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Curves -Differentials

Curve X : projective nonsingular complete, defined over an
algebraically closed field k , char(k) = p > 0.

Genus g(X ) ≥ 2⇒ G = Aut(X ) is a finite group.

Ω(n) = H0(X ,Ω⊗nX ) is a finite dimensional vector space of
dimension (2n − 1)(g − 1) which is a G -module.

Aim
Study the G -module structure of Ω(n): Analyse Ω(n) into a direct
sum of indecomposable K [G ]-modules.

This is completely solved in characteristic 0 or when p - |G |.
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Applications

Our motivation: Study the dimension of the tangent space to
the deformation functor of curves with automorphisms

dimk TC (G ) = dimk H
0(G ,Ω⊗2)G

= dimk H
0(G ,Ω⊗2)⊗k[G ] k

Other possible applications: decomposition of Jacobians,
Arithmetic of fields generated by higher order Weierstrass
points etc.

, Automorphisms of Mumford Curves 4/37



Applications

Our motivation: Study the dimension of the tangent space to
the deformation functor of curves with automorphisms

dimk TC (G ) = dimk H
0(G ,Ω⊗2)G

= dimk H
0(G ,Ω⊗2)⊗k[G ] k

Other possible applications: decomposition of Jacobians,
Arithmetic of fields generated by higher order Weierstrass
points etc.

, Automorphisms of Mumford Curves 4/37



Modular Representation Theory

Unsolved problem in characteristic p. Because for a p-group:

Indecomposable is different than irreducible.

Characters do not determine indecomposable modules.

Unless G is a cyclic p-group it is almost impossible to
determine the classes of indecomposable K [G ]-modules up to
isomorphism.

Appearance of wild ramification.
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Harbater-Katz-Gabber covers

These are Galois covers X → P1 with Galois group G a
p-group ramified exactly above one point.

If |G | > m(2g − 2) then the module H0(X ,Ω⊗m) is
indecomposable.

In particular if G is a ”big-action” |G | > 2(g − 1) the space of
holomorphic differentials is indecomposable.
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The cyclic case.

Assume that G = Z/pZ = 〈σ〉. Indecomposable K [G ]-modules
and the decomposition are described in terms of the Jordan-normal
form of the generator σ.

σ 7→


1 1 0 . . . 0

0 1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 1
0 · · · · · · 0 1




r × r

For every 0 ≤ r ≤ p − 1, there is a unique indecomposable module
Jr for the cyclic group G .
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Elementary Abelian groups

If G = Z/pZ× Z/pZ then there are infinitely many
indecomposable K [G ]-modules. Classifying them is considered
impossible.

Artin Schreier Extensions

yp
r − y = f (x).

For these curves (which admit an elementary abelian group in their
automorphism group) the problem of the determination of the
Galois module structure of Ω(n) is solved. (Nakajima, Calderón,
Salvador, Madan, Karanikolopoulos, etc)
It is important that we know explicit bases for the spaces Ω(n) and
that the generators σi of the elementary abelian groups involved
have “similar” Jordan decomposition.
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Mumford Curves

Over non-archimedean, complete, discretely valued fields K , D.
Mumford has shown that curves whose stable reduction is split
multiplicative, (i.e., a union of rational curves intersecting in
K -rational points with K -rational nodal tangents) are isomorphic
to an analytic space of the form XΓ = Γ\(P1 − LΓ).

(yp
r − y)(xp

r − x) = c , |c | < 1⇒ c ≡ 0 modm

Reduction:
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Generalities on Mumford curves

Γ is a finitely generated, torsion free discrete subgroup of
PGL(2,K ), with LΓ as set of limit points.

XΓ = Γ\(P1 −LΓ) should be seen as an analogon of uniformization
of compact Riemann-Surfaces in positive characteristic.

Aut(XΓ) = NormΓPGL(2,K )/Γ,

where NormΓPGL(2,K ) is the normalizer of Γ in PGL(2,K ).

Mumford curves are ordinary

Aut(XΓ) ≤ min{12(g − 1), 2
√

2(
√
g + 1)2}
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Holomorphic Polydifferentials

Γ is a free subgroup of PGL(2,K ).

K be a field, non-archimedean valued and complete, of
characteristic p > 0.

P2(n−1) is the K -vector space of polynomials of degree
≤ 2(n − 1).

