of examples

$$
\begin{aligned}
& F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*} \\
& g(F)=\gamma(F)=2
\end{aligned}
$$

Case $p=3$, infinite families of examples

$$
\begin{aligned}
& \text { - } F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*} \\
& \quad g(F)=\gamma(F)=2 . \\
& \text { - } \varphi:=(x, y) \mapsto(x, y+1)
\end{aligned}
$$

Case $p=3$, infinite families of examples

$$
\begin{aligned}
& \text { - } F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*} \\
& \quad g(F)=\gamma(F)=2 . \\
& \text { - } \varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(\mathrm{F}) .
\end{aligned}
$$

Case $p=3$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$; $g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(\mathrm{F})$.
- F_{N} :=largest unramified abelian extension of F of exponent N with two generators,

Case $p=3$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$;
$g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(\mathrm{F})$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $3^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{3^{N}} \times C_{3^{N}}$ and $u^{3^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.

Case $p=3$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$;
$g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(\mathrm{F})$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $3^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{3^{N}} \times C_{3^{N}}$ and $u^{3^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.
- $M:=$ Galois closure of $F_{N} \mid \mathbb{K}$.

Case $p=3$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$;
$g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(\mathrm{F})$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $3^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{3^{N}} \times C_{3^{N}}$ and $u^{3^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.
- $M:=$ Galois closure of $F_{N} \mid \mathbb{K}$.

Lemma

$\operatorname{Gal}(M \mid \mathbb{K}(x))$ preserves F.

Case $p=3$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$;
$g(F)=\gamma(F)=2$.
- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(\mathrm{F})$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $3^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{3^{N}} \times C_{3^{N}}$ and $u^{3^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.
- $M:=$ Galois closure of $F_{N} \mid \mathbb{K}$.

Lemma

$\operatorname{Gal}(M \mid \mathbb{K}(x))$ preserves $F . \Rightarrow \operatorname{Gal}(M \mid \mathbb{K}(x)) \leq \operatorname{Aut}\left(\mathrm{F}_{\mathrm{N}}\right)$.

Case $p=3$, infinite families of examples

- $F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$;

$$
g(F)=\gamma(F)=2
$$

- $\varphi:=(x, y) \mapsto(x, y+1), \varphi \in \operatorname{Aut}(\mathrm{F})$.
- $F_{N}:=$ largest unramified abelian extension of F of exponent N with two generators,
(i) $F_{N} \mid F$ is an unramified Galois extension of degree $3^{2 N}$,
(ii) F_{N} is generated by all function fields which are cyclic unramified extensions of F of degree p^{N},
(iii) $\operatorname{Gal}\left(F_{N} \mid F\right)=C_{3^{N}} \times C_{3^{N}}$ and $u^{3^{N}}=1$ for every element $u \in \operatorname{Gal}\left(F_{N} \mid F\right)$.
- $M:=$ Galois closure of $F_{N} \mid \mathbb{K}$.

Lemma

$\operatorname{Gal}(M \mid \mathbb{K}(x))$ preserves $F . \Rightarrow \operatorname{Gal}(M \mid \mathbb{K}(x)) \leq \operatorname{Aut}\left(\mathrm{F}_{\mathrm{N}}\right)$.

Corollary

F_{N} is an extremal function field w.r. Nakajima's bound.

Remark

If $N \unlhd S$ and $[S: N] \geq 9$ then \mathcal{X} / N is also an extremal curve w.r. Nakajima's bound.

Remark

If $N \unlhd S$ and $[S: N] \geq 9$ then \mathcal{X} / N is also an extremal curve w.r. Nakajima's bound.
$F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$,

Remark

If $N \unlhd S$ and $[S: N] \geq 9$ then \mathcal{X} / N is also an extremal curve w.r. Nakajima's bound.
$F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$,
Let \mathcal{F} be the set of all unramified Galois extensions K of F such that K is extremal w.r. Nakajima's bound.

Remark

If $N \unlhd S$ and $[S: N] \geq 9$ then \mathcal{X} / N is also an extremal curve w.r. Nakajima's bound.
$F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$,
Let \mathcal{F} be the set of all unramified Galois extensions K of F such that K is extremal w.r. Nakajima's bound.
For every $K \in \mathcal{F}$ take the (unique) maximal 3-subgroup of $\operatorname{Aut}(\mathrm{K})$ together with all surjections of index ≥ 9.

Remark

If $N \unlhd S$ and $[S: N] \geq 9$ then \mathcal{X} / N is also an extremal curve w.r. Nakajima's bound.
$F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$,
Let \mathcal{F} be the set of all unramified Galois extensions K of F such that K is extremal w.r. Nakajima's bound.
For every $K \in \mathcal{F}$ take the (unique) maximal 3-subgroup of $\operatorname{Aut}(\mathrm{K})$ together with all surjections of index ≥ 9.
These groups and surjections form an inverse system.

