Asymptotics of arithmetic codices and towers of function fields

Ignacio Cascudo

CWI Amsterdam Joint work with Ronald Cramer (CWI/ULeiden) and Chaoping Xing(NTU)

> Algebraic curves over finite fields Linz, 15 November 2013

Secret sharing

Setting

- A dealer and *n* players.
- The dealer knows a secret s in certain (public) set S.
- Sends information (shares)
 c_i to each player P_i (c_i
 belong to public sets S_i).

Secret sharing

Setting

- A dealer and *n* players.
- The dealer knows a secret s in certain (public) set S.
- Sends information (shares)
 c_i to each player *P_i* (*c_i* belong to public sets *S_i*).
- *t*-privacy: Any *t* of shares
 → no information about *s*.

Secret sharing

Setting

- A dealer and *n* players.
- The dealer knows a secret s in certain (public) set S.
- Sends information (shares)
 c_i to each player *P_i* (*c_i* belong to public sets *S_i*).
- *t*-privacy: Any *t* of shares
 → no information about *s*.
- *m*-reconstruction: Any *m* shares → determines *s*.

Shamir's secret sharing scheme

 \mathbb{F}_q finite field. Space of secrets: \mathbb{F}_q . Spaces of shares: \mathbb{F}_q .

Let $1 \le t < n$, with n < q. Let $x_1, \ldots, x_n \in \mathbb{F}_q \setminus \{0\}$ distinct.

To deal a secret $\mathbf{s} \in \mathbb{F}_q$, the dealer:

Selects unif. random $f \in \mathbb{F}_q[X]$ with deg $f \leq t$, f(0) = s.

2 Sends
$$c_i = f(x_i)$$
 to player P_i .

Properties

- t players have no information about the secret.
- *t* + 1 players can fully determine *f*, and hence *s*.

Proof

For any $y_1, y_2, \ldots, y_{t+1} \in \mathbb{F}_q$ distinct the following is a bijection

$$\{f \in \mathbb{F}_q[X] : \deg f \leq t\} o \mathbb{F}_q^{t+1}$$

$$f\mapsto (f(y_1),f(y_2),\ldots,f(y_{t+1}))$$

3

Properties

• t players have no information about the secret.

• *t* + 1 players can fully determine *f*, and hence *s*.

Proof

For any $x_{i_1}, x_{i_2}, \ldots, x_{i_{t+1}} \in \mathbb{F}_q$ distinct the following is a bijection

$$\{f \in \mathbb{F}_q[X] : \deg f \leq t\} o \mathbb{F}_q^{t+1}$$

$$f\mapsto (f(\boldsymbol{x}_{i_1}),f(\boldsymbol{x}_{i_2}),\ldots,f(\boldsymbol{x}_{i_{t+1}}))$$

글 > 글

Properties

- t players have no information about the secret.
- *t* + 1 players can fully determine *f*, and hence *s*.

Proof

For any $\mathbf{x}_{i_1}, \mathbf{x}_{i_2}, \dots, \mathbf{x}_{i_t} \in \mathbb{F}_q$ distinct the following is a bijection

$$\{f \in \mathbb{F}_q[X] : \deg f \leq t\} o \mathbb{F}_q^{t+1}$$

$$f\mapsto (f(\mathbf{0}),f(\mathbf{x}_{i_1}),\ldots,f(\mathbf{x}_{i_t}))$$

★ 문 ► ★ 문 ►

2

Secret sharing with algebraic properties

Secret sharing with **extra algebraic properties** is very interesting for applications.

Space of secrets: \mathbb{F}_q -vector space *S*, and spaces of shares: \mathbb{F}_q .

