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Let k be a finite field. In how many ways can

0 ∈ k be written as a sum of r+1 d-th powers?

(Weil, 1954) Let X/k be the Fermat hypersur-

face

xd0 + xd1 + · · ·+ xdr = 0.

For a field k that contains the d-th roots of

unity,

#X(k) = #Pr−1(k) +
∑
α∈A

j(α).

Where

j(α) =
1

q
g(a0) · · · g(ar)

A =

{
(a0, a1, . . . , ar)

∣∣∣∣∣ ai ∈ Z/dZ, ai 6≡ 0
a0 + a1 + · · ·+ ar ≡ 0

}
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For a nontrivial additive character

ψ : k −→ C

and for a multiplicative character

χ : k∗/(k∗)d −→ C∗

both fixed once and for all, the Gauss sum g(a),

for a ∈ Z/dZ, is defined as

g(a) =
∑
x∈k

χa(x)ψ(x).

Although the Gauss sums may depend on the

choice of multiplicative character χ, this choice

does not effect the Jacobi sums in the expres-

sion for #X(k).
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The Gauss sums have absolute value
√
q.

Thus M− ≤#X(k) ≤M+, where

M± = (qr − 1)/(q − 1)± |A|q(r−1)/2.

For the Fermat hypersurface X/k,

|A| = (d− 1)((d− 1)r − (−1)r)/d).

The right side is the Chern class for a smooth

hypersurface of degree d in Pr.

For what values of q, r, d,

M− = #X(k) or #X(k) = M+ ?
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It follows from the Davenport-Hasse relations

for Gauss sums that X/k has zeta function

ZX(T ) = ZPr−1(T )P (T )±

Where

P (T ) =
∏
α∈A

(1− (−1)rj(α)T ),

± = (−1)r.
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Special case:

X/k : x3
0 + x3

1 + x3
2 + x3

3 = 0 (µ3 ⊂ k)

A =

{
(a0, a1, . . . , ar)

∣∣∣∣∣ ai ∈ Z/dZ, ai 6≡ 0
a0 + a1 + · · ·+ ar ≡ 0

}

= {permutations of (1,1,2,2)}

j(α) =
1

q
g(a0) · · · g(a3) = q

#X/k = (q2 + q + 1) + 6q = M+
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Theorem

The Fermat variety X ⊂ Pr of degree d and

dimension r − 1 over a field k of q elements

is maximal over k if and only if one of the

following holds.

1. d > 3, q is a square, and d|√q + 1.

2. d = 3, 3|q − 1, and r − 1 = 2.

3. d = 2, q ≡ 1 (mod 4).

4. d = 2, q ≡ 3 (mod 4), r − 1 is even.

X is minimal over k if and only if r is even and

there exists a subfield k′ ⊂ k of even index such

that X is maximal over k′.
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Main idea: Use the inductive structure among

Fermat varieties of same degree d but different

dimension r − 1.

A variety Xr−1
d of degree d > 3 is maximal or

minimal only as a special case of (A) or (B).

(A) Xr−1
d is maximal over k, for all r.

(B)

X
r−1
d is minimal over k, for even r, and

Xr−1
d is maximal over k, for odd r.
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Proposition

For d > 2 and r even,

Xr−1
d is maximal over k if and only if (A).

Xr−1
d is minimal over k if and only if (B).

For d > 3 and r odd,

Xr−1
d is maximal over k if and only if (A) or (B).
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Because of the inductive structure, the proofs

reduce to the cases of curves and surfaces.

Lemma 1.

Let d > 2. The Fermat curve X1
d is maximal

(resp. minimal) if and only if, for some d-th

root of unity ζ, the gauss sums g(a) = ζa
√
q

(resp. −√q).

Lemma 2.

Let d > 3. The Fermat surface X2
d is maximal

if and only if, for some d-th root of unity ζ and

for r = ±√q, the gauss sums g(a) = ζar.

Gauss sums with these properties were char-

acterized by Evans (1981) and by (Baumert-

Mills-Ward, 1982). That completes the proof

of the theorem.
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A graph theoretic approach to counting solu-

tions on diagonal hypersurfaces.

Let D = {xd : x ∈ k∗} be the subgroup of index

d in k∗. Define the Cayley graph for D ⊂ k

as the directed graph with vertex set k and

(u, v) ∈ k × k an edge if and only if v − u ∈ D.
The graph becomes an undirected graph when

D = −D.

Let A be the adjacency matrix of the graph.

The number of affine solutions to the Fermat

equations corresponds, up to a factor dr+1, to

the number N of paths of length r + 1 in the

Cayley graph.

N =
1

|k|
Trace((I + dA)r+1).
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X/k of degree d is maximal in any dimension r

if and only if the matrix I + dA has nontrivial

eigenvalues (d − 1)
√
q and −√q if and only if

the Cayley graph of D ⊂ k∗ is a Pseudo-Latin

graph Lσ(
√
q) (a special type of strongly regu-

lar graph).

