Galois Module structure of spaces of polydifferentials

Janne Kool ${ }^{1}$ Fumiharu Kato ${ }^{2}$ Aristides Kontogeorgis

${ }^{1}$ Universiteit Utrecht ${ }^{2}$ Kumamoto Univeristy
RICAM Linz November 2013

Table of Contents

Automorphisms of Curves in positive characteristic

Count idecomposable components

Back to $\left(x^{p}-x\right)\left(y^{p}-y\right)=c$

The effect of taking the quotient by principal derivations

Using the theory of B. Köck

Curves -Differentials

- Curve X : projective nonsingular complete, defined over an algebraically closed field k, $\operatorname{char}(k)=p>0$.
- Genus $g(X) \geq 2 \Rightarrow G=\operatorname{Aut}(X)$ is a finite group.
- $\Omega(n)=H^{0}\left(X, \Omega_{X}^{\otimes n}\right)$ is a finite dimensional vector space of dimension $(2 n-1)(g-1)$ which is a G-module.

Curves -Differentials

- Curve X : projective nonsingular complete, defined over an algebraically closed field k, $\operatorname{char}(k)=p>0$.
- Genus $g(X) \geq 2 \Rightarrow G=\operatorname{Aut}(X)$ is a finite group.
- $\Omega(n)=H^{0}\left(X, \Omega_{X}^{\otimes n}\right)$ is a finite dimensional vector space of dimension $(2 n-1)(g-1)$ which is a G-module.

Aim
Study the G-module structure of $\Omega(n)$: Analyse $\Omega(n)$ into a direct sum of indecomposable $K[G]$-modules.

Curves -Differentials

- Curve X : projective nonsingular complete, defined over an algebraically closed field k, $\operatorname{char}(k)=p>0$.
- Genus $g(X) \geq 2 \Rightarrow G=\operatorname{Aut}(X)$ is a finite group.
- $\Omega(n)=H^{0}\left(X, \Omega_{X}^{\otimes n}\right)$ is a finite dimensional vector space of dimension $(2 n-1)(g-1)$ which is a G-module.

Aim
Study the G-module structure of $\Omega(n)$: Analyse $\Omega(n)$ into a direct sum of indecomposable $K[G]$-modules.
This is completely solved in characteristic 0 or when $p \nmid|G|$.

Applications

- Our motivation: Study the dimension of the tangent space to the deformation functor of curves with automorphisms

$$
\begin{aligned}
\operatorname{dim}_{k} \mathcal{T}_{C}(G) & =\operatorname{dim}_{k} H^{0}\left(G, \Omega^{\otimes 2}\right)_{G} \\
& =\operatorname{dim}_{k} H^{0}\left(G, \Omega^{\otimes 2}\right) \otimes_{k[G]} k
\end{aligned}
$$

Applications

- Our motivation: Study the dimension of the tangent space to the deformation functor of curves with automorphisms

$$
\begin{aligned}
\operatorname{dim}_{k} \mathcal{T}_{C}(G) & =\operatorname{dim}_{k} H^{0}\left(G, \Omega^{\otimes 2}\right)_{G} \\
& =\operatorname{dim}_{k} H^{0}\left(G, \Omega^{\otimes 2}\right) \otimes_{k[G]} k
\end{aligned}
$$

- Other possible applications: decomposition of Jacobians, Arithmetic of fields generated by higher order Weierstrass points etc.

Modular Representation Theory

Unsolved problem in characteristic p. Because for a p-group:

- Indecomposable is different than irreducible.

Modular Representation Theory

Unsolved problem in characteristic p. Because for a p-group:

- Indecomposable is different than irreducible.
- Characters do not determine indecomposable modules.

Modular Representation Theory

Unsolved problem in characteristic p. Because for a p-group:

- Indecomposable is different than irreducible.
- Characters do not determine indecomposable modules.
- Unless G is a cyclic p-group it is almost impossible to determine the classes of indecomposable $K[G]$-modules up to isomorphism.

Modular Representation Theory

Unsolved problem in characteristic p. Because for a p-group:

- Indecomposable is different than irreducible.
- Characters do not determine indecomposable modules.
- Unless G is a cyclic p-group it is almost impossible to determine the classes of indecomposable $K[G]$-modules up to isomorphism.
- Appearance of wild ramification.
- These are Galois covers $X \rightarrow \mathbb{P}^{1}$ with Galois group G a p-group ramified exactly above one point.
- These are Galois covers $X \rightarrow \mathbb{P}^{1}$ with Galois group G a p-group ramified exactly above one point.
- If $|G|>m(2 g-2)$ then the module $H^{0}\left(X, \Omega^{\otimes m}\right)$ is indecomposable.
- These are Galois covers $X \rightarrow \mathbb{P}^{1}$ with Galois group G a p-group ramified exactly above one point.
- If $|G|>m(2 g-2)$ then the module $H^{0}\left(X, \Omega^{\otimes m}\right)$ is indecomposable.
- In particular if G is a "big-action" $|G|>2(g-1)$ the space of holomorphic differentials is indecomposable.

