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k = dimC r = n − k

µ(C ) =
1 + n(q − 1) +

(
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2

)
(q − 1)2 + . . .+

(
n

R(C)

)
(q − 1)R(C)

qr

ℓ(r , q)R,d := min n for which there exists C ⊂ F
n
q with

R(C ) = R , n − dim(C ) = r , d(C ) = d

R = 2, d = 4 (quasi-perfect codes)

R = r − 1, d = r + 1 (MDS codes)

q odd
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S ⊂ Σ is a saturating set if every point in Σ \ S is collinear with two
points in S

a complete cap is a saturating set which does not contain 3 collinear
points

ℓ(3, q)2,4 = minimum size of a complete cap in P
2(Fq)
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cubic curves
X plane irreducible cubic curve

• Q
• P

G = X (Fq) \ Sing(X )

•

•P ⊕ Q

T

O•

if O is an inflection point of X , then P , Q, T ∈ G are collinear if
and only if

P ⊕ Q ⊕ T = O

for a subgroup K of index m with (3,m) = 1, no 3 points in a coset

S = K ⊕ Q, Q /∈ K

are collinear
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classification (p > 3)

Y = X 3 XY = (X − 1)3

•

Y (X 2 − β) = 1 Y 2 = X 3 + AX + B
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P = (a, b) is collinear with Px and Py if and only if

Fa,b(x , y) := a + (xp − x + t̄)(yp − y + t̄)2 +

(xp − x + t̄)2(yp − y + t̄)− b((xp − x + t̄)2
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the curve CP then is Fa,b(X ,Y ) = 0
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Fa,b(X , β) = a− b3
if P /∈ X
CP is irreducible of genus g ≤ 3p2 − 3p + 1

CP has at least q + 1− (6p2 − 6p + 2)
√
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let P = (a, b) be a point in A
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m < 4
√

q/36

then there is a secant of S passing through P .
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the points in X \ S need to be dealt with

theorem

if m < 4
√

q/36, then there exists a complete cap in A
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q

m
− 3 ∼ p1/4 · q3/4
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√
q] n 6≡ q + 1 (mod p)

there exists an elliptic cubic curve X over Fq with #G = n

(Voloch, 1988)

if p does not divide #G − 1, then G can be assumed to be cyclic

problem: no polynomial or rational parametrization of the points of
S is possible

Voloch’s solution (1990): implicit description of CP
Voloch’s result would provide complete caps of size ∼ q3/4 for every
q large enough
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if m2 does not divide #G , then for some T in G [m]

< T , · >: G/K → F
∗
q/(F

∗
q)

m

is an isomorphism such that
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S = {R ∈ X | α(R) = dtm for some t ∈ Fq}
P = (a, b) collinear with two points (x , y), (u, v) ∈ S if there exist
x , y , u, v , t, z ∈ Fq with
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q
√
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(Faina, Faina-Pambianco, Hadnagy 1988-1999)
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recursive constructions of complete caps

blow-up

S cap in A
r (Fqs )

for each P in S , substitute each coordinate in Fqs with its expansion
over Fq

(x1, x2, . . . , xr ) ∈ A
r (Fqs )

(x11 , x
2
1 , . . . , x

s
1 , . . . , x

1
r , . . . , x

s
r ) ∈ A

rs(Fq)

the resulting subset of Ars(Fq) is a cap

product

S1 cap in A
r (Fq), S2 cap in A

s(Fq)

S1 × S2 is a cap in A
r+s(Fq)

do such constructions preserve completeness?
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recursive constructions of complete caps

TN blow-up of a parabola of A2(FqN/2)

(Davydov-Östergàrd, 2001)

TN is complete in A
N(Fq)⇔ N/2 is odd.

Problem: When TN × S is complete?
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external/internal points to a segment

(Segre, 1973)

P ,P1,P2 distinct collinear points in A
2(Fq)

b bb
P1 P P2 ℓ

the point P is internal or external to the segment P1P2 if

(x − x1)(x − x2) is a non-square in Fq or not,

x , x1, x2 coordinates of P ,P1,P2 w.r.t. any affine frame of ℓ.
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bicovering and almost bicovering caps

let S be a complete cap in A
2(Fq).

a point P /∈ S is bicovered by S if it is
external to a segment P1P2, with
P1,P2 ∈ S and internal to another segment
P3P4, with P3,P4 ∈ S

b

b

b b

b

b

b

S

b
P

P1

P2

P3 P4

definition

S is said to be

bicovering if for every P /∈ S is bicovered by S

almost bicovering if there exists precisely one point not bicovered by

S
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recursive constructions of complete caps

TN blow-up of a parabola in A
N(Fq), N ≡ 2 (mod 4)

S complete cap in A
2(Fq)

(G., 2007)

(i) KS = TN × S is complete if and only if S is bicovering

(ii) if S is almost bicovering, then

KS ∪ {(a, a2 − z0, x0, y0) | a ∈ FqN/2}

is complete for some x0, y0, z0 ∈ Fq
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bicovering caps in A2(Fq)

remarks:

no probabilistic result is known

no computational constructive method is known

in the Euclidean plane, no conic is bicovering or almost bicovering

b
P

(Segre, 1973)

if q > 13, ellipses and hyperbolas are almost bicovering caps

let N ≡ 0 (mod 4); if q > 13, then there exists a complete cap of size

#TN−2 · [(q − 1) + 1] = q
N
2
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how to prove that an algebraic cap is bicovering

