Symmetric Digit Sets for Elliptic Curve Scalar Multiplication

Clemens Heuberger Michela Mazzoli

Alpen-Adria-Universität Klagenfurt, Austria

Linz, 2013-11-15

1

Outline

Introduction

- Elliptic Curve Cryptography
- Scalar Multiplication and Digit Expansions
- w-NAF

2 Complex Base

3 Symmetry

Elliptic Curve Cryptography

- Elliptic Curve E
- For $P \in E$ and $n \in \mathbb{Z}$, nP can be calculated easily.
- No efficient algorithm to calculate *n* from *P* and *nP*?
- Fast calculation of *nP* desirable!

Double-and-Add Algorithm

Calculating 27P via a doubling and adding scheme using the standard binary expansion of 27:

 $27 = (11011)_2 = 1 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1,$ $27P = (11011)_2P = 2(2(2(P) + P) + 0) + P) + P.$

- Number of additions \sim Hamming weight of the binary expansion (Number of nonzero digits)
- Number of doublings \sim length of the expansion

Double, Add, and Subtract Algorithm

Subtraction is as cheap as addition!

$$27 = (100\overline{1}0\overline{1})_2, \qquad (\overline{1} := -1)$$

$$27P = (100\overline{1}0\overline{1})_2P = 2(2(2(2(2(P) + 0) + 0) - P) + 0) - P.$$

- $\bullet \implies \mathsf{Use of signed digit expansions}$
- $\bullet~$ Number of additions/subtractions $\sim~$ Hamming weight of the binary expansion
- ullet Number of multiplications \sim length of the expansion

Computation of the Standard Binary Expansion

Recall how to compute the standard unsigned binary expansion of 27 from right to left (least significant to most significant digit):

$$\begin{array}{ll} 27 \equiv 1 \pmod{2} & \varepsilon_0 = 1 \\ (27 - 1)/2 = 13 \equiv 1 \pmod{2} & \varepsilon_1 = 1 \\ (13 - 1)/2 = 6 \equiv 0 \pmod{2} & \varepsilon_2 = 0 \\ (6 - 0)/2 = 3 \equiv 1 \pmod{2} & \varepsilon_3 = 1 \\ (3 - 1)/2 = 1 \equiv 1 \pmod{2} & \varepsilon_4 = 1 \\ (1 - 1)/2 = 0 \equiv 0 \pmod{2} & \varepsilon_j = 0, \quad j \ge 5 \end{array}$$

 $27 = (\ldots 011011)_2$

Computation of Signed Expansion

Compute a signed binary expansion of 27 with many zeros:

$$27 \equiv -1 \pmod{4} \qquad \varepsilon_0 = -1$$

$$(27 - (-1))/2 = 14 \equiv 0 \pmod{2} \qquad \varepsilon_1 = 0$$

$$(14 - 0)/2 = 7 \equiv -1 \pmod{4} \qquad \varepsilon_2 = -1$$

$$(7 - (-1))/2 = 4 \equiv 0 \pmod{2} \qquad \varepsilon_3 = 0$$

$$(4 - 0)/2 = 2 \equiv 0 \pmod{2} \qquad \varepsilon_4 = 0$$

$$(2 - 0)/2 = 1 \equiv 1 \pmod{4} \qquad \varepsilon_5 = 1$$

$$(1 - 1)/2 = 0 \equiv 0 \pmod{2} \qquad \varepsilon_j = 0, \quad j \ge 6$$

 $27 = (\ldots 0100\overline{1}0\overline{1})_2$

If n is odd, we use information modulo 4 instead of modulo 2 in order to guarantee a digit 0 in the next step. (Greedy!)

Non-Adjacent Form

Theorem (Reitwiesner 1960)

Let $n \in \mathbb{Z}$, then there is exactly one signed binary expansion $\varepsilon \in \{-1, 0, 1\}^{\mathbb{N}_0}$ of n such that

$$n = \sum_{j \ge 0} \varepsilon_j 2^j,$$
 (ε is a binary expansion of n)
 $\varepsilon_j \varepsilon_{j+1} = 0$ for all $j \ge 0$.