The cyclic case.

Assume that $G=\mathbb{Z} / p \mathbb{Z}=\langle\sigma\rangle$. Indecomposable $K[G]$-modules and the decomposition are described in terms of the Jordan-normal form of the generator σ.

The cyclic case.

Assume that $G=\mathbb{Z} / p \mathbb{Z}=\langle\sigma\rangle$. Indecomposable $K[G]$-modules and the decomposition are described in terms of the Jordan-normal form of the generator σ.

$$
\left.\sigma \mapsto\left(\begin{array}{ccccc}
1 & 1 & 0 & \ldots & 0 \\
0 & 1 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1 & 1 \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right)\right\} r \times r
$$

The cyclic case.

Assume that $G=\mathbb{Z} / p \mathbb{Z}=\langle\sigma\rangle$. Indecomposable $K[G]$-modules and the decomposition are described in terms of the Jordan-normal form of the generator σ.

$$
\left.\sigma \mapsto\left(\begin{array}{ccccc}
1 & 1 & 0 & \ldots & 0 \\
0 & 1 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1 & 1 \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right)\right\} r \times r
$$

For every $0 \leq r \leq p-1$, there is a unique indecomposable module J_{r} for the cyclic group G.

Elementary Abelian groups

If $G=\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ then there are infinitely many indecomposable $K[G]$-modules. Classifying them is considered impossible.

Elementary Abelian groups

If $G=\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ then there are infinitely many indecomposable $K[G]$-modules. Classifying them is considered impossible.

Artin Schreier Extensions

$$
y^{p^{r}}-y=f(x)
$$

For these curves (which admit an elementary abelian group in their automorphism group) the problem of the determination of the Galois module structure of $\Omega(n)$ is solved. (Nakajima, Calderón, Salvador, Madan, Karanikolopoulos, etc)

Elementary Abelian groups

If $G=\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ then there are infinitely many indecomposable $K[G]$-modules. Classifying them is considered impossible.

Artin Schreier Extensions

$$
y^{p^{r}}-y=f(x)
$$

For these curves (which admit an elementary abelian group in their automorphism group) the problem of the determination of the Galois module structure of $\Omega(n)$ is solved. (Nakajima, Calderón, Salvador, Madan, Karanikolopoulos, etc)
It is important that we know explicit bases for the spaces $\Omega(n)$ and that the generators σ_{i} of the elementary abelian groups involved have "similar" Jordan decomposition.

Mumford Curves

Over non-archimedean, complete, discretely valued fields K, D . Mumford has shown that curves whose stable reduction is split multiplicative, (i.e., a union of rational curves intersecting in K-rational points with K-rational nodal tangents) are isomorphic to an analytic space of the form $X_{\Gamma}=\Gamma \backslash\left(\mathbb{P}^{1}-\mathcal{L}_{\Gamma}\right)$.

Mumford Curves

Over non-archimedean, complete, discretely valued fields K, D. Mumford has shown that curves whose stable reduction is split multiplicative, (i.e., a union of rational curves intersecting in K-rational points with K-rational nodal tangents) are isomorphic to an analytic space of the form $X_{\Gamma}=\Gamma \backslash\left(\mathbb{P}^{1}-\mathcal{L}_{\Gamma}\right)$.

$$
\left(y^{p^{r}}-y\right)\left(x^{p^{r}}-x\right)=c,|c|<1 \Rightarrow c \equiv 0 \bmod m
$$

Reduction:

Generalities on Mumford curves

Γ is a finitely generated, torsion free discrete subgroup of $\operatorname{PGL}(2, K)$, with \mathcal{L}_{Γ} as set of limit points.

Generalities on Mumford curves

Γ is a finitely generated, torsion free discrete subgroup of $\operatorname{PGL}(2, K)$, with \mathcal{L}_{Γ} as set of limit points.
$X_{\Gamma}=\Gamma \backslash\left(\mathbb{P}^{1}-\mathcal{L}_{\Gamma}\right)$ should be seen as an analogon of uniformization of compact Riemann-Surfaces in positive characteristic.

Generalities on Mumford curves

Γ is a finitely generated, torsion free discrete subgroup of $\operatorname{PGL}(2, K)$, with \mathcal{L}_{Γ} as set of limit points.
$X_{\Gamma}=\Gamma \backslash\left(\mathbb{P}^{1}-\mathcal{L}_{\Gamma}\right)$ should be seen as an analogon of uniformization of compact Riemann-Surfaces in positive characteristic.

$$
\operatorname{Aut}\left(X_{\Gamma}\right)=\operatorname{Norm}_{\Gamma} \operatorname{PGL}(2, K) / \Gamma
$$

where $\mathrm{Norm}_{\Gamma} \mathrm{PGL}(2, K)$ is the normalizer of Γ in $\operatorname{PGL}(2, K)$.

