Asymptotics of arithmetic codices and towers of function fields

Ignacio Cascudo

CWI Amsterdam
Joint work with Ronald Cramer (CWI/ULeiden) and Chaoping Xing(NTU)

Algebraic curves over finite fields
Linz, 15 November 2013

Secret sharing

Setting

- A dealer and n players.
- The dealer knows a secret s in certain (public) set S.
- Sends information (shares) c_{i} to each player $P_{i}\left(c_{i}\right.$ belong to public sets S_{i}).

Secret sharing

Secret sharing

Setting

- A dealer and n players.
- The dealer knows a secret s in certain (public) set S.
- Sends information (shares) c_{i} to each player $P_{i}\left(c_{i}\right.$ belong to public sets S_{i}).
- t-privacy: Any t of shares \rightarrow no information about s.
- m-reconstruction: Any m shares \rightarrow determines s.

Shamir's secret sharing scheme

\mathbb{F}_{q} finite field. Space of secrets: \mathbb{F}_{q}. Spaces of shares: \mathbb{F}_{q}. Let $1 \leq t<n$, with $n<q$. Let $x_{1}, \ldots, x_{n} \in \mathbb{F}_{q} \backslash\{0\}$ distinct.

To deal a secret $s \in \mathbb{F}_{q}$, the dealer:
(1) Selects unif. random $f \in \mathbb{F}_{q}[X]$ with $\operatorname{deg} f \leq t, f(0)=s$.
(2) Sends $c_{i}=f\left(x_{i}\right)$ to player P_{i}.

$$
\begin{aligned}
& \text { - } f\left(x_{1}\right) \boldsymbol{\lambda} \\
& -f\left(x_{2}\right) \uparrow \\
& \text { 昗f(0) } \\
& \text { - } f\left(x_{3}\right) \uparrow \\
& \cdot f\left(x_{n}\right) \uparrow
\end{aligned}
$$

Properties

- t players have no information about the secret.
- $t+1$ players can fully determine f, and hence s.

Proof

For any $y_{1}, y_{2}, \ldots, y_{t+1} \in \mathbb{F}_{q}$ distinct the following is a bijection

$$
\begin{aligned}
& \left\{f \in \mathbb{F}_{q}[X]: \operatorname{deg} f \leq t\right\} \rightarrow \mathbb{F}_{q}^{t+1} \\
& f \mapsto\left(f\left(y_{1}\right), f\left(y_{2}\right), \ldots, f\left(y_{t+1}\right)\right)
\end{aligned}
$$

$$
\begin{array}{cc}
\\
\hat{N}^{\prime}(0) & f\left(x_{1}\right) \stackrel{\AA}{\lambda} \\
\cdot & f\left(x_{2}\right) \stackrel{\AA}{\lambda} \\
\cdot f\left(x_{3}\right) \\
& f\left(x_{n}\right) \stackrel{i}{\lambda}
\end{array}
$$

Properties

- t players have no information about the secret.
- $t+1$ players can fully determine f, and hence s.

Proof

For any $x_{i_{1}}, x_{i_{2}} \ldots, x_{i_{t+1}} \in \mathbb{F}_{q}$ distinct the following is a bijection

$$
\begin{aligned}
& \left\{f \in \mathbb{F}_{q}[X]: \operatorname{deg} f \leq t\right\} \rightarrow \mathbb{F}_{q}^{t+1} \\
& f \mapsto\left(f\left(x_{i_{1}}\right), f\left(x_{i_{2}}\right), \ldots, f\left(x_{i_{t+1}}\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
f\left(x_{1}\right) \stackrel{\AA}{\lambda} \\
\hat{\lambda} f(0) \\
\cdot f\left(x_{2}\right) \stackrel{\AA}{\lambda} \\
\cdot f\left(x_{3}\right) \uparrow \\
\\
\cdot f\left(x_{n}\right) \uparrow
\end{gathered}
$$

Properties

- t players have no information about the secret.
- $t+1$ players can fully determine f, and hence s.

