# Bounds for the number of Rational points on curves over finite fields

### Herivelto Borges Universidade de São Paulo-Brasill

Joint work with Nazar Arakelian

Workshop on Algebraic curves -Linz-Austria-2013

ICMC-USP-São Carlos

< ロ > < (回 > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < (( = ) > ) < ((

Herivelto Borges

## **Classical Bounds**

Let  $\mathcal{X}$  be a projective, irreducible, non-singular curve of genus g, defined over  $\mathbb{F}_q$ . If N is the number of  $\mathbb{F}_q$ -rational points of  $\mathcal{X}$  then

• Hasse-Weil-Serre:

$$|N - (q+1)| \le g \lfloor 2q^{1/2} \rfloor.$$

• "Zeta":

$$N_2 \le q^2 + 1 + 2gq - \frac{(N_1 - q - 1)^2}{q}$$

where  $N_r$  is the number of  $\mathbb{F}_{q^r}$ -rational points of  $\mathcal{X}$ .

• Stöhr-Voloch (baby version): If  $\mathcal{X}$  has a plane model of degree d, and a finite number of inflection points, then

$$N \le g - 1 + d(q + 2)/2.$$

#### Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

イロト イヨト イヨト イ

### Classical Bounds

Let  $\mathcal{X}$  be a projective, irreducible, non-singular curve of genus g, defined over  $\mathbb{F}_q$ . If N is the number of  $\mathbb{F}_q$ -rational points of  $\mathcal{X}$  then

• Hasse-Weil-Serre:

$$|N - (q+1)| \le g \lfloor 2q^{1/2} \rfloor.$$

• "Zeta": 
$$N_2 \le q^2 + 1 + 2gq - \frac{(N_1 - q - 1)^2}{g}$$

where  $N_r$  is the number of  $\mathbb{F}_{q^r}$ -rational points of  $\mathcal{X}$ .

• Stöhr-Voloch (baby version): If  $\mathcal{X}$  has a plane model of degree d, and a finite number of inflection points, then

$$N \le g - 1 + d(q + 2)/2.$$

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

イロト イボト イヨト イヨ

## **Classical Bounds**

Let  $\mathcal{X}$  be a projective, irreducible, non-singular curve of genus g, defined over  $\mathbb{F}_q$ . If N is the number of  $\mathbb{F}_q$ -rational points of  $\mathcal{X}$  then

• Hasse-Weil-Serre:

$$|N - (q+1)| \le g \lfloor 2q^{1/2} \rfloor.$$

• "Zeta":  

$$N_2 \le q^2 + 1 + 2gq - \frac{(N_1 - q - 1)^2}{g}$$

where  $N_r$  is the number of  $\mathbb{F}_{q^r}$ -rational points of  $\mathcal{X}$ .

• Stöhr-Voloch (baby version): If  $\mathcal{X}$  has a plane model of degree d, and a finite number of inflection points, then

$$N \le g - 1 + d(q+2)/2.$$

イロト イボト イヨト イヨ

ICMC-USP-São Carlos

Herivelto Borges

Let  $\mathcal{X}$  be a proj. irred. smooth curve of genus g defined over  $\mathbb{F}_q$ . Associted to a non-degenerated morphism  $\phi = (f_0 : \ldots : f_n) : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$ , there exists a base-point-free linear series, of dimension n and degree d, given by

$$\mathcal{D} = \left\{ div \left( \sum_{i=0}^{n} a_i f_i \right) + E \mid a_0, ..., a_n \in \mathbb{K} \right\},\$$

where

$$E := \sum_{P \in \mathcal{X}} e_P P, \text{ with } e_P = -\min\{v_P(f_0), ..., v_P(f_n)\}$$

### and $d = \deg E$

#### Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

(日) (三)

Let  $\mathcal{X}$  be a proj. irred. smooth curve of genus g defined over  $\mathbb{F}_q$ . Associted to a non-degenerated morphism  $\phi = (f_0 : \ldots : f_n) : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$ , there exists a base-point-free linear series, of dimension n and degree d, given by

$$\mathcal{D} = \left\{ div \left( \sum_{i=0}^{n} a_i f_i \right) + E \mid a_0, ..., a_n \in \mathbb{K} \right\},\$$

where

$$E := \sum_{P \in \mathcal{X}} e_P P, \text{ with } e_P = -\min\{v_P(f_0), ..., v_P(f_n)\}$$

### and $d = \deg E$

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

< ロ > < (回 > ) < (( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > )

Let  $\mathcal{X}$  be a proj. irred. smooth curve of genus g defined over  $\mathbb{F}_q$ . Associted to a non-degenerated morphism  $\phi = (f_0 : \ldots : f_n) : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$ , there exists a base-point-free linear series, of dimension n and degree d, given by

$$\mathcal{D} = \left\{ div\left(\sum_{i=0}^{n} a_i f_i\right) + E \mid a_0, ..., a_n \in \mathbb{K} \right\},\$$

where

$$E := \sum_{P \in \mathcal{X}} e_P P, \quad \text{with } e_P = -\min\{v_P(f_0), ..., v_P(f_n)\}$$

and  $d = \deg E$ 

ICMC-USP-São Carlos

< ロ > < (回 > ) < (( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > )

#### Herivelto Borges

Let  $\mathcal{X}$  be a proj. irred. smooth curve of genus g defined over  $\mathbb{F}_q$ . Associted to a non-degenerated morphism  $\phi = (f_0 : \ldots : f_n) : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$ , there exists a base-point-free linear series, of dimension n and degree d, given by

$$\mathcal{D} = \left\{ div \left( \sum_{i=0}^{n} a_i f_i \right) + E \mid a_0, ..., a_n \in \mathbb{K} \right\},\$$

where

$$E := \sum_{P \in \mathcal{X}} e_P P, \text{ with } e_P = -\min\{v_P(f_0), ..., v_P(f_n)\}$$

and  $d = \deg E$ 

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

・日本 ・ヨト

For each point  $P \in \mathcal{X}$ , we have

$$\phi(P) = ((t^{e_P} f_0)(P) : \dots : (t^{e_P} f_n)(P)),$$

where  $t \in \mathbb{K}(\mathcal{X})$  is a local parameter at P. For each point  $P \in \mathcal{X}$ , we define a sequence of non-negative integers