- Mumford curves are ordinary

$$
\operatorname{Aut}\left(X_{\Gamma}\right) \leq \min \left\{12(g-1), 2 \sqrt{2}(\sqrt{g}+1)^{2}\right\}
$$

- 「 is a free subgroup of $\operatorname{PGL}(2, K)$.
- K be a field, non-archimedean valued and complete, of characteristic $p>0$.
- $P_{2(n-1)}$ is the K-vector space of polynomials of degree $\leq 2(n-1)$.
- PGL $(2, K)$ acts on $P_{2(n-1)}$ from the right:
$\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PGL}(2, K)$ and $F \in P_{2(n-1)}$,

$$
F^{\phi}(T):=\frac{(c T+d)^{2(n-1)}}{(a d-b c)^{n-1}} F\left(\frac{a T+b}{c T+d}\right) \in K[T] .
$$

Polydifferentials

Theorem (P. Schneider, J. Teitelbaum)

$$
\Omega(n)=\mathrm{H}^{1}\left(\Gamma, P_{2(n-1)}\right) .
$$

For an 「-module P

$$
\begin{gathered}
\operatorname{Der}(\Gamma, P)=\left\{d: \Gamma \rightarrow P: d\left(\gamma_{1} \gamma_{2}\right)=d\left(\gamma_{1}\right)+d\left(\gamma_{2}\right)^{\gamma_{1}}\right\} \\
\operatorname{PrinDer}(\Gamma, P)=\left\{d_{m}: \gamma \mapsto m^{\gamma}-m\right\} \\
\mathrm{H}^{1}\left(\Gamma, P_{2(n-1)}\right)=\frac{\operatorname{Der}(\Gamma, P)}{\operatorname{PrinDer}(\Gamma, P)}
\end{gathered}
$$

Dimension Verification

- Since G is a free group with generators $\gamma_{1}, \ldots, \gamma_{g}$ a derivation is described if we know all $d\left(\gamma_{1}\right), \ldots, d\left(\gamma_{g}\right)$.

Dimension Verification

- Since G is a free group with generators $\gamma_{1}, \ldots, \gamma_{g}$ a derivation is described if we know all $d\left(\gamma_{1}\right), \ldots, d\left(\gamma_{g}\right)$. $\operatorname{dim} \operatorname{Der}\left(\Gamma, P_{2(n-1)}\right)=g \cdot \operatorname{dim} P_{2(n-1)}=g(2 n-1)$.
- $\operatorname{dim} \operatorname{PrinDer}(\Gamma, P)= \begin{cases}2 n-1 & \text { if } n>1 \\ 0 & \text { if } n=1\end{cases}$

Dimension Verification

- Since G is a free group with generators $\gamma_{1}, \ldots, \gamma_{g}$ a derivation is described if we know all $d\left(\gamma_{1}\right), \ldots, d\left(\gamma_{g}\right)$. $\operatorname{dim} \operatorname{Der}\left(\Gamma, P_{2(n-1)}\right)=g \cdot \operatorname{dim} P_{2(n-1)}=g(2 n-1)$.
- $\operatorname{dim} \operatorname{PrinDer}(\Gamma, P)= \begin{cases}2 n-1 & \text { if } n>1 \\ 0 & \text { if } n=1\end{cases}$
- $\operatorname{dim} \mathrm{H}^{1}\left(\Gamma, P_{2(n-1)}\right)= \begin{cases}(2 n-1)(g-1) & \text { for } n>1 \\ g & \text { for } n=1 .\end{cases}$

Action of N / Γ on $\Omega(n)$:

For $\phi \in N$ and $d \in \operatorname{Der}(\Gamma, P)$, we define the action d^{ϕ} of N / Γ on a derivation d as follows:

$$
\left(d^{\phi}\right)(\gamma):=\left[d\left(\phi \gamma \phi^{-1}\right)\right]^{\phi} .
$$

This is the usual action of N / Γ on group cohomology.

$$
\begin{align*}
\mathrm{H}^{0}(X, \Omega) & =\mathrm{H}^{1}\left(\Gamma, P_{0}\right)=\mathrm{H}^{1}(\Gamma, K)=\operatorname{Hom}(\Gamma, K)=\operatorname{Hom}(\Gamma, \mathbb{Z}) \otimes K \\
& =\operatorname{Hom}\left(\Gamma^{\mathrm{ab}}, \mathbb{Z}\right) \otimes K \tag{1}
\end{align*}
$$

Theorem (B. Köck)
The integral representation:

$$
\rho: N / \Gamma \rightarrow \mathrm{GL}(g, \mathbb{Z})
$$

on holomorphic differentials is faithful, unless the cover $X \rightarrow X / G=Y$ is not tamely ramified, the characteristic $p=2$ and $g_{Y}=0$.

