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Outline

X := (projective, non-singular, geometrically irreducible,) algebraic
curve of genus g ≥ 2, defined over an algebraically closed filed K of
characteristic p > 0. Aut(X ):= the K-automorphism group of X .

Upper bounds on |Aut(X )| depending on g , a survey.

What are the possibilities for Aut(X ) when X has zero
p-rank? A classification in even characteristic

p-subgroups of Aut(X ) of curves with positive p-rank.

Remark

The general study of Aut(X ) relies on the fundamental group of
the curve, see R. Pries and K. Stevenson, A survey of Galois theory
of curves in characteristic p, Amer. Math. Soc., (2011)
For further developments in specific questions and for effective
constructions we need the potential of Finite Group Theory.
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Gábor Korchmáros Curves with many automorphisms



Outline

X := (projective, non-singular, geometrically irreducible,) algebraic
curve of genus g ≥ 2, defined over an algebraically closed filed K of
characteristic p > 0. Aut(X ):= the K-automorphism group of X .

Upper bounds on |Aut(X )| depending on g , a survey.

What are the possibilities for Aut(X ) when X has zero
p-rank? A classification in even characteristic

p-subgroups of Aut(X ) of curves with positive p-rank.

Remark

The general study of Aut(X ) relies on the fundamental group of
the curve, see R. Pries and K. Stevenson, A survey of Galois theory
of curves in characteristic p, Amer. Math. Soc., (2011)
For further developments in specific questions and for effective
constructions we need the potential of Finite Group Theory.
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The classical Hurwitz bound

Aut(X ) is a finite group.

If G is tame then |G | ≤ 84(g − 1). (Hurwitz bound)

|Aut(X )| < 16g4; up to one exception, the Hermitian curve,
[Stichtenoth (1973)].

|Aut(X )| < 8g3; up to four exceptions. [Henn (1976)]
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Four infinite families of curves X with |Aut(X )| ≥ 8g3

(I) v(Y 2 + Y + X 2k+1), p = 2, a hyperelliptic curve of genus
g = 2k−1 with Aut(X ) fixing a point of X .
|Aut(X )| = 22k+1(2k + 1).

(II) The Roquette curve:
v(Y 2 − (X q − X )) with p > 2, a hyperelliptic curve of genus
g = 1

2(q − 1); Aut(X )/M ∼= PSL(2, q) or
Aut(X )/M ∼= PGL(2, q), where q = pr and |M| = 2;

(III) The Hermitian curve:
v(Y n + Y − X n+1) with n = pr , genus 1

2 n(n − 1),
Aut(X ) ∼= PGU(3,n), n a power of 2.
|Aut(X )| = (n3 + 1)n3(n2 − 1).

(IV) The DLS curve (Deligne-Lusztig curve of Suzuki type):
v(X n0(X n + X ) + Y n + Y ), with p = 2, n0 = 2r ≥ 2, n = 2n2

0,
g = n0(n − 1), Aut(X ) ∼= Sz(n) where Sz(n) is the Suzuki
group, |Aut(X )| = (n2 + 1)n2(n− 1)
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Two more infinite families of curves X with large Aut(X )

(V) The DLR curve (the Deligne-Lusztig curve arising from the
Ree group):
v(Y n2 − [1 + (X n − X )n−1]Y n + (X n − X )n−1Y − X n(X n −
X )n+3n0), with p = 3, n0 = 3r , n = 3n2

0;
g = 3

2n0(n − 1)(n + n0 + 1); Aut(X ) ∼= Ree(n) where Ree(n)
is the Ree group, |Aut(X )| = (n3 + 1)n3(n− 1).

(VI) The G.K curve:
v(Y n3+1 + (X n + X )(

∑n
i=0(−1)i+1X i(n−1))n+1), a curve of

genus g = 1
2 (n3 + 1)(n2 − 2) + 1 with Aut(X ) containing a

subgroup isomorphic to SU(3, n), n = pr .
|Aut(X )| = (n3 + 1)n3(n− 1).
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Problems on curves with large automorphism groups, γ = 0

Remark

All the above examples have zero p-rank.

Problem 1: Find a function f (g) such that if |Aut(X )| > f(g)
then γ = 0.

Problem 2: Determine the structure of large automorphism
groups of curves with γ = 0. This includes the study of large
automorphism groups of maximal curves over a finite field.

Problem 3: ∃ simple or almost simple groups, other than
those in the examples (II),. . . (VI), occurring as an
automorphism group of a maximal curve?

Gábor Korchmáros Curves with many automorphisms



Problems on curves with large automorphism groups, γ = 0

Remark

All the above examples have zero p-rank.

