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linear codes

k=dimC r=n—k

_ 1+n(g—1)+ () (g—12+...+ (R("C))(q — 1)RE)

1(C) 7

U(r,q)r,a := min n for which there exists C C Fg with
R(C)=R, n—dim(C)=r, d(C)=d

R=2 d=4 (quasi-perfect codes)
R=r—-1, d=r+1 (MDS codes)
q odd
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in geometrical terms...

X =1%(2,9)

Galois plane over the finite field F,

@ S C X is a saturating set if every point in £\ S is collinear with two
points in S

@ a complete cap is a saturating set which does not contain 3 collinear
points

(3, 9)2.4 = minimum size of a complete cap in P?(F,)
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cubic curves
X plane irreducible cubic curve

G = X(F,) \ Sing(X) PO

@ if O is an inflection point of X, then P, Q, T € G are collinear if
and only if

PR T=0

o for a subgroup K of index m with (3, m) = 1, no 3 points in a coset
S=KaoQ, Q¢ K

are collinear
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XY = (X —1)3

Y2=X34+AX+B
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@ G is an elementary abelian p-group qg=p

K={(t"—t,(t" —t)°) | t € Fq}

,—H /—/ﬁ_
S={{tP—t+t,(tP —t+1)°) | teFy}
P,

@ P =(a,b) is collinear with Py and P, if and only if

Fap(x.y) = a+(xP—x+B(P—y+1)°+
(xP —x +D2(yP —y + 1) — b((xP — x + T)?
FP - x+B)P —y+ D) H (P —y+1)2) =0

@ the curve Cp then is F, »(X,Y) =0
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(Segre, 1962)
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S ={(L(t) + L, (L(t) +7)°) | t € Fg}

Pe

WT)=J[(T-a), M<(Fq+), #M=m
aeM

o P = (a,b) is collinear with P, and P, if and only if

Fab(x,y) = a+ (L(x)+1)(L(y)+ f)z +
(L(x) +1)*(L(y) +T) — b((L(x) + T)?
(L) + (L) + 1) + (Lly) +1)*) =0

ifPg¢x
@ Cp is irreducible of genus g < 3m? —3m+1
@ Cp has at least ¢ +1 — (6m? — 6m + 2),/q points
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nodal case: XY = (X —1)3

@ G is isomorphic to (F7,-)

G = F, (v,@)»—)v

@ the subgroup of index m (m a divisor of g — 1):
_ m (tm B 1)3 *
Kf{(t, o )|tqu}

@ a coset:

@ the curve Cp:
Fab(X,Y) = a(BX2mym L BXmy2m _3p2xmym 4 1)
_bf2xm ym _ E4x2m y2m + 3f2xm ym
—tXM —tY™ =0
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(Anbar-Bartoli-G.-Platoni, 2013)
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then there exists a complete cap in A%(F,) with size at most
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there exists an elliptic cubic curve X’ over g with #G = n
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@ problem: no polynomial or rational parametrization of the points of
S is possible

@ Voloch's solution (1990): implicit description of Cp

@ Voloch's result would provide complete caps of size ~ ¢3/* for every
q large enough

?



elliptic case

G cyclic m|g—1 m prime



elliptic case
G cyclic m|lg—1 m prime

@ Tate-Lichtenbaum Pairing

<.,.>: G[m]XG/K — F;/(Fé)m



elliptic case
G cyclic m|lg—1 m prime

@ Tate-Lichtenbaum Pairing
<> G[mlx G/K  — T /(F)™
@ if m? does not divide #G, then for some T in G[m]
< T, >G/K — TFy/(F)"
is an isomorphism such that
Ko Qw [ar(Q)]

where a1 is a rational function on X



elliptic case
G cyclic m|lg—1 m prime

@ Tate-Lichtenbaum Pairing
<> G[mlx G/K  — T /(F)™
@ if m? does not divide #G, then for some T in G[m]
< T, >G/K — TFy/(F)"
is an isomorphism such that

K Q— [ar(Q)]

where a1 is a rational function on X

S={Re G|ar(R)=dt™ for some t € Fg}
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m+ L%J +31  ~g/t
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U(r, q)2,4 = minimum size of a complete cap in Pr_l(IFq)

trivial lower bound

#S > /22 in PN(F,)
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N=3
V2-q
(Pellegrino, 1999)
1
Eq\/64—2
(Faina, Faina-Pambianco, Hadnagy 1988-1999)

q/3




e TLB:

(Pellegrino, 1999)
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recursive constructions of complete caps

blow-up
o S capin A"(Fg)

@ for each P in S, substitute each coordinate in Fgs with its expansion

over I,
2’ e 7Xr) € Ar(IFqS)

O, X2, 05,) o xt o xE) € A(Fy)

@ the resulting subset of A™(F,) is a cap

product
o Sy capin A"(Fy), S capin AS(F,)
@ 51 x Syisacapin AT5(F,)

@ do such constructions preserve completeness?
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recursive constructions of complete caps

Tn blow-up of a parabola of A%(F_n,2)

(Davydov-Ostergard, 2001)
Ty is complete in AN(F,) < N/2 is odd.