Riemann Surfaces

Remark 1

Previous theorem shows that holomorphic differentials on Mumford curves are, in some sense, similar to holomorphic differentials on Riemann surfaces; for a Riemann surface Y there is a faithful action of its automorphism group on $\mathrm{H}^{1}(Y, \mathbb{Z})$, which induces a faithful representation of a subgroup of the automorphism group on the symplectic matrices $\operatorname{Sp}(2 g, \mathbb{Z})$.

Remark 2
The group Γ can be interpreted as the fundamental group of the curve X_{Γ}.

Application to order of the group

Corollary
If the order of any $g \in N / \Gamma$ is a prime number q, then $q \leq g+1$.

Application to order of the group

Corollary

If the order of any $g \in N / \Gamma$ is a prime number q, then $q \leq g+1$.

$$
M=\left(\begin{array}{ccccc}
-1 & -1 & -1 & \cdots & -1 \tag{2}\\
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right) \in \operatorname{GL}(q-1, \mathbb{Z})
$$

which has characteristic polynomial $\frac{x^{q}-1}{x-1}=1+x+\cdots x^{q-1}$ (it is the companion matrix of this polynomial), and is the prototype for an integral representation of a cyclic group of order q with minimal degree $q-1$, i.e., there are no integral representations of a cyclic group of order q in $r \times r$ matrices for $r<q-1$.

Curves of the form $\left(x^{p}-x\right)\left(y^{p}-y\right)=c$.

Let $A, B \subset \operatorname{PGL}(2, K)$ be the finite subgroups of order p generated respectively by

$$
\epsilon_{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } \epsilon_{B}=\left(\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right)
$$

where $s \in K^{*}$.

Curves of the form $\left(x^{p}-x\right)\left(y^{p}-y\right)=c$.

Let $A, B \subset \mathrm{PGL}(2, K)$ be the finite subgroups of order p generated respectively by

$$
\epsilon_{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } \epsilon_{B}=\left(\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right),
$$

where $s \in K^{*}$.
For a general choice of s, the groups A and B generate a discrete subgroup N isomorphic to the free product $A * B$. The group $\Gamma:=[A, B]$ is
(i) a normal subgroup of N such that $N / \Gamma \cong A \times B$ and
(ii) a free group of rank $(p-1)^{2}$. A basis of Γ is given by $[a, b]$ for $a \in A \backslash\{1\}$ and $b \in B \backslash\{1\}$.

Action on differentials

$$
1 \rightarrow[A, B]:=\Gamma \rightarrow A * B:=N \rightarrow A \times B \rightarrow 1 .
$$

Action on differentials

$$
1 \rightarrow[A, B]:=\Gamma \rightarrow A * B:=N \rightarrow A \times B \rightarrow 1 .
$$

The elements $e_{i, j}=\left[\epsilon_{A}^{i}, \epsilon_{B}^{j}\right], 1 \leq i, j \leq p-1$ form a basis of the free group Γ.

Action on differentials

$$
1 \rightarrow[A, B]:=\Gamma \rightarrow A * B:=N \rightarrow A \times B \rightarrow 1 .
$$

The elements $e_{i, j}=\left[\epsilon_{A}^{i}, \epsilon_{B}^{j}\right], 1 \leq i, j \leq p-1$ form a basis of the free group Γ.

$$
\begin{align*}
a\left[\epsilon_{A}, \epsilon_{B}\right] a^{-1} & =\left[a \epsilon_{A}, \epsilon_{B}\right]\left[a, \epsilon_{B}\right]^{-1} \tag{3}\\
b\left[\epsilon_{A}, \epsilon_{B}\right] b^{-1} & =\left[\epsilon_{A}, b\right]^{-1}\left[\epsilon_{A}, b \epsilon_{B}\right] \tag{4}
\end{align*}
$$

for every $a \in A$ and $b \in B$.

Action on differentials

$$
e_{i, j}^{\epsilon_{A}}=\left[\epsilon_{A} \cdot \epsilon_{A}^{i}, \epsilon_{B}^{j}\right]\left[\epsilon_{A}, \epsilon_{B}^{j}\right]^{-1} \text { for } 1 \leq i, j \leq p-1
$$

Since the group $\Gamma^{\mathrm{ab}} \cong \mathbb{Z}^{g}$ is a \mathbb{Z}-module and usually when we consider \mathbb{Z}-modules we use additive notation, we rewrite the equation above as:

$$
e_{i, j}^{\epsilon_{A}}=e_{i+1, j}-e_{1, j} \text { for } 1 \leq i \leq p-2,1 \leq j \leq p-1
$$

and

$$
e_{p-1, j}^{\epsilon_{A}}=-e_{1, j} \text { for } 1 \leq j \leq p-1
$$

Action on differentials

In terms of the above given basis, the action can be expressed by the following matrix given in block diagonal form

$$
\left(\begin{array}{lll}
M & & \tag{5}\\
& \ddots & \\
& & M
\end{array}\right),
$$

where there are $p-1$ blocks

$$
M=\left(\begin{array}{ccccc}
-1 & -1 & -1 & \cdots & -1 \tag{6}\\
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right) \in \operatorname{GL}(p-1, \mathbb{Z})
$$

Proposition

Let G be a finite cyclic p-group and let V be a $K[G]$-module. The number of indecomposable $K[G]$-summands of V, which are $K[G]$-modules equals the dimension of the space of invariants V^{G}.

