Affine variety codes are better than their reputation

Olav Geil Aalborg University (joint with Stefano Martin)

Special Semester on Applications of Algebra and Number Theory Algebraic Curves over Finite Fields RICAM November 2013

- (目) - (日) - (日)

Affine variety codes

$$I \subseteq \mathbb{F}_q[X_1,\ldots,X_m]$$
 $I_q = I + \langle X_1^q - X_1,\ldots,X_m^q - X_m \rangle.$

$$\{P_1,\ldots,P_n\}=\mathbb{V}_{\mathbb{F}_q}(I_q),$$

$$\{N_1 + I_q, \dots, N_n + I_q\}$$
 a basis for $\mathbb{F}_q[X_1, \dots, X_m]/I_q$.

We get a basis for
$$\mathbb{F}_q^n$$
:
 $\{\vec{b}_1 = (N_1(P_1), \dots, N_1(P_n)), \dots, \vec{b}_n = (N_n(P_1), \dots, N_n(P_n))\}$

Definition

Consider
$$L \subseteq \{1, \ldots, n\}$$
. $C(I, L) = \operatorname{Span}_{\mathbb{F}_q}\{\vec{b}_i \mid i \in L\}$
 $C^{\perp}(I, L) = (C(I, L))^{\perp}$.

Theorem

C is a linear code \Leftrightarrow C is an affine variety code.

Affine variety codes

$$I \subseteq \mathbb{F}_q[X_1,\ldots,X_m]$$
 $I_q = I + \langle X_1^q - X_1,\ldots,X_m^q - X_m \rangle.$

$$\{P_1,\ldots,P_n\}=\mathbb{V}_{\mathbb{F}_q}(I_q),$$

$$\{N_1 + I_q, \dots, N_n + I_q\}$$
 a basis for $\mathbb{F}_q[X_1, \dots, X_m]/I_q$.

We get a basis for
$$\mathbb{F}_q^n$$
:
 $\{\vec{b}_1 = (N_1(P_1), \dots, N_1(P_n)), \dots, \vec{b}_n = (N_n(P_1), \dots, N_n(P_n))\}$

Definition

Consider
$$L \subseteq \{1, \ldots, n\}$$
. $C(I, L) = \operatorname{Span}_{\mathbb{F}_q}\{\vec{b}_i \mid i \in L\}$
 $C^{\perp}(I, L) = (C(I, L))^{\perp}$.

Theorem

C is a linear code \Leftrightarrow C is an affine variety code.

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem

If Q is a rational place then $\bigcup_{s=0}^{\infty} \mathcal{L}(sQ) \simeq \mathbb{F}_q[X_1, \dots, X_m]/I$ where I satisfies the order domain conditions.

Theorem

A map
$$h : \mathbb{F}_q[X_1, ..., X_m]/I \to \mathbb{F}_q^n$$
 such that
• h is \mathbb{F}_q -linear,
• $h(f) = (c_1, ..., c_n)$ and $h(g) = (d_1, ..., d_n)$
 $\Rightarrow h(fg) = (c_1d_1, ..., c_nd_n)$
is of the form $h(f = F + I) = (F(P_1), ..., F(P_n))$, where
 $P_1, ..., P_n$ are affine points.

<ロ> (日) (日) (日) (日) (日)

Our work

Most known affine variety codes are one-point AG codes in disguise.

• We introduce a much broader class of affine variety codes.

• We

- generalise the Feng-Rao-bound/order-bound for dual codes (also simply known as the Feng-Rao-bound/order-bound). Our method builds on work by Salazar et al.
- generalise the Feng-Rao-bound/order-bound for primary codes (sometimes called the Andersen–G bound),

We treat affine variety codes and general linear codes. We treat minimum distance and generalised Hamming weights.

イロン イヨン イヨン イヨン

- Most known affine variety codes are one-point AG codes in disguise.
- We introduce a much broader class of affine variety codes.
- We
 - generalise the Feng-Rao-bound/order-bound for dual codes (also simply known as the Feng-Rao-bound/order-bound).
 Our method builds on work by Salazar et al.
 - generalise the Feng-Rao-bound/order-bound for primary codes (sometimes called the Andersen–G bound),
 - We treat affine variety codes and general linear codes. We treat minimum distance and generalised Hamming weights.