Property (Linearity)

$$\left.\begin{array}{c} c_{1},\ldots,c_{n} \text{ shares for } \mathbf{s} \\ c'_{1},\ldots,c'_{n} \text{ shares for } \mathbf{s}' \\ \lambda \in \mathbb{F}_{q} \end{array}\right\} \Rightarrow \begin{array}{c} c_{1}+\lambda c'_{1},\ldots,c_{n}+\lambda c'_{n} \\ \text{are shares for } \mathbf{s}+\lambda \mathbf{s}' \end{array}$$

Remark

Shamir's secret sharing scheme is linear

since

$$\left. egin{smallmatrix} \deg f, \deg g \leq t \ \lambda \in \mathbb{F}_q \ \end{smallmatrix}
ight\} \Rightarrow \deg(f + \lambda g) \leq t$$

イロト イポト イヨト イヨト

Space of *secrets*: \mathbb{F}_q -algebra (such as \mathbb{F}_{q^k} , \mathbb{F}_q^k).

Property (r-multiplicativity)

For any $A \subseteq \{1, ..., n\}, |A| = r$, the products $\{c_i c'_i\}_{i \in A}$ determine ss'.

Remark

Shamir's scheme has 2t + 1-multiplicativity

since

deg *f*, deg $g \le t \Rightarrow$ deg $fg \le 2t$ and therefore

2t + 1 evaluations of fg determine fg (and hence fg(0)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Algebraic properties of secret sharing are important for applications in cryptography, especially to secure multiparty computation (MPC).
- Very useful notion (*t*-strong multiplication): linearity + *t*-privacy + (n - t)-multiplicativity for "large" t.

< 同 > < 回 > < 回 > _ 回 > _ 回 - _ 回 - _

General linear construction

Let *S* be a \mathbb{F}_q -algebra. Suppose $C \subseteq \mathbb{F}_q^n$ vector subspace and $\psi : C \to S$ is a surjective \mathbb{F}_q -linear map.

Protocol

To share $s \in S$,

- **1** Dealer selects unif. random $c = (c_1, \ldots, c_n) \in \psi^{-1}(s) \subseteq C$
- 2 Dealer sends c_i to player P_i , for i = 1, ..., n.

Question

What properties besides linearity does this construction have (privacy, multiplicativity)?

We will introduce the notion of arithmetic codex:

- Captures notion of linear secret sharing with multiplicative properties.
- Also encompasses other concepts: bilinear multiplication algorithm (algebraic complexity).

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (*d*-th power of a linear code)

Let $C \subseteq \mathbb{F}_q^n$ be a vector subspace over \mathbb{F}_q , d > 0 an integer. Let $C^{*d} := \mathbb{F}_q \langle \{ c^{(1)} * c^{(2)} \dots * c^{(d)} : (c^{(1)}, c^{(2)}, \dots, c^{(d)}) \in C^d \} \rangle$

Notation

For
$$\emptyset \neq A = \{i_1, \dots, i_\ell\} \subseteq \{1, \dots, n\}$$
, let
 $\pi_A : \mathbb{F}_q^n \to \mathbb{F}_q^\ell$
 $(c_1, \dots, c_n) \mapsto (c_{i_1}, \dots, c_{i_\ell})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Arithmetic codex

Definition

K (finite) field, *S* finite dimensional *K*-algebra, $n, t, d, r \in \mathbb{Z}$ with $0 \le t < r \le n, d \ge 1$.

An (n, t, d, r)-codex (C, ψ) for **S** over *K* consists of:

- A vector subspace $C \subseteq K^n$
- A linear map $\psi : C \rightarrow S$

satisfying 3 properties:

- ψ is surjective.
- ② (*t*-disconnection): If *t* ≥ 1, for any $A \subseteq \{1, ..., n\}$ with |A| = t the map

$$egin{aligned} \mathcal{C} & o \mathcal{S} imes \pi_{\mathcal{A}}(\mathcal{C}) \ \mathcal{C} &\mapsto (\psi(\mathcal{C}), \pi_{\mathcal{A}}(\mathcal{C})) \end{aligned}$$

is surjective.

Definition (cont.)