Proposition

Let G be a finite cyclic p-group and let V be a $K[G]$-module. The number of indecomposable $K[G]$-summands of V, which are $K[G]$-modules equals the dimension of the space of invariants V^{G}.

Remark

The assumption that G is cyclic is necessary. There is an example of an indecomposable $K[\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}]$-module (Heller and Reiner) with space of invariants has dimension >1.

Proposition

Let G be a finite cyclic p-group and let V be a $K[G]$-module. The number of indecomposable $K[G]$-summands of V, which are $K[G]$-modules equals the dimension of the space of invariants V^{G}.

Remark

The assumption that G is cyclic is necessary. There is an example of an indecomposable $K[\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}]$-module (Heller and Reiner) with space of invariants has dimension >1.

Lemma

If H is an abelian p-group acting on a non-trivial K-vector space M, then $M^{H} \neq\{0\}$.

Criterion for idecomposability

Proposition

Let H be a group such that for every non-trivial $K[H]$-module M, $M^{H} \neq\{0\}$. Suppose that for a $K[H]$-module V the space V^{H} is one-dimensional, then V is indecomposable.

Criterion for idecomposability

Proposition

Let H be a group such that for every non-trivial $K[H]$-module M, $M^{H} \neq\{0\}$. Suppose that for a $K[H]$-module V the space V^{H} is one-dimensional, then V is indecomposable.

Proof.
Every non-trivial indecomposable summand of V contributes a non-trivial invariant subspace to V^{H}. Therefore, if $\operatorname{dim} V^{H}=1$, then there could be only one indecomposable summand.

Application

Proposition

The space of holomorphic differentials on the Subrao curves is a $K[A \times B]$-indecomposable module.

1. Give a description of the conjugation action of N on Γ. fix a set of representatives $\left\{n_{i} \in N\right\}$ for $N / \Gamma, 1 \leq i \leq \# N / \Gamma$. Set

$$
\left\ulcorner\ni n_{i} \gamma_{j} n_{i}^{-1}=w_{i j} \quad 1 \leq i \leq \# N / \Gamma, 1 \leq j \leq g\right.
$$

where $w_{i j}$ are words in $\gamma_{1}, \ldots, \gamma_{g}$.

1. Give a description of the conjugation action of N on Γ. fix a set of representatives $\left\{n_{i} \in N\right\}$ for $N / \Gamma, 1 \leq i \leq \# N / \Gamma$. Set

$$
\left\ulcorner\ni n_{i} \gamma_{j} n_{i}^{-1}=w_{i j} \quad 1 \leq i \leq \# N / \Gamma, 1 \leq j \leq g\right.
$$

where $w_{i j}$ are words in $\gamma_{1}, \ldots, \gamma_{g}$.
2. Compute $d_{i, \ell}\left(n_{i} \gamma_{j} n_{i}^{-1}\right)^{n_{i}}$

1. Give a description of the conjugation action of N on Γ. fix a set of representatives $\left\{n_{i} \in N\right\}$ for $N / \Gamma, 1 \leq i \leq \# N / \Gamma$. Set

$$
\left\ulcorner\ni n_{i} \gamma_{j} n_{i}^{-1}=w_{i j} \quad 1 \leq i \leq \# N / \Gamma, 1 \leq j \leq g\right.
$$

where $w_{i j}$ are words in $\gamma_{1}, \ldots, \gamma_{g}$.
2. Compute $d_{i, \ell}\left(n_{i} \gamma_{j} n_{i}^{-1}\right)^{n_{i}}$
3. Consider the effect of taking the quotient by principal derivations.

Derivations

For an integer k, will denote by

$$
\binom{T}{k}=\frac{T(T-1)(T-2) \cdots(T-k+1)}{k!} \in K[T]
$$

which is a polynomial of degree k.