イロン イヨン イヨン イヨン

- Most known affine variety codes are one-point AG codes in disguise.
- We introduce a much broader class of affine variety codes.
- We
 - generalise the Feng-Rao-bound/order-bound for dual codes (also simply known as the Feng-Rao-bound/order-bound).
 Our method builds on work by Salazar et al.
 - generalise the Feng-Rao-bound/order-bound for primary codes (sometimes called the Andersen–G bound),

We treat affine variety codes and general linear codes. We treat minimum distance and generalised Hamming weights.

イロン イヨン イヨン イヨン

- Most known affine variety codes are one-point AG codes in disguise.
- We introduce a much broader class of affine variety codes.
- We
 - generalise the Feng-Rao-bound/order-bound for dual codes (also simply known as the Feng-Rao-bound/order-bound). Our method builds on work by Salazar et al.
 - generalise the Feng-Rao-bound/order-bound for primary codes (sometimes called the Andersen–G bound),

We treat affine variety codes and general linear codes. We treat minimum distance and generalised Hamming weights.

イロト イポト イヨト イヨト

Definition

Given an ideal $J \subseteq k[X_1, \ldots, X_m]$ and a monomial ordering \prec then $\Delta_{\prec}(J) = \{M \text{ is a monomial } | M \notin Im(J)\}$

Theorem

(The footprint bound:) If $J \subseteq k[X_1, ..., X_m]$ is radical and zero-dimensional and if k is a perfect field then $\#\mathbb{V}(J) = \#\Delta_{\prec}(J)$.

イロト イポト イヨト イヨト 三国

Theorem

(The footprint bound:) If $J \subseteq k[X_1, ..., X_m]$ is radical and zero-dimensional and if k is a perfect field then $\#\mathbb{V}(J) = \#\Delta_{\prec}(J)$.

- For primary order domain codes (one-point AG codes, generalised Reed-Muller codes, etc.) the order bound is a consequence of the footprint bound.
- Our new bound for primary codes relies on the footprint bound.
- Our new bound for dual codes uses Feng-Rao arguments, and the connection to the primary bound is not completely clear.

Theorem

(The footprint bound:) If $J \subseteq k[X_1, ..., X_m]$ is radical and zero-dimensional and if k is a perfect field then $\#\mathbb{V}(J) = \#\Delta_{\prec}(J)$.

- For primary order domain codes (one-point AG codes, generalised Reed-Muller codes, etc.) the order bound is a consequence of the footprint bound.
- Our new bound for primary codes relies on the footprint bound.
- Our new bound for dual codes uses Feng-Rao arguments, and the connection to the primary bound is not completely clear.

・ロン ・回と ・ヨン・

- Our bound for dual codes is powerful, but too technical for this talk.
- Our bound for primary codes can easily be explained for affine variety codes.

Agenda:

- We start by studying the order domain conditions and primary codes.
- Then we throw away half of the order domain conditions and consider primary codes.
- We present numerical data for both primary and dual codes.

- Our bound for dual codes is powerful, but too technical for this talk.
- Our bound for primary codes can easily be explained for affine variety codes.

Agenda:

- We start by studying the order domain conditions and primary codes.
- Then we throw away half of the order domain conditions and consider primary codes.
- We present numerical data for both primary and dual codes.

- 4 同 6 4 日 6 4 日 6

Hermitian code

$$I = \langle X^2 + X - Y^3 \rangle \subseteq \mathbb{F}_4[X, Y], \ I_q = I + \langle X^4 - X, Y^4 - Y \rangle.$$

A weighted degree lexicographic ordering

From the weight function $w(X^i Y^j) = 3i + 2j$ we define the monomial ordering \prec_w by $N \prec_w M$ if

- either w(N) < w(M),
- or w(N) = w(M) but $\deg_X(N) < \deg_X(M)$.

$$\{P_1,\ldots,P_8\}=\mathbb{V}(I_q).$$

Consider $\vec{c} = (F(P_1), \ldots, F(P_8)).$

$$egin{aligned} & w_{H}(ec{c}) &= 8-\# ext{ common zeros between } F ext{ and } I_{q} \ &= \#ig(\Delta_{\prec_w}(I_q)ig \Delta_{\prec_w}(I_q+\langle F
angle)ig) \ &= \#ig\{M \in \Delta_{\prec_w}(I_q) \mid M \in ext{Im}(I_q+\langle F
angle)ig\}. \end{aligned}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Hermitian code - cont.