 $(j_0(P), ..., j_n(P))$ 

where  $j_0(P) < ... < j_n(P)$ , are called  $(\mathcal{D}, P)$  orders. This can be obtained from

$$\{j_0(P), \cdots, j_n(P)\} := \{v_P(D) : D \in \mathcal{D}\}.$$

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

For each point  $P \in \mathcal{X}$ , we have

$$\phi(P) = ((t^{e_P} f_0)(P) : \dots : (t^{e_P} f_n)(P)),$$

where  $t \in \mathbb{K}(\mathcal{X})$  is a local parameter at P. For each point  $P \in \mathcal{X}$ , we define a sequence of non-negative integers

$$(j_0(P), \dots, j_n(P))$$

where  $j_0(P) < ... < j_n(P)$ , are called  $(\mathcal{D}, P)$  orders. This can be obtained from

$$\{j_0(P), \cdots, j_n(P)\} := \{v_P(D) : D \in \mathcal{D}\}.$$

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

For each point  $P \in \mathcal{X}$ , we have

$$\phi(P) = ((t^{e_P} f_0)(P) : \dots : (t^{e_P} f_n)(P)),$$

where  $t \in \mathbb{K}(\mathcal{X})$  is a local parameter at P. For each point  $P \in \mathcal{X}$ , we define a sequence of non-negative integers

$$(j_0(P), ..., j_n(P))$$

where  $j_0(P) < ... < j_n(P)$ , are called  $(\mathcal{D}, P)$  orders. This can be obtained from

$$\{j_0(P), \cdots, j_n(P)\} := \{v_P(D) : D \in \mathcal{D}\}.$$

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

For each point  $P \in \mathcal{X}$ , we have

$$\phi(P) = ((t^{e_P} f_0)(P) : \dots : (t^{e_P} f_n)(P)),$$

where  $t \in \mathbb{K}(\mathcal{X})$  is a local parameter at P. For each point  $P \in \mathcal{X}$ , we define a sequence of non-negative integers

$$(j_0(P), ..., j_n(P))$$

where  $j_0(P) < ... < j_n(P)$ , are called  $(\mathcal{D}, P)$  orders. This can be obtained from

$$\{j_0(P), \cdots, j_n(P)\} := \{v_P(D) : D \in \mathcal{D}\}.$$

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

• We define  $L_i(P)$  to be the intersection of all hyperplanes H of  $\mathbb{P}^n(\mathbb{K})$  such that  $v_P(\phi^*(H)) \ge j_{i+1}(P)$ . Therefore, we have

 $L_0(P) \subset L_1(P) \subset \cdots \subset L_{n-1}(P).$ 

- $L_i(P)$  is called *i*-th osculating space at *P*.
- Note that  $L_0 = \{P\}, L_1(P)$  is the tangent line at P, etc.
- $L_{n-1}(P)$  is the osculating hyperplane.

ICMC-USP-São Carlos

Herivelto Borges

• We define  $L_i(P)$  to be the intersection of all hyperplanes H of  $\mathbb{P}^n(\mathbb{K})$  such that  $v_P(\phi^*(H)) \ge j_{i+1}(P)$ . Therefore, we have

$$L_0(P) \subset L_1(P) \subset \cdots \subset L_{n-1}(P).$$

- $L_i(P)$  is called *i*-th osculating space at P.
- Note that  $L_0 = \{P\}, L_1(P)$  is the tangent line at P, etc.
- $L_{n-1}(P)$  is the osculating hyperplane.

ICMC-USP-São Carlos

Herivelto Borges

• We define  $L_i(P)$  to be the intersection of all hyperplanes H of  $\mathbb{P}^n(\mathbb{K})$  such that  $v_P(\phi^*(H)) \ge j_{i+1}(P)$ . Therefore, we have

$$L_0(P) \subset L_1(P) \subset \cdots \subset L_{n-1}(P).$$

ICMC-USP-São Carlos

- $L_i(P)$  is called *i*-th osculating space at P.
- Note that  $L_0 = \{P\}, L_1(P)$  is the tangent line at P, etc.
- $L_{n-1}(P)$  is the osculating hyperplane.

Herivelto Borges

• We define  $L_i(P)$  to be the intersection of all hyperplanes H of  $\mathbb{P}^n(\mathbb{K})$  such that  $v_P(\phi^*(H)) \ge j_{i+1}(P)$ . Therefore, we have

$$L_0(P) \subset L_1(P) \subset \cdots \subset L_{n-1}(P).$$

イロト イヨト イヨト イ

ICMC-USP-São Carlos

- $L_i(P)$  is called *i*-th osculating space at P.
- Note that  $L_0 = \{P\}, L_1(P)$  is the tangent line at P, etc.
- $L_{n-1}(P)$  is the osculating hyperplane.

Herivelto Borges

# Via Wronskianos

#### Theorem

Let t be a local parameter at a point  $P \in \mathcal{X}$ . Suppose that each coordinate  $f_i$  of the morphism  $\phi = (f_0 : ... : f_n)$  is regular at P. If  $j_0, ..., j_{s-1}$  are the s first  $(\mathcal{D}, P)$ -orders of P, then  $j_s$  is the smallest integer such that the points

$$((D_t^{(j_s)}f_0)(P):...:(D_t^{(j_s)}f_n)(P)),$$

ICMC-USP-São Carlos

where i = 0, ..., s are linearly independent over  $\mathbb{K}$ . Moreover,  $L_i(P)$ , the *i*-th osculating space at P is generated by these points.

Herivelto Borges

# Via Wronskianos

#### Theorem

Let t be a local parameter at a point  $P \in \mathcal{X}$ . Suppose that each coordinate  $f_i$  of the morphism  $\phi = (f_0 : ... : f_n)$  is regular at P. If  $j_0, ..., j_{s-1}$  are the s first  $(\mathcal{D}, P)$ -orders of P, then  $j_s$  is the smallest integer such that the points

$$((D_t^{(j_s)}f_0)(P):...:(D_t^{(j_s)}f_n)(P)),$$

ICMC-USP-São Carlos

where i = 0, ..., s are linearly independent over  $\mathbb{K}$ . Moreover,  $L_i(P)$ , the *i*-th osculating space at P is generated by these points.

Herivelto Borges

# Via Wronskianos

#### Theorem

Let t be a local parameter at a point  $P \in \mathcal{X}$ . Suppose that each coordinate  $f_i$  of the morphism  $\phi = (f_0 : ... : f_n)$  is regular at P. If  $j_0, ..., j_{s-1}$  are the s first  $(\mathcal{D}, P)$ -orders of P, then  $j_s$  is the smallest integer such that the points

$$((D_t^{(j_s)}f_0)(P):...:(D_t^{(j_s)}f_n)(P)),$$

ICMC-USP-São Carlos

where i = 0, ..., s are linearly independent over  $\mathbb{K}$ . Moreover,  $L_i(P)$ , the *i*-th osculating space at P is generated by these points.