PGL(2,K ) acts on P2(n−1) from the right:

φ =

(
a b
c d

)
∈ PGL(2,K ) and F ∈ P2(n−1),

Fφ(T ) :=
(cT + d)2(n−1)

(ad − bc)n−1
F

(
aT + b

cT + d

)
∈ K [T ].
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Polydifferentials

Theorem (P. Schneider, J. Teitelbaum)

Ω(n) = H1(Γ,P2(n−1)).

For an Γ-module P

Der(Γ,P) = {d : Γ→ P : d(γ1γ2) = d(γ1) + d(γ2)γ1}

PrinDer(Γ,P) = {dm : γ 7→ mγ −m}

H1(Γ,P2(n−1)) =
Der(Γ,P)

PrinDer(Γ,P)
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Dimension Verification

Since G is a free group with generators γ1, . . . , γg a derivation
is described if we know all d(γ1), . . . , d(γg ).

dimDer(Γ,P2(n−1)) = g · dimP2(n−1) = g(2n − 1).

dimPrinDer(Γ,P) =

{
2n − 1 if n > 1

0 if n = 1.

dimH1(Γ,P2(n−1)) =

{
(2n − 1)(g − 1) for n > 1

g for n = 1.
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Action of N/Γ on Ω(n):

For φ ∈ N and d ∈ Der(Γ,P), we define the action dφ of N/Γ on
a derivation d as follows:

(dφ)(γ) := [d(φγφ−1)]φ.

This is the usual action of N/Γ on group cohomology.

, Automorphisms of Mumford Curves 14/37



Holomorphic Differentials n = 1

H0(X ,Ω) = H1(Γ,P0) = H1(Γ,K ) = Hom(Γ,K ) = Hom(Γ,Z)⊗ K

= Hom(Γab,Z)⊗ K , (1)

Theorem (B. Köck)

The integral representation:

ρ : N/Γ→ GL(g ,Z)

on holomorphic differentials is faithful, unless the cover
X → X/G = Y is not tamely ramified, the characteristic p = 2
and gY = 0.
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Riemann Surfaces

Remark 1
Previous theorem shows that holomorphic differentials on Mumford
curves are, in some sense, similar to holomorphic differentials on
Riemann surfaces; for a Riemann surface Y there is a faithful
action of its automorphism group on H1(Y ,Z), which induces a
faithful representation of a subgroup of the automorphism group
on the symplectic matrices Sp(2g ,Z).

Remark 2
The group Γ can be interpreted as the fundamental group of the
curve XΓ.
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Application to order of the group

Corollary

If the order of any g ∈ N/Γ is a prime number q, then q ≤ g + 1.

M =


−1 −1 −1 · · · −1
1 0 · · · · · · 0

0 1 0
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

 ∈ GL(q − 1,Z). (2)

which has characteristic polynomial xq−1
x−1 = 1 + x + · · · xq−1 (it is

the companion matrix of this polynomial), and is the prototype for
an integral representation of a cyclic group of order q with minimal
degree q − 1, i.e., there are no integral representations of a cyclic
group of order q in r × r matrices for r < q − 1.
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Curves of the form (xp − x)(yp − y) = c .

Let A,B ⊂ PGL(2,K ) be the finite subgroups of order p
generated respectively by

εA =

(
1 1
0 1

)
and εB =

(
1 0
s 1

)
,

where s ∈ K ∗.

For a general choice of s, the groups A and B generate a discrete
subgroup N isomorphic to the free product A ∗ B. The group
Γ := [A,B] is

(i) a normal subgroup of N such that N/Γ ∼= A× B and

(ii) a free group of rank (p − 1)2. A basis of Γ is given by [a, b]
for a ∈ A\{1} and b ∈ B\{1}.
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Action on differentials

1→ [A,B] := Γ→ A ∗ B := N → A× B → 1.

The elements ei ,j = [εiA, ε
j
B ], 1 ≤ i , j ≤ p − 1 form a basis of the

free group Γ.

a[εA, εB ]a−1 = [aεA, εB ][a, εB ]−1 (3)

b[εA, εB ]b−1 = [εA, b]−1[εA, bεB ], (4)

for every a ∈ A and b ∈ B.
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Action on differentials

eεAi ,j = [εA · εiA, ε
j
B ][εA, ε

j
B ]−1 for 1 ≤ i , j ≤ p − 1.