X/k of degree d is maxima in even dimension

and minimal in odd dimension if and only if

the Cayley graph of D ⊂ k∗ is a Negative Latin

graph Lσ(
√
q).
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It appears that the combination of (1) graph-

theoretic approach, (2) interpretation of the

Cayley graph as counting points on Fermat va-

rieties, and (3) relating the point counting on

Fermat varieties to properties of Gauss sums

gives an independent proof of the results by

(Evans, 1981) and (Baumert-Mills-Ward, 1982).
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Ueber eine Verallgemeinerung der Kreistheilung
(Stickelberger, 1890)

—

On Fermat varieties (Katsura-Shioda, 1979)

On the Jacobian variety of the Fermat curve
(Yui, 1980)

Pure Gauss sums (Evans, 1981)

Uniform cyclotomy (Baumert-Mills-Ward, 1982)

Two-weight irreducible cyclic codes / Charac-
ters and cyclotomic fields in finite geometry
(Schmidt, 2002)

Maximal Fermat curves (D, 1989)

Certain maximal curves and Cartier operators
(Garcia-Tafazolian, 2008) / Maximal and min-
imal Fermat curves (Tafazolian, 2010)
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Smooth models for the Suzuki and Ree curves

Abdulla Eid and Iwan Duursma

arXiv upload available today November 11,

2013
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1 - Function fields

2 - Automorphism groups and Polarity

3- Deligne-Lusztig varieties

15



k a finite field of size q, q = q2
0.

The Hermitian curve has function field L =

k(x, y) over F = k(x) with

yq0 + y = xq0+1.

It is the ray class field extension of F of con-

ductor q0 + 2 in which all finitie k−rational

points of F split completely.

In projective 2-space,

P (1 : x : y) ∈ `(yq0 : xq0 : 1).

And

`(xq0 : yq0 : 1) ∈ L(1 : xq : yq)
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k a finite field of size q, 2q = (2q0)2.

The Suzuki curve has function field L = k(x, y)
over F = k(x) with

L/F : yq − y = xq0(xq − x).

F ⊂ L contains a subextension F ⊂ K ⊂ L

defined by

Y 2 − Y = xq0(xq − x)

Or, equivalently, by

K/F : v2 − v = x2q0+1 − xq0+1

This is an Artin-Schreier extension with con-
ductor 2q0 + 2 in which all finite k−rational
points of F split completely.

The extension L/F is the compositum of the
family {v2 − v = (ax)2q0+1 − (ax)q0+1 : a ∈
k∗}. It is the ray class field extension of F of
conductor 2q0+2 in which all finitie k−rational
points of F split completely.
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k a finite field of size q, 3q = (3q0)2.

The Ree curve has function field L = k(x, y1, y2)
over F = k(x) with L = L1L2,

L1/F : y
q
1 − y1 = xq0(xq − x).

L2/F : y
q
2 − y2 = x2q0(xq − x).

F ⊂ Li contains a subextension F ⊂ Ki ⊂ Li
defined by

K1/F : v3
1 − v1 = x3q0+1 − xq0+1.

K2/F : v3
2 − v2 = x3q0+2 − x2q0+1.

These are Artin-Schreier extensions with con-
ductor 3q0+2,3q0+3 in which all finite k−rational
points of F split completely.

The extensions Li/F are the compositum of
the family of twists of Ki/F .

The compositum L = L1L2 is the ray class field
extension of F of conductor 3q0+3 in which all
finitie k−rational points of F split completely.
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The definition of the curves as compositum of

Artin-Schreier extensions immediately reveales

their genus, number of rational points, their

zeta function, part of (the p-part) of their au-

tomorphism group, but not the full automor-

phism groups, which are large.

To see the full automorphism group we follow

Chevalley (1955), Suzuki (1960), Ree (1961),

Tits (1960/61). (This approach explains the

stabilizer of the set of rational points which

agrees with the full automprhism group of the

curve)

The automorphism groups are of type 2A2,

2B2, 2G2, i.e. are twists of the algebraic groups

of type A2, B2, G2.

In all cases the twist can be explained through

a polarity in projective 3−space.
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Given a point-hyperplane incidence P ∈ H in

projective 3−space we seek to describe the

pencil of lines {` : P ∈ `, ` ∈ H}.

That is we seek to describe the completions

P ⊂ ` ⊂ H ⊂ P3 of the partial flag P ⊂ H ⊂ P3.

Fix P = (x0 : x1 : x2 : x3) and write L = {` :

P ∈ `, ` ∈ H}. Then

(H) H = (1 : 0 : 0 : 0) L = P.

(S) H = (x3 : x2 : x1 : x0) L = P (2).

(R) H = (x0 : x−1 : x−2 : x−3) L = (P (3), H(3)).
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