It is called the Non-Adjacent Form (NAF) of n. It minimises the Hamming weight amongst all signed binary expansions with digits $\{0, \pm 1\}$ of n.

w-NAF

• Let $w \ge 2$. Consider digit set

 $\mathcal{D}_w = \{0\} \cup \{-(2^{w-1}-1), \dots, -1, 1, 3, \dots, 2^{w-1}-1\}$

- Binary digit expansion of $n \in \mathbb{Z}$ with digits in \mathcal{D}_w .
- Precompute ηP for $\eta \in \mathcal{D}_w$, $\eta > 0$.
- Minimise weight, i.e., number of nonzero digits.
- Choose expansion such that each block of *w* consecutive digits contains at most one non-zero digit ("*w*-NAF").
- NAF is special case w = 2.
- If *n* is even, take digit 0.
- If n is odd, take unique digit η ∈ D_w such that n ≡ η (mod 2^w).

1 Introduction

2 Complex Base

- Frobenius Endomorphism and Complex Bases
- \mathcal{D} -w-NAF with Base τ
- Existence of the \mathcal{D} -w-NAF
- Optimality Conditions for the *D*-*w*-NAF
- Analysis of the \mathcal{D} -w-NAF

3 Symmetry

Frobenius Endomorphism

- Let E be an elliptic curve defined over \mathbb{F}_q .
- The Frobenius endomorphism

$$\varphi: E(\mathbb{F}_{q^m}) \to E(\mathbb{F}_{q^m}); (x, y) \mapsto (x^q, y^q)$$

fulfils

$$\varphi^2 - t\varphi + q = 0$$

where $t = q + 1 - \# E(\mathbb{F}_q)$.

• As $|t| \le 2\sqrt{q}$ (Hasse), φ can be identified with an imaginary quadratic integer τ .

$\tau\text{-}\mathsf{Expansions}$ and Scalar Multiplication

• Assume that a digit expansion of *n* to the base of τ is known, e.g., $n = \sum_{j=0}^{\ell-1} c_j \tau^j$.

Then

$$(c_{\ell-1}\tau^{\ell-1} + c_{\ell-2}\tau^{\ell-2} + c_{\ell-3}\tau^{\ell-3} + \dots + c_{1}\tau + c_{0})P = \varphi(\varphi(\varphi(\varphi(\varphi(c_{\ell-1}P) + c_{\ell-2}P) + c_{\ell-3}P) \dots) + c_{1}P) + c_{0}P$$

- Frobenius-and-Add-Algorithm
- Frobenius endomorphism φ much faster than doubling
- Number of (fast) Frobenius applications: length of the expansion.
- Number of Additions/Subtractions: Hamming weight (number of nonzero digits) of the expansion (minus one).

$\mathcal{D}\text{-}\textit{w}\text{-}\mathsf{NAF}$ with Base τ

- Aim: Generalise *w*-NAF to base τ .
- Digit set: D = {0} ∪ D[•] where D[•] consists of one representative of minimal norm from every residue class modulo τ^w which is not divisible by τ ("digit set of minimal norm representatives").
- A *D*-*w*-NAF is an expansion of *z* ∈ ℤ[τ] such that every block of *w* consecutive digits contains at most one non-zero digit.
- Questions:
 - Existence: Does every $z \in \mathbb{Z}[\tau]$ admit a \mathcal{D} -w-NAF?
 - Optimality: Does the *D*-*w*-NAF minimise the weight over all expansions over the same digit set?
 - Analysis: Expected weight?

Existence of the w-NAF

Theorem (CH, Daniel Krenn 2013)

Let τ be an imaginary quadratic integer, $w \ge 2$ and \mathcal{D} be a digit set of minimal norm representatives. Then every element in $\mathbb{Z}[\tau]$ admits a w-NAF to the base of τ with digits in \mathcal{D} .