Since the group Γab ∼= Zg is a Z-module and usually when we
consider Z-modules we use additive notation, we rewrite the
equation above as:

eεAi ,j = ei+1,j − e1,j for 1 ≤ i ≤ p − 2, 1 ≤ j ≤ p − 1

and
eεAp−1,j = −e1,j for 1 ≤ j ≤ p − 1.
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Action on differentials

In terms of the above given basis, the action can be expressed by
the following matrix given in block diagonal formM

. . .

M

 , (5)

where there are p − 1 blocks

M =


−1 −1 −1 · · · −1
1 0 · · · · · · 0

0 1 0
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

 ∈ GL(p − 1,Z). (6)
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Invariants and indecomposables

Proposition

Let G be a finite cyclic p-group and let V be a K [G ]-module. The
number of indecomposable K [G ]-summands of V , which are
K [G ]-modules equals the dimension of the space of invariants V G .

Remark

The assumption that G is cyclic is necessary. There is an example
of an indecomposable K [Z/pZ× Z/pZ]-module (Heller and
Reiner) with space of invariants has dimension > 1.

Lemma

If H is an abelian p-group acting on a non-trivial K -vector space
M, then MH 6= {0}.
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Criterion for idecomposability

Proposition

Let H be a group such that for every non-trivial K [H]-module M,
MH 6= {0}. Suppose that for a K [H]-module V the space VH is
one-dimensional, then V is indecomposable.

Proof.
Every non-trivial indecomposable summand of V contributes a
non-trivial invariant subspace to VH . Therefore, if dimVH = 1,
then there could be only one indecomposable summand.
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Application

Proposition

The space of holomorphic differentials on the Subrao curves is a
K [A× B]-indecomposable module.
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Action

1. Give a description of the conjugation action of N on Γ. fix a
set of representatives {ni ∈ N} for N/Γ, 1 ≤ i ≤ #N/Γ. Set

Γ 3 niγjn
−1
i = wij 1 ≤ i ≤ #N/Γ, 1 ≤ j ≤ g ,

where wij are words in γ1, . . . , γg .

2. Compute di ,`(niγjn
−1
i )ni

3. Consider the effect of taking the quotient by principal
derivations.
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Derivations

For an integer k , will denote by(
T

k

)
=

T (T − 1)(T − 2) · · · (T − k + 1)

k!
∈ K [T ],

which is a polynomial of degree k .

Since (
T + 1

k

)
=

(
T

k

)
+

(
T

k − 1

)
,

the automorphism σ : T 7→ T + 1 acts on

σ :

(
T

k

)
7→
(
T

k

)
+

(
T

k − 1

)
.
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(
T

k − 1

)
,

the automorphism σ : T 7→ T + 1 acts on

σ :

(
T

k

)
7→
(
T

k

)
+

(
T

k − 1

)
.
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A natural basis for the space of polynomials of degree 2n − 1

First attempt
{1,T ,T 2, . . . ,T 2n−1}.

Difficult action σ : T k 7→
∑k

ν=0

(k
ν

)
T ν

Better basis{
(T p − T )i(k)

(
T

j(k)

)
: 0 ≤ k ≤ 2n − 1

}
,

k = i(k) · p + j(k) and 0 ≤ j(k) < p
Get Jordan decomposition.
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Basis of derivations

Consider the derivation d
(k)
[α,β] for k = 0, . . . , 2(n − 1) and

α ∈ A\{1}, β ∈ B\{1}, which is characterized by

d
(k)
[α,β]([α′, β′]) =


[
(T p − T )i ·

(T
j

)]β−1

if α = α′ and β = β′,

0 otherwise,

where i and j are determined by k = i · p + j and 0 ≤ j < p.

For
δ ∈ A

(
d

(k)
[α,β]

)δ
=



d
(k)
[δ−1α,β]

+ d
(k−1)
[δ−1α,β]

if j > 0 and α 6= δ,

d
(k)
[δ−1α,β]

if j = 0 and α 6= δ,

−
∑

α′ 6=1

(
d

(k)
[α′,β] + d

(k−1)
[α′,β]

)
if j > 0 and α = δ,

−
∑

α′ 6=1

(
d

(k)
[α′,β]

)
if j = 0 and α = δ,
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Basis of derivations

dk
ab := d

(k)

[εaA,ε
b
B ]

for 1 ≤ a, b ≤ p − 1, 0 ≤ k ≤ 2n − 2

order them by lexicographical order with respect to (k , a, b); that
is,

d0
11, d

1
11, . . . , d

2(n−1)
11 , d0

21, d
1
21, . . . , d

2(n−1)
21 , . . . ,

d0
(p−1),1, d

1
(p−1),1, . . . , d

2(n−1)
(p−1),1, . . .