Problem 1: Find a function f (g) such that if |Aut(X )| > f(g)
then γ = 0.

Problem 2: Determine the structure of large automorphism
groups of curves with γ = 0. This includes the study of large
automorphism groups of maximal curves over a finite field.

Problem 3: ∃ simple or almost simple groups, other than
those in the examples (II),. . . (VI), occurring as an
automorphism group of a maximal curve?
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Problems on zero p-rank curves with very large p-group of
automorphisms

Curves with a very large p-group S of automorphisms have
p-rank γ equal to zero, (Stichtenoth, 1973, Nakajima, 1987).

Problem 4: “Big action problem” (Lehr-Matignon): What
about zero p-rank curves with very large p-group S of
automorphisms?

|S | ≥ (4g2)/(p − 1)2 ⇒
X = v(Y q − Y + f (X )) s. t. f (X ) = XP(X ) + cX , q = ph

and P(X ) is an additive polynomial of K[X ], (Lehr-Matignon
2005).

Generalizations for |S | ≥ 4g2/(p2 − 1)2 by Matignon-Rocher
2008, Rocher 2009.

If Aut(X ) fixes no point and |S | > pg/(p − 1) then X is one
of the curves (II) . . . (VI). (Giulietti-K. 2010).
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Large p-subgroups of automorphisms of zero p-rank curves

Lemma

[Bridge lemma] Let X be a zero p-rank curve, i.e. γ = 0. Let
S ≤ Aut(X ) with |S | = ph. Then S fixes a point of P of X , and
no non-trivial element in S fixes a point distinct from P.

Definition

A Sylow p-subgroup Sp of a finite group G is a trivial intersection
set if Sp meets any other Sylow p-subgroup of G trivially. If this is
the case, G has the TI-condition with respect to the prime p.

Theorem (Giulietti-K. 2005)

Let X be a curve with γ = 0. Then every wild subgroup G of
Aut(X ) satisfies the TI-condition for its p-subgroups of Sylow.
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Finite groups satisfying TI-condition for some prime p

.

Theorem (Burnside-Gow, 1976)

Let G be a finite solvable group satisfying the TI-condition for p.
Then a Sylow p-subgroup Sp is either normal or cyclic, or p = 2
and S2 is a generalized quaternion group.

Remark

Non-solvable groups satisfying the TI-condition are also exist. The
known examples include the simple groups involved in the
examples (II) . . . (VI).
Their complete classification is not done yet,
Important partial classifications (under further conditions) were
given by Hering, Herzog, Aschbacher, and more recently by
Guralnick-Pries-Stevenson.
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Theorem (Giulietti-K. 2010)

Let p = 2 and X a zero 2-rank algebraic curve of genus g ≥ 2. Let
G ≤ Aut(X ) with 2 | |G |. Then one of the following cases holds.

(a) G fixes no point of X and the subgroup N of G generated by
all its 2-elements is isomorphic to one of the groupsn :
PSL(2, n), PSU(3, n), SU(3, n), Sz(n) with n = 2r ≥ 4; Here
N coincides with the commutator subgroup G ′ of G .

(b) G fixes no point of X and it has a non-trivial normal
subgroup of odd order. A Sylow 2-subgroup S2 of G is either
a cyclic group or a generalized quaternion group.

Furthermore, either G = O(G ) o S2, or G/O(G ) ∼= SL(2, 3),
or G/O(G ) ∼= GL(2, 3), or G/O(G ) ∼= G48.

(c) G fixes a point of X , and G = S2 o H, with a subgroup H of
odd order.
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Gábor Korchmáros Curves with many automorphisms



Theorem (Giulietti-K. 2010)

Let p = 2 and X a zero 2-rank algebraic curve of genus g ≥ 2. Let
G ≤ Aut(X ) with 2 | |G |. Then one of the following cases holds.

(a) G fixes no point of X and the subgroup N of G generated by
all its 2-elements is isomorphic to one of the groupsn :
PSL(2, n), PSU(3, n), SU(3, n), Sz(n) with n = 2r ≥ 4; Here
N coincides with the commutator subgroup G ′ of G .

(b) G fixes no point of X and it has a non-trivial normal
subgroup of odd order. A Sylow 2-subgroup S2 of G is either
a cyclic group or a generalized quaternion group.

Furthermore, either G = O(G ) o S2, or G/O(G ) ∼= SL(2, 3),
or G/O(G ) ∼= GL(2, 3), or G/O(G ) ∼= G48.

(c) G fixes a point of X , and G = S2 o H, with a subgroup H of
odd order.
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Corollary

Let X be a zero 2-rank curve such that the subgroup G of Aut(X )
fixes no point of X .