Derivations

For an integer k, will denote by

$$
\binom{T}{k}=\frac{T(T-1)(T-2) \cdots(T-k+1)}{k!} \in K[T]
$$

which is a polynomial of degree k.
Since

$$
\binom{T+1}{k}=\binom{T}{k}+\binom{T}{k-1}
$$

the automorphism $\sigma: T \mapsto T+1$ acts on

$$
\sigma:\binom{T}{k} \mapsto\binom{T}{k}+\binom{T}{k-1} .
$$

- First attempt

$$
\left\{1, T, T^{2}, \ldots, T^{2 n-1}\right\}
$$

- First attempt

$$
\left\{1, T, T^{2}, \ldots, T^{2 n-1}\right\}
$$

- Difficult action $\sigma: T^{k} \mapsto \sum_{\nu=0}^{k}\binom{k}{\nu} T^{\nu}$
- First attempt

$$
\left\{1, T, T^{2}, \ldots, T^{2 n-1}\right\}
$$

- Difficult action $\sigma: T^{k} \mapsto \sum_{\nu=0}^{k}\binom{k}{\nu} T^{\nu}$
- Better basis

$$
\begin{aligned}
& \left\{\left(T^{p}-T\right)^{i(k)}\binom{T}{j(k)}: 0 \leq k \leq 2 n-1\right\}, \\
& k=i(k) \cdot p+j(k) \text { and } 0 \leq j(k)<p
\end{aligned}
$$

- First attempt

$$
\left\{1, T, T^{2}, \ldots, T^{2 n-1}\right\}
$$

- Difficult action $\sigma: T^{k} \mapsto \sum_{\nu=0}^{k}\binom{k}{\nu} T^{\nu}$
- Better basis

$$
\left\{\left(T^{p}-T\right)^{i(k)}\binom{T}{j(k)}: 0 \leq k \leq 2 n-1\right\}
$$

$k=i(k) \cdot p+j(k)$ and $0 \leq j(k)<p$
Get Jordan decomposition.

Basis of derivations

Consider the derivation $d_{[\alpha, \beta]}^{(k)}$ for $k=0, \ldots, 2(n-1)$ and $\alpha \in A \backslash\{1\}, \beta \in B \backslash\{1\}$, which is characterized by

$$
d_{[\alpha, \beta]}^{(k)}\left(\left[\alpha^{\prime}, \beta^{\prime}\right]\right)= \begin{cases}{\left[\left(T^{p}-T\right)^{i} \cdot\binom{T}{j}\right]^{\beta^{-1}}} & \text { if } \alpha=\alpha^{\prime} \text { and } \beta=\beta^{\prime}, \\ 0 & \text { otherwise },\end{cases}
$$

where i and j are determined by $k=i \cdot p+j$ and $0 \leq j<p$.

Basis of derivations

Consider the derivation $d_{[\alpha, \beta]}^{(k)}$ for $k=0, \ldots, 2(n-1)$ and $\alpha \in A \backslash\{1\}, \beta \in B \backslash\{1\}$, which is characterized by

$$
d_{[\alpha, \beta]}^{(k)}\left(\left[\alpha^{\prime}, \beta^{\prime}\right]\right)= \begin{cases}{\left[\left(T^{p}-T\right)^{i} \cdot\binom{T}{j}\right]^{\beta^{-1}}} & \text { if } \alpha=\alpha^{\prime} \text { and } \beta=\beta^{\prime}, \\ 0 & \text { otherwise },\end{cases}
$$

where i and j are determined by $k=i \cdot p+j$ and $0 \leq j<p$. For $\delta \in A$

$$
\left(d_{[\alpha, \beta]}^{(k)}\right)^{\delta}= \begin{cases}d_{[\delta-1}^{(k)}+d_{\left[\delta^{-1} \alpha, \beta\right]}^{(k-1)} & \text { if } j>0 \text { and } \alpha \neq \delta, \\ d_{\left[\delta^{-1} \alpha, \beta\right]}^{(k)} & \text { if } j=0 \text { and } \alpha \neq \delta, \\ -\sum_{\alpha^{\prime} \neq 1}\left(d_{\left[\alpha^{\prime}, \beta\right]}^{(k)}+d_{\left[\alpha^{\prime}, \beta\right]}^{(k-1)}\right) & \text { if } j>0 \text { and } \alpha=\delta, \\ -\sum_{\alpha^{\prime} \neq 1}\left(d_{\left[\alpha^{\prime}, \beta\right]}^{(k)}\right) & \text { if } j=0 \text { and } \alpha=\delta,\end{cases}
$$

Basis of derivations

$$
d_{a b}^{k}:=d_{\left[\epsilon_{A}^{a}, \epsilon_{B}^{b}\right]}^{(k)} \text { for } 1 \leq a, b \leq p-1,0 \leq k \leq 2 n-2
$$

order them by lexicographical order with respect to (k, a, b); that is,

$$
\begin{gathered}
d_{11}^{0}, d_{11}^{1}, \ldots, d_{11}^{2(n-1)}, d_{21}^{0}, d_{21}^{1}, \ldots, d_{21}^{2(n-1)}, \ldots, \\
d_{(p-1), 1}^{0}, d_{(p-1), 1}^{1}, \ldots, d_{(p-1), 1}^{2(n-1)}, \ldots
\end{gathered}
$$

