# Symmetric Digit Sets for Elliptic Curve Scalar Multiplication 

Clemens Heuberger Michela Mazzoli

Alpen-Adria-Universität Klagenfurt, Austria
Linz, 2013-11-15

## Outline

(1) Introduction
(2) Complex Base
(3) Symmetry
(1) Introduction

- Elliptic Curve Cryptography
- Scalar Multiplication and Digit Expansions
- w-NAF
(2) Complex Base
(3) Symmetry


## Elliptic Curve Cryptography

- Elliptic Curve $E$
- For $P \in E$ and $n \in \mathbb{Z}, n P$ can be calculated easily.
- No efficient algorithm to calculate $n$ from $P$ and $n P$ ?
- Fast calculation of $n P$ desirable!


## Double-and-Add Algorithm

Calculating 27P via a doubling and adding scheme using the standard binary expansion of 27 :

$$
\begin{aligned}
27=(11011)_{2} & =1 \cdot 16+1 \cdot 8+0 \cdot 4+1 \cdot 2+1 \cdot 1 \\
27 P=(11011)_{2} P & =2(2(2(2(P)+P)+0)+P)+P
\end{aligned}
$$

- Number of additions $\sim$ Hamming weight of the binary expansion (Number of nonzero digits)
- Number of doublings $\sim$ length of the expansion


## Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

$$
\begin{aligned}
27 & =(100 \overline{1} 0 \overline{1})_{2}, \\
27 P=(100 \overline{1} 0 \overline{1})_{2} P & =2(2(2(2(2(P)+0)+0)-P)+0)-P .
\end{aligned}
$$

- $\Longrightarrow$ Use of signed digit expansions
- Number of additions/subtractions $\sim$ Hamming weight of the binary expansion
- Number of multiplications $\sim$ length of the expansion


## Computation of the Standard Binary Expansion

Recall how to compute the standard unsigned binary expansion of 27 from right to left (least significant to most significant digit):

$$
\begin{array}{rlrl}
27 & \equiv 1(\bmod 2) & \varepsilon_{0}=1 \\
(27-1) / 2=13 & \equiv 1(\bmod 2) & \varepsilon_{1}=1 \\
(13-1) / 2=6 & \equiv 0(\bmod 2) & \varepsilon_{2}=0 \\
(6-0) / 2=3 & \equiv 1(\bmod 2) & \varepsilon_{3}=1 \\
(3-1) / 2=1 & \equiv 1(\bmod 2) & \varepsilon_{4}=1 \\
(1-1) / 2=0 & \equiv 0(\bmod 2) & \varepsilon_{j}=0, \quad j \geq 5 \\
27 & =(\ldots 011011)_{2} & &
\end{array}
$$

## Computation of Signed Expansion

Compute a signed binary expansion of 27 with many zeros:

$$
\begin{aligned}
27 & \equiv-1(\bmod 4) & & \varepsilon_{0}=-1 \\
(27-(-1)) / 2=14 & \equiv 0(\bmod 2) & & \varepsilon_{1}=0 \\
(14-0) / 2=7 & \equiv-1(\bmod 4) & & \varepsilon_{2}=-1 \\
(7-(-1)) / 2=4 & \equiv 0(\bmod 2) & & \varepsilon_{3}=0 \\
(4-0) / 2=2 & \equiv 0(\bmod 2) & & \varepsilon_{4}=0 \\
(2-0) / 2=1 & \equiv 1(\bmod 4) & & \varepsilon_{5}=1 \\
(1-1) / 2=0 & \equiv 0(\bmod 2) & & \varepsilon_{j}=0, \quad j \geq 6 \\
27 & =(\ldots 0100 \overline{1} 0 \overline{1})_{2} & &
\end{aligned}
$$

If $n$ is odd, we use information modulo 4 instead of modulo 2 in order to guarantee a digit 0 in the next step. (Greedy!)

## Non-Adjacent Form

## Theorem (Reitwiesner 1960)

Let $n \in \mathbb{Z}$, then there is exactly one signed binary expansion $\varepsilon \in\{-1,0,1\}^{\mathbb{N}_{0}}$ of $n$ such that

$$
\begin{aligned}
n & =\sum_{j \geq 0} \varepsilon_{j} 2^{j}, & & (\varepsilon \text { is a binary expansion of } n), \\
\varepsilon_{j} \varepsilon_{j+1} & =0 & & \text { for all } j \geq 0 .
\end{aligned}
$$

It is called the Non-Adjacent Form (NAF) of $n$.
It minimises the Hamming weight amongst all signed binary expansions with digits $\{0, \pm 1\}$ of $n$.