Herivelto Borges

## Via Wronskians

The order sequence  $(j_0(P), ..., j_n(P))$  is the same for all but finitely many points  $P \in \mathcal{X}$ . This sequence is called the order sequence of  $\mathcal{X}$  with respect to  $\mathcal{D}$ , and it is denoted by

 $(\epsilon_0,...,\epsilon_n).$ 

This sequence is also obtained as the minimal sequence (in lexicographic order), for which

 $\det(D_t^{(\epsilon_i)}f_j)_{0\leq i,j\leq n}\neq 0,$ 

where  $t \in \mathbb{K}(\mathcal{X})$  is a separating variable. A curve  $\mathcal{X}$  is called **classical** w.r.t.  $\phi$  (or  $\mathcal{D}$ ) if  $(\epsilon_0, \epsilon_1, ..., \epsilon_n) = (0, 1, ..., n)$ . Otherwise,  $\mathcal{X}$  is called **non-classical**.

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

## Via Wronskians

The order sequence  $(j_0(P), ..., j_n(P))$  is the same for all but finitely many points  $P \in \mathcal{X}$ . This sequence is called the order sequence of  $\mathcal{X}$  with respect to  $\mathcal{D}$ , and it is denoted by

 $(\epsilon_0,...,\epsilon_n).$ 

This sequence is also obtained as the minimal sequence (in lexicographic order), for which

$$\det(D_t^{(\epsilon_i)}f_j)_{0 \le i,j \le n} \ne 0,$$

イロト イボト イヨト イヨ

ICMC-USP-São Carlos

where  $t \in \mathbb{K}(\mathcal{X})$  is a separating variable. A curve  $\mathcal{X}$  is called classical w.r.t.  $\phi$  (or  $\mathcal{D}$ ) if  $(\epsilon_0, \epsilon_1, ..., \epsilon_n) = (0, 1, ..., n)$ . Otherwise,  $\mathcal{X}$  is called **non-classical**.

## Via Wronskians

The order sequence  $(j_0(P), ..., j_n(P))$  is the same for all but finitely many points  $P \in \mathcal{X}$ . This sequence is called the order sequence of  $\mathcal{X}$  with respect to  $\mathcal{D}$ , and it is denoted by

 $(\epsilon_0,...,\epsilon_n).$ 

This sequence is also obtained as the minimal sequence (in lexicographic order), for which

$$\det(D_t^{(\epsilon_i)}f_j)_{0\leq i,j\leq n}\neq 0,$$

▲ 同 ▶ → ● ▶ -

ICMC-USP-São Carlos

where  $t \in \mathbb{K}(\mathcal{X})$  is a separating variable. A curve  $\mathcal{X}$  is called **classical** w.r.t.  $\phi$  (or  $\mathcal{D}$ ) if  $(\epsilon_0, \epsilon_1, ..., \epsilon_n) = (0, 1, ..., n)$ . Otherwise,  $\mathcal{X}$  is called **non-classical**.

Suppose  $\phi$  is defined over  $\mathbb{F}_q$ , i.e.,  $f_i \in \mathbb{F}_q(\mathcal{X})$  for all i = 0, ..., n. The sequence of non-negative integers  $(\nu_0, ..., \nu_{n-1})$ , chosen minimally (lex order) such that

$$\det \begin{pmatrix} f_0^q & \dots & f_n^q \\ D_t^{(\nu_0)} f_0 & \dots & D_t^{(\nu_0)} f_n \\ \vdots & \dots & \vdots \\ D_t^{(\nu_{n-1})} f_0 & \dots & D_t^{(\nu_{n-1})} f_n \end{pmatrix} \neq 0,$$

where t is a separating variable of  $\mathbb{F}_q(\mathcal{X})$ , is called  $\mathbb{F}_q$ -order sequence of  $\mathcal{X}$  with respect to  $\phi$ .

イロト イヨト イヨト イ

ICMC-USP-São Carlos

Bounds for the number of Rational points on curves over finite fields

### It is known that

$$\{\nu_0,...,\nu_{n-1}\} = \{\epsilon_0,...,\epsilon_n\} \backslash \{\epsilon_I\},$$

for some  $I \in \{1, ..., n\}$ . The  $\nu_i$ 's are called  $\mathbb{F}_q$ -Frobenius orders. If

$$(\nu_0, ..., \nu_{n-1}) = (0, ..., n-1),$$

then the curve  $\mathcal{X}$  is called  $\mathbb{F}_q$ -Frobenius classical w.r.t.  $\phi$ .Otherwise,  $\mathcal{X}$  is called  $\mathbb{F}_q$ -Frobenius non-classical.

ICMC-USP-São Carlos

Herivelto Borges

### It is known that

$$\{\nu_0,...,\nu_{n-1}\} = \{\epsilon_0,...,\epsilon_n\} \setminus \{\epsilon_I\},\$$

for some  $I \in \{1,...,n\}.$  The  $\nu_i$  's are called  $\mathbb{F}_q\text{-}\textsc{Frobenius}$  orders. If

$$(\nu_0, ..., \nu_{n-1}) = (0, ..., n-1),$$

then the curve  $\mathcal{X}$  is called  $\mathbb{F}_q$ -Frobenius classical w.r.t.  $\phi$ .Otherwise,  $\mathcal{X}$  is called  $\mathbb{F}_q$ -Frobenius non-classical.

ICMC-USP-São Carlos

・ロト ・日子・ ・ ヨト・・

Herivelto Borges

### It is known that

$$\{\nu_0,...,\nu_{n-1}\} = \{\epsilon_0,...,\epsilon_n\} \setminus \{\epsilon_I\},\$$

for some  $I \in \{1,...,n\}.$  The  $\nu_i$  's are called  $\mathbb{F}_q\text{-}\textsc{Frobenius}$  orders. If

$$(\nu_0, ..., \nu_{n-1}) = (0, ..., n-1),$$

イロト イロト イヨト イ

ICMC-USP-São Carlos

then the curve  $\mathcal{X}$  is called  $\mathbb{F}_q$ -Frobenius classical w.r.t.  $\phi$ . Otherwise,  $\mathcal{X}$  is called  $\mathbb{F}_q$ -Frobenius non-classical

Herivelto Borges

### It is known that

$$\{\nu_0,...,\nu_{n-1}\} = \{\epsilon_0,...,\epsilon_n\} \setminus \{\epsilon_I\},\$$

for some  $I \in \{1,...,n\}.$  The  $\nu_i$  's are called  $\mathbb{F}_q\text{-}\textsc{Frobenius}$  orders. If

$$(\nu_0, ..., \nu_{n-1}) = (0, ..., n-1),$$

ICMC-USP-São Carlos

then the curve  $\mathcal{X}$  is called  $\mathbb{F}_q$ -Frobenius classical w.r.t.  $\phi$ . Otherwise,  $\mathcal{X}$  is called  $\mathbb{F}_q$ -Frobenius non-classical.