The square matrix Q of degree (2n − 1)(p − 1)2 of the action by
δ = εA is then decomposed into p − 1 blocks like

Q =


M

M
. . .

M

 ,

where M is a square matrix of degree (2n − 1)(p − 1).
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The M-matrix

M =



−N −N −N · · · −N −N
N

N
N

. . .

N 0


where N is a square matrix of degree 2n − 1, which is of the form

N =


Jp

Jp
. . .

Jp
Jr

 ,

where J` denotes the `× `-Jordan block with diagonal entries
equal to 1., Automorphisms of Mumford Curves 30/37



Kronecker product description of M

W =



−1 −1 −1 · · · −1 −1
1

1
1

. . .

1 0


.

M = N ⊗W .
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Desctiption of the action on derivations

N ⊗W = (Jp ⊗W )

⌊
2n−1

p

⌋
⊕ (Jr ⊗W ).

Jp ⊗W = Jp−1
p .

Jr ⊗W = J r−1
p ⊕ Jp−r .

Proposition

The K [A]-module structure of Der(Γ,P2(n−1)) is given by:

Der(Γ,P2(n−1)) =


(
J

(p−1)
⌊

2n−1
p

⌋
p ⊕ J r−1

p ⊕ Jp−r

)p−1

if p - 2n − 1,(
J

(p−1) 2n−1
p

p

)p−1

if p | 2n − 1

.
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Projective modules injective hulls

0 // P2n−2

ψ
��

i1 // K [A]⊕ K [A]

⌊
2n−1

p

⌋
π1 //

φ ��

Jp−r //

χ
��

0

0 // Der(Γ,P2n−2)
i2 // K [A]p−1 ⊕ K [A]

⌊
(2n−1)(p−1)

p

⌋
(p−1) π2// Jp−1

r
// 0

H1(Γ,P2n−2) ∼= Der(Γ,P2n−2)/PrinDer(Γ,P2n−2)

∼= K [A]
(p−1)

⌊
(2n−1)(p−1)

p

⌋
−1−

⌊
2n−1

p

⌋
⊕ K [A]/Jr ⊕ Jp−1

p−r

∼= K [A]
(p−1)(2n−1)−p

⌈
2n−1

p

⌉
⊕ Jpp−r .
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Definitions

Higher ramification groups

Gi (P) = {σ ∈ G (P) : vP(σ(t)− t) ≥ i + 1}.

For a divisor D =
∑

P∈X nPP we denote by Dred =
∑

P∈X :nP 6=0 P
the associated reduced divisor. Ramification divisor

R =
∑
P∈X

∞∑
i=0

(
ei (P)− 1

)
0→ Ω⊗nX → Ω⊗nX

(
(2n − 1)Rred

)
→ Σ→ 0.
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The K [A× B]-structure

0→ H0(X ,Ω⊗nX )→ H0
(
X ,Ω⊗nX

(
(2n − 1)Rred

))
→ H0(X ,Σ)

→ H1(X ,Ω⊗nX ) = 0.

Theorem
The K [G ]-module H0

(
X ,Ω⊗nX

(
(2n − 1)Rred

))
is a free

K [G ]-module of rank (2n − 1)(gY − 1 + r0), where r0 denotes the
cardinality of XG

ram = {P ∈ X/G : e(P) > 1}, and gY denotes the
genus of the quotient curve Y = X/G .

Proof.
Uses a criterion of B. Köck, on characterizing projective modules
on curves.
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Final result

0 // H0(X ,Ω⊗nX ) // K [G ]2n−1 // H0(X ,Σ) // 0
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Final Results

Theorem
For n > 1 we write 2n − 1 = q · p + r with 0 ≤ r < p.

1. As a K [A]-module the following decomposition holds

H0(X ,Ω⊗nX ) = K [A]
(p−1)(2n−1)−p

⌈
2n−1

p

⌉⊕(
K [A]/(εA − 1)p−r

)p
.

A similar result holds for the group B.

2. As a K [G ]-module (G = A× B) the following decomposition
holds:

H0(X ,Ω⊗nX ) = K [G ]
2n−1−2

⌈
2n−1

p

⌉⊕
K [G ]/(εA − 1)p−r

⊕
K [G ]/(εB − 1)p−r .
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