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ci to each player Pi (ci
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A dealer and n players.
The dealer knows a secret
s in certain (public) set S.
Sends information (shares)
ci to each player Pi (ci
belong to public sets Si ).
t-privacy: Any t of shares
→ no information about s.
m-reconstruction: Any m
shares→ determines s.
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Shamir’s secret sharing scheme

Fq finite field. Space of secrets: Fq. Spaces of shares: Fq.

Let 1 ≤ t < n, with n < q. Let x1, . . . , xn ∈ Fq \ {0} distinct.

To deal a secret s ∈ Fq, the dealer:
1 Selects unif. random f ∈ Fq[X ] with deg f ≤ t , f (0) = s.
2 Sends ci = f (xi) to player Pi .
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Properties
t players have no information about the secret.
t + 1 players can fully determine f , and hence s.

Proof
For any y1, y2, . . . , yt+1 ∈ Fq distinct the following is a bijection

{f ∈ Fq[X ] : deg f ≤ t} → Ft+1
q

f 7→ (f (y1), f (y2), . . . , f (yt+1))
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Secret sharing with algebraic properties

Secret sharing with extra algebraic properties is very
interesting for applications.

Space of secrets: Fq-vector space S, and spaces of shares: Fq.

Property (Linearity)

c1, . . . , cn shares for s
c′1, . . . , c

′
n shares for s′

λ ∈ Fq

⇒ c1 + λc′1, . . . , cn + λc′n
are shares for s + λs′

Remark
Shamir’s secret sharing scheme is linear

since
deg f ,deg g ≤ t

λ ∈ Fq

}
⇒ deg(f + λg) ≤ t
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Space of secrets: Fq-algebra (such as Fqk , Fk
q).

Property (r -multiplicativity)

For any A ⊆ {1, . . . ,n}, |A| = r , the products {cic′i}i∈A
determine ss′.

Remark
Shamir’s scheme has 2t + 1-multiplicativity

since

deg f ,deg g ≤ t ⇒ deg fg ≤ 2t and therefore

2t + 1 evaluations of fg determine fg (and hence fg(0)).
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Algebraic properties of secret sharing are important for
applications in cryptography, especially to secure
multiparty computation (MPC).
Very useful notion (t-strong multiplication): linearity +
t-privacy + (n − t)-multiplicativity for “large” t .
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General linear construction

Let S be a Fq-algebra. Suppose C ⊆ Fn
q vector subspace and

ψ : C → S is a surjective Fq-linear map.

Protocol
To share s ∈ S,

1 Dealer selects unif. random c = (c1, . . . , cn) ∈ ψ−1(s) ⊆ C
2 Dealer sends ci to player Pi , for i = 1, . . . ,n.
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Arithmetic codex

Question
What properties besides linearity does this construction have
(privacy, multiplicativity)?

We will introduce the notion of arithmetic codex:
Captures notion of linear secret sharing with multiplicative
properties.
Also encompasses other concepts: bilinear multiplication
algorithm (algebraic complexity).
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Arithmetic codex

Definition (d-th power of a linear code)

Let C ⊆ Fn
q be a vector subspace over Fq, d > 0 an integer. Let

C∗d := Fq〈{c(1) ∗ c(2) . . . ∗ c(d) : (c(1), c(2), . . . , c(d)) ∈ Cd}〉

Notation
For ∅ 6= A = {i1, . . . , i`} ⊆ {1, . . . ,n}, let

πA : Fn
q → F`

q

(c1, . . . , cn) 7→ (ci1 , . . . , ci`)
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Arithmetic codex

Definition
K (finite) field, S finite dimensional K -algebra,
n, t ,d , r ∈ Z with 0 ≤ t < r ≤ n, d ≥ 1.

An (n, t ,d , r)-codex (C, ψ) for S over K consists of:
A vector subspace C ⊆ K n

A linear map ψ : C → S
satisfying 3 properties:

1 ψ is surjective.
2 (t-disconnection): If t ≥ 1, for any A ⊆ {1, . . . ,n} with
|A| = t the map

C → S × πA(C)

c 7→ (ψ(c), πA(c))

is surjective.
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Arithmetic codex

Definition (cont.)
3 ((d , r)-multiplicativity):

There exists a function ψ : C∗d → S such that
ψ is linear.
For all c(1), . . . , c(d) ∈ C,

ψ(c(1) ∗ · · · ∗ c(d)) =
d∏

i=1

ψ(c(j)).