Herivelto Borges

#### Theorem

Let  $\mathcal{X}$  be a projective, irreducible smooth curve of genus g, defined over  $\mathbb{F}_q$ . If  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  is a non-degenerated morphism defined over  $\mathbb{F}_q$ , with  $\mathbb{F}_q$ -Frobenius orders  $(\nu_0, ..., \nu_{n-1})$ , then

$$N_1 \le \frac{(\nu_1 + \dots + \nu_{n-1})(2g - 2) + (q + n)d}{n},$$

where d is the degree of  $\mathcal D$  associated to  $\phi$ .

**remark**. Over the last twenty years, the Stöhr-Voloch Theory has been used as a key ingredient for many results related to points on curves over finite fields.

ICMC-USP-São Carlos

#### Herivelto Borges

#### Theorem

Let  $\mathcal{X}$  be a projective, irreducible smooth curve of genus g, defined over  $\mathbb{F}_q$ . If  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  is a non-degenerated morphism defined over  $\mathbb{F}_q$ , with  $\mathbb{F}_q$ -Frobenius orders  $(\nu_0, ..., \nu_{n-1})$ , then

$$N_1 \le \frac{(\nu_1 + \dots + \nu_{n-1})(2g - 2) + (q + n)d}{n},$$

where d is the degree of  $\mathcal D$  associated to  $\phi$ .

**remark**. Over the last twenty years, the Stöhr-Voloch Theory has been used as a key ingredient for many results related to points on curves over finite fields.

ICMC-USP-São Carlos

#### Herivelto Borges

#### Theorem

Let  $\mathcal{X}$  be a projective, irreducible smooth curve of genus g, defined over  $\mathbb{F}_q$ . If  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  is a non-degenerated morphism defined over  $\mathbb{F}_q$ , with  $\mathbb{F}_q$ -Frobenius orders  $(\nu_0, ..., \nu_{n-1})$ , then

$$N_1 \le \frac{(\nu_1 + \dots + \nu_{n-1})(2g - 2) + (q + n)d}{n},\tag{1}$$

where d is the degree of  $\mathcal{D}$  associated to  $\phi$ .

**remark**. Over the last twenty years, the Stöhr-Voloch Theory has been used as a key ingredient for many results related to points on curves over finite fields.

#### Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

イロト イヨト イヨト イヨ

#### Theorem

Let  $\mathcal{X}$  be a projective, irreducible smooth curve of genus g, defined over  $\mathbb{F}_q$ . If  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  is a non-degenerated morphism defined over  $\mathbb{F}_q$ , with  $\mathbb{F}_q$ -Frobenius orders  $(\nu_0, ..., \nu_{n-1})$ , then

$$N_1 \le \frac{(\nu_1 + \dots + \nu_{n-1})(2g - 2) + (q + n)d}{n},\tag{1}$$

ICMC-USP-São Carlos

where d is the degree of  $\mathcal{D}$  associated to  $\phi$ .

**remark**. Over the last twenty years, the Stöhr-Voloch Theory has been used as a key ingredient for many results related to points on curves over finite fields.

#### Herivelto Borges

#### Theorem

Let  $\mathcal{X}$  be a projective, irreducible smooth curve of genus g, defined over  $\mathbb{F}_q$ . If  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  is a non-degenerated morphism defined over  $\mathbb{F}_q$ , with  $\mathbb{F}_q$ -Frobenius orders  $(\nu_0, ..., \nu_{n-1})$ , then

$$N_1 \le \frac{(\nu_1 + \dots + \nu_{n-1})(2g - 2) + (q + n)d}{n},\tag{1}$$

ICMC-USP-São Carlos

where d is the degree of  $\mathcal{D}$  associated to  $\phi$ .

**remark**. Over the last twenty years, the Stöhr-Voloch Theory has been used as a key ingredient for many results related to points on curves over finite fields.

Fix positive integers u and m, with m > u and mdc(u, m) = 1. The ideia is to estimate the number of points  $P \in \mathcal{X}$  such that the line defined by  $\Phi_{q^n}(\phi(P))$  and  $\Phi_{q^m}(\phi(P))$ , intersects the (n-2)-th osculating space of  $\phi(\mathcal{X})$  at P. Let  $\mathcal{D}$  be the linear series associated to  $\phi$  and t be a local parameter at P. We know that the (n-2)-th osculating hyperplane at P is generated by

$$((D_t^{(j_i)}f_0)(P):...:(D_t^{(j_i)}f_n)(P)), \quad i=0,...,n-2,$$

where t local parameter at P, and  $j_0, \ldots, j_n$  are the  $(\mathcal{D}, P)$ -orders.

ICMC-USP-São Carlos

Herivelto Borges

Fix positive integers u and m, with m > u and mdc(u, m) = 1. The ideia is to estimate the number of points  $P \in \mathcal{X}$  such that the line defined by  $\Phi_{q^u}(\phi(P))$  and  $\Phi_{q^m}(\phi(P))$ , intersects the (n-2)-th osculating space of  $\phi(\mathcal{X})$  at P. Let  $\mathcal{D}$  be the linear series associated to  $\phi$  and t be a local parameter at P. We know that the (n-2)-th osculating hyperplane at P is generated by

 $((D_t^{(j_i)}f_0)(P):...:(D_t^{(j_i)}f_n)(P)), \quad i=0,...,n-2,$ 

where t local parameter at P, and  $j_0, \ldots, j_n$  are the  $(\mathcal{D}, P)$ -orders.