Problem: When Ty x S is complete?



external /internal points to a segment



external /internal points to a segment

(Segre, 1973)
P, P1, P, distinct collinear points in A?(Fy)

Py P P> Y4
@ @ @




external /internal points to a segment

(Segre, 1973)
P, P1, P> distinct collinear points in A?(Fy)

P, P P, ?
@ @ @

the point P is internal or external to the segment P; P, if
(x — x1)(x — x2) is a non-square in Fy or not,

X, X1, X coordinates of P, Py, P, w.r.t. any affine frame of £.
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let S be a complete cap in A%(FF,).

a point P ¢ S is bicovered by S if it is
external to a segment P;P,, with

P1, P, € S and internal to another segment
P3Py, with P3, P,eS

P>

P1

Ps’
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bicovering and almost bicovering caps

let S be a complete cap in A%(FF,). 5 .
2
s
a point P ¢ S is bicovered by S if it is P, °
external to a segment P;P,, with
P1, P> € S and internal to another segment PP 23

P3Py, with P3, P,eS

definition
S is said to be
@ bicovering if for every P ¢ S is bicovered by S

@ almost bicovering if there exists precisely one point not bicovered by

S
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recursive constructions of complete caps

@ Ty blow-up of a parabola in AN(F,), N =2 (mod 4)
@ S complete cap in A2(Fy)

(G., 2007)
(i) Ks = Ty x S is complete if and only if S is bicovering
(i) if S is almost bicovering, then
Ks U {(a, a® — Zo,Xo,yo) | ac Fq/v/z}

is complete for some X, yo, 29 € Fyq
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bicovering caps in A?(F,)

remarks:
@ no probabilistic result is known
@ no computational constructive method is known

@ in the Euclidean plane, no conic is bicovering or almost bicovering

(Segre, 1973)
if ¢ > 13, ellipses and hyperbolas are almost bicovering caps J

let N =0 (mod 4); if g > 13, then there exists a complete cap of size
#Tw-2-[(q-1)+1] =g* J
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how to prove that an algebraic cap is bicovering

S ={(f(t),8(1)) | t € Fg}
~———
P
P = (a, b) € A%(F,)
(1) consider the space curve

{FP(X, Y)=0

YPet Y (= FX))(a = (V) = 22

)

(2) apply Hasse-Weil to Vp (if possible) and find a suitable point
(Xaya Z) € yP(Fq)

the point P is external to the segment joining P, and P,

(3) fix a non-square c in F; and repeat for Vp .
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bicovering caps from cubic curves

the method works well for S a coset of a cubic X', and P a point off
the cubic.

in order to bicover the points on the cubics, more cosets of the same
subgroup are needed: the cosets corresponding to a maximal
3-independent subset in the factor group G/K

in the best case bicovering caps of size approximately g7/8 are
obtained
%

for N =0 (mod 4) complete caps of size approximately g ¢ are
obtained, provided that suitable divisors of g, g — 1, g + 1 exist

if Voloch's gap is filled, we will have bicovering caps with roughly
q’/® points for any odd ¢



the cuspidal case

X:Y-X3=0

(Anbar-Bartoli-G.-Platoni, 2013)
let
@ g =p", with p > 3 a prime
o m=p", with B’ < hand m< %3

then there exists an almost bicovering cap contained in X, of size

(2y/m — 3)£, if h' is even
m

n= ~ C17/8

(,/%+,/—mp—3) %, if W is odd




the nodal case

X:XY—(X-1P3=0

(Anbar-Bartoli-G.-Platoni, 2013)

assume that
@ g =p", with p > 3 a prime
e mis an odd divisor of g — 1, with (3,m) = 1 and m < ¥3
@ m=mymys.t. (my,mp)=1and my,my >4

then there exists a bicovering cap contained in X" of size

m1 + mo
——(q-1)~q""




the isolated double point case

X:Y(X2-pB)=1

(Anbar-Bartoli-G.-Platoni, 2013)
assume that
@ g = p", with p > 3 a prime
@ mis a proper divisor of g + 1 such that (m,6) =1 and m < @
@ m= mymy with (my, my) =1
then there exists an almost bicovering cap contained in X" of size less
than or equal to

1
(m1—|—m2_3)-%+3~q7/8




the elliptic case

X:Y?-X3-AX-B=0

(Anbar-G., 2012)
assume that

o g =ph", with p >3 a prime

@ mis a prime divisor of g — 1, with 7 < m < %\‘yﬁ
then there exists a bicovering cap contained in X’ of size

—2 1
n<2\/ﬁq%J +31) ~q'/8




E(ra q)r—l,r—i-l



é(f, CI)r—1,r+1

Reed-Solomon codes: ¢(r,q)r—1.,+1 < q+1
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AG codes from elliptic curves

e X :Y2=X3+AX+B 4A3 +27B%2 #0
@ O common pole of x and y

@ Pi,..., P, rational points of X (distinct from O)

¢ = (D, 6), where G =rO,D = Py + ...+ P, n>r

o C isan [n,n—r,r+1];-MDS-code if and only if for every
Pi,...,P;

P.®...@&P,#0

(Munuera, 1993)
If C, is MDS then, forn > r + 2,

n< %(#X(Fq) —-3+4+2r)
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covering radius of elliptic MDS codes

a subset T of an abelian group H is r-independent if for each
a,...,ar € T,
aata+...+a #0

{P1,..., P} maximal r-independent subset of X'(IFq)

@ let
by X > Pt or=0:HA:...:f_1)

with
1,f,...,f_1 basis of L(rO)

@ R(C,) =r—1if and only if each point in P"~1(F,) belongs to the
hyperplane generated by some

(br(Ph)a ¢r(Pi2)’ EER ¢r(Pir71)
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explanation for experimental results

Voloch's proof for plane caps in elliptic cubics
bicovering caps in dimensions different from 2
non-recursive constructions in higher dimensions

probabilistic results intrinsic to higher dimensions

problems