Consider
$$\vec{c} = (F(P_1), ..., F(P_8))$$
, say $F = a_1 + a_2Y + X$

 $w_{H}(\vec{c}) = \#\{M \in \Delta_{\prec_{w}}(I_{q}) \mid M \in \operatorname{Im}(I_{q} + \langle F \rangle)\}.$

Y ³	XY^3	<mark>6</mark> 9	$X = \operatorname{Im}(F), XY = \operatorname{Im}(YF),$
Y^2	XY^2	4 7	$XY^2 = \operatorname{Im}(Y^2F),$
Y	XY	2 5	$XY^3 = \operatorname{Im}(Y^3F),$
1	X	0 3	$Y^{3} = Im(XF - (X^{2} + X - Y^{3}))$

In conclusion, $w_H(\vec{c}) \ge 5$.

We could also have counted the numbers in $\{0, 2, 3, 4, 5, 6, 7, 9\}$ which are being hit by w(Im(F)) = 3.

This is due to $X^2 + X - Y^3$ having two monomials of the highest weight and all monomials in $\Delta_{\prec_w}(I)$ being of different weight.

Hermitian code - cont.

Consider
$$\vec{c} = (F(P_1), ..., F(P_8))$$
, say $F = a_1 + a_2Y + X$

 $w_{\mathcal{H}}(\vec{c}) = \#\{M \in \Delta_{\prec_w}(I_q) \mid M \in \operatorname{Im}(I_q + \langle F \rangle)\}.$

$\begin{array}{ccc} Y^3 & XY^3 \\ Y^2 & XY^2 \end{array}$	69 47	X = Im(F), XY = Im(YF), $XY^{2} = Im(Y^{2}F).$
Y XY	2 5	$XY^{3} = Im(Y^{3}F),$
1 X	0 3	$Y^{3} = Im(XF - (X^{2} + X - Y^{3}))$

In conclusion, $w_H(\vec{c}) \geq 5$.

We could also have counted the numbers in $\{0, 2, 3, 4, 5, 6, 7, 9\}$ which are being hit by w(Im(F)) = 3.

This is due to $X^2 + X - Y^3$ having two monomials of the highest weight and all monomials in $\Delta_{\prec_w}(I)$ being of different weight.

高 とう モン・ く ヨ と

The order domain conditions

Definition

Consider an ideal $J \subseteq k[X_1, \ldots, X_m]$ where k is a field. Let a weighted degree ordering \prec_w be given. Assume that J possesses a Gröbner basis \mathcal{F} with respect to \prec_w such that: (C1) Any $F \in \mathcal{F}$ has exactly two monomials of highest weight. (C2) No two monomials in $\Delta_{\prec_w}(J)$ are of the same weight. Then we say that J and \prec_w satisfy the order domain conditions.

The Feng-Rao bounds do not work well when the order domain conditions are not satisfied.

We throw away condition (C2) and introduce a method that works well for the corresponding codes.

・ロット (四) (日) (日)

The order domain conditions

Definition

Consider an ideal $J \subseteq k[X_1, \ldots, X_m]$ where k is a field. Let a weighted degree ordering \prec_w be given. Assume that J possesses a Gröbner basis \mathcal{F} with respect to \prec_w such that: (C1) Any $F \in \mathcal{F}$ has exactly two monomials of highest weight. (C2) No two monomials in $\Delta_{\prec_w}(J)$ are of the same weight. Then we say that J and \prec_w satisfy the order domain conditions.

The Feng-Rao bounds do not work well when the order domain conditions are not satisfied.

We throw away condition (C2) and introduce a method that works well for the corresponding codes.

・ロン ・回 と ・ 回 と ・ 回 と

An affine variety code over \mathbb{F}_8 .

$$I = \langle (X^4 + X^2 + X) - (Y^6 + Y^5 + Y^3) \rangle \subseteq \mathbb{F}_8[X, Y].$$

$$I_q = I + \langle X^8 - X, Y^8 - Y \rangle.$$

Define \prec_w on the basis of $w(X^i Y^j) = 3i + 2j$.