If G is a solvable, then the Hurwitz bound holds for G ; more
precisely |G | ≤ 72(g − 1).

If G is not solvable, then G is known and the possible genera
of X are computed from the order of its commutator
subgroup G ′ provided that G is large enough, namely
whenever |G | ≥ 24g(g − 1).
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Problem 5: Find some more examples of zero 2-rank curves of
genus g with |Aut(X )| ≥ 24g(g − 1).

Problem 6: Characterize such examples using their
automorphism groups.

Problem 7: How extend the above results to zero p-rank
curves for p > 2?

Problem 7 (essentially) solved by Guralnick-Malmskog-Pries
2012.
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Maximal curves with few orbits on rational points

Remark

For the Hermitian curve, Aut(X ) is transitive on X (Fq2).

For other two classical maximal curves, Aut(X ) has two orbits
on the set of rational points.

Theorem (Giulietti-K. 2009)

Let p = 2. Let X be an Fq2-maximal curve of genus g ≥ 2. Then
Aut(X ) acts on X (Fq2) as a transitive permutation group if and
only if X is the Hermitian curve v(Y n + Y − X n+1), with q = n.

Problem 8: Prove a similar characterization theorem for the
other “classical” maximal curves.
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Gábor Korchmáros Curves with many automorphisms



Maximal curves with few orbits on rational points

Remark

For the Hermitian curve, Aut(X ) is transitive on X (Fq2).

For other two classical maximal curves, Aut(X ) has two orbits
on the set of rational points.

Theorem (Giulietti-K. 2009)

Let p = 2. Let X be an Fq2-maximal curve of genus g ≥ 2. Then
Aut(X ) acts on X (Fq2) as a transitive permutation group if and
only if X is the Hermitian curve v(Y n + Y − X n+1), with q = n.

Problem 8: Prove a similar characterization theorem for the
other “classical” maximal curves.

Gábor Korchmáros Curves with many automorphisms



Curves with large p-groups of automorphisms, case γ > 0

X :=curve with genus g and p-rank γ > 0.
S :=p-subgroup of Aut(X );
Nakajima’s bound (1987):

|S | ≤


4(γ − 1) for p = 2, γ > 1

p
p−2 (γ − 1) for p 6= 2, γ > 1,

g − 1 for γ = 1.

Problem 9: Determine the possibilities for the structures of S when
X extremal w.r. Nakajima’s bound, or |S | is closed to it.

Hypothesis (I): |S | > 2(g − 1) (and |S | ≥ 8),
⇒ p = 2, 3.

If S fixes a point then |S | ≤ pg/(p − 1).

Hypothesis (II): S fixes no point on X .
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Gábor Korchmáros Curves with many automorphisms



Case p = 3

Theorem (Giulietti-K. 2013)

Let p = 3. If |S | > 2(g − 1) and S fixes no point on X , then

g = γ;

|S | = 3(γ − 1) (Extremal curve w.r. Nakajima’s bound);

S is generated by two elements, S is abelian only for
|S | = 3, 9;

S has two short orbits on X each of size |S |/3;

S has a normal subgroup M such that S = M o 〈ε〉 with
ε3 = 1 and M semiregular on X ;

X is an unramified Galois extension of an ordinary genus 2
curve X̄ with Gal(X|X̄ ) = M; M = 〈α, β〉;
if M is abelian then |Z (S)| = 3 and S has maximal
(nilpotency) class. ⇒ the structure of S is known.

Problem 10: Find examples where S has not maximal class.
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Gábor Korchmáros Curves with many automorphisms



Case p = 3

Theorem (Giulietti-K. 2013)

Let p = 3. If |S | > 2(g − 1) and S fixes no point on X , then

g = γ;

|S | = 3(γ − 1) (Extremal curve w.r. Nakajima’s bound);

S is generated by two elements, S is abelian only for
|S | = 3, 9;

S has two short orbits on X each of size |S |/3;

S has a normal subgroup M such that S = M o 〈ε〉 with
ε3 = 1 and M semiregular on X ;

X is an unramified Galois extension of an ordinary genus 2
curve X̄ with Gal(X|X̄ ) = M; M = 〈α, β〉;
if M is abelian then |Z (S)| = 3 and S has maximal
(nilpotency) class.

⇒ the structure of S is known.

Problem 10: Find examples where S has not maximal class.
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Case p = 3, Examples for small genera

If |S | = 3 then X = v((X (Y 3 − Y )− X 2 + c) with c ∈ K∗.
If |S | = 9 then S = C3 × C3 and
X = v((X 3 − X )((Y 3 − Y ) + c) with c ∈ K∗, g(X ) = 4.