ICMC-USP-São Carlos

Bounds for the number of Rational points on curves over finite fields

Fix positive integers u and m, with m > u and mdc(u, m) = 1. The ideia is to estimate the number of points  $P \in \mathcal{X}$  such that the line defined by  $\Phi_{q^u}(\phi(P))$  and  $\Phi_{q^m}(\phi(P))$ , intersects the (n-2)-th osculating space of  $\phi(\mathcal{X})$  at P. Let  $\mathcal{D}$  be the linear series associated to  $\phi$  and t be a local parameter at P. We know that the (n-2)-th osculating hyperplane at P is generated by

 $((D_t^{(j_i)}f_0)(P):...:(D_t^{(j_i)}f_n)(P)), \quad i=0,...,n-2,$ 

where t local parameter at P, and  $j_0, \ldots, j_n$  are the  $(\mathcal{D}, P)$ -orders.

ICMC-USP-São Carlos

イロト イヨト イヨト イ

Bounds for the number of Rational points on curves over finite fields

Fix positive integers u and m, with m > u and mdc(u, m) = 1. The ideia is to estimate the number of points  $P \in \mathcal{X}$  such that the line defined by  $\Phi_{q^u}(\phi(P))$  and  $\Phi_{q^m}(\phi(P))$ , intersects the (n-2)-th osculating space of  $\phi(\mathcal{X})$  at P. Let  $\mathcal{D}$  be the linear series associated to  $\phi$  and t be a local parameter at P. We know that the (n-2)-th osculating hyperplane at P is generated by

$$((D_t^{(j_i)}f_0)(P):...:(D_t^{(j_i)}f_n)(P)), \quad i=0,...,n-2,$$

where t local parameter at P, and  $j_0, \ldots, j_n$  are the  $(\mathcal{D}, P)$ -orders.

ICMC-USP-São Carlos

It is easy to see that P satisfies the geometric properties above if and only if

$$\det \begin{pmatrix} f_0(P)^{q^m} & f_1(P)^{q^m} & \dots & f_n(P)^{q^m} \\ f_0(P)^{q^u} & f_1(P)^{q^u} & \dots & f_n(P)^{q^u} \\ (D_t^{(j_0)}f_0)(P) & (D_t^{(j_0)}f_1)(P) & \dots & (D_t^{(j_0)}f_n)(P) \\ \vdots & \vdots & \dots & \vdots \\ (D_t^{(j_{n-2})}f_0)(P) & (D_t^{(j_{n-2})}f_1)(P) & \dots & (D_t^{(j_{n-2})}f_n)(P) \end{pmatrix} = 0.$$

ICMC-USP-São Carlos

・ロト ・日下・ ・ヨト

Herivelto Borges

This leads us to study the following functions

$$\mathcal{A}_{t}^{\rho_{0},\dots,\rho_{n-2}} := \det \begin{pmatrix} f_{0}^{q^{m}} & f_{1}^{q^{m}} & \dots & f_{n}^{q^{m}} \\ f_{0}^{q^{u}} & f_{1}^{q^{u}} & \dots & f_{n}^{q^{u}} \\ D_{t}^{(\rho_{0})} f_{0} & D_{t}^{(\rho_{0})} f_{1} & \dots & D_{t}^{(\rho_{0})} f_{n} \\ \vdots & \vdots & \dots & \vdots \\ D_{t}^{(\rho_{n-2})} f_{0} & D_{t}^{(\rho_{n-2})} f_{1} & \dots & D_{t}^{(\rho_{n-2})} f_{n} \end{pmatrix}$$

$$(2)$$

in  $\mathbb{F}_q(\mathcal{X})$ , where  $t \in \mathbb{F}_q(\mathcal{X})$  is a separating variable, and  $\rho_0, \rho_1, \cdots, \rho_{n-2}$  are non-negative integers. It can be shown that there exist non-zero function in  $\mathbb{F}_q(\mathcal{X})$  of the above type.

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

▲ 同 ▶ → ( 三 ▶ )

This leads us to study the following functions

$$\mathcal{A}_{t}^{\rho_{0},\dots,\rho_{n-2}} := \det \begin{pmatrix} f_{0}^{q^{m}} & f_{1}^{q^{m}} & \dots & f_{n}^{q^{m}} \\ f_{0}^{q^{u}} & f_{1}^{q^{u}} & \dots & f_{n}^{q^{u}} \\ D_{t}^{(\rho_{0})} f_{0} & D_{t}^{(\rho_{0})} f_{1} & \dots & D_{t}^{(\rho_{0})} f_{n} \\ \vdots & \vdots & \dots & \vdots \\ D_{t}^{(\rho_{n-2})} f_{0} & D_{t}^{(\rho_{n-2})} f_{1} & \dots & D_{t}^{(\rho_{n-2})} f_{n} \end{pmatrix}$$

$$(2)$$

in  $\mathbb{F}_q(\mathcal{X})$ , where  $t \in \mathbb{F}_q(\mathcal{X})$  is a separating variable, and  $\rho_0, \rho_1, \cdots, \rho_{n-2}$  are non-negative integers. It can be shown that there exist non-zero function in  $\mathbb{F}_q(\mathcal{X})$  of the above type.

ICMC-USP-São Carlos

Herivelto Borges

Let  $0 \leq \kappa_0 < ... < \kappa_{n-2}$  be the smallest sequnce (lex order) such that  $\mathcal{A}_t^{\rho_0,...,\rho_{n-2}} \neq 0$ . The  $\kappa_i$ 's will be called  $(q^u, q^m)$ -Frobenius orders of  $\mathcal{X}$  w.r.t.  $\phi$ . If  $\kappa_i = i$  for i = 0, 1, ..., n-2, we say that the curve is  $(q^u, q^m)$ -Frobenius classical. Otherwise,  $\mathcal{X}$  is called  $(q^u, q^m)$ -Frobenius non-classical.

ICMC-USP-São Carlos

イロト イヨト イヨト イ

Herivelto Borges Bounds for the number of Rational points on curves over finite fields

Let  $0 \leq \kappa_0 < ... < \kappa_{n-2}$  be the smallest sequnce (lex order) such that  $\mathcal{A}_t^{\rho_0,...,\rho_{n-2}} \neq 0$ . The  $\kappa_i$ 's will be called  $(q^u, q^m)$ -Frobenius orders of  $\mathcal{X}$  w.r.t.  $\phi$ . If  $\kappa_i = i$  for i = 0, 1, ..., n-2, we say that the curve is  $(q^u, q^m)$ -Frobenius classical. Otherwise,  $\mathcal{X}$  is called  $(q^u, q^m)$ -Frobenius non-classical.