Remark

If $N \unlhd S$ and $[S: N] \geq 9$ then \mathcal{X} / N is also an extremal curve w.r. Nakajima's bound.
$F:=\mathbb{K}(x, y), x\left(y^{3}-y\right)-x^{2}+c=0, c \in \mathbb{K}^{*}$,
Let \mathcal{F} be the set of all unramified Galois extensions K of F such that K is extremal w.r. Nakajima's bound.
For every $K \in \mathcal{F}$ take the (unique) maximal 3-subgroup of $\operatorname{Aut}(\mathrm{K})$ together with all surjections of index ≥ 9.
These groups and surjections form an inverse system.
Problem 10: What about the arising profinite group (limit of the this inverse system)?

Case $p=2$

Case $p=2$

Theorem (Giulietti-K. 2012)

Case $p=2$

Theorem (Giulietti-K. 2012)
 Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

Case $p=2$

Theorem (Giulietti-K. 2012)
Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve.

Case $p=2$

Theorem (Giulietti-K. 2012)
Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either (ia) S is dihedral, or

Case $p=2$

Theorem (Giulietti-K. 2012)

Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either
(ia) S is dihedral, or
(ib) $S=(E \times\langle u\rangle) \rtimes\langle w\rangle$ where E is cyclic group of order $g-1$ and u and w are involutions.

Case $p=2$

Theorem (Giulietti-K. 2012)

Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either (ia) S is dihedral, or
(ib) $S=(E \times\langle u\rangle) \rtimes\langle w\rangle$ where E is cyclic group of order $g-1$ and u and w are involutions.
- $|S|=2 g+2$, and $S=A \rtimes B, A$ is an elementary abelian subgroup of index 2 and $B=2$;

Case $p=2$

Theorem (Giulietti-K. 2012)

Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either
(ia) S is dihedral, or
(ib) $S=(E \times\langle u\rangle) \rtimes\langle w\rangle$ where E is cyclic group of order $g-1$ and u and w are involutions.
- $|S|=2 g+2$, and $S=A \rtimes B, A$ is an elementary abelian subgroup of index 2 and $B=2$;
- Every central involution of S is inductive.

Case $p=2$

Theorem (Giulietti-K. 2012)

Let $p=2$. If $|S|>2(g-1),|S| \geq 8$ and S fixes no point on \mathcal{X}, then one of the following cases occurs

- $|S|=4(g-1), \mathcal{X}$ is an ordinary bielliptic curve. Either (ia) S is dihedral, or
(ib) $S=(E \times\langle u\rangle) \rtimes\langle w\rangle$ where E is cyclic group of order $g-1$ and u and w are involutions.
- $|S|=2 g+2$, and $S=A \rtimes B, A$ is an elementary abelian subgroup of index 2 and $B=2$;
- Every central involution of S is inductive.

Involution $u \in Z(S)$ is inductive: $=S /\langle u\rangle$, viewed as a subgroup of $\operatorname{Aut}(\overline{\mathcal{X}})$ of the quotient curve $\mathcal{X}=\mathcal{X} /\langle u\rangle$ satisfies the hypotheses of the theorem.

Case $p=2$, examples

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g=9$ and $S=D_{8} \times C_{2}$.

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g=9$ and $S=D_{8} \times C_{2}$.
- For $q=2^{h}$, the hyperelliptic curve

$$
\mathcal{X}:=\mathbf{v}\left(\left(Y^{2}+Y+X\right)\left(X^{q}+X\right)+\sum_{\alpha \in \mathbb{F}_{q}} \frac{X^{q}+X}{X+\alpha}\right)
$$

has genus $g=q-1$ and an elementary abelian automorphism group of order $2 q$.

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g=9$ and $S=D_{8} \times C_{2}$.
- For $q=2^{h}$, the hyperelliptic curve

$$
\mathcal{X}:=\mathbf{v}\left(\left(Y^{2}+Y+X\right)\left(X^{q}+X\right)+\sum_{\alpha \in \mathbb{F}_{q}} \frac{X^{q}+X}{X+\alpha}\right)
$$

has genus $g=q-1$ and an elementary abelian automorphism group of order $2 q$.

- Examples involving inductive involutions are also known.

Case $p=2$, examples

- For every $2^{h}, \exists$ a curve of type (ia): (extremal curve w.r. Nakajima's bound with dihedral 2-group of automorphisms).
- \exists a sporadic example of type (ib) with $g=9$ and $S=D_{8} \times C_{2}$.
- For $q=2^{h}$, the hyperelliptic curve

$$
\mathcal{X}:=\mathbf{v}\left(\left(Y^{2}+Y+X\right)\left(X^{q}+X\right)+\sum_{\alpha \in \mathbb{F}_{q}} \frac{X^{q}+X}{X+\alpha}\right)
$$

has genus $g=q-1$ and an elementary abelian automorphism group of order $2 q$.

- Examples involving inductive involutions are also known.

Problem 11: Construct infinite family of curves of type (ib).

