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Weierstrass semigroup at several points

Let X be a smooth complete irreducible curve of genus g ≥ 1 defined over
a field F, assumed to be the full field of constants of F(X ).

Let P1, . . . ,Pm be distinct rational points of X .

Definition The Weierstrass semigroup at P1, . . . ,Pm is defined as

H = H(P1, . . . ,Pm) := {(α1, . . . , αm) ∈ Nm
0 | ∃ f ∈ F(X ) with

div∞(f ) = α1P1 + · · ·+ αmPm}
Its systematic study was initiated by S. J. Kim and M. Homma in mid
90’s. They studied specially the case m = 2; investigated properties of H
and its relationship with the theory of algebraic geometry (Goppa) codes.

In a joint work with F. Torres we extended their results for any value of m,
and also applied the results to obtain better lower bounds for the
minimum distance of certain algebraic geometry codes.
A similar application of these semigroups was recently done by
Korchmáros and Nagy, which improved such bounds for certain codes
previously studied by Matthews and Michel.
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Ćıcero Carvalho (UFU) Inflection points on curves and coding theory 2 / 12



Weierstrass semigroup at several points

Let X be a smooth complete irreducible curve of genus g ≥ 1 defined over
a field F, assumed to be the full field of constants of F(X ).

Let P1, . . . ,Pm be distinct rational points of X .

Definition The Weierstrass semigroup at P1, . . . ,Pm is defined as

H = H(P1, . . . ,Pm) := {(α1, . . . , αm) ∈ Nm
0 | ∃ f ∈ F(X ) with

div∞(f ) = α1P1 + · · ·+ αmPm}
Its systematic study was initiated by S. J. Kim and M. Homma in mid
90’s. They studied specially the case m = 2; investigated properties of H
and its relationship with the theory of algebraic geometry (Goppa) codes.

In a joint work with F. Torres we extended their results for any value of m,
and also applied the results to obtain better lower bounds for the
minimum distance of certain algebraic geometry codes.
A similar application of these semigroups was recently done by
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Ćıcero Carvalho (UFU) Inflection points on curves and coding theory 2 / 12



Weierstrass semigroup at several points

We will write n := (n1, . . . , nm) ∈ Nm
0 , ei ∈ Nm

0 for the m-tuple that has 1
in the i-th position and 0 in the others, L(n) := L(n1P1 + · · ·+ nmPm)
and `(n) := dim L(n).

Lemma. The following are equivalent:
(i) n ∈ H;
(ii) `(n) = `(n− ei ) + 1 for all i = 1, . . . ,m;
(iii) The linear system |n1P1 + · · ·+ nmPm| is base-point free.

We call Nm
0 \ H the set of gaps of H, it is a finite set whose cardinality

may vary with P1, . . . ,Pm. For example, if X is a hyperelliptic curve of
genus 4, and m = 2 we get:

6
P2

- P1
q a a aa a aa aaq q q q q

9 gaps if P1 and P2 are not W. points of X

6
P2

- P1
q a a a aq q q qaa
aaqq
qq
aaaa
aa

aaaa aa
q
qq
q
aa
a q qqaa q aq q

26 gaps if P1 and P2 are both W. points of X
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Ćıcero Carvalho (UFU) Inflection points on curves and coding theory 3 / 12



Weierstrass semigroup at several points

We will write n := (n1, . . . , nm) ∈ Nm
0 , ei ∈ Nm

0 for the m-tuple that has 1
in the i-th position and 0 in the others, L(n) := L(n1P1 + · · ·+ nmPm)
and `(n) := dim L(n).

Lemma. The following are equivalent:
(i) n ∈ H;
(ii) `(n) = `(n− ei ) + 1 for all i = 1, . . . ,m;
(iii) The linear system |n1P1 + · · ·+ nmPm| is base-point free.

We call Nm
0 \ H the set of gaps of H, it is a finite set whose cardinality

may vary with P1, . . . ,Pm. For example, if X is a hyperelliptic curve of
genus 4, and m = 2 we get:

6
P2

- P1
q a a aa a aa aaq q q q q

9 gaps if P1 and P2 are not W. points of X

6
P2

- P1
q a a a aq q q qaa
aaqq
qq
aaaa
aa

aaaa aa
q
qq
q
aa
a q qqaa q aq q

26 gaps if P1 and P2 are both W. points of X
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Weierstrass semigroup at several points

From now on we assume that #(F) ≥ m.

Properties of H:

• For all i = 1, . . . ,m we get that a ∈ H(Pi ) if and only if a.ei ∈ H.

• Let (n1, . . . , nm), (p1, . . . , pm) ∈ H and set qi := max{ni , pi},
i = 1, . . . ,m. Then (q1, . . . , qm) ∈ H.