### Proposition

There exist integers I and J such that  $\{\kappa_0, ..., \kappa_{n-2}\} = \{\nu_0, ..., \nu_{n-1}\} \setminus \{\nu_I\} = \{\mu_0, ..., \mu_{n-1}\} \setminus \{\mu_J\}.$ 

ICMC-USP-São Carlos

Herivelto Borges

Herivelto Borges

Based on the previus proposition, one can see that the sequence  $(\kappa_0, ..., \kappa_{n-2})$  depends only on the morphism.



イロト イロト イヨト イ

Based on the previus proposition, one can see that the sequence  $(\kappa_0, ..., \kappa_{n-2})$  depends only on the morphism.

#### Definition

The  $(q^u, q^m)$ -Frobenius divisor de of  $\mathcal{D}$  is defined by  $T_{u,m} =$ 

 $div(\mathcal{A}_{t}^{\kappa_{0},...,\kappa_{n-2}}(f_{i}'s)) + (\kappa_{0} + \kappa_{1} + ... + \kappa_{n-2})div(dt) + (q^{m} + q^{u} + n - 1)E,$ 

where t is a separating variable of  $\mathbb{F}_q(\mathcal{X})$ ,  $E = \sum_{P \in \mathcal{X}} e_P P$  and  $e_P = -\min\{v_P(f_0), ..., v_P(f_n)\}.$ 

ICMC-USP-São Carlos

3

イロン イロン イヨン イヨン

Herivelto Borges

### The following can be checked

- The divisor  $T_{u,m}$  is effective.
- All the points  $P \in \mathcal{X}(\mathbb{F}_{q^r})$ , for r = u, m, m u are in the support of  $T_{u,m}$ .

Now the idea is to estimate the weights of the points

 $P \in \mathcal{X}(\mathbb{F}_{q^u}) \cup \mathcal{X}(\mathbb{F}_{q^m}) \cup \mathcal{X}(\mathbb{F}_{q^{m-u}})$ 

on the support of  $T_{u,m}$ 

ICMC-USP-São Carlos

Herivelto Borges

The following can be checked

- The divisor  $T_{u,m}$  is effective.
- All the points  $P \in \mathcal{X}(\mathbb{F}_{q^r})$ , for r = u, m, m u are in the support of  $T_{u,m}$ .

Now the idea is to estimate the weights of the points

 $P \in \mathcal{X}(\mathbb{F}_{q^u}) \cup \mathcal{X}(\mathbb{F}_{q^m}) \cup \mathcal{X}(\mathbb{F}_{q^{m-u}})$ 

on the support of  $T_{u,m}$ 

ICMC-USP-São Carlos

Herivelto Borges

The following can be checked

- The divisor  $T_{u,m}$  is effective.
- All the points  $P \in \mathcal{X}(\mathbb{F}_{q^r})$ , for r = u, m, m u are in the support of  $T_{u,m}$ .

Now the idea is to estimate the weights of the points

 $P \in \mathcal{X}(\mathbb{F}_{q^u}) \cup \mathcal{X}(\mathbb{F}_{q^m}) \cup \mathcal{X}(\mathbb{F}_{q^{m-u}})$ 

on the support of  $T_{u,m}$ 

ICMC-USP-São Carlos

Herivelto Borges

The following can be checked

- The divisor  $T_{u,m}$  is effective.
- All the points  $P \in \mathcal{X}(\mathbb{F}_{q^r})$ , for r = u, m, m u are in the support of  $T_{u,m}$ .

Now the idea is to estimate the weights of the points

$$P \in \mathcal{X}(\mathbb{F}_{q^u}) \cup \mathcal{X}(\mathbb{F}_{q^m}) \cup \mathcal{X}(\mathbb{F}_{q^{m-u}})$$

on the support of  $T_{u,m}$ .

ICMC-USP-São Carlos

< ロ > < (回 > ) < (( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > ) < ( □ > )

Herivelto Borges

# Estimating the weights of the points on $T_{u,m}$

### Proposition

Let  $P \in \mathcal{X}(\mathbb{F}_q)$  with  $(\mathcal{D}, P)$ -orders  $j_0, j_1, ..., j_n$ . Then

$$v_P(T_{u,m}) \ge q^u j_1 + \sum_{i=0}^{n-2} (j_{i+2} - \kappa_i),$$

and equality holds if and only if

$$\det\left(\binom{j_i}{\kappa_s}\right)_{2\leq i\leq n, 0\leq s\leq n-2}\not\equiv 0 \mod p.$$

ICMC-USP-São Carlos

イロト イロト イヨト イ

Herivelto Borges

# Estimating the weights

### Proposition

Let  $P \in \mathcal{X}$  be an arbitrary point with  $(\mathcal{D}, P)$ -orders  $j_0, j_1, ..., j_n$ . Then

$$v_P(T_{u,m}) \ge \sum_{i=0}^{n-2} (j_i - \kappa_i),$$

and if

$$\det\left(\binom{j_i}{\kappa_s}\right)_{0 \le i, s \le n-2} \equiv 0 \mod p,$$

strict inequality holds.

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

・日本 ・モン・

# Estimating the weights

#### Proposition

Let  $P \in \mathcal{X}$  be a point  $\mathbb{F}_{q^r}$ -rational, for r = u, m, with  $(\mathcal{D}, P)$ -orders  $j_0, j_1, ..., j_n$ . Then

$$v_P(T_{u,m}) \ge max \left\{ \sum_{i=1}^{n-1} (j_i - \kappa_{i-1}), 1 \right\}.$$

Moreover, if

$$\det\left(\binom{j_i}{\kappa_s}\right)_{1 \le i \le n-1, 0 \le s \le n-2} \equiv 0 \mod p \quad and \quad \sum_{i=1}^{n-1} (j_i - \kappa_{i-1}) \ge 1$$

then the strict inequality holds.

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

# Estimating the weights

### Proposition

Let  $P \in \mathcal{X}$  be a  $\mathbb{F}_{q^{(m-u)}}$ -rational point. Then  $v_P(T_{u,m}) \ge q^u$ .



ICMC-USP-São Carlos

Herivelto Borges

#### Theorem

Let  $\mathcal{X}$  be a projective, irreducible, smooth curve of genus g, defined over  $\mathbb{F}_q$ , and let  $N_r$  be its number of  $\mathbb{F}_{q^r}$  rational points, for r = 1, u, m, m - u. If  $q = 1, \dots, m$  (K) is a non-degenerated marphism, defined over  $\mathbb{F}_q$ , with  $(q^n, q^m)$ -Probenius orders (60, 61, ..., 6, ..., 6), then

 $(c_1 - c_u - c_m - c_{m-u})\mathbf{N}_1 + c_u\mathbf{N}_u + c_m\mathbf{N}_m + c_{m-u}\mathbf{N}_{m-u}$  $\leq (\kappa_1 + \dots + \kappa_{n-2})(2g - 2) + (q^m + q^u + n - 1)d, \qquad (3)$ 

where d is the degree of the linear series  $\mathcal{D}$  associated to  $\phi$ .