 \bigcirc ((*d*, *r*)-multiplicativity): There exists a function $\overline{\psi} : C^{*d} \to S$ such that • $\overline{\psi}$ is linear. • For all $c^{(1)}, \ldots, c^{(d)} \in C$. $\overline{\psi}(\boldsymbol{c}^{(1)}*\cdots*\boldsymbol{c}^{(d)})=\prod^{d}\psi(\boldsymbol{c}^{(j)}).$ i=1• $\overline{\psi}$ is "*r*-wise determined": for all $B \subseteq \{1, \ldots, n\}, |B| = r$, $C^{*d} \cap \operatorname{Ker} \pi_B \subset \operatorname{Ker} \overline{\psi}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Using codices for linear multiplicative secret sharing

Given (C, ψ) a (n, t, d, r)-codex used for secret sharing.

Properties

- t shares c_i give no info about s (by t-disconnection)
- Linearity (by C being a v.space, and linearity of ψ)
- If s⁽¹⁾,..., s^(d) ∈ S are shared, ⊓^d_{j=1} s^(j) is determined by products of shares of r players (by (d, r)-multiplicativity)

Associated linear code

Now consider $S = \mathbb{F}_q^k$. For a (n, t, d, r)-codex (C, ψ) for S over \mathbb{F}_q , we define the associated linear code

$$\widetilde{\textit{\textit{C}}} := \{(\psi(\textit{\textit{c}}),\textit{\textit{c}}):\textit{\textit{c}} \in \textit{\textit{C}}\} \subseteq \mathbb{F}_q^{n+k}$$

Proposition

Given a linear code $\widetilde{C} \subseteq \mathbb{F}_q^{n+k}$, if the unit vectors $e_1, \ldots, e_k \notin \widetilde{C}^{*d} \cup \widetilde{C}^{\perp}$ then \widetilde{C} is the associated code of an (n, 0, d, n)-codex.

Proposition

If in addition $d_{min}(\widetilde{C}^{\perp}) \ge t + k + 1$ and $d_{min}(\widetilde{C}^{*d}) \ge n - r + k + 1$, then \widetilde{C} is the associated code of an (n, t, d, r)-codex.

(雪) (ヨ) (ヨ)

- Drawback of Shamir's scheme: n < q.
- Asymptotics: *q* fixed, *n* → ∞, and asymptotic requirements on other parameters.
- Example: Do there exists families of (n, t, 2, n − t)-codex for F^k_q over F_q, where t = Ω(n)?
- "Random codices do not seem to work" (C., Cramer, Mirandola, Zémor, 2013).
- Only known tool: algebraic geometric secret sharing (Chen, Cramer, 2006).

イロト イ理ト イヨト ・ ヨト

AG-codices

Let: F/\mathbb{F}_q be a function field. $Q_1, \ldots, Q_k, P_1, \ldots, P_n \in \mathbb{P}^{(1)}(F).$ $G \in \text{Div}(F).$ $\mathcal{L}(G)$ Riemann-Roch space of G.

Question

When is

$$\widetilde{C} := \{(f(Q_1), \ldots, f(Q_k), f(P_1), \ldots, f(P_n)) | f \in \mathcal{L}(G)\}$$

an (n, t, d, r)-codex for \mathbb{F}_q^k over \mathbb{F}_q ?

< 🗇 🕨

3

Sufficient condition

$$Q := \sum_{j=1}^{k} Q_j.$$

For $A \in \{1, ..., n\}$, $P_A := \sum_{i \in A} P_i \in \text{Div}(F).$
W canonical divisor.
 $\ell(G) := \dim \mathcal{L}(G).$

Proposition (Sufficient condition)

Suppose G satisfies the following equations.

Then

$$\widetilde{C} := \{(f(Q_1), \ldots, f(Q_k), f(P_1), \ldots, f(P_n)) | f \in \mathcal{L}(G)\}$$

is an (n, t, d, r)-codex for \mathbb{F}_q^k over \mathbb{F}_q .

