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Introduction

Three important examples of algebraic curves over finite fields:

The Hermitian curve
The Suzuki curve
The Ree curve

Common properties

Many rational points for given genus.
Optimal w.r.t. Serre’s explicit formula method.
Large automorphism group
Of Deligne-Lusztig type
Ray class field over the projective line
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Goal

For each of the curves, we want

Function Field description.
Very ample linear series.
Smooth model in projective space.
Weierstrass non-gaps semigroup at a rational point.
Weierstrass non-gaps semigroup at a pair of rational points.

DL curves 3 / 35



Known results

Hermitian Suzuki Ree
Function field X X X

Very ample series X X -
Smooth model X - -

non-gaps (1-point) X X -
non-gaps (2-points) X X -

Table : Known results about the three families of curves.
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Deligne-Lusztig Theory

Deligne-Lusztig theory constructs linear representations for finite
groups of Lie type (DL 1976).

It provides constructions for all representations of all finite simple
groups of Lie type (L 1984).

Let G be a reductive algebraic group defined over a finite field with
Frobenius F .

For a fixed w ∈W , W the Weyl group of G, the DL variety X (w) has
as points those Borel subgroups B such that F (B) is conjugate to B by
an element bw , for some b ∈ B.

For a projective model of X (w) we need to interpret B as a point (as
the stabilizer of a point) in projective space.
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DL curves

Let G be a connected reductive algebraic group over a finite field and
let Gσ := {g ∈ G | σ(g) = g}, where σ2 equals the Frobenius
morphism. Associated to Gσ is a DL variety with automorphism group
Gσ.

The points of a DL variety are Borel subgroups of the group G.

If Gσ is a simple group then Gσ = 2A2, 2B2, or 2G2. For these groups
the associated DL varieties are:

Hermitian curve associated to 2A2 = PGU(3,q).
Suzuki curve associated to 2B2 = Sz(q).
Ree curve associated to 2G2 = R(q).
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Projective model

(Tits 1962, Giulietti-Korchmáros-Torres 2006, D 2010, Kane 2011, Eid
2012)

The interpretation of the borel subgroup B ∈ X (w) as a point in
projecitve space will be as (stabilizer of) a line through a suitable point
P and its Frobenius image F (P) in a suitably chosen projective space.

Hermitian curve : P,F (P) ∈ P2, smooth model in P2.
Suzuki curve: P,F (P) ∈ P3, smooth model in P4.
Ree curve P,F (P) ∈ P6, smooth model in P13.
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Hermitian 2-pt codes

Reed-Solomon codes over Fq = {0,a1, . . . ,an}, defined with functions
f such that −ord∞ f ≤ m∞ and ord0 f ≥ m0,

C = 〈(f (a1), . . . , f (an)) : f = x i ,m0 ≤ i ≤ m∞〉

Hermitian codes over Fq, q = q2
0 , defined with the curve

yq0 + y = xq0+1, set of finite rational points P = {O,P1, . . . ,Pn}

C = 〈(f (P1), . . . , f (Pn)) : f = x iy j ,

−ord∞ f = q0i + (q0 + 1)j ≤ m∞,
ordO f = i + (q0 + 1)j ≥ m0〉

Actual minimum distances are known:
(1-pt codes) Kumar-Yang, Kirfel-Pellikaan
(2-pt codes) Homma-Kim; Beelen, Park
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Suzuki and Ree 2-pt codes

Suzuki codes over Fq, q = 2q2
0 , defined with the singular curve

yq + y = xq0(xq + x).

Construction of Suzuki codes:
(1-pt codes) Hansen-Stichtenoth
(2-pt codes) Matthews, D-Park
Actual minimum distances unknown.

Ree codes over Fq, q = 3q2
0 , defined with the singular curve

yq − y = xq0(xq − x), zq − z = x2q0(xq − x).