ψ is ”r -wise determined”: for all B ⊆ {1, . . . ,n}, |B| = r ,

C∗d ∩ Ker πB ⊆ Ker ψ.
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Using codices for linear multiplicative secret sharing

Given (C, ψ) a (n, t ,d , r)-codex used for secret sharing.

Properties
t shares ci give no info about s (by t-disconnection)
Linearity (by C being a v.space, and linearity of ψ)
If s(1), . . . , s(d) ∈ S are shared,
Πd

j=1s(j) is determined by products of shares of r players
(by (d , r)-multiplicativity)
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Associated linear code

Now consider S = Fk
q.

For a (n, t ,d , r)-codex (C, ψ) for S over Fq, we define the
associated linear code

C̃ := {(ψ(c), c) : c ∈ C} ⊆ Fn+k
q

Proposition

Given a linear code C̃ ⊆ Fn+k
q , if the unit vectors

e1, . . . ,ek /∈ C̃∗d ∪ C̃⊥ then C̃ is the associated code of an
(n,0,d ,n)-codex.

Proposition

If in addition dmin(C̃⊥) ≥ t + k + 1 and dmin(C̃∗d ) ≥ n− r + k + 1,
then C̃ is the associated code of an (n, t ,d , r)-codex.
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Asymptotics

Drawback of Shamir’s scheme: n < q.
Asymptotics: q fixed, n→∞, and asymptotic requirements
on other parameters.
Example: Do there exists families of (n, t ,2,n − t)-codex
for Fk

q over Fq, where t = Ω(n)?
“Random codices do not seem to work” (C., Cramer,
Mirandola, Zémor, 2013).
Only known tool: algebraic geometric secret sharing
(Chen, Cramer, 2006).
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AG-codices

Let:
F/Fq be a function field.
Q1, . . . ,Qk ,P1, . . . ,Pn ∈ P(1)(F ).
G ∈ Div(F ).
L(G) Riemann-Roch space of G.

Question
When is

C̃ := {(f (Q1), . . . , f (Qk ), f (P1), . . . , f (Pn)) |f ∈ L(G)}

an (n, t ,d , r)-codex for Fk
q over Fq?
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Sufficient condition

Q :=
∑k

j=1 Qj .
For A ∈ {1, . . . ,n}, PA :=

∑
i∈A Pi ∈ Div(F ).

W canonical divisor.
`(G) := dimL(G).

Proposition (Sufficient condition)
Suppose G satisfies the following equations.{

`(W −G + PA + Q) = 0 for all A ⊆ {1, . . . ,n}, |A| = t .
`(dG − PB) = 0 for all B ⊆ {1, . . . ,n}, |B| = r .

Then

C̃ := {(f (Q1), . . . , f (Qk ), f (P1), . . . , f (Pn)) |f ∈ L(G)}

is an (n, t ,d , r)-codex for Fk
q over Fq.

Key fact: If d ∈ Z,d ≥ 1, then C̃L(D,G)
∗d
⊆ C̃L(D,dG).
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Riemann Roch systems of equations

Definition
Let s ∈ Z>0 and let Yi ∈ Cl(F ), di ∈ Z \ {0} for i = 1, . . . , s.
A Riemann-Roch system of equations in X is a system

{`(diX + Yi) = 0}si=1.

A solution is some G ∈ Cl(F ) which satisfies all equations when
substituted for X .

We may also state Riemann Roch equations in terms of
divisors instead of classes.
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Solvability of RR systems

Let JF := Cl0(F ), h := |JF |.
For d ∈ Z>0, let JF [d ] := {G ∈ JF : dG = 0}.
For d ∈ Z<0, let JF [d ] := JF [−d ].
For r ∈ Z≥0, let Ar be the number of positive divisors of deg r .

Theorem

Consider the Riemann-Roch system of equations

{`(diX + Yi) = 0}si=1.

If ∃m ∈ Z such that

h >
s∑

i=1

Ari · |JF [di ]|,

where ri = dim + deg Yi , i = 1, . . . , s,
then the Riemann-Roch system has a solution [G] ∈ Clm(F ).
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“Solving by degree”

Remark
If ri < 0, then Ari = 0. Hence,

ri < 0 ∀ i = 1, . . . , s ⇒ h >
s∑

i=1

Ari · |JF [di ]|

and any divisor of a certain degree is a solution.