Optimality Results for Quadratic Integer Bases

Digit Counting in w-NAFs to Imaginary Quadratic Bases

Theorem (CH, Daniel Krenn 2013)

Let τ be an imaginary quadratic integer, $w \ge 2$, \mathcal{D} be a digit set of minimal norm representatives, $0 \ne \eta \in \mathcal{D}$ and N > 0. Let $z \in \mathbb{Z}[\tau]$ with $|z| \le N$ be a random element (under equidistribution). Then the expected number of occurrences of the digit η in the \mathcal{D} -w-NAF of z is

$$e_w \log_{|\tau|} N + \psi_\eta (\log_{|\tau|} N) + o(1),$$

where

$$e_w = rac{1}{| au|^{2(w-1)}((| au|^2-1)w+1)},$$

and $\psi_{\eta}(x)$ is a 1-periodic continuous function.

Characteristic Sets (1)

 $au = \frac{3}{2} + \frac{1}{2}\sqrt{-3}, \ w = 3$

Characteristic Sets (2)

$$\tau = 1 + i, w = 4$$

2 Complex Base

Symmetry

- Action of Roots of Unity
- Structural Digit Set
- Scalar Multiplication using the Structural Digit Set

Curves

- $y^2 = x^3 + Ax$ over \mathbb{F}_{p^m} with $p \equiv 1 \pmod{4}$, $A \in \mathbb{F}_p^{\times}$. End(E) $\simeq \mathbb{Z}[i]$.
- y² = x³ + B over 𝔽_{p^m} with p ≡ 1 (mod 6), B ∈ 𝔽_p[×].
 End(E) ≃ ℤ[ζ] for a primitive sixth root of unity ζ.
- Ternary Koblitz curve: Defined over \mathbb{F}_3 by equation

$$Y^2 = X^3 - X - \mu$$
, with $\mu \in \{\pm 1\}$.

Supersingular, hence interesting for pairing-based cryptography.

Sixth roots of unity in endomorphism ring.

For this talk: focus on
$$y^2 = x^3 + Ax$$
.

Using Rotations to Reduce Precomputation

$$y^2 = x^3 + Ax$$
 over \mathbb{F}_{p^m} , $p \equiv 1 \pmod{4}$, $A \in \mathbb{F}_p^{\times}$.

$$[\tau](x,y) = \varphi(x,y) = (x^p, y^p),$$

$$[i](x,y) = (-x, -vy)$$

where $v \in \mathbb{F}_p$ is an element of order 4.

- Choose digit set \mathcal{D} such that $i\eta \in \mathcal{D}$ for each $\eta \in \mathcal{D}$, i.e., \mathcal{D} is invariant under rotation.
- Only precompute ηP for one representative η of each orbit of *D* under rotation by *i*, generate *i^k*ηP on the fly.

Structural Digit Set

- Replace minimum norm digit set by a "structurally defined" digit set.
- Aim: Reduce precomputation/storage.
- Assume that $p \equiv 5 \pmod{8}$.
- Write

$$(\mathbb{Z}[i]/\tau^{\mathsf{w}}\mathbb{Z}[i])^{\times}\simeq\langle i\rangle\times\langle \sigma\rangle.$$

Here, σ is an element of order $(p-1)p^{w-1}/4$.

- σ can be determined modulo τ^2 .
- Choose digit set

$$\mathcal{D} = \{0\} \cup \left\{ i^{\mathsf{a}} \sigma^{\mathsf{b}} \mid 0 \le \mathsf{a} < 4, 0 \le \mathsf{b} < \frac{(\mathsf{p}-1)\mathsf{p}^{\mathsf{w}-1}}{4} \right\}$$

Structural Digit Set

• Is \mathcal{D} a valid digit set, i.e., does every $z \in \mathbb{Z}[\tau]$ admit an expansion

$$z = \sum_{i=0}^{\ell} d_i \tau^i$$

with $d_i \in \mathcal{D}$ and fulfilling the width-*w* non-adjacency condition?

- Algorithmically, this is not important:
- For the last "few" positions, we can simply relax the non-adjacency condition, dropping back to the case w = 1.
- This does not alter the asymptotic behaviour of the algorithms.