Progress towards 1-pt codes: Hansen-Pedersen, Pedersen
Actual minimum distances unknown.
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Suzuki curve

Deligne-Lusztig: Existence of Suzuki curve
Henn: The equation yq + y = xq0(xq + x)

Hansen-Stichtenoth:

(1) 1-pt codes can be defined using monomials in x , y , z,w , where

z = x2q0+1 + y2q0 ,w = xy2q0 + z2q0

(2) To prove irreducibility of the Suzuki curve, the following equations
are used

zq + z = x2q0(xq + x), zq0 = y + xq0+1,wq0 = z + yxq0
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Suzuki cont

Giulietti-Korchmáros-Torres:

(3) The divisor D = (q + 2q0 + 1)P∞ is very ample. A basis for the
vector space of functions with poles only at P∞ and of order at most
q + 2q0 + 1 is given by the functions 1, x , y , z,w . In other words: The
morphism (1 : x : y : z : w) that maps the Suzuki curve into projective
space P4 has as image a smooth model for the Suzuki curve.

(4) y = xq0+1 + zq0 , w = x2q0+2 + xz + z2q0 .

Thus: w = y2 + xz.
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Smooth model

What are the equations for the smooth model of the Suzuki curve?

(Step 1) We identify the 5−tuple (t : x : y : z : w) with the 2× 4 matrix(
0 t x y
y z w 0

)
The equation y2 = xz + tw shows that two of the minors have the
same determinant.

Upto multiplication by y the six minors have determinants
t , x , y , y , z,w . And the coordinates (t : x : y : z : w) are the Plücker
coordinates for the matrix (after removing one of the two ys). They
describe a line in P3.
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Smooth model cont

(Step 2) As equations for the Suzuki curve we use the incidence of the
line in P3 with the point (wq0 : zq0 : xq0 : tq0).

(D 2010) The equations y2 + xz + tw = 0 and
0 t x y

t 0 y z

x y 0 w

y z w 0




wq0

zq0

xq0

tq0

 = 0.

define a smooth model for the Suzuki curve.
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Suzuki 2-pt codes

For the given model, what are the functions that define 1-pt codes and
2-pt codes?

(D-Park 2008, 2012) The set M of q + 2q0 + 1 monomials in x , y , z,

M = {x iz j ,0 ≤ i , j ≤ q0} ∪ {yx iz j ,0 ≤ i , j ≤ q0 − 1}

gives a basis for the function field as an extension of k(w).

Each 1-pt or 2-pt Suzuki code is an evaluation code for a uniquely
defined subset of the functions {fw i : f ∈ M, i ∈ Z}.
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Results for the Ree curve

(Abdulla Eid, Thesis 2013)

The linear series
∣∣(q2 + 3q0q + 2q + 3q0 + 1)P∞

∣∣ is very ample.
Equations for the corresponding smooth model.
Weierstrass non-gaps semigroup over F27 (1pt and 2-pt).

Henceforth m = q2 + 3q0q + 2q + 3q0 + 1.
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The Ree function field

(Pedersen, AGCT-3, 1991)

The Ree curve corresponds to the Ree function field k(x , y1, y2)
defined by the two equations

yq
1 − y1 = xq0(xq − x),

yq
2 − y2 = xq0(yq

1 − y1),

where q := 3q2
0 , q0 := 3s, s ≥ 1.

Construction of thirteen rational functions x , y1, y2,w1, . . . ,w10 with
independent pole orders. The pole orders do not generate the full
semigroup of Weierstrass nongaps.
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The groups G2 and 2G2

(Cartan 1896) G2 is the automorphism group of the Octonion
algebra.
(Dickson 1905) G2(q) is the automorphism group of a variety in
P6.
(Ree 1961) After the work of Chevalley, 2G2 is defined as the
twisted subgroup of G2(q) using the Steinberg automorphism with
σ2 = Frq, i.e., 2G2 = {g ∈ G2(q) | σ(g) = g}
(Tits 1962) 2G2 is defined as the group of automorphisms that are
fixed under a polarity map
(Pedersen 1992) 2G2 is the automorphism group of the Ree
function field.
(Wilson 2010) Elementary construction without the use of Lie
algebra.
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1- Very Ample Linear Series

For a divisor D of a function field F/Fq, let

|D| :={E ∈ Div(F ) | E ≥ 0,E ∼ D}
={D + (f ) | f ∈ L(D)}

If D is a very ample linear series, then the morphism

φD : X → Pk

associated with D is a smooth embedding, i.e., φD(X ) is
isomorphic to X and is a smooth curve.
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Theorem
For the Ree curve:
(1) The space L(mP∞) is generated by 1, x , y1, y2,w1, . . . ,w10 over

Fq and hence it is of dimension 14.
(2) D = |mP∞| is a very ample linear series.