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

イロト イボト イヨト イヨ

#### Theorem

Let  $\mathcal{X}$  be a projective, irreducible, smooth curve of genus g, defined over  $\mathbb{F}_q$ , and let  $N_r$  be its number of  $\mathbb{F}_{q^r}$  rational points, for r = 1, u, m, m - u. If  $q = 1, \dots, m$  (K) is a non-degenerated marphism, defined over  $\mathbb{F}_q$ , with  $(q^n, q^m)$ -Probenius orders (60, 61, ..., 6, ..., 6), then

 $(c_1 - c_u - c_m - c_{m-u})\mathbf{N}_1 + c_u\mathbf{N}_u + c_m\mathbf{N}_m + c_{m-u}\mathbf{N}_{m-u}$  $\leq (\kappa_1 + \dots + \kappa_{n-2})(2g - 2) + (q^m + q^u + n - 1)d, \qquad (3)$ 

where d is the degree of the linear series  $\mathcal{D}$  associated to  $\phi$ .

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

イロト イボト イヨト イヨ

#### Theorem

Let  $\mathcal{X}$  be a projective, irreducible, smooth curve of genus g, defined over  $\mathbb{F}_q$ , and let  $N_r$  be its number of  $\mathbb{F}_{q^r}$  rational points, for r = 1, u, m, m - u. If  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  is a non-degenerated morphism, defined over  $\mathbb{F}_q$ , with  $(q^u, q^m)$ -Frobenius orders  $(\kappa_0, \kappa_1, ..., \kappa_{n-2})$ , then

 $(c_1 - c_u - c_m - c_{m-u})\mathbf{N}_1 + c_u\mathbf{N}_u + c_m\mathbf{N}_m + c_{m-u}\mathbf{N}_{m-u}$  $\leq (\kappa_1 + \dots + \kappa_{n-2})(2g-2) + (q^m + q^u + n - 1)d, \qquad (3)$ 

where d is the degree of the linear series  $\mathcal{D}$  associated to  $\phi$ .

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

<ロト <回ト < 回ト < 国

#### Theorem

Let  $\mathcal{X}$  be a projective, irreducible, smooth curve of genus g, defined over  $\mathbb{F}_q$ , and let  $N_r$  be its number of  $\mathbb{F}_{q^r}$  rational points, for r = 1, u, m, m - u. If  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  is a non-degenerated morphism, defined over  $\mathbb{F}_q$ , with  $(q^u, q^m)$ -Frobenius orders  $(\kappa_0, \kappa_1, ..., \kappa_{n-2})$ , then

$$(c_1 - c_u - c_m - c_{m-u})\mathbf{N_1} + c_u \mathbf{N_u} + c_m \mathbf{N_m} + c_{m-u} \mathbf{N_{m-u}}$$
  

$$\leq (\kappa_1 + \dots + \kappa_{n-2})(2g - 2) + (q^m + q^u + n - 1)d, \qquad (3)$$

where d is the degree of the linear series  $\mathcal{D}$  associated to  $\phi$ .

Herivelto Borges

ICMC-USP-São Carlos

▲御▶ ▲ 臣▶ ▲ 臣

#### Theorem

and  $c_r$  are the lower bound for the weights of  $P \in \mathcal{X}(\mathbb{F}_{q^r})$  on the divisor  $T_{u,m}$ , for r = 1, u, m, m - u. Moreover,  $c_{m-u} \ge q^u e$  $c_1 \ge q^u + 2(n-1)$ .

ICMC-USP-São Carlos

Herivelto Borges

### Corollary

Let  $\mathcal{X}$  be a projective, irreducible, smooth curve of genus g, defined over  $\mathbb{F}_q$ , and let  $N_r$  be its number of  $\mathbb{F}_{q^r}$  rational points, for r = 1, u, m, m - u. If  $\mathcal{X}$  is  $(q^n, q^n)$ -Probenius classical with a non-degenerated morphism  $\phi: \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  defined over  $\mathbb{F}_q$ , then

 $(n-1)\mathbf{N}_{\mathbf{u}} + (n-1)\mathbf{N}_{\mathbf{m}} + q^{u}\mathbf{N}_{\mathbf{m}-\mathbf{u}} \le (n-1)(n-2)(g-1)$ 

 $+(q^m+q^u+n-1)d,$ 

where d is the degree of the linear series  $\mathcal{D}$  associated to  $\phi$ .

Remark. p < d is sufficient condition for  $\mathcal{X}$  to be r  $(q^u, q^m)$ -Frobenius classical.

#### Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

### Corollary

Let  $\mathcal{X}$  be a projective, irreducible, smooth curve of genus g, defined over  $\mathbb{F}_q$ , and let  $N_r$  be its number of  $\mathbb{F}_{q^r}$  rational points, for r = 1, u, m, m - u. If  $\mathcal{X}$  is  $(q^n, q^n)$ -Probenius classical with a non-degenerated morphism  $\phi: \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  defined over  $\mathbb{F}_q$ , then

 $(n-1)\mathbf{N}_{\mathbf{u}} + (n-1)\mathbf{N}_{\mathbf{m}} + q^{u}\mathbf{N}_{\mathbf{m}-\mathbf{u}} \le (n-1)(n-2)(g-1)$ 

 $+(q^m+q^u+n-1)d,$ 

where d is the degree of the linear series  $\mathcal{D}$  associated to  $\phi$ .

Remark. p < d is sufficient condition for  $\mathcal{X}$  to be r  $(q^u, q^m)$ -Frobenius classical.

#### Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

### Corollary

Let  $\mathcal{X}$  be a projective, irreducible, smooth curve of genus g, defined over  $\mathbb{F}_q$ , and let  $N_r$  be its number of  $\mathbb{F}_{q^r}$  rational points, for r = 1, u, m, m - u. If  $\mathcal{X}$  is  $(q^u, q^m)$ -Frobenius classical w.r.t. a non-degenerated morphism  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  defined over  $\mathbb{F}_q$ , then

 $(n-1)\mathbf{N}_{\mathbf{u}} + (n-1)\mathbf{N}_{\mathbf{m}} + q^{u}\mathbf{N}_{\mathbf{m}-\mathbf{u}} \le (n-1)(n-2)(g-1)$ 

 $+(q^m+q^u+n-1)d,$ 

where d is the degree of the linear series  $\mathcal{D}$  associated to  $\phi$ .