Y^7	XY^7	X^2Y^7	X^3Y^7	14	17	20	23
Y^6	XY^6	X^2Y^6	X^3Y^6	12	15	18	21
Y^5	XY^5	X^2Y^5	X^3Y^5	10	13	16	19
Y^4	XY^4	X^2Y^4	X^3Y^4	8	11	14	17
Y^3	XY^3	X^2Y^3	X^3Y^3	6	9	12	15
Y^2	XY^2	X^2Y^2	X^3Y^2	4	7	10	13
Y	XY	X^2Y	X^3Y	2	5	8	11
1	Х	X^2	<i>X</i> ³	0	3	6	9

 $\Delta_{\prec_w}(I_q)$

Corresponding weights

・ロト ・回ト ・ヨト ・ ヨト

14	17	20	23	$\mathbb{V}(I_q) = \{P_1, \dots, P_{32}\}$
12	15	18	21	
10	13	16	19	$ec{c} = (F(P_1), \ldots, F(P_{32}))$
8	11	14	17	
6	9	12	15	where
4	7	10	13	$F = a_1 + a_2 Y + a_3 X + a_4 Y^2$
2	5	8	11	$+a_5XY + a_6Y^3 + a_7X^2 + a_8XY^2$
0	3	6	9	$+a_9Y^4 + a_{10}X^2Y + a_{11}XY^3 + X^3$

Observe that $w(XY^3) = w(X^3) = 9$. Hence, we must be careful.

(4回) (注) (注) (注) (注)

$$F = a_1 + a_2 Y + a_3 X + a_4 Y^2 + a_5 XY + a_6 Y^3 + a_7 X^2 + a_8 XY^2 + a_9 Y^4 + a_{10} X^2 Y + a_{11} XY^3 + X^3.$$

1.4	4 -7	~~	00	Case 1: $a_{11} = 0$
14	17	20	23	
12	15	18	21	$Im \left(XF - \left((X^4 + X^2 + X) - (Y^6 + X^2) \right) \right) = 0$
10	13	16	19	
8	11	14	17	$(Y^5 + Y^3)) = Y^6$ and therefore we
6	9	12	15	find not only X^3 X^3 X^3 X^3 X^2 X^3 X^3
4	7	10	13	$\frac{1110}{100} \frac{1000}{0119} \frac{1}{2} \frac$
2	5	8	11	$\times 1$, $\times 1$, $\times 1$, $\times 1$, $\times 1$ but also $\times 6$ $\times 10^{6}$ $\times 10^{6}$ $\times 20^{6}$ $\times 7$ $\times 10^{7}$ $\times 20^{7}$ as
0	3	6	9	I , ΛI , Λ , I^{*} , ΛI^{*} , Λ , Λ , Λ , I^{*} as

Remember: $w_H(\vec{c}) = \#\{M \in \Delta_{\prec_w}(I_q) \mid M \in \operatorname{Im}(I_q + \langle F \rangle)\}.$

An affine variety code over \mathbb{F}_8 - cont.

$$F = a_1 + a_2 Y + a_3 X + a_4 Y^2 + a_5 XY + a_6 Y^3 + a_7 X^2 + a_8 XY^2 + a_9 Y^4 + a_{10} X^2 Y + a_{11} XY^3 + X^3.$$

$$\frac{\text{Case 2: } a_{11} \neq 0}{\text{Im} \left(XF - \left((X^4 + X^2 + X) - (Y^6 + Y^5 + Y^3) \right) \right) = X^2 Y^3 \text{ and therefore we}}$$
find not only $X^3, X^3 Y, X^3 Y^2, X^3 Y^3, X^3 Y^4, X^3 Y^5, X^3 Y^6, X^3 Y^7 \text{ but also}$

$$X^2 Y^3, X^2 Y^4, X^2 Y^5, X^2 Y^6, X^2 Y^7 \text{ as leading monomials.}$$

Case 1 gave $w_H(\vec{c}) \ge 14$ and Case 2 gave $w_H(\vec{c}) \ge 13$.