- Let $w \geq 2$. Consider digit set

$$
\mathcal{D}_{w}=\{0\} \cup\left\{-\left(2^{w-1}-1\right), \ldots,-1,1,3, \ldots, 2^{w-1}-1\right\}
$$

- Binary digit expansion of $n \in \mathbb{Z}$ with digits in $\mathcal{D}_{w}$.
- Precompute $\eta P$ for $\eta \in \mathcal{D}_{w}, \eta>0$.
- Minimise weight, i.e., number of nonzero digits.
- Choose expansion such that each block of $w$ consecutive digits contains at most one non-zero digit (" $w$-NAF").
- NAF is special case $w=2$.
- If $n$ is even, take digit 0 .
- If $n$ is odd, take unique digit $\eta \in \mathcal{D}_{w}$ such that $n \equiv \eta$ $\left(\bmod 2^{w}\right)$.
(2) Complex Base
- Frobenius Endomorphism and Complex Bases
- $\mathcal{D}$-w-NAF with Base $\tau$
- Existence of the $\mathcal{D}$-w-NAF
- Optimality Conditions for the $\mathcal{D}$-w-NAF
- Analysis of the $\mathcal{D}$-w-NAF


## Frobenius Endomorphism

- Let $E$ be an elliptic curve defined over $\mathbb{F}_{q}$.
- The Frobenius endomorphism

$$
\varphi: E\left(\mathbb{F}_{q^{m}}\right) \rightarrow E\left(\mathbb{F}_{q^{m}}\right) ;(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

fulfils

$$
\varphi^{2}-t \varphi+q=0
$$

where $t=q+1-\# E\left(\mathbb{F}_{q}\right)$.

- As $|t| \leq 2 \sqrt{q}$ (Hasse), $\varphi$ can be identified with an imaginary quadratic integer $\tau$.


## $\tau$-Expansions and Scalar Multiplication

- Assume that a digit expansion of $n$ to the base of $\tau$ is known, e.g., $n=\sum_{j=0}^{\ell-1} c_{j} \tau^{j}$.
- Then

$$
\begin{aligned}
& \left(c_{\ell-1} \tau^{\ell-1}+c_{\ell-2} \tau^{\ell-2}+c_{\ell-3} \tau^{\ell-3}+\cdots+c_{1} \tau+c_{0}\right) P= \\
& \quad \varphi\left(\varphi\left(\varphi\left(\varphi\left(\varphi\left(c_{\ell-1} P\right)+c_{\ell-2} P\right)+c_{\ell-3} P\right) \cdots\right)+c_{1} P\right)+c_{0} P
\end{aligned}
$$

- Frobenius-and-Add-Algorithm
- Frobenius endomorphism $\varphi$ much faster than doubling
- Number of (fast) Frobenius applications: length of the expansion.
- Number of Additions/Subtractions: Hamming weight (number of nonzero digits) of the expansion (minus one).


## $\mathcal{D}$-w-NAF with Base $\tau$

- Aim: Generalise $w$-NAF to base $\tau$.
- Digit set: $\mathcal{D}=\{0\} \cup \mathcal{D}^{\bullet}$ where $\mathcal{D}^{\bullet}$ consists of one representative of minimal norm from every residue class modulo $\tau^{w}$ which is not divisible by $\tau$ ("digit set of minimal norm representatives").
- A $\mathcal{D}$-w-NAF is an expansion of $z \in \mathbb{Z}[\tau]$ such that every block of $w$ consecutive digits contains at most one non-zero digit.
- Questions:
- Existence: Does every $z \in \mathbb{Z}[\tau]$ admit a $\mathcal{D}$ - $w$-NAF?
- Optimality: Does the $\mathcal{D}$-w-NAF minimise the weight over all expansions over the same digit set?
- Analysis: Expected weight?


## Existence of the w-NAF

## Theorem (CH, Daniel Krenn 2013)

Let $\tau$ be an imaginary quadratic integer, $w \geq 2$ and $\mathcal{D}$ be a digit set of minimal norm representatives.
Then every element in $\mathbb{Z}[\tau]$ admits a w-NAF to the base of $\tau$ with digits in $\mathcal{D}$.