Outline of the proof:

Since h(Φ̃) = 0, where Φ̃ : JR 3 [P] 7→ [P − P∞] ∈ JR, we have
q2P + 3q0qΦ(P) + 2qΦ2(P) + 3q0Φ3(P) + Φ4(P) ∼ mP∞
We show that π := (1 : x : y1 : y2 : w1 : · · · : w10) is injective using
the equivalence above. So D separates points.
We show that j1(P) = 1 ∀P ∈ XR, hence π separates tangent
vectors.
The maximal subgroup that fixes P∞ acts linearly on
1, x , y1, y2,w1, . . . ,w10 and has a representation of dimension 14.
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2 - Defining Equations

Hermitian curve

FH := Fq(x , y) defined by yq0+1 + xq0+1 + 1 = 0. (q = q2
0).

Consider the matrix

H =

(
1 : x : y
1 : xq : yq

)
.

and let Hi,j be the Plücker coordinate of columns i , j .
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Then (
yq0 xq0 1q0

)y yq

x xq

1 1q

 = 0

and (
H1,2 H3,1 H2,3

)y yq

x xq

1 1q

 = 0.

Both equations define the unique line between a point P := (1, x , y)
and its Frobenius image P(q) := (1, xq, yq).
So that yq0 is proportional to H1,2, xq0 is proportional to H3,1, and 1q0 is
proportional to H2,3.

f = 1 f q0 ∼ H2,3
x H3,1
y H1,2
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We can read the defining equation of the Hermitian curve from a
complete graph with three vertices (and edges labeled by Plücker
coordinates) as follows:

x

1

y

y

1

x

We raise the vertices to the power of q0 and we multiply them by the
opposite edge and we sum the result to get 1 + xq0+1 + yq0+1 = 0.
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Suzuki curve

We apply the same idea of Plücker coordinates and the fact that the
line between a point and its Frobenius image is unique.

Function field FS := Fq(x , y) defined by yq − y = xq0(xq − x)
Define z := x2q0+1 − y2q0 and w := xy2q0 − z2q0 .

Lemma
The Suzuki curve has a smooth model in P4 defined by the five
equations y2 + xz + tw = 0 and

0 t x y

t 0 y z

x y 0 w

y z w 0




wq0

zq0

xq0

tq0

 = 0.
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Consider the following matrix S

S =

(
t : x : z : w
tq : xq : zq : wq

)
.

Then, 
0 t2q0 x2q0 y2q0

t2q0 0 y2q0 z2q0

x2q0 y2q0 0 w2q0

y2q0 z2q0 w2q0 0




w wq

z zq

x zq

t tq

 = 0

and 
0 S1,2 S1,3 S3,2

S1,2 0 S1,4 S4,2
S1,3 S1,4 0 S4,3
S3,2 S4,2 S4,3 0




w wq

z zq

x xq

t tq

 = 0.
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We find
f = 1 f 2q0 ∼ S1,2

x S1,3
y S1,4 = S3,2
z S4,2
w S4,3

The five equations can be read from a complete graph with four
vertices labeled by t , x , z,w .

z

t

w

x

x

w

y

y

t

z
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One plus four equations

The complete graph on four vertices gives rise to five equations:

A Plücker type relation for the six edges

and

Four more equations, one for each triangle in the graph.

z

t

w

x

x

w

y

y

t

z
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Ree Curve

We apply the same techniques of the previous two curves to the Ree
curve.

The Ree function field is defined by the two equations

yq
1 − y1 = xq0(xq − x), yq

2 − y2 = xq0(yq
1 − y1).

Pedersen defined ten rational functions w1, . . . ,w10 as polynomials in
x , y1, y2.
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Consider the following matrix R

R =

(
t : x : w1 : w2 : w3 : w6 : w8
tq : xq : wq

1 : wq
2 : wq

3 : wq
6 : wq

8

)
.