If |S | = 27 then S = UT (3, 3) and
X = v((X 3 − X )(Y 3 − Y ) + c ,Z 3 − Z − X 3Y + YX 3) with
c ∈ K∗, g(X ) = 10.

For |S | = 81 an explicit example: S ∼= Syl3(Sym9),
X = v((X 3 − X )(Y 3 − Y ) + c ,U3 − U − X ,
(U − Y )(W 3 −W )− 1, (U − (Y + 1))(T 3 − T )− 1) with
c ∈ K∗, g(X ) = 28.
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Case p = 3, infinite families of examples

F :=K(x , y), x(y3 − y)− x2 + c = 0, c ∈ K∗;

g(F ) = γ(F ) = 2.

ϕ := (x , y) 7→ (x , y + 1),ϕ ∈ Aut(F).
FN :=largest unramified abelian extension of F of exponent N
with two generators,

(i) FN |F is an unramified Galois extension of degree 32N ,
(ii) FN is generated by all function fields which are cyclic

unramified extensions of F of degree pN ,

(iii) Gal(FN |F ) = C3N × C3N and u3N

= 1 for every element
u ∈ Gal(FN |F ).

M :=Galois closure of FN |K.

Lemma

Gal(M|K(x)) preserves F . ⇒ Gal(M|K(x)) ≤ Aut(FN).

Corollary

FN is an extremal function field w.r. Nakajima’s bound.
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Gábor Korchmáros Curves with many automorphisms



Case p = 3, infinite families of examples

F :=K(x , y), x(y3 − y)− x2 + c = 0, c ∈ K∗;
g(F ) = γ(F ) = 2.

ϕ := (x , y) 7→ (x , y + 1),ϕ ∈ Aut(F).
FN :=largest unramified abelian extension of F of exponent N
with two generators,

(i) FN |F is an unramified Galois extension of degree 32N ,
(ii) FN is generated by all function fields which are cyclic

unramified extensions of F of degree pN ,

(iii) Gal(FN |F ) = C3N × C3N and u3N

= 1 for every element
u ∈ Gal(FN |F ).

M :=Galois closure of FN |K.

Lemma

Gal(M|K(x)) preserves F . ⇒ Gal(M|K(x)) ≤ Aut(FN).

Corollary

FN is an extremal function field w.r. Nakajima’s bound.
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(iii) Gal(FN |F ) = C3N × C3N and u3N

= 1 for every element
u ∈ Gal(FN |F ).

M :=Galois closure of FN |K.

Lemma

Gal(M|K(x)) preserves F . ⇒ Gal(M|K(x)) ≤ Aut(FN).

Corollary

FN is an extremal function field w.r. Nakajima’s bound.
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Remark

If N E S and [S : N] ≥ 9 then X/N is also an extremal curve w.r.
Nakajima’s bound.

F :=K(x , y), x(y3 − y)− x2 + c = 0, c ∈ K∗,
Let F be the set of all unramified Galois extensions K of F such
that K is extremal w.r. Nakajima’s bound.
For every K ∈ F take the (unique) maximal 3-subgroup of Aut(K)
together with all surjections of index ≥ 9.
These groups and surjections form an inverse system.

Problem 10: What about the arising profinite group (limit of the
this inverse system)?
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Case p = 2

Theorem (Giulietti-K. 2012)

Let p = 2. If |S | > 2(g − 1), |S | ≥ 8 and S fixes no point on X ,
then one of the following cases occurs

|S | = 4(g − 1), X is an ordinary bielliptic curve. Either

(ia) S is dihedral, or
(ib) S = (E × 〈u〉) o 〈w〉 where E is cyclic group of order g − 1

and u and w are involutions.

|S | = 2g + 2, and S = A o B, A is an elementary abelian
subgroup of index 2 and B = 2;

Every central involution of S is inductive.

Involution u ∈ Z (S) is inductive:= S/〈u〉, viewed as a subgroup of
Aut(X̄ ) of the quotient curve X = X/〈u〉 satisfies the hypotheses
of the theorem.
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Gábor Korchmáros Curves with many automorphisms



Case p = 2, examples

For every 2h,∃ a curve of type (ia): (extremal curve w.r.
Nakajima’s bound with dihedral 2-group of automorphisms).

∃ a sporadic example of type (ib) with g = 9 and
S = D8 × C2.

For q = 2h, the hyperelliptic curve

X := v((Y 2 + Y + X )(X q + X ) +
∑
α∈Fq

X q + X

X + α
)

has genus g = q − 1 and an elementary abelian automorphism
group of order 2q.

Examples involving inductive involutions are also known.

Problem 11: Construct infinite family of curves of type (ib).
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