Bounds for the number of Rational points on curves over finite fields

Herivelto Borges
Universidade de São Paulo-Brasill

Joint work with Nazar Arakelian

Workshop on Algebraic curves -Linz-Austria-2013

Classical Bounds

Let \mathcal{X} be a projective, irreducible, non-singular curve of genus g, defined over \mathbb{F}_{q}. If N is the number of \mathbb{F}_{q}-rational points of \mathcal{X} then

- Hasse-Weil-Serre:

$$
|N-(q+1)| \leq g\left\lfloor 2 q^{1 / 2}\right\rfloor .
$$

Classical Bounds

Let \mathcal{X} be a projective, irreducible, non-singular curve of genus g, defined over \mathbb{F}_{q}. If N is the number of \mathbb{F}_{q}-rational points of \mathcal{X} then

- Hasse-Weil-Serre:

$$
|N-(q+1)| \leq g\left\lfloor 2 q^{1 / 2}\right\rfloor .
$$

- "Zeta":

$$
N_