Theorem (Chen, Cramer 06)

If A(q) > 4, then there is an infinite family of
(n, t ,2,n − t)-codices for Fk

q over Fq where n is unbounded,
t = Ω(n), k = Ω(n).

If q square, q ≥ 49, A(q) > 4 (attained by Garcia-Stichtenoth
towers).
But: If q ≤ 25, then A(q) ≤ 4.
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More general strategy

More generally we can upper bound the numbers |JF [di ]|
asymptotically and Ari (as follows)

Lemma
Suppose g ≥ 1. Then, for any r with 0 ≤ r ≤ g − 1,

Ar/h ≤
g

qg−r−1(
√

q − 1)2 .

Using “Functional Equation” of the L-polynomial, Hasse-Weil
theorem.
Similar results by Vladut, Niederreiter, Xing,...
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The torsion limit

Definition
For an infinite family F ,

Jr (F) := inf
F∈F

logq |JF [r ]|
g(F )

.

Definition
For a field Fq, and 0 ≤ A ≤ A(q),

Jr (q,A) := lim inf Jr (F),

where inf is taken over families with Ihara’s limit A.
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Upper bounds for r -torsion limit, r prime

Theorem

Let Fq be a finite field and let r > 1 be a prime.
(i) If r | (q − 1), then Jr (q,A(q)) ≤ 2

logr q .

(ii) If r - (q − 1), then Jr (q,A(q)) ≤ 1
logr q

(iii) If q is square and r | q, then Jr (q,
√

q − 1) ≤ 1
(
√

q+1) logr q .

Proof.
Ideas:

(i) (and (ii) when r = char Fq). Direct from Weil’s classical
result on torsion of abelian varieties.

(ii) (in the rest of the cases): Use of self-orthogonality of J[r ]
w.r.t. to Weil pairing.

(iii) Apply Deuring-Shafarevich theorem for r -rank in a tower
of Garcia and Stichtenoth.
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Application to Strongly Multiplicative Secret Sharing

The general strategy for solving R.R-systems based on torsion
limits, allows to improve the results on arithmetic secret sharing.

Theorem

If A(q) > 1 + J2(q,A(q)), then there is an infinite family {Cn} of
(n, t ,2,n − t)-codices for Fk

q over Fq where:
n unbounded, k = Ω(n) and t = Ω(n).

Remark
In CC06, the condition A(q) > 4 was required. Now it is
sufficient that A(q) > 1 + J2(q,A(q))!

Drawback: It is not clear how to compute the solutions in
general (as opposed to “solving by degree")
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When does A(q) > 1 + J2(q,A(q)) hold?

Theorem
For any finite field Fq, with q = 8,9 or q ≥ 16, we have
A(q) > 1 + J2(q,A(q))

Remark
A(q) > 1 + J2(q,A(q)) holds for some q with A(q) ≤ 4
(q = 8,9, 16 ≤ q ≤ 25) and many q where A(q) > 4 not known.
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Asymptotically good constructions over any finite field

C., Chen, Cramer, Xing (2009): CC06 + concatenation
gives
(n, t ,2,n − t)-codices for Fk

q over Fq, n unbounded,
t = Ω(n), k = Ω(n) for every finite field Fq. Torsion limits
NOT necessary.
However, concatenation gives bad dual distance (important
for some applications).
Moreover, torsion limits do give quantitative improvements
on t/n for small fields.
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Open questions

Main problem: Efficiency of construction.

More “elementary” constructions? (without function fields)
Families of codes C with dmin(C∗2), dmin(C⊥) linear in
length?
Families of codes C with dmin(C⊥) linear in length and
dmin(C∗3) ≥ 2?

Efficiently solving Riemann-Roch equations when solving
by degree not possible?

Torsion limit:
Better bounds?
Other towers for which we have good bounds?
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Conclusions

Codices encompass several objects useful in
info-theoretically secure crypto and algebraic complexity.
Asymptotics are important.
Towers are useful (so far, indispensable) for asymptotics.
Towers with extra properties of the function fields are
gaining importance.
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