Basis of derivations

$$
d_{a b}^{k}:=d_{\left[\epsilon_{A}^{2}, e_{B}^{k}\right]}^{(k)} \text { for } 1 \leq a, b \leq p-1,0 \leq k \leq 2 n-2
$$

order them by lexicographical order with respect to (k, a, b); that is,

$$
\begin{gathered}
d_{11}^{0}, d_{11}^{1}, \ldots, d_{11}^{2(n-1)}, d_{21}^{0}, d_{21}^{1}, \ldots, d_{21}^{2(n-1)}, \ldots, \\
d_{(p-1), 1}^{0}, d_{(p-1), 1}^{1}, \ldots, d_{(p-1), 1}^{2(n-1)}, \ldots
\end{gathered}
$$

The square matrix Q of degree $(2 n-1)(p-1)^{2}$ of the action by $\delta=\epsilon_{A}$ is then decomposed into $p-1$ blocks like

$$
Q=\left(\begin{array}{llll}
M & & & \\
& M & & \\
& & \ddots & \\
& & & M
\end{array}\right)
$$

where M is a square matrix of degree $(2 n-1)(p-1)$.

$$
M=\left(\begin{array}{cccccc}
-N & -N & -N & \cdots & -N & -N \\
N & & & & & \\
& N & & & & \\
& & N & & & \\
& & & \ddots & & \\
& & & & N & 0
\end{array}\right)
$$

where N is a square matrix of degree $2 n-1$, which is of the form

$$
N=\left(\begin{array}{lllll}
J_{p} & & & & \\
& J_{p} & & & \\
& & \ddots & & \\
& & & J_{p} & \\
& & & & J_{r}
\end{array}\right)
$$

where J_{ℓ} denotes the $\ell \times \ell$-Jordan block with diagonal entries equal to 1 .

$$
W=\left(\begin{array}{cccccc}
-1 & -1 & -1 & \cdots & -1 & -1 \\
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & \ddots & & \\
& & & & 1 & 0
\end{array}\right)
$$

$$
W=\left(\begin{array}{cccccc}
-1 & -1 & -1 & \cdots & -1 & -1 \\
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & \ddots & & \\
& & & & 1 & 0
\end{array}\right)
$$

$M=N \otimes W$.

Desctiption of the action on derivations

$$
N \otimes W=\left(J_{p} \otimes W\right)^{\left\lfloor\frac{2 n-1}{\rho}\right\rfloor} \oplus\left(J_{r} \otimes W\right)
$$

Desctiption of the action on derivations

$$
\begin{gathered}
N \otimes W=\left(J_{p} \otimes W\right)^{\left\lfloor\frac{2 n-1}{p}\right\rfloor} \oplus\left(J_{r} \otimes W\right) \\
J_{p} \otimes W=J_{p}^{p-1} \\
J_{r} \otimes W=J_{p}^{r-1} \oplus J_{p-r}
\end{gathered}
$$

Desctiption of the action on derivations

$$
\begin{gathered}
N \otimes W=\left(J_{p} \otimes W\right)^{\left\lfloor\frac{2 n-1}{p}\right\rfloor} \oplus\left(J_{r} \otimes W\right) \\
J_{p} \otimes W=J_{p}^{p-1} \\
J_{r} \otimes W=J_{p}^{r-1} \oplus J_{p-r}
\end{gathered}
$$

Proposition

The $K[A]$-module structure of $\operatorname{Der}\left(\Gamma, P_{2(n-1)}\right)$ is given by:
$\operatorname{Der}\left(\Gamma, P_{2(n-1)}\right)= \begin{cases}\left(J_{p}^{(p-1)\left\lfloor\frac{2 n-1}{p}\right\rfloor} \oplus J_{p}^{r-1} \oplus J_{p-r}\right)^{p-1} & \text { if } p \nmid 2 n-1, \\ \left(J_{p}^{(p-1) \frac{2 n-1}{p}}\right)^{p-1} & \text { if } p \mid 2 n-1\end{cases}$

Projective modules injective hulls

$$
\begin{aligned}
& 0 \longrightarrow P_{2 n-2} \xrightarrow{i_{1}} K[A] \oplus K[A]^{\left\lfloor\frac{2 n-1}{p}\right\rfloor} \xrightarrow{\pi_{1}} J_{\rho-r} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 P_{2 n-2} \xrightarrow{i_{1}} K[A] \oplus K[A]^{\left\lfloor\frac{2 n-1}{p}\right\rfloor} \xrightarrow{\pi_{1}} J_{p-r} \\
& \qquad 0 \\
& 0 \rightarrow \operatorname{Der}\left(\Gamma, P_{2 n-2}\right) \xrightarrow{i_{2}} K[A]^{p-1} \oplus K[A]^{\left.\frac{\lfloor(2 n-1)(p-1)}{p}\right\rfloor(p-1)} \xrightarrow{\pi_{2}} J_{r}^{p-1}
\end{aligned}
$$

$$
\begin{aligned}
H^{1}\left(\Gamma, P_{2 n-2}\right) & \cong \operatorname{Der}\left(\Gamma, P_{2 n-2}\right) / \operatorname{Prin} \operatorname{Der}\left(\Gamma, P_{2 n-2}\right) \\
& \cong K[A]^{(p-1)\left\lfloor\frac{(2 n-1)(p-1)}{p}\right\rfloor-1-\left\lfloor\frac{2 n-1}{p}\right\rfloor} \oplus K[A] / J_{r} \oplus J_{p-r}^{p-1} \\
& \cong K[A]^{(p-1)(2 n-1)-p\left\lceil\frac{2 n-1}{\rho}\right\rceil} \oplus J_{p-r}^{p} .
\end{aligned}
$$