Key fact: If $d \in \mathbb{Z}, d \geq 1$, then $\widetilde{C}_{\mathcal{L}}(D, G)^{*d} \subseteq \widetilde{C}_{\mathcal{L}}(D, dG)$.

Definition

Let $s \in \mathbb{Z}_{>0}$ and let $Y_i \in Cl(F)$, $d_i \in \mathbb{Z} \setminus \{0\}$ for i = 1, ..., s. A *Riemann-Roch system of equations* in X is a system

 $\{\ell(d_iX+Y_i)=0\}_{i=1}^s.$

A solution is some $G \in Cl(F)$ which satisfies all equations when substituted for *X*.

We may also state Riemann Roch equations in terms of divisors instead of classes.

・ 同 ト ・ ヨ ト ・ ヨ ト

Solvability of RR systems

Let $\mathcal{J}_F := \text{Cl}_0(F)$, $h := |\mathcal{J}_F|$. For $d \in \mathbb{Z}_{>0}$, let $\mathcal{J}_F[d] := \{G \in \mathcal{J}_F : dG = 0\}$. For $d \in \mathbb{Z}_{<0}$, let $\mathcal{J}_F[d] := \mathcal{J}_F[-d]$. For $r \in \mathbb{Z}_{>0}$, let \mathcal{A}_r be the number of positive divisors of deg r.

Theorem

Consider the Riemann-Roch system of equations

$$\{\ell(d_iX+Y_i)=0\}_{i=1}^s.$$

If $\exists m \in \mathbb{Z}$ such that

$$h > \sum_{i=1}^{s} A_{r_i} \cdot |\mathcal{J}_F[d_i]|,$$

where $r_i = d_i m + \deg Y_i$, i = 1, ..., s, then the Riemann-Roch system has a solution $[G] \in Cl_m(F)$.

"Solving by degree"

Remark

If $r_i < 0$, then $A_{r_i} = 0$. Hence,

$$r_i < 0 \ \forall \ i = 1, \dots, s \Rightarrow h > \sum_{i=1}^s A_{r_i} \cdot |\mathcal{J}_F[d_i]|$$

and any divisor of a certain degree is a solution.

(ロ) (同) (三) (三) (三) (○) (○)

"Solving by degree"

Remark

If $r_i < 0$, then $A_{r_i} = 0$. Hence,

$$r_i < 0 \ \forall \ i = 1, \dots, s \Rightarrow h > \sum_{i=1}^s A_{r_i} \cdot |\mathcal{J}_F[d_i]|$$

and any divisor of a certain degree is a solution.

Theorem (Chen, Cramer 06)

If A(q) > 4, then there is an infinite family of (n, t, 2, n - t)-codices for \mathbb{F}_q^k over \mathbb{F}_q where n is unbounded, $t = \Omega(n), k = \Omega(n)$.

If *q* square, $q \ge 49$, A(q) > 4 (attained by Garcia-Stichtenoth towers).

But: If $q \leq 25$, then $A(q) \leq 4$.

ヘロト ヘアト ヘヨト ヘ

More generally we can upper bound the numbers $|\mathcal{J}_F[d_i]|$ asymptotically and A_{r_i} (as follows)

Lemma

Suppose $g \ge 1$. Then, for any r with $0 \le r \le g - 1$,

$$A_r/h \leq \frac{g}{q^{g-r-1}(\sqrt{q}-1)^2}.$$

Using "Functional Equation" of the L-polynomial, Hasse-Weil theorem.

Similar results by Vladut, Niederreiter, Xing,...

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The torsion limit

Definition

For an infinite family \mathcal{F} ,

$$J_r(\mathcal{F}) := \inf_{F \in \mathcal{F}} rac{\log_q |\mathcal{J}_F[r]|}{g(F)}.$$

Definition

For a field \mathbb{F}_q , and $0 \leq A \leq A(q)$,

$$J_r(q, A) := \liminf J_r(\mathcal{F}),$$

where inf is taken over families with Ihara's limit A.