Using the same techniques and ideas for the Hermitian and
Suzuki curves we find that the Plücker coordinates correspond to
the following functions

f = t f 3q0 ∼ R1,2 y1 R2,3 = R1,4
x R1,3 y2 R1,5 = R2,4
w1 R2,5 w4 R1,6 = R4,3
w3 R6,3 w5 R7,2 = R5,4
w6 R7,5 w9 R7,3 = R4,6
w8 R7,6 w10 R6,5 = R4,7

v1 R5,3
v1 + w2 R1,7
v1 − w2 R6,2
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The Graph

1

w1

x

w2

−w6

−w3

−w8

1

w1

−w6

−w8

−w3

x

−y2

w4

−w10

w9

−w5

y1

−y2

−w−4

−w10

w9

w5

y1
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Smooth model

From the complete graph we obtain 105 equations that define a
smooth model for the Ree curve in P13.

35 =
(7

4

)
quadratic equations.

35 =
(7

3

)
equations of total degree q0 + 1 of the form

aAq0 + bBq0 + cCq0 = 0.

35 =
(7

3

)
equations of total degree 3q0 + 1 of the form

a3q0A + b3q0B + c3q0C = 0.
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Relation to the previous embeddings of the
Deligne-Lusztig Curves

Kane independently gave smooth embeddings for the
Deligne-Lusztig curves (arXiv 2011).
Kane used the abstract definition of the DL curves as a set of
Borel subgroups.
For the Ree curve we can show that the set of Fq-rational points is
the same in our embedding and in Kane’s embedding.
The two approaches are similar if we associate to a line through a
point and its Frobenius its stabilizer, which turns out to be a Borel
subgroup and thus a rational point in the original definition as
Deligne-Lusztig curve
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Kane’s Embedding

Ree Curve as a
Deligne-Lusztig Curve

Uniqueness the-
orem of Hansen
and Pedersen

Our Embed-
ding in P13(Fq)

Ree Curve de-
fined by equations

Figure : The relation between the two embeddings.
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f ν0(f ) ν∞(f )

x 1 −(q2)
y1 q0 + 1 −(q2 + q0q)
y2 2q0 + 1 −(q2 + 2q0q)
w1 3q0 + 1 −(q2 + 3q0q)
w2 q + 3q0 + 1 −(q2 + 3q0q + q)
w3 2q + 3q0 + 1 −(q2 + 3q0q + 2q)
w4 q + 2q0 + 1 −(q2 + 2q0q + q)
v 2q + 3q0 + 1 −(q2 + 3q0q + q)

w5 q0q + q + 3q0 + 1 −(q2 + 3q0q + q + q0)
w6 3q0q + 2q + 3q0 + 1 −(q2 + 3q0q + 2q + 3q0)
w7 q0q + q + 2q0 + 1 −(q2 + 2q0q + q + q0)
w8 q2 + 3q0q + 2q + 3q0 + 1 −(q2 + 3q0q + 2q + 3q0 + 1)
w9 q0q + 2q + 3q0 + 1 −(q2 + 3q0q + 2q + q0)
w10 2q0q + 2q + 3q0 + 1 −(q2 + 3q0q + 2q + 2q0)
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729 810 891 918 921 972 999 1002 1026 1029 1032 1035 1036
1866 2520 2547 2601 2604 2628 2631 2658 2706 2709 2712 2739 2820
3250 3277 3285 3286 3287 3312 3313 3314 3331 3358 3366 3367 3368
3393 3394 3395 3396 3444 3447 3471 3474 3477 3498 3501 3504 3507
3557 3558 3584 3585 3592 3612 3619 3638 3665 3673 3700 3703 3750
3751 3754 3777 3778 3781 3784 3804 3805 3808 3811 3814 3862 3863
3865 3889 3890 3892 3899 3919 3926 3943 3944 3946 3947 3970 3971
3973 3974 3980 4000 4001 4007 4010 4047 4048 4049 4051 4052 4054
4055 4057 4058 4061 4081 4082 4084 4085 4088 4091 4111 4112 4115
4118 4121 4174 4201 4228 4237 4238 4240 4241 4481 4484 4508 4511
4535 4538
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Non-gaps

Using the smooth model we computed the Weierstrass non-gaps
semigroup at a rational point P for the Ree curve over F27
(of genus g = 3627).

(Computations in Magma/Macaulay2 using the singular model are not
feasible)

THANK YOU
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