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Elliptic Curve Cryptography

Elliptic Curve E

For P ∈ E and n ∈ Z, nP can be calculated easily.

No efficient algorithm to calculate n from P and nP?

Fast calculation of nP desirable!
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Double-and-Add Algorithm

Calculating 27P via a doubling and adding scheme using the
standard binary expansion of 27:

27 = (11011)2 = 1 · 16 + 1 · 8 + 0 · 4 + 1 · 2 + 1 · 1,
27P = (11011)2P = 2(2(2(2(P) + P) + 0) + P) + P.

Number of additions ∼ Hamming weight of the binary
expansion (Number of nonzero digits)

Number of doublings ∼ length of the expansion
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Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

27 = (1001̄01̄)2, (1̄ := −1)

27P = (1001̄01̄)2P = 2(2(2(2(2(P) + 0) + 0)− P) + 0)− P.

=⇒ Use of signed digit expansions

Number of additions/subtractions ∼ Hamming weight of the
binary expansion

Number of multiplications ∼ length of the expansion
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Computation of the Standard Binary Expansion

Recall how to compute the standard unsigned binary expansion of
27 from right to left (least significant to most significant digit):

27 ≡ 1 (mod 2) ε0 = 1

(27− 1)/2 = 13 ≡ 1 (mod 2) ε1 = 1

(13− 1)/2 = 6 ≡ 0 (mod 2) ε2 = 0

(6− 0)/2 = 3 ≡ 1 (mod 2) ε3 = 1

(3− 1)/2 = 1 ≡ 1 (mod 2) ε4 = 1

(1− 1)/2 = 0 ≡ 0 (mod 2) εj = 0, j ≥ 5

27 = ( . . . 011011)2
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Computation of Signed Expansion

Compute a signed binary expansion of 27 with many zeros:

27 ≡ −1 (mod 4) ε0 = −1

(27− (−1))/2 = 14 ≡ 0 (mod 2) ε1 = 0

(14− 0)/2 = 7 ≡ −1 (mod 4) ε2 = −1

(7− (−1))/2 = 4 ≡ 0 (mod 2) ε3 = 0

(4− 0)/2 = 2 ≡ 0 (mod 2) ε4 = 0

(2− 0)/2 = 1 ≡ 1 (mod 4) ε5 = 1

(1− 1)/2 = 0 ≡ 0 (mod 2) εj = 0, j ≥ 6

27 = ( . . . 01001̄01̄)2

If n is odd, we use information modulo 4 instead of modulo 2 in
order to guarantee a digit 0 in the next step. (Greedy!)
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Non-Adjacent Form

Theorem (Reitwiesner 1960)

Let n ∈ Z, then there is exactly one signed binary expansion
ε ∈ {−1, 0, 1}N0 of n such that

n =
∑
j≥0

εj2
j , (ε is a binary expansion of n),

εjεj+1 = 0 for all j ≥ 0.

It is called the Non-Adjacent Form (NAF) of n.
It minimises the Hamming weight amongst all signed binary
expansions with digits {0,±1} of n.
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w -NAF

Let w ≥ 2. Consider digit set

Dw = {0} ∪ {−(2w−1 − 1), . . . ,−1, 1, 3, . . . , 2w−1 − 1}

Binary digit expansion of n ∈ Z with digits in Dw .

Precompute ηP for η ∈ Dw , η > 0.

Minimise weight, i.e., number of nonzero digits.

Choose expansion such that each block of w consecutive
digits contains at most one non-zero digit (“w -NAF”).

NAF is special case w = 2.

If n is even, take digit 0.

If n is odd, take unique digit η ∈ Dw such that n ≡ η
(mod 2w ).
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Frobenius Endomorphism

Let E be an elliptic curve defined over Fq.

The Frobenius endomorphism

ϕ : E (Fqm)→ E (Fqm); (x , y) 7→ (xq, yq)

fulfils
ϕ2 − tϕ+ q = 0

where t = q + 1−#E (Fq).

As |t| ≤ 2
√
q (Hasse), ϕ can be identified with an imaginary

quadratic integer τ .
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τ -Expansions and Scalar Multiplication

Assume that a digit expansion of n to the base of τ is known,
e.g., n =

∑`−1
j=0 cjτ

j .