Definitions

Higher ramification groups

$$
G_{i}(P)=\left\{\sigma \in G(P): v_{P}(\sigma(t)-t) \geq i+1\right\}
$$

Definitions

Higher ramification groups

$$
G_{i}(P)=\left\{\sigma \in G(P): v_{P}(\sigma(t)-t) \geq i+1\right\} .
$$

For a divisor $D=\sum_{P \in X} n_{P} P$ we denote by $D_{\text {red }}=\sum_{P \in X: n_{P} \neq 0} P$ the associated reduced divisor.

Definitions

Higher ramification groups

$$
G_{i}(P)=\left\{\sigma \in G(P): v_{P}(\sigma(t)-t) \geq i+1\right\} .
$$

For a divisor $D=\sum_{P \in X} n_{P} P$ we denote by $D_{\text {red }}=\sum_{P \in X: n_{P} \neq 0} P$ the associated reduced divisor. Ramification divisor

$$
R=\sum_{P \in X} \sum_{i=0}^{\infty}\left(e_{i}(P)-1\right)
$$

Definitions

Higher ramification groups

$$
G_{i}(P)=\left\{\sigma \in G(P): v_{P}(\sigma(t)-t) \geq i+1\right\} .
$$

For a divisor $D=\sum_{P \in X} n_{P} P$ we denote by $D_{\text {red }}=\sum_{P \in X: n_{P} \neq 0} P$ the associated reduced divisor. Ramification divisor

$$
\begin{gathered}
R=\sum_{P \in X} \sum_{i=0}^{\infty}\left(e_{i}(P)-1\right) \\
0 \rightarrow \Omega_{X}^{\otimes n} \rightarrow \Omega_{X}^{\otimes n}\left((2 n-1) R_{\mathrm{red}}\right) \rightarrow \Sigma \rightarrow 0 .
\end{gathered}
$$

The $K[A \times B]$-structure

$$
\begin{aligned}
0 \rightarrow H^{0}\left(X, \Omega_{X}^{\otimes n}\right) \rightarrow & H^{0}\left(X, \Omega_{X}^{\otimes n}\left((2 n-1) R_{\text {red }}\right)\right) \rightarrow H^{0}(X, \Sigma) \\
& \rightarrow H^{1}\left(X, \Omega_{X}^{\otimes n}\right)=0 .
\end{aligned}
$$

Theorem

The $K[G]$-module $H^{0}\left(X, \Omega_{X}^{\otimes n}\left((2 n-1) R_{\text {red }}\right)\right)$ is a free
$K[G]$-module of rank $(2 n-1)\left(g_{Y}-1+r_{0}\right)$, where r_{0} denotes the cardinality of $X_{\text {ram }}^{G}=\{P \in X / G: e(P)>1\}$, and g_{Y} denotes the genus of the quotient curve $Y=X / G$.

Proof.
Uses a criterion of B. Köck, on characterizing projective modules on curves.

Final result

$$
0 \longrightarrow H^{0}\left(X, \Omega_{X}^{\otimes n}\right) \longrightarrow K[G]^{2 n-1} \longrightarrow H^{0}(X, \Sigma) \longrightarrow 0
$$

Final Results

Theorem

For $n>1$ we write $2 n-1=q \cdot p+r$ with $0 \leq r<p$.

1. As a $K[A]$-module the following decomposition holds

$$
H^{0}\left(X, \Omega_{X}^{\otimes n}\right)=K[A]^{(p-1)(2 n-1)-p\left\lceil\frac{2 n-1}{p}\right\rceil} \bigoplus\left(K[A] /\left(\epsilon_{A}-1\right)^{p-r}\right)^{p}
$$

A similar result holds for the group B.
2. As a $K[G]$-module $(G=A \times B)$ the following decomposition holds:

$$
\begin{aligned}
H^{0}\left(X, \Omega_{X}^{\otimes n}\right)= & K[G]^{2 n-1-2\left\lceil\frac{2 n-1}{p}\right\rceil} \bigoplus \\
& K[G] /\left(\epsilon_{A}-1\right)^{p-r} \bigoplus K[G] /\left(\epsilon_{B}-1\right)^{p-r} .
\end{aligned}
$$