Define (n1, . . . , nm) � (p1, . . . , pm) if ni ≤ pi ∀i = 1, . . . ,m. Then � is a
partial order in Nm

0 .

Let i ∈ {1, . . . ,m}, let ni ∈ N0 and let n =
(n1, . . . , nm) be a minimal element (w.r.t. �)
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Weierstrass semigroup and AG codes

Given n = (n1, . . . , nm) ∈ Nm
0 , define

∇i (n) := {(p1, . . . , pm) ∈ H | pi = ni and pj ≤ nj ∀j 6= i}

Lemma. Let n ∈ Nm
0 . The following are equivalent:

(i) n /∈ H;
(ii) ∇i (n) = ∅ for some i ∈ {1, . . . ,m}.

We say that n ∈ Nm
0 is a pure gap if ∇i (n) = ∅ for all i ∈ {1, . . . ,m}.

Denote the set of pure gaps by G0.

Lemma: Let n = (n1, . . . , nm) ∈ Nm
0 .

(i) If n ∈ G0 then ni /∈ H(Pi ) for all i =
1, . . . ,m.
(ii) If 1 +

∑
i ni ≤ γ, where γ is the gonality of

X , then n ∈ G0.
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Weierstrass semigroup and AG codes

Assume that F is a finite field, let D := Q1 + · · ·+ Qn, where Q1, . . . ,Qn

are distinct rational points of X , all distinct from P1, . . . ,Pm, and let G be
a divisor with support on P1, . . . ,Pm.
Let CΩ(D,G ) be the algebraic geometry code which is the image of the
map ϕ : Ω(G − D)→ Fn defined by ϕ(η) = (resQ1(η), . . . , resQn(η)).
We know that CΩ(D,G ) is an [n, k , d ]-code, with d ≥ deg(G )− (2g − 2).
Building on previous work by Homma, Kim and Matthews, F. Torres and
myself proved the following results.
Theorem. Assume that (n1, . . . , nm) and (p1, . . . , pm) are pure gaps of H,
and let G =

∑m
i=1(ni + pi − 1)Pi . Then CΩ(D,G ) is an [n, k , d ]-code,

with d ≥ deg(G )− (2g − 2) + m.
Theorem. Assume that (n1, . . . , nm) and (p1, . . . , pm) are pure gaps of H,
with ni ≤ pi for all i = 1, . . . ,m, and that (q1, . . . , qm) is also a pure gap
whenever ni ≤ qi ≤ pi , for all i = 1, . . . ,m. Let G =

∑m
i=1(ni + pi − 1)Pi ,

then CΩ(D,G ) is an [n, k , d ]-code, with
d ≥ deg(G )− (2g − 2) + m +

∑n
i=1(pi − ni ).
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Ćıcero Carvalho (UFU) Inflection points on curves and coding theory 6 / 12



Weierstrass semigroup and AG codes

Assume that F is a finite field, let D := Q1 + · · ·+ Qn, where Q1, . . . ,Qn

are distinct rational points of X , all distinct from P1, . . . ,Pm, and let G be
a divisor with support on P1, . . . ,Pm.
Let CΩ(D,G ) be the algebraic geometry code which is the image of the
map ϕ : Ω(G − D)→ Fn defined by ϕ(η) = (resQ1(η), . . . , resQn(η)).
We know that CΩ(D,G ) is an [n, k , d ]-code, with d ≥ deg(G )− (2g − 2).
Building on previous work by Homma, Kim and Matthews, F. Torres and
myself proved the following results.
Theorem. Assume that (n1, . . . , nm) and (p1, . . . , pm) are pure gaps of H,
and let G =

∑m
i=1(ni + pi − 1)Pi . Then CΩ(D,G ) is an [n, k , d ]-code,

with d ≥ deg(G )− (2g − 2) + m.
Theorem. Assume that (n1, . . . , nm) and (p1, . . . , pm) are pure gaps of H,
with ni ≤ pi for all i = 1, . . . ,m, and that (q1, . . . , qm) is also a pure gap
whenever ni ≤ qi ≤ pi , for all i = 1, . . . ,m. Let G =

∑m
i=1(ni + pi − 1)Pi ,

then CΩ(D,G ) is an [n, k , d ]-code, with
d ≥ deg(G )− (2g − 2) + m +

∑n
i=1(pi − ni ).
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Weierstrass semigroup and AG codes