## Optimality Results for Quadratic Integer Bases



| OuOM |  |
| :---: | :---: |
| $(0,3)$ | $(1,3)$ |


| $(0,2)$ |  |
| :---: | :---: |
|  | $(1,2)$ |

(150934,

- $\Delta \Delta+\theta$ $(1,2)$


010010
$(6,12)$
$(2,4)$
(1)90910
$(2,3)$

(1006ts
$(4,6)$
0000000
$(6,11)$

$(2,2)$
$\bigcirc \widehat{人} \stackrel{\rightharpoonup}{\circ}$

pairs $(p, q)$
with $\tau^{2}-p \tau+q=0$


## Digit Counting in w-NAFs to Imaginary Quadratic Bases

## Theorem (CH, Daniel Krenn 2013)

Let $\tau$ be an imaginary quadratic integer, $w \geq 2, \mathcal{D}$ be a digit set of minimal norm representatives, $0 \neq \eta \in \mathcal{D}$ and $N>0$. Let $z \in \mathbb{Z}[\tau]$ with $|z| \leq N$ be a random element (under equidistribution).
Then the expected number of occurrences of the digit $\eta$ in the D-w-NAF of $z$ is

$$
e_{w} \log _{|\tau|} N+\psi_{\eta}\left(\log _{|\tau|} N\right)+o(1)
$$

where

$$
e_{w}=\frac{1}{|\tau|^{2(w-1)}\left(\left(|\tau|^{2}-1\right) w+1\right)},
$$

and $\psi_{\eta}(x)$ is a 1-periodic continuous function.

## Characteristic Sets (1)



ALPEN-ADRIA

## Characteristic Sets (2)


$\tau=1+i, w=4$

$\tau=\sqrt[3]{-3}, w=2$
(2) Complex Base
(3) Symmetry

- Action of Roots of Unity
- Structural Digit Set
- Scalar Multiplication using the Structural Digit Set


## Curves

- $y^{2}=x^{3}+A x$ over $\mathbb{F}_{p^{m}}$ with $p \equiv 1(\bmod 4), A \in \mathbb{F}_{p}^{\times}$. $\operatorname{End}(E) \simeq \mathbb{Z}[i]$.
- $y^{2}=x^{3}+B$ over $\mathbb{F}_{p^{m}}$ with $p \equiv 1(\bmod 6), B \in \mathbb{F}_{p}^{\times}$. End $(E) \simeq \mathbb{Z}[\zeta]$ for a primitive sixth root of unity $\zeta$.
- Ternary Koblitz curve: Defined over $\mathbb{F}_{3}$ by equation

$$
Y^{2}=X^{3}-X-\mu, \quad \text { with } \quad \mu \in\{ \pm 1\} .
$$

Supersingular, hence interesting for pairing-based cryptography.
Sixth roots of unity in endomorphism ring.
For this talk: focus on $y^{2}=x^{3}+A x$.

## Using Rotations to Reduce Precomputation

$$
y^{2}=x^{3}+A x \text { over } \mathbb{F}_{p^{m}}, p \equiv 1(\bmod 4), A \in \mathbb{F}_{p}^{\times}
$$

- 

$$
\begin{aligned}
{[\tau](x, y)=\varphi(x, y) } & =\left(x^{p}, y^{p}\right), \\
{[i](x, y) } & =(-x,-v y)
\end{aligned}
$$

where $v \in \mathbb{F}_{p}$ is an element of order 4 .

- Choose digit set $\mathcal{D}$ such that $i \eta \in \mathcal{D}$ for each $\eta \in \mathcal{D}$, i.e., $\mathcal{D}$ is invariant under rotation.
- Only precompute $\eta P$ for one representative $\eta$ of each orbit of $\mathcal{D}$ under rotation by $i$, generate $i^{k} \eta P$ on the fly.


## Structural Digit Set

- Replace minimum norm digit set by a "structurally defined" digit set.
- Aim: Reduce precomputation/storage.
- Assume that $p \equiv 5(\bmod 8)$.
- Write

$$
\left(\mathbb{Z}[i] / \tau^{w} \mathbb{Z}[i]\right)^{\times} \simeq\langle i\rangle \times\langle\sigma\rangle
$$

Here, $\sigma$ is an element of order $(p-1) p^{w-1} / 4$.

- $\sigma$ can be determined modulo $\tau^{2}$.
- Choose digit set

$$
\mathcal{D}=\{0\} \cup\left\{i^{a} \sigma^{b} \mid 0 \leq a<4,0 \leq b<\frac{(p-1) p^{w-1}}{4}\right\} .
$$

## Structural Digit Set

- Is $\mathcal{D}$ a valid digit set, i.e., does every $z \in \mathbb{Z}[\tau]$ admit an expansion

$$
z=\sum_{i=0}^{\ell} d_{i} \tau^{i}
$$

with $d_{i} \in \mathcal{D}$ and fulfilling the width- $w$ non-adjacency condition?