Using the Structural Digit Set

- Write $[\alpha]$ for the action of $\alpha \in \mathbb{Z}[i]$ as an endomorphism of E.
- Consider expansion

$$z = \sum_{j=0}^{\ell} \varepsilon_j \sigma^{b_j} \tau^j$$

of
$$z \in \mathbb{Z}[i]$$
 with $\varepsilon_j \in \{0, \pm 1, \pm i\}$.

• Write scalar multiplication as

$$zP = \sum_{j=0}^{\ell} \varepsilon_j \sigma^{b_j} \tau^j]P = \sum_{b=0}^{\frac{(p-1)p^{w-1}}{4} - 1} \sum_{\substack{j=0\\b_j=b}}^{\ell} [\varepsilon_j][\tau]^j[\sigma]^b P.$$

• Here, $[\sigma]^b P$ is stored.

Using the Structural Digit Set — Algorithm 1

Input:
$$P = (x, y) \in E(\mathbb{F}_{p^m})$$
, scalar $z = \sum_{j=0}^{\ell} \varepsilon_j \sigma^{b_j} \tau^j$
Output: zP
 $Q \leftarrow 0$
for $b = (p-1)p^{w-1}/4 - 1$ to 0 do
 $Q \leftarrow [\sigma]Q, R \leftarrow 0$
for $j = \ell$ to 0 do
 $R \leftarrow [\tau]R$
if $\varepsilon_j \neq 0$ and $b_j = b$ then
 $R \leftarrow R + [\varepsilon_j](P)$
 $Q \leftarrow Q + R$
return Q

Algorithm 1: Comments

- No storage for precomputed points
- Many applications of τ
 - no problem when normal bases are used
 - for polynomial bases, we use the following variant (Algorithm 2)

Using the Structural Digit Set — Algorithm 2 (Variant)

Input:
$$P = (x, y) \in E(\mathbb{F}_{p^m})$$
, scalar $z = \sum_{j=0}^{\ell} \varepsilon_j \sigma^{b_j} \tau^j$
Output: zP
 $Q \leftarrow 0, \hat{P} \leftarrow \text{normal_basis}(P)$
for $b = (p-1)p^{w-1}/4 - 1$ to 0 do
 $Q \leftarrow [\sigma]Q, R \leftarrow 0$
for $j = 0$ to ℓ do
if $\varepsilon_j \neq 0$ and $b_j = b$ then
 $R \leftarrow R + [\varepsilon_j] \text{polynomial_basis}(\tau^j \hat{P})$
 $Q \leftarrow Q + R$
return Q

Examples

р	τ	unit group	bound	MNR	1-NADS
5	1 + 2i	$\langle i \rangle$	1	yes	yes
13	-3 + 2i	$\langle i angle imes \langle 1+i angle$	1	yes	yes
29	5 + 2 <i>i</i>	$\langle i \rangle imes \langle -1 - i \rangle$	4	no	yes
37	1 + 6 <i>i</i>	$\langle i angle imes \langle 1+i angle$	10	no	yes
53	-7 + 2i	$\langle i angle imes \langle 1 - i angle$	104	no	yes
61	5 + 6 <i>i</i>	$\langle i angle imes \langle 1 - i angle$	354	no	yes
101	1 + 10i	$\langle i angle imes \langle 1 - i angle$	204850	no	no
109	-3 + 10i	$\langle i \rangle imes \langle 2+i \rangle$	huge	no	no
149	-7 + 10i	$\langle i \rangle imes \langle -1+i \rangle$	547186713	no	no
157	-11 + 6i	$\langle i \rangle imes \langle 2+i \rangle$	huge	no	no
173	13 + 2i	$\langle i angle imes \langle 1+i angle$	29778077114	no	no
181	9 + 10 <i>i</i>	$\langle i \rangle \times \langle -1 + i \rangle$	113430097979	no	??
197	1 + 14i	$\langle i \rangle \times \langle -1 - i \rangle$	1656430250748	no	no