Hence, $w_H(\vec{c}) \ge 13$. (The Feng-Rao bound gives $w_H(\vec{c}) \ge 8$)

(《圖》 《문》 《문》 - 문

An affine variety code over \mathbb{F}_8 - cont.

$$F = a_1 + a_2 Y + a_3 X + a_4 Y^2 + a_5 XY + a_6 Y^3 + a_7 X^2 + a_8 XY^2 + a_9 Y^4 + a_{10} X^2 Y + a_{11} XY^3 + X^3.$$

				$C_{259} 2^{\circ} 2_{11} \neq 0$
14	17	20	23	$\frac{\text{case 2. } a_{\Pi} \neq 0}{4}$
12	15	18	21	$Im \left(XF - \left((X^4 + X^2 + X) - (Y^6 + Y^5 + X^2) \right) \right) = 0$
10	13	16	19	
8	11	14	17	$(Y^3)) = X^2 Y^3$ and therefore we
6	9	12	15	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 $
4	7	10	13	find not only X° , $X^\circ Y$, $X^\circ Y^-$, $X^\circ Y^\circ$,
2	5	8	11	$X^{\circ}Y^{\circ}, X^{\circ}Y^{\circ}, X^{\circ}Y^{\circ}, X^{\circ}Y^{\circ}$ but also
0	3	6	9	X ² Y ³ , X ² Y ⁴ , X ² Y ³ , X ² Y ⁶ , X ² Y ⁷
				as leading monomials.

Case 1 gave $w_H(\vec{c}) \ge 14$ and Case 2 gave $w_H(\vec{c}) \ge 13$.

Hence, $w_H(\vec{c}) \ge 13$. (The Feng-Rao bound gives $w_H(\vec{c}) \ge 8$)

◆□→ ◆ □→ ◆ □→ □ □

Feng-Rao introduced the concept of well-behaving pairs (WB),

Miura the concept of weakly well-behaving pairs (WWB),

G-Thommesen the concept of one-way well-behaving pairs (OWB).

 $\label{eq:owb} \begin{array}{l} \mathsf{OWB} \Leftarrow \mathsf{WWB} \Leftarrow \mathsf{WB} \\ \mathsf{Therefore} \ \mathsf{OWB} \ \mathsf{gives} \ \mathsf{the} \ \mathsf{strongest} \ \mathsf{bounds}. \end{array}$

OWB becomes crucial when we skip the second order domain condition.

- 4 同 6 4 日 6 4 日 6

Results for dual codes

$$I = \langle (X^9 + X^3 + X) - (Y^{12} + Y^{10} + Y^4) \rangle \subseteq \mathbb{F}_{27}[X, Y].$$

Code length n = 243.

	Feng-Rao	Feng-Rao	Feng-Rao	"Advisory	Our
	VVB	VV VVB	OWB	bound	bound
$d_1(C(75))$	15	15	21	29	33
$d_2(C(75))$	16	16	24	34	38
L(C(76))	15	15	01	22	26
$a_1(C(76))$	15	15 16	21	33	30
$a_2(C(70))$	10	10	24	38	39
$d_1(C(83))$	16	16	24	34	38
$d_2(C(83))$	17	17	27	39	41

Olav Geil, Stefano Martin Affine variety codes are better than their reputation

イロン 不同と 不同と 不同と

æ

Definition

An $(\mathbb{F}_{q^t}, \mathbb{F}_q)$ -polynomial is a polynomial $F(T) \in \mathbb{F}_{q^t}[T]$ such that $F(\gamma) \in \mathbb{F}_q$ holds for all $\gamma \in \mathbb{F}_{q^t}$.

Theorem

Consider the cyclotomic coset C_i modulo $q^t - 1$. Then $F(T) = \sum_{s \in C_i} X^s$ is an $(\mathbb{F}_{q^t}, \mathbb{F}_q)$ -polynomial.

Corollary

Let F(T) be a polynomial as in the above theorem and different from the trace-polynomial. Then $Tr_{\mathbb{F}_{q^t}/\mathbb{F}_q}(X) - F(Y)$ has exactly q^{2t-1} zeros.

・ロン ・回 と ・ ヨ と ・ ヨ と

Improved codes over \mathbb{F}_{16} of length n = 128. Using the trace-polynomial and the polynomial corresponding to the cyclotomic coset C_{10} we get w(X) = 5 and w(Y) = 4. These are the \circ s.

Using the trace-polynomial and the norm-polynomial we get the *s.