- Algorithmically, this is not important:
- For the last "few" positions, we can simply relax the non-adjacency condition, dropping back to the case $w=1$.
- This does not alter the asymptotic behaviour of the algorithms.


## Using the Structural Digit Set

- Write $[\alpha]$ for the action of $\alpha \in \mathbb{Z}[i]$ as an endomorphism of $E$.
- Consider expansion

$$
z=\sum_{j=0}^{\ell} \varepsilon_{j} \sigma^{b_{j}} \tau^{j}
$$

of $z \in \mathbb{Z}[i]$ with $\varepsilon_{j} \in\{0, \pm 1, \pm i\}$.

- Write scalar multiplication as

$$
\left.z P=\sum_{j=0}^{\ell} \varepsilon_{j} \sigma^{b_{j}} \tau^{j}\right] P=\sum_{b=0}^{\frac{(p-1) p^{w-1}}{4}-1} \sum_{\substack{j=0 \\ b_{j}=b}}^{\ell}\left[\varepsilon_{j}\right][\tau]^{j}[\sigma]^{b} P
$$

- Here, $[\sigma]^{b} P$ is stored.


## Using the Structural Digit Set - Algorithm 1

Input: $P=(x, y) \in E\left(\mathbb{F}_{p^{m}}\right)$, scalar $z=\sum_{j=0}^{\ell} \varepsilon_{j} \sigma^{b_{j}} \tau^{j}$
Output: zP

$$
Q \leftarrow 0
$$

$$
\text { for } b=(p-1) p^{w-1} / 4-1 \text { to } 0 \text { do }
$$

$$
Q \leftarrow[\sigma] Q, R \leftarrow 0
$$

for $j=\ell$ to 0 do
$R \leftarrow[\tau] R$
if $\varepsilon_{j} \neq 0$ and $b_{j}=b$ then
$R \leftarrow R+\left[\varepsilon_{j}\right](P)$
$Q \leftarrow Q+R$
return $Q$

## Algorithm 1: Comments

- No storage for precomputed points
- Many applications of $\tau$
- no problem when normal bases are used
- for polynomial bases, we use the following variant (Algorithm 2)


## Using the Structural Digit Set - Algorithm 2 (Variant)

Input: $P=(x, y) \in E\left(\mathbb{F}_{\rho^{m}}\right)$, scalar $z=\sum_{j=0}^{\ell} \varepsilon_{j} \sigma^{b_{j}} \tau^{j}$
Output: $z P$
$Q \leftarrow 0, \hat{P} \leftarrow$ normal_basis $(P)$
for $b=(p-1) p^{w-1} / 4-1$ to 0 do
$Q \leftarrow[\sigma] Q, R \leftarrow 0$
for $j=0$ to $\ell$ do
if $\varepsilon_{j} \neq 0$ and $b_{j}=b$ then
$R \leftarrow R+\left[\varepsilon_{j}\right]$ polynomial_basis $\left(\tau^{j} \hat{P}\right)$
$Q \leftarrow Q+R$
return $Q$

## Examples

| $p$ | $\tau$ | unit group | bound | MNR | 1-NADS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $1+2 i$ | $\langle i\rangle$ | 1 | yes | yes |
| 13 | $-3+2 i$ | $\langle i\rangle \times\langle 1+i\rangle$ | 1 | yes | yes |
| 29 | $5+2 i$ | $\langle i\rangle \times\langle-1-i\rangle$ | 4 | no | yes |
| 37 | $1+6 i$ | $\langle i\rangle \times\langle 1+i\rangle$ | 10 | no | yes |
| 53 | $-7+2 i$ | $\langle i\rangle \times\langle 1-i\rangle$ | 104 | no | yes |
| 61 | $5+6 i$ | $\langle i\rangle \times\langle 1-i\rangle$ | 354 | no | yes |
| 101 | $1+10 i$ | $\langle i\rangle \times\langle 1-i\rangle$ | 204850 | no | no |
| 109 | $-3+10 i$ | $\langle i\rangle \times\langle 2+i\rangle$ | huge | no | no |
| 149 | $-7+10 i$ | $\langle i\rangle \times\langle-1+i\rangle$ | 547186713 | no | no |
| 157 | $-11+6 i$ | $\langle i\rangle \times\langle 2+i\rangle$ | huge | no | no |
| 173 | $13+2 i$ | $\langle i\rangle \times\langle 1+i\rangle$ | 29778077114 | no | no |
| 181 | $9+10 i$ | $\langle i\rangle \times\langle-1+i\rangle$ | 113430097979 | no | $? ?$ |
| 197 | $1+14 i$ | $\langle i\rangle \times\langle-1-i\rangle$ | 1656430250748 | no | no |