Then

(c`−1τ
`−1 + c`−2τ

`−2 + c`−3τ
`−3 + · · ·+ c1τ + c0)P =

ϕ(ϕ(ϕ(ϕ(ϕ(c`−1P)+c`−2P)+c`−3P) · · · )+c1P)+c0P

Frobenius-and-Add-Algorithm

Frobenius endomorphism ϕ much faster than doubling

Number of (fast) Frobenius applications: length of the
expansion.

Number of Additions/Subtractions: Hamming weight
(number of nonzero digits) of the expansion (minus one).
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D-w -NAF with Base τ

Aim: Generalise w -NAF to base τ .

Digit set: D = {0} ∪ D• where D• consists of one
representative of minimal norm from every residue class
modulo τw which is not divisible by τ (“digit set of minimal
norm representatives”).

A D-w -NAF is an expansion of z ∈ Z[τ ] such that every block
of w consecutive digits contains at most one non-zero digit.

Questions:

Existence: Does every z ∈ Z[τ ] admit a D-w -NAF?
Optimality: Does the D-w -NAF minimise the weight over all
expansions over the same digit set?
Analysis: Expected weight?
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Existence of the w -NAF

Theorem (CH, Daniel Krenn 2013)

Let τ be an imaginary quadratic integer, w ≥ 2 and D be a digit
set of minimal norm representatives.
Then every element in Z[τ ] admits a w-NAF to the base of τ with
digits in D.
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Optimality Results for Quadratic Integer Bases

pairs (p, q)

with τ 2 − pτ + q = 0

(0, 2)

(1, 2)

(2, 2)

(0, 3)
(1, 3)

(2, 3)

(3, 3)

(0, 4)
(1, 4)

(2, 4)

(3, 4)

(0, 5)
(1, 5)

(2, 5)

(3, 5)

(4, 5)

(0, 6)
(1, 6)

(2, 6)

(3, 6)

(4, 6)

(0, 7)
(1, 7)

(2, 7)

(3, 7)

(4, 7)

(5, 7)

(0, 8)
(1, 8)

(2, 8)

(3, 8)

(4, 8)

(5, 8)

(0, 9)
(1, 9)

(2, 9)

(3, 9)

(4, 9)

(5, 9)

(2, 10)

(3, 10)

(4, 10)

(5, 10)

(6, 10)

(3, 11)

(4, 11)

(5, 11)

(6, 11)

(4, 12)

(5, 12)

(6, 12)

(4, 13)

(5, 13)

(6, 13)

(5, 14)

(6, 14)

(5, 15)

(6, 15)

(6, 16)

(6, 17)

(6, 18)
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Digit Counting in w -NAFs to Imaginary Quadratic Bases

Theorem (CH, Daniel Krenn 2013)

Let τ be an imaginary quadratic integer, w ≥ 2, D be a digit set of
minimal norm representatives, 0 6= η ∈ D and N > 0.
Let z ∈ Z[τ ] with |z | ≤ N be a random element (under
equidistribution).
Then the expected number of occurrences of the digit η in the
D-w-NAF of z is

ew log|τ |N + ψη(log|τ |N) + o(1),

where

ew =
1

|τ |2(w−1)((|τ |2 − 1)w + 1)
,

and ψη(x) is a 1-periodic continuous function.
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Characteristic Sets (1)

τ = 3
2 + 1

2

√
−3, w = 2 τ = 3

2 + 1
2

√
−3, w = 3
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Characteristic Sets (2)

τ = 1 + i , w = 4 τ = 3
√
−3, w = 2
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Curves

y2 = x3 + Ax over Fpm with p ≡ 1 (mod 4), A ∈ F×p .
End(E ) ' Z[i ].

y2 = x3 + B over Fpm with p ≡ 1 (mod 6), B ∈ F×p .
End(E ) ' Z[ζ] for a primitive sixth root of unity ζ.

Ternary Koblitz curve: Defined over F3 by equation

Y 2 = X 3 − X − µ, with µ ∈ {±1}.

Supersingular, hence interesting for pairing-based
cryptography.
Sixth roots of unity in endomorphism ring.

For this talk: focus on y2 = x3 + Ax .

21



Using Rotations to Reduce Precomputation

y2 = x3 + Ax over Fpm , p ≡ 1 (mod 4), A ∈ F×p .

[τ ](x , y) = ϕ(x , y) = (xp, yp),

[i ](x , y) = (−x ,−vy)

where v ∈ Fp is an element of order 4.