イロト イポト イヨト イヨト

= 990

Upper bounds for *r*-torsion limit, *r* prime

Theorem

Let
$$\mathbb{F}_q$$
 be a finite field and let $r > 1$ be a prime.
(i) If $r \mid (q-1)$, then $J_r(q, A(q)) \le \frac{2}{\log_r q}$.
(ii) If $r \nmid (q-1)$, then $J_r(q, A(q)) \le \frac{1}{\log_r q}$
(iii) If q is square and $r \mid q$, then $J_r(q, \sqrt{q} - 1) \le \frac{1}{(\sqrt{q} + 1)\log_r q}$.

Proof.

Ideas:

- (i) (and (ii) when $r = \operatorname{char} \mathbb{F}_q$). Direct from Weil's classical result on torsion of abelian varieties.
- (ii) (in the rest of the cases): Use of self-orthogonality of J[r] w.r.t. to Weil pairing.
- (iii) Apply **Deuring-Shafarevich** theorem for *r*-rank in a tower of **Garcia and Stichtenoth**.

Application to Strongly Multiplicative Secret Sharing

The general strategy for solving R.R-systems based on torsion limits, allows to improve the results on arithmetic secret sharing.

Theorem

If $A(q) > 1 + J_2(q, A(q))$, then there is an infinite family $\{C_n\}$ of (n, t, 2, n - t)-codices for \mathbb{F}_q^k over \mathbb{F}_q where: n unbounded, $k = \Omega(n)$ and $t = \Omega(n)$.

Remark

In CC06, the condition A(q) > 4 was required. Now it is sufficient that $A(q) > 1 + J_2(q, A(q))!$

Drawback: It is not clear how to compute the solutions in general (as opposed to "solving by degree")

(日)

When does $A(q) > 1 + J_2(q, A(q))$ hold?

Theorem

For any finite field \mathbb{F}_q , with q = 8, 9 or $q \ge 16$, we have $A(q) > 1 + J_2(q, A(q))$

Remark

 $A(q) > 1 + J_2(q, A(q))$ holds for some q with $A(q) \le 4$ $(q = 8, 9, 16 \le q \le 25)$ and many q where A(q) > 4 not known.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Asymptotically good constructions over any finite field

- C., Chen, Cramer, Xing (2009): CC06 + concatenation gives

 (n, t, 2, n − t)-codices for 𝔽^k_q over 𝔽_q, n unbounded,
 t = Ω(n), k = Ω(n) for every finite field 𝔽_q. Torsion limits NOT necessary.
- However, concatenation gives bad dual distance (important for some applications).
- Moreover, torsion limits do give quantitative improvements on t/n for small fields.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Main problem: Efficiency of construction.

- More "elementary" constructions? (without function fields)
 - Families of codes *C* with *d_{min}*(*C*^{*2}), *d_{min}*(*C*[⊥]) linear in length?
 - Families of codes *C* with $d_{min}(C^{\perp})$ linear in length and $d_{min}(C^{*3}) \geq 2$?
- Efficiently solving Riemann-Roch equations when solving by degree not possible?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Main problem: Efficiency of construction.

- More "elementary" constructions? (without function fields)
 - Families of codes C with d_{min}(C^{*2}), d_{min}(C[⊥]) linear in length?
 - Families of codes *C* with $d_{min}(C^{\perp})$ linear in length and $d_{min}(C^{*3}) \geq 2$?
- Efficiently solving Riemann-Roch equations when solving by degree not possible?

Torsion limit:

- Better bounds?
- Other towers for which we have good bounds?

ヘロト ヘアト ヘビト ヘビト

- Codices encompass several objects useful in info-theoretically secure crypto and algebraic complexity.
- Asymptotics are important.
- Towers are useful (so far, indispensable) for asymptotics.
- Towers with extra properties of the function fields are gaining importance.

・ 同 ト ・ ヨ ト ・ ヨ ト