Proof

For any $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{t}} \in \mathbb{F}_{q}$ distinct the following is a bijection

$$
\begin{gathered}
\left\{f \in \mathbb{F}_{q}[X]: \operatorname{deg} f \leq t\right\} \rightarrow \mathbb{F}_{q}^{t+1} \\
f \mapsto\left(f(0), f\left(x_{i_{1}}\right), \ldots, f\left(x_{i_{t}}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& f\left(x_{1}\right) \stackrel{\AA}{\lambda} \\
& \text { - } f\left(x_{2}\right) \uparrow \\
& \text { 相 }(0) \\
& \text { - } \mathrm{f}\left(\mathrm{x}_{3}\right) \boldsymbol{\lambda} \\
& -f\left(x_{n}\right) \uparrow
\end{aligned}
$$

Secret sharing with algebraic properties

Secret sharing with extra algebraic properties is very interesting for applications.
Space of secrets: \mathbb{F}_{q}-vector space S, and spaces of shares: \mathbb{F}_{q}.

Property (Linearity)

$$
\left.\begin{array}{c}
c_{1}, \ldots, c_{n} \text { shares for } s \\
c_{1}^{\prime}, \ldots, c_{n}^{\prime} \text { shares for } s^{\prime} \\
\lambda \in \mathbb{F}_{q}
\end{array}\right\} \Rightarrow \begin{gathered}
c_{1}+\lambda c_{1}^{\prime}, \ldots, c_{n}+\lambda c_{n}^{\prime} \\
\text { are shares for } s+\lambda s^{\prime}
\end{gathered}
$$

Remark

Shamir's secret sharing scheme is linear
since

$$
\left.\begin{array}{c}
\operatorname{deg} f, \operatorname{deg} g \leq t \\
\lambda \in \mathbb{F}_{q}
\end{array}\right\} \Rightarrow \operatorname{deg}(f+\lambda g) \leq t
$$

Space of secrets: $\mathbb{F}_{q^{-}}$-algebra (such as $\mathbb{F}_{q^{k}}, \mathbb{F}_{q}^{k}$).

Property (r-multiplicativity)

For any $A \subseteq\{1, \ldots, n\},|A|=r$, the products $\left\{c_{i} c_{i}^{\prime}\right\}_{i \in A}$ determine ss'.

Remark

Shamir's scheme has $2 t+1$-multiplicativity
since
$\operatorname{deg} f, \operatorname{deg} g \leq t \Rightarrow \operatorname{deg} f g \leq 2 t$ and therefore
$2 t+1$ evaluations of $f g$ determine $f g$ (and hence $f g(0)$).

- Algebraic properties of secret sharing are important for applications in cryptography, especially to secure multiparty computation (MPC).
- Very useful notion (t-strong multiplication): linearity + t-privacy $+(n-t)$-multiplicativity for "large" t.

General linear construction

Let S be a \mathbb{F}_{q}-algebra. Suppose $C \subseteq \mathbb{F}_{q}^{n}$ vector subspace and $\psi: C \rightarrow S$ is a surjective \mathbb{F}_{q}-linear map.

Protocol

To share $s \in S$,
(1) Dealer selects unif. random $c=\left(c_{1}, \ldots, c_{n}\right) \in \psi^{-1}(s) \subseteq C$
(2) Dealer sends c_{i} to player P_{i}, for $i=1, \ldots, n$.

Arithmetic codex

Question

What properties besides linearity does this construction have (privacy, multiplicativity)?

We will introduce the notion of arithmetic codex:

- Captures notion of linear secret sharing with multiplicative properties.
- Also encompasses other concepts: bilinear multiplication algorithm (algebraic complexity).

Arithmetic codex

Definition (d-th power of a linear code)

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a vector subspace over $\mathbb{F}_{q}, d>0$ an integer. Let

$$
C^{* d}:=\mathbb{F}_{q}\left\{\left\{c^{(1)} * c^{(2)} \ldots * c^{(d)}:\left(c^{(1)}, c^{(2)}, \ldots, c^{(d)}\right) \in C^{d}\right\}\right\rangle
$$

Notation

$$
\begin{aligned}
& \text { For } \emptyset \neq A=\left\{i_{1}, \ldots, i_{\ell}\right\} \subseteq\{1, \ldots, n\} \text {, let } \\
& \qquad \begin{aligned}
\pi_{A} & : \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{\ell}
\end{aligned} \\
& \qquad\left(c_{1}, \ldots, c_{n}\right) \mapsto\left(c_{i_{1}}, \ldots, c_{i_{\ell}}\right)
\end{aligned}
$$

Arithmetic codex

Definition

K (finite) field, S finite dimensional K-algebra,
$n, t, d, r \in \mathbb{Z}$ with $0 \leq t<r \leq n, d \geq 1$.
An (n, t, d, r)-codex (C, ψ) for S over K consists of:

- A vector subspace $C \subseteq K^{n}$
- A linear map $\psi: C \rightarrow S$
satisfying 3 properties:
(1) ψ is surjective.
(2) (t-disconnection): If $t \geq 1$, for any $A \subseteq\{1, \ldots, n\}$ with $|A|=t$ the map

$$
\begin{aligned}
C & \rightarrow S \times \pi_{A}(C) \\
c & \mapsto\left(\psi(c), \pi_{A}(c)\right)
\end{aligned}
$$

is surjective.