Choose digit set D such that iη ∈ D for each η ∈ D, i.e., D is
invariant under rotation.

Only precompute ηP for one representative η of each orbit of
D under rotation by i , generate ikηP on the fly.
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Structural Digit Set

Replace minimum norm digit set by a “structurally defined”
digit set.

Aim: Reduce precomputation/storage.

Assume that p ≡ 5 (mod 8).

Write
(Z[i ]/τwZ[i ])× ' 〈i〉 × 〈σ〉.

Here, σ is an element of order (p − 1)pw−1/4.

σ can be determined modulo τ2.

Choose digit set

D = {0} ∪
{
iaσb | 0 ≤ a < 4, 0 ≤ b <

(p − 1)pw−1

4

}
.
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Structural Digit Set

Is D a valid digit set, i.e., does every z ∈ Z[τ ] admit an
expansion

z =
∑̀
i=0

diτ
i

with di ∈ D and fulfilling the width-w non-adjacency
condition?

Algorithmically, this is not important:

For the last “few” positions, we can simply relax the
non-adjacency condition, dropping back to the case w = 1.

This does not alter the asymptotic behaviour of the
algorithms.
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Using the Structural Digit Set

Write [α] for the action of α ∈ Z[i ] as an endomorphism of E .

Consider expansion

z =
∑̀
j=0

εjσ
bj τ j

of z ∈ Z[i ] with εj ∈ {0,±1,±i}.
Write scalar multiplication as

zP =
∑̀
j=0

εjσ
bj τ j ]P =

(p−1)pw−1

4
−1∑

b=0

∑̀
j=0
bj=b

[εj ][τ ]j [σ]bP.

Here, [σ]bP is stored.
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Using the Structural Digit Set — Algorithm 1

Input: P = (x , y) ∈ E (Fpm), scalar z =
∑`

j=0 εjσ
bj τ j

Output: zP
Q ← 0
for b = (p − 1)pw−1/4− 1 to 0 do
Q ← [σ]Q, R ← 0
for j = ` to 0 do
R ← [τ ]R
if εj 6= 0 and bj = b then

R ← R + [εj ](P)
Q ← Q + R

return Q
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Algorithm 1: Comments

No storage for precomputed points

Many applications of τ

no problem when normal bases are used
for polynomial bases, we use the following variant (Algorithm
2)
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Using the Structural Digit Set — Algorithm 2 (Variant)

Input: P = (x , y) ∈ E (Fpm), scalar z =
∑`

j=0 εjσ
bj τ j

Output: zP
Q ← 0, P̂ ← normal basis(P)
for b = (p − 1)pw−1/4− 1 to 0 do
Q ← [σ]Q, R ← 0
for j = 0 to ` do
if εj 6= 0 and bj = b then

R ← R + [εj ]polynomial basis(τ j P̂)
Q ← Q + R

return Q

28



Examples

p τ unit group bound MNR 1-NADS

5 1 + 2i 〈i〉 1 yes yes

13 −3 + 2i 〈i〉 × 〈1 + i〉 1 yes yes

29 5 + 2i 〈i〉 × 〈−1− i〉 4 no yes

37 1 + 6i 〈i〉 × 〈1 + i〉 10 no yes

53 −7 + 2i 〈i〉 × 〈1− i〉 104 no yes

61 5 + 6i 〈i〉 × 〈1− i〉 354 no yes

101 1 + 10i 〈i〉 × 〈1− i〉 204850 no no

109 −3 + 10i 〈i〉 × 〈2 + i〉 huge no no

149 −7 + 10i 〈i〉 × 〈−1 + i〉 547186713 no no

157 −11 + 6i 〈i〉 × 〈2 + i〉 huge no no

173 13 + 2i 〈i〉 × 〈1 + i〉 29778077114 no no

181 9 + 10i 〈i〉 × 〈−1 + i〉 113430097979 no ??

197 1 + 14i 〈i〉 × 〈−1− i〉 1656430250748 no no

29


	Introduction
	Elliptic Curve Cryptography
	Scalar Multiplication and Digit Expansions
	w-NAF

	Complex Base
	Frobenius Endomorphism and Complex Bases
	D-w-NAF with Base tau
	Existence of the D-w-NAF
	Optimality Conditions for the D-w-NAF
	Analysis of the D-w-NAF

	Symmetry
	Action of Roots of Unity
	Structural Digit Set
	Scalar Multiplication using the Structural Digit Set