Remark. p < d is sufficient condition for  $\mathcal{X}$  to be r  $(q^u, q^m)$ -Frobenius classical.

#### Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

### Corollary

Let  $\mathcal{X}$  be a projective, irreducible, smooth curve of genus g, defined over  $\mathbb{F}_q$ , and let  $N_r$  be its number of  $\mathbb{F}_{q^r}$  rational points, for r = 1, u, m, m - u. If  $\mathcal{X}$  is  $(q^u, q^m)$ -Frobenius classical w.r.t. a non-degenerated morphism  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  defined over  $\mathbb{F}_q$ , then

$$(n-1)\mathbf{N}_{\mathbf{u}} + (n-1)\mathbf{N}_{\mathbf{m}} + q^{u}\mathbf{N}_{\mathbf{m}-\mathbf{u}} \le (n-1)(n-2)(g-1)$$

$$+(q^m+q^u+n-1)d,$$

where d is the degree of the linear series  $\mathcal{D}$  associated to  $\phi$ .

Remark. p < d is sufficient condition for  $\mathcal{X}$  to be r  $(q^u, q^m)$ -Frobenius classical.

#### Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

### Corollary

Let  $\mathcal{X}$  be a projective, irreducible, smooth curve of genus g, defined over  $\mathbb{F}_q$ , and let  $N_r$  be its number of  $\mathbb{F}_{q^r}$  rational points, for r = 1, u, m, m - u. If  $\mathcal{X}$  is  $(q^u, q^m)$ -Frobenius classical w.r.t. a non-degenerated morphism  $\phi : \mathcal{X} \longrightarrow \mathbb{P}^n(\mathbb{K})$  defined over  $\mathbb{F}_q$ , then

$$(n-1)\mathbf{N}_{\mathbf{u}} + (n-1)\mathbf{N}_{\mathbf{m}} + q^{u}\mathbf{N}_{\mathbf{m}-\mathbf{u}} \le (n-1)(n-2)(g-1)$$

$$+(q^m+q^u+n-1)d,$$

where d is the degree of the linear series  $\mathcal{D}$  associated to  $\phi$ .

Remark. p < d is sufficient condition for  $\mathcal{X}$  to be r ( $q^u, q^m$ )-Frobenius classical.

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

### Some comparisons

Let  $\mathcal{X}$  be a plane curve of genus g and degree d given by f(x, y) = 0, where  $f(x, y) \in \mathbb{F}_q[x, y]$ . For  $s \in \{1, ..., d - 3\}$ , consider the Veronese morphism.

$$\phi_s = (1:x:y:x^2:\ldots:x^iy^j:\ldots:y^s):\mathcal{X}\longrightarrow \mathbb{P}^M(\mathbb{K}),$$

where  $i + j \leq s$ .

We know that the linear series  $\mathcal{D}_s$  associated to  $\phi_s$  is base-point-free, of degree sd and dimension

$$M = \binom{s+2}{2} - 1 = (s^2 + 3s)/2.$$

ICMC-USP-São Carlos

Herivelto Borges

### Some comparisons

Let  $\mathcal{X}$  be a plane curve of genus g and degree d given by f(x, y) = 0, where  $f(x, y) \in \mathbb{F}_q[x, y]$ . For  $s \in \{1, ..., d - 3\}$ , consider the Veronese morphism.

$$\phi_s = (1:x:y:x^2:\ldots:x^iy^j:\ldots:y^s):\mathcal{X}\longrightarrow \mathbb{P}^M(\mathbb{K}),$$

where  $i + j \leq s$ .

We know that the linear series  $\mathcal{D}_s$  associated to  $\phi_s$  is base-point-free, of degree sd and dimension

$$M = \binom{s+2}{2} - 1 = (s^2 + 3s)/2.$$

ICMC-USP-São Carlos

• □ ▶ • 4 □ ▶ • 3 □ ▶

Herivelto Borges

# Examples

If  $\mathcal{X}$  is  $(q^u, q^m)$ -Frobenius classical for  $\mathcal{D}_s$ , then the new result gives us

$$(M-1)\mathbf{N}_{\mathbf{u}} + (M-1)\mathbf{N}_{\mathbf{m}} + q^{u}\mathbf{N}_{\mathbf{m}-\mathbf{u}} \le (M-1)(M-2)(g-1)$$
  
+ $sd(q^{m}+q^{u}+M-1).$ 

If we have  $(q^u, q^m)$ -Frobenius classicality for  $\mathcal{D}_2$ , then the result yields

$$4N_u + 4N_m + q^u N_{m-u} \le 12(g-1) + 2d(q^m + q^u + 4).$$
 (4)

ICMC-USP-São Carlos

Herivelto Borges

# Examples

#### Example

Let  $\mathcal{X}$  be a curve of degree 6 over  $\mathbb{F}_3$  given by

r

$$\sum_{+s+k=6} x^r y^s z^k = 0.$$

We will estimate  $N_3$ , the number of  $\mathbb{F}_{27}$ -rational points of  $\mathcal{X}$ . We use the new bound for m = 3 e u = 1. It is known that  $N_1 = 0$  and  $N_2 = d(d + q^2 - 1)/2 = 42$ . We have

| Bound                  | $N_3 \leq$ |
|------------------------|------------|
| Hasse-Weil             | 131        |
| $St\"{o}rh$ - $Voloch$ | 96         |
| $New \ bound$          | 60         |

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

ICMC-USP-São Carlos

(5)

# Examples

#### Example

For p = 7 and  $q = p^3 = 343$  consider the a curva de Fermat

$$\mathcal{X}: x^{57} + y^{57} = z^{57}$$

over  $\mathbb{F}_{343}$ . It is known that  $N_1 = 16416$ , and it can be checked that the curve is  $(q, q^2)$ -Frobenius classical for  $\mathcal{D}_2$ . Thus we have

| Bound               | $N_2 \leq$ |       |
|---------------------|------------|-------|
| Hasse-Weil          | 1154882    |       |
| Zeta                | 1006356    | . (6) |
| Garcia-Stöhr-Voloch | 957233     |       |
| $new \ bound$       | 152874     |       |

Using computer, one can check that 152874 is the actual value

Herivelto Borges

Bounds for the number of Rational points on curves over finite fields

# The end

### Thanks!!



Herivelto Borges