A similar improvement can be made to bounds for the generalized
Hamming distance of AG codes.
Let r be a positive integer, and C ⊂ Fm a linear code. Let U be a subcode
of C , the support of U is defined as
supp(U) := {i | ci 6= 0 for some (c1, . . . , cm) ∈ U}.
The r -th generalized Hamming distance of C is defined as

dr (C ) = min{#(supp(U)) | U is a subcode of C , dim(U) = r}.
Let s be a positive integer and set
γs := {min(deg(A)) | A a divisor with dim L(A) = s}. The sequence
γ1, γ2, ... is the gonality sequence of X ; γ1 = 0 and γ2 is the gonality of X .
This concept was introduced by Yang, Kummar and Stichtenoth in a paper
where they proved the following result.
Theorem. The r -th generalized Hamming distance of an AG code of
length n defined over X satisfies
i) dr (CL(D,G ) ≥ n − deg(G ) + γr ;
ii) dr (CΩ(D,G ) ≥ deg(G )− (2g − 2) + γr .
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Ćıcero Carvalho (UFU) Inflection points on curves and coding theory 7 / 12



Weierstrass semigroup and AG codes

A similar improvement can be made to bounds for the generalized
Hamming distance of AG codes.
Let r be a positive integer, and C ⊂ Fm a linear code. Let U be a subcode
of C , the support of U is defined as
supp(U) := {i | ci 6= 0 for some (c1, . . . , cm) ∈ U}.
The r -th generalized Hamming distance of C is defined as

dr (C ) = min{#(supp(U)) | U is a subcode of C , dim(U) = r}.
Let s be a positive integer and set
γs := {min(deg(A)) | A a divisor with dim L(A) = s}. The sequence
γ1, γ2, ... is the gonality sequence of X ; γ1 = 0 and γ2 is the gonality of X .
This concept was introduced by Yang, Kummar and Stichtenoth in a paper
where they proved the following result.
Theorem. The r -th generalized Hamming distance of an AG code of
length n defined over X satisfies
i) dr (CL(D,G ) ≥ n − deg(G ) + γr ;
ii) dr (CΩ(D,G ) ≥ deg(G )− (2g − 2) + γr .
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Ćıcero Carvalho (UFU) Inflection points on curves and coding theory 7 / 12



Weierstrass semigroup and AG codes

A similar improvement can be made to bounds for the generalized
Hamming distance of AG codes.
Let r be a positive integer, and C ⊂ Fm a linear code. Let U be a subcode
of C , the support of U is defined as
supp(U) := {i | ci 6= 0 for some (c1, . . . , cm) ∈ U}.
The r -th generalized Hamming distance of C is defined as

dr (C ) = min{#(supp(U)) | U is a subcode of C , dim(U) = r}.
Let s be a positive integer and set
γs := {min(deg(A)) | A a divisor with dim L(A) = s}. The sequence
γ1, γ2, ... is the gonality sequence of X ; γ1 = 0 and γ2 is the gonality of X .
This concept was introduced by Yang, Kummar and Stichtenoth in a paper
where they proved the following result.
Theorem. The r -th generalized Hamming distance of an AG code of
length n defined over X satisfies
i) dr (CL(D,G ) ≥ n − deg(G ) + γr ;
ii) dr (CΩ(D,G ) ≥ deg(G )− (2g − 2) + γr .
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Weierstrass semigroup and AG codes

Using the concept of pure gaps we were able to prove the following result.

Theorem. Assume that (n1, . . . , nm) and (p1, . . . , pm) are pure gaps of H,
with ni ≤ pi for all i = 1, . . . ,m, and that (q1, . . . , qm) is also a pure gap
whenever ni ≤ qi ≤ pi , for all i = 1, . . . ,m. Let G :=

∑m
i=1 piPi . Then:

i) dr (CL(D,G ) ≥ n − deg(G ) +
∑m

i=1(pi − ni ) + m + γr ;

ii)
dr (CΩ(D,G ) ≥ deg(G )−(2g−2)+γr+

∑m
i=1(pi−ni )+m−(

∑m
i=1(pi−ni )+m).

The last item can lead to an improvement because γr < γr+1 for all
positive integers r .

Thus the existence of pure gaps in H may lead to an improvement of the
bounds for the generalized Hamming distances of AG codes. Now we will
show that the existence of total inflection points in plane curves determine
the existence of pure gaps in certain Weierstrass semigroups.
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Total inflection points and pure gaps

Assume that X is a smooth plane, projective curve, of degree r > 4.

We say that P ∈ X is a total inflection point if the tangent line at P
intersects X only at P. In a work with T. Kato, we proved the following.

Theorem. Let P1, P2 and P3 be rational, total inflection points of X
which do not lie in a line. Then ((r − 4)r , 1, 1), (1, (r − 4)r , 1) and
(1, 1, (r − 4)r) are pure gaps of H(P1,P2,P3).

Theorem. Let P1, . . . ,Pm be total inflection points on X . Then
(s1r + α1, . . . , smr + αm) is a pure gap of H(P1, . . . ,Pm), whenever si , αi

are integers such that si ≥ 0, 1 ≤ αi ≤ r − 1− i −
∑m

j=1 sj , for all
i = 1, . . . ,m, and

∑m
j=1 sj ≤ r − 2−m.