Arithmetic codex

Definition (cont.)

(3) ((d,r)-multiplicativity):

There exists a function $\bar{\psi}: C^{* d} \rightarrow S$ such that

- $\bar{\psi}$ is linear.
- For all $c^{(1)}, \ldots, c^{(d)} \in C$,

$$
\bar{\psi}\left(c^{(1)} * \cdots * c^{(d)}\right)=\prod_{i=1}^{d} \psi\left(c^{(j)}\right) .
$$

- $\bar{\psi}$ is " r-wise determined": for all $B \subseteq\{1, \ldots, n\},|B|=r$,

$$
C^{* d} \cap \operatorname{Ker} \pi_{B} \subseteq \operatorname{Ker} \bar{\psi} .
$$

Using codices for linear multiplicative secret sharing

Given (C, ψ) a (n, t, d, r)-codex used for secret sharing.

Properties

- t shares c_{i} give no info about s (by t-disconnection)
- Linearity (by C being a v.space, and linearity of ψ)
- If $s^{(1)}, \ldots, s^{(d)} \in S$ are shared, $\Pi_{j=1}^{d} s^{(j)}$ is determined by products of shares of r players (by (d, r)-multiplicativity)

Associated linear code

Now consider $S=\mathbb{F}_{q}^{k}$.
For a (n, t, d, r)-codex (C, ψ) for S over \mathbb{F}_{q}, we define the associated linear code

$$
\widetilde{C}:=\{(\psi(c), c): c \in C\} \subseteq \mathbb{F}_{q}^{n+k}
$$

Proposition

Given a linear code $\widetilde{C} \subseteq \mathbb{F}_{q}^{n+k}$, if the unit vectors
$e_{1}, \ldots, e_{k} \notin \widetilde{C}^{* d} \cup \widetilde{C}^{\perp}$ then \tilde{C} is the associated code of an ($n, 0, d, n$)-codex.

Proposition

If in addition $d_{\text {min }}\left(\widetilde{C}^{\perp}\right) \geq t+k+1$ and $d_{\text {min }}\left(\widetilde{C}^{* d}\right) \geq n-r+k+1$, then \widetilde{C} is the associated code of an (n, t, d, r)-codex.

Asymptotics

- Drawback of Shamir's scheme: $n<q$.
- Asymptotics: q fixed, $n \rightarrow \infty$, and asymptotic requirements on other parameters.
- Example: Do there exists families of $(n, t, 2, n-t)$-codex for \mathbb{F}_{q}^{k} over \mathbb{F}_{q}, where $t=\Omega(n)$?
- "Random codices do not seem to work" (C., Cramer, Mirandola, Zémor, 2013).
- Only known tool: algebraic geometric secret sharing (Chen, Cramer, 2006).

AG-codices

Let:
F / \mathbb{F}_{q} be a function field.
$Q_{1}, \ldots, Q_{k}, P_{1}, \ldots, P_{n} \in \mathbb{P}^{(1)}(F)$.
$G \in \operatorname{Div}(F)$.
$\mathcal{L}(G)$ Riemann-Roch space of G.

Question

When is

$$
\widetilde{C}:=\left\{\left(f\left(Q_{1}\right), \ldots, f\left(Q_{k}\right), f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in \mathcal{L}(G)\right\}
$$

an (n, t, d, r)-codex for \mathbb{F}_{q}^{k} over \mathbb{F}_{q} ?

Sufficient condition

$Q:=\sum_{j=1}^{k} Q_{j}$.
For $A \in\{1, \ldots, n\}, P_{A}:=\sum_{i \in A} P_{i} \in \operatorname{Div}(F)$.
W canonical divisor.
$\ell(G):=\operatorname{dim} \mathcal{L}(G)$.

Proposition (Sufficient condition)

Suppose G satisfies the following equations.

$$
\begin{cases}\ell\left(W-G+P_{A}+Q\right)=0 & \text { for all } A \subseteq\{1, \ldots, n\},|A|=t \\ \ell\left(d G-P_{B}\right)=0 & \text { for all } B \subseteq\{1, \ldots, n\},|B|=r\end{cases}
$$

Then

$$
\widetilde{C}:=\left\{\left(f\left(Q_{1}\right), \ldots, f\left(Q_{k}\right), f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \mid f \in \mathcal{L}(G)\right\}
$$

is an (n, t, d, r)-codex for \mathbb{F}_{q}^{k} over \mathbb{F}_{q}.
Key fact: If $d \in \mathbb{Z}, d \geq 1$, then $\widetilde{C}_{\mathcal{L}}(D, G)^{* d} \subseteq \widetilde{C}_{\mathcal{L}}(D, d G)$.

Riemann Roch systems of equations

Definition

Let $s \in \mathbb{Z}_{>0}$ and let $Y_{i} \in \mathrm{Cl}(F), d_{i} \in \mathbb{Z} \backslash\{0\}$ for $i=1, \ldots, s$.
A Riemann-Roch system of equations in X is a system

$$
\left\{\ell\left(d_{i} X+Y_{i}\right)=0\right\}_{i=1}^{s} .
$$

A solution is some $G \in \mathrm{Cl}(F)$ which satisfies all equations when substituted for X.

We may also state Riemann Roch equations in terms of divisors instead of classes.

Solvability of RR systems

Let $\mathcal{J}_{F}:=\mathrm{Cl}_{0}(F), h:=\left|\mathcal{J}_{F}\right|$.
For $d \in \mathbb{Z}_{>0}$, let $\mathcal{J}_{F}[d]:=\left\{G \in \mathcal{J}_{F}: d G=0\right\}$.
For $d \in \mathbb{Z}_{<0}$, let $\mathcal{J}_{F}[d]:=\mathcal{J}_{F}[-d]$.
For $r \in \mathbb{Z}_{\geq 0}$, let A_{r} be the number of positive divisors of deg r.

Theorem

Consider the Riemann-Roch system of equations

$$
\left\{\ell\left(d_{i} X+Y_{i}\right)=0\right\}_{i=1}^{s} .
$$

If $\exists m \in \mathbb{Z}$ such that

$$
h>\sum_{i=1}^{s} A_{r_{i}} \cdot\left|\mathcal{J}_{F}\left[d_{i}\right]\right|
$$

where $r_{i}=d_{i} m+\operatorname{deg} Y_{i}, i=1, \ldots, s$, then the Riemann-Roch system has a solution $[G] \in C I_{m}(F)$.

"Solving by degree"

Remark
If $r_{i}<0$, then $A_{r_{i}}=0$. Hence,

$$
r_{i}<0 \forall i=1, \ldots, s \Rightarrow h>\sum_{i=1}^{s} A_{r_{i}} \cdot\left|\mathcal{J}_{F}\left[d_{i}\right]\right|
$$

and any divisor of a certain degree is a solution.

"Solving by degree"

Remark

If $r_{i}<0$, then $A_{r_{i}}=0$. Hence,

$$
r_{i}<0 \forall i=1, \ldots, s \Rightarrow h>\sum_{i=1}^{s} A_{r_{i}} \cdot\left|\mathcal{J}_{F}\left[d_{i}\right]\right|
$$

and any divisor of a certain degree is a solution.

Theorem (Chen, Cramer 06)

If $A(q)>4$, then there is an infinite family of
$(n, t, 2, n-t)$-codices for \mathbb{F}_{q}^{k} over \mathbb{F}_{q} where n is unbounded,
$t=\Omega(n), k=\Omega(n)$.
If q square, $q \geq 49, A(q)>4$ (attained by Garcia-Stichtenoth towers).
But: If $q \leq 25$, then $A(q) \leq 4$.

More general strategy

More generally we can upper bound the numbers $\left|\mathcal{J}_{F}\left[d_{i}\right]\right|$ asymptotically and $A_{r_{i}}$ (as follows)

Lemma

Suppose $g \geq 1$. Then, for any r with $0 \leq r \leq g-1$,

$$
A_{r} / h \leq \frac{g}{q^{g-r-1}(\sqrt{q}-1)^{2}} .
$$

Using "Functional Equation" of the L-polynomial, Hasse-Weil theorem.
Similar results by Vladut, Niederreiter, Xing,...

The torsion limit

Definition

For an infinite family \mathcal{F},

$$
J_{r}(\mathcal{F}):=\inf _{F \in \mathcal{F}} \frac{\log _{q}\left|\mathcal{J}_{F}[r]\right|}{g(F)}
$$

Definition

For a field \mathbb{F}_{q}, and $0 \leq A \leq A(q)$,

$$
J_{r}(q, A):=\liminf J_{r}(\mathcal{F})
$$

where inf is taken over families with Ihara's limit A.

Upper bounds for r-torsion limit, r prime

Theorem

Let \mathbb{F}_{q} be a finite field and let $r>1$ be a prime.
(i) If $r \mid(q-1)$, then $J_{r}(q, A(q)) \leq \frac{2}{\log _{r} q}$.
(ii) If $r \nmid(q-1)$, then $J_{r}(q, A(q)) \leq \frac{1}{\log _{r} q}$
(iii) If q is square and $r \mid q$, then $J_{r}(q, \sqrt{q}-1) \leq \frac{1}{(\sqrt{q}+1) \log _{r} q}$.

Proof.

Ideas:

(i) (and (ii) when $r=$ char \mathbb{F}_{q}). Direct from Weil's classical result on torsion of abelian varieties.
(ii) (in the rest of the cases): Use of self-orthogonality of $J[r]$ w.r.t. to Weil pairing.
(iii) Apply Deuring-Shafarevich theorem for r-rank in a tower of Garcia and Stichtenoth.

Application to Strongly Multiplicative Secret Sharing

The general strategy for solving R.R-systems based on torsion limits, allows to improve the results on arithmetic secret sharing.

Theorem

If $A(q)>1+J_{2}(q, A(q))$, then there is an infinite family $\left\{C_{n}\right\}$ of $(n, t, 2, n-t)$-codices for \mathbb{F}_{q}^{k} over \mathbb{F}_{q} where:
n unbounded, $k=\Omega(n)$ and $t=\Omega(n)$.

Remark

In CC06, the condition $A(q)>4$ was required. Now it is sufficient that $A(q)>1+J_{2}(q, A(q))$!

Drawback: It is not clear how to compute the solutions in general (as opposed to "solving by degree")

When does $A(q)>1+J_{2}(q, A(q))$ hold?

Theorem

For any finite field F_{q}, with $q=8,9$ or $q \geq 16$, we have $A(q)>1+J_{2}(q, A(q))$

Remark

$A(q)>1+J_{2}(q, A(q))$ holds for some q with $A(q) \leq 4$ $(q=8,9,16 \leq q \leq 25)$ and many q where $A(q)>4$ not known.

Asymptotically good constructions over any finite field

- C., Chen, Cramer, Xing (2009): CC06 + concatenation gives
$(n, t, 2, n-t)$-codices for \mathbb{F}_{q}^{k} over \mathbb{F}_{q}, n unbounded, $t=\Omega(n), k=\Omega(n)$ for every finite field \mathbb{F}_{q}. Torsion limits NOT necessary.
- However, concatenation gives bad dual distance (important for some applications).
- Moreover, torsion limits do give quantitative improvements on t / n for small fields.

Open questions

Main problem: Efficiency of construction.

- More "elementary" constructions? (without function fields)
- Families of codes C with $d_{\min }\left(C^{* 2}\right), d_{\text {min }}\left(C^{\perp}\right)$ linear in length?
- Families of codes C with $d_{\text {min }}\left(C^{\perp}\right)$ linear in length and $d_{\text {min }}\left(C^{* 3}\right) \geq 2$?
- Efficiently solving Riemann-Roch equations when solving by degree not possible?

Open questions

Main problem: Efficiency of construction.

- More "elementary" constructions? (without function fields)
- Families of codes C with $d_{\min }\left(C^{* 2}\right), d_{\min }\left(C^{\perp}\right)$ linear in length?
- Families of codes C with $d_{\min }\left(C^{\perp}\right)$ linear in length and $d_{\text {min }}\left(C^{* 3}\right) \geq 2$?
- Efficiently solving Riemann-Roch equations when solving by degree not possible?

Torsion limit:

- Better bounds?
- Other towers for which we have good bounds?

Conclusions

- Codices encompass several objects useful in info-theoretically secure crypto and algebraic complexity.
- Asymptotics are important.
- Towers are useful (so far, indispensable) for asymptotics.
- Towers with extra properties of the function fields are gaining importance.