S = {(f (t), g(t))
︸ ︷︷ ︸

Pt

| t ∈ Fq}

P = (a, b) ∈ A
2(Fq)

(1) consider the space curve

YP,c :

{

FP(X ,Y ) = 0

(a − f (X ))(a − f (Y )) = cZ 2

(2) apply Hasse-Weil to YP (if possible) and find a suitable point
(x , y , z) ∈ YP(Fq)

the point P is external to the segment joining Px and Py

(3) fix a non-square c in F
∗
q and repeat for YP,c
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bicovering caps from cubic curves

the method works well for S a coset of a cubic X , and P a point off
the cubic.

in order to bicover the points on the cubics, more cosets of the same
subgroup are needed: the cosets corresponding to a maximal
3-independent subset in the factor group G/K

in the best case bicovering caps of size approximately q7/8 are
obtained

for N ≡ 0 (mod 4) complete caps of size approximately q
N
2 −

1
8 are

obtained, provided that suitable divisors of q, q − 1, q + 1 exist

if Voloch’s gap is filled, we will have bicovering caps with roughly
q7/8 points for any odd q



the cuspidal case

X : Y − X 3 = 0

(Anbar-Bartoli-G.-Platoni, 2013)

let

q = ph, with p > 3 a prime

m = ph
′

, with h′ < h and m ≤ 4
√
q

4

then there exists an almost bicovering cap contained in X , of size

n =







(2
√
m − 3)

q

m
, if h′ is even

(√
m

p
+
√
mp − 3

)
q

m
, if h′ is odd

∼ q7/8



the nodal case

X : XY − (X − 1)3 = 0

(Anbar-Bartoli-G.-Platoni, 2013)

assume that

q = ph, with p > 3 a prime

m is an odd divisor of q − 1, with (3,m) = 1 and m ≤ 4
√
q

3.5

m = m1m2 s.t. (m1,m2) = 1 and m1,m2 ≥ 4

then there exists a bicovering cap contained in X of size

n ≤ m1 +m2

m
(q − 1)∼ q7/8



the isolated double point case

X : Y (X 2 − β) = 1

(Anbar-Bartoli-G.-Platoni, 2013)

assume that

q = ph, with p > 3 a prime

m is a proper divisor of q + 1 such that (m, 6) = 1 and m ≤ 4
√
q

4

m = m1m2 with (m1,m2) = 1

then there exists an almost bicovering cap contained in X of size less
than or equal to

(m1 +m2 − 3) · q + 1

m
+ 3 ∼ q7/8



the elliptic case

X : Y 2 − X 3 − AX − B = 0

(Anbar-G., 2012)

assume that

q = ph, with p > 3 a prime

m is a prime divisor of q − 1, with 7 < m < 1
8

4
√
q

then there exists a bicovering cap contained in X of size

n ≤ 2
√
m

(⌊
q − 2

√
q + 1

m

⌋

+ 31

)

∼ q7/8
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ℓ(r , q)r−1,r+1

Reed-Solomon codes: ℓ(r , q)r−1,r+1 ≤ q + 1



AG codes from elliptic curves

X : Y 2 = X 3 + AX + B 4A3 + 27B2 6= 0

O common pole of x and y

P1, . . . ,Pn rational points of X (distinct from O)



AG codes from elliptic curves

X : Y 2 = X 3 + AX + B 4A3 + 27B2 6= 0

O common pole of x and y

P1, . . . ,Pn rational points of X (distinct from O)

Cr = C (D,G)⊥, where G = rO,D = P1 + . . .+ Pn, n > r



AG codes from elliptic curves

X : Y 2 = X 3 + AX + B 4A3 + 27B2 6= 0

O common pole of x and y

P1, . . . ,Pn rational points of X (distinct from O)

Cr = C (D,G)⊥, where G = rO,D = P1 + . . .+ Pn, n > r

Cr is an [n, n − r , r + 1]q-MDS-code if and only if for every
Pi1 , . . . ,Pir

Pi1 ⊕ . . .⊕ Pir 6= O



AG codes from elliptic curves

X : Y 2 = X 3 + AX + B 4A3 + 27B2 6= 0

O common pole of x and y

P1, . . . ,Pn rational points of X (distinct from O)

Cr = C (D,G)⊥, where G = rO,D = P1 + . . .+ Pn, n > r

Cr is an [n, n − r , r + 1]q-MDS-code if and only if for every
Pi1 , . . . ,Pir

Pi1 ⊕ . . .⊕ Pir 6= O

(Munuera, 1993)

If Cr is MDS then, for n > r + 2,

n ≤ 1

2
(#X (Fq)− 3 + 2r)
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a subset T of an abelian group H is r -independent if for each
a1, . . . , ar ∈ T ,

a1 + a2 + . . .+ ar 6= 0

{P1, . . . ,Pn} maximal r -independent subset of X (Fq)

let
φr : X → P

r−1 φr = (1 : f1 : . . . : fr−1)

with
1, f1, . . . , fr−1 basis of L(rO)

R(Cr ) = r − 1 if and only if each point in P
r−1(Fq) belongs to the

hyperplane generated by some

φr (Pi1), φr (Pi2), . . . , φr (Pir−1)
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problems

explanation for experimental results

Voloch’s proof for plane caps in elliptic cubics

bicovering caps in dimensions different from 2

non-recursive constructions in higher dimensions

probabilistic results intrinsic to higher dimensions