Theorem. Let P,P1, . . . ,Pm ∈ X be rational points, with P a total
inflection point. Let 0 ≤ i < r − 3 and α1, . . . , αm be positive integers
such that

∑m
j=1 αj ≤ r − i − 3. Then (ir + 1, α1, . . . , αm) is a pure gap of

H(P,P1, . . . ,Pm).
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Total inflection points and pure gaps
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are integers such that si ≥ 0, 1 ≤ αi ≤ r − 1− i −
∑m

i=1 si , for all
i = 1, . . . ,m, and

∑m
i=1 si ≤ r − 2−m.

Application. Take X ⊂ P2(K ) the Hermitian curve of degree q + 1 defined
over F = GF (q2). Let s and m be positive integers such that
s + m ≤ q − 1; let P1, . . . ,Pm be distinct rational points of X .

Take s1 = s, s2 = · · · = sm = 0, from the above theorem we get that
(sr + α1, α2, . . . , αm) is a pure gap at H(P1, . . . ,Pm) whenever
1 ≤ αi ≤ q − i − s (i = 1, . . . ,m) (i.e. only have pure gaps “between”
(sr + 1, 1, . . . , 1) and (sr + q − 1− s, q − 2− s, . . . , q −m − s)).
Let G = (2sr + q− 1− s)P1 +

∑m
i=2(q− i − s)Pi and let D be the sum of

the other q3 + 1−m rational points of X . From the work together with F.
Torres we know that CΩ(D,G ) is an [q3 + 1−m, k , d ] code with

d ≥ 2s(q + 1) + m(2q − 2s − 1)−m2 − (q + 1)(q − 2).
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1 ≤ αi ≤ q − i − s (i = 1, . . . ,m) (i.e. only have pure gaps “between”
(sr + 1, 1, . . . , 1) and (sr + q − 1− s, q − 2− s, . . . , q −m − s)).
Let G = (2sr + q− 1− s)P1 +

∑m
i=2(q− i − s)Pi and let D be the sum of
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d ≥ 2s(q + 1) + m(2q − 2s − 1)−m2 − (q + 1)(q − 2).
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Ćıcero Carvalho (UFU) Inflection points on curves and coding theory 10 / 12



Total inflection points and pure gaps

Theorem. Let P1, . . . ,Pm be total inflection points on X . Then
(s1r + α1, . . . , smr + αm) is a pure gap of H(P1, . . . ,Pm), whenever si , αi

are integers such that si ≥ 0, 1 ≤ αi ≤ r − 1− i −
∑m

i=1 si , for all
i = 1, . . . ,m, and

∑m
i=1 si ≤ r − 2−m.

Application. Take X ⊂ P2(K ) the Hermitian curve of degree q + 1 defined
over F = GF (q2). Let s and m be positive integers such that
s + m ≤ q − 1; let P1, . . . ,Pm be distinct rational points of X .

Take s1 = s, s2 = · · · = sm = 0, from the above theorem we get that
(sr + α1, α2, . . . , αm) is a pure gap at H(P1, . . . ,Pm) whenever
1 ≤ αi ≤ q − i − s (i = 1, . . . ,m) (i.e. only have pure gaps “between”
(sr + 1, 1, . . . , 1) and (sr + q − 1− s, q − 2− s, . . . , q −m − s)).
Let G = (2sr + q− 1− s)P1 +

∑m
i=2(q− i − s)Pi and let D be the sum of

the other q3 + 1−m rational points of X . From the work together with F.
Torres we know that CΩ(D,G ) is an [q3 + 1−m, k, d ] code with

d ≥ 2s(q + 1) + m(2q − 2s − 1)−m2 − (q + 1)(q − 2).
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Total inflection points and pure gaps

So d ≥ 2s(q + 1) + m(2q − 2s − 1)−m2 − (q + 1)(q − 2)
and if we take s ≥ (q − 1)/2 then deg(G ) > 2g − 2 and
k = g + q3 − 2s(q + 1)− m(q − s) + m(m − 1)/2.

We compared CΩ(D,G ) with codes on the Hermitian curve supported on
one point and having the same dimension k , finding many situations where
CΩ(D,G ) has better parameters.

For example, asssume that q is odd and q ≥ 5, take m = s = (q − 1)/2.
Then CΩ(D,G ) is an [q3 + 1− (q − 1)/2, k , d ]-code with
k = q3 − (5q + 13)(q − 1)/8 e d ≥ q2/4 + q + 3/4.

Taking F = (q3 − (q2/8 + 3q/2− 5/8))P, where P is a rational point of
X and E is the sum of the other rational points, we get that CΩ(F ,E ) is
an [q3, k, d ′] code, where d ′ = q2/8 + 3q/2− 5/8 (from works by
Stichtenoth, Yang and Kummar) so that d − d ′ ≥ (q(q − 4) + 11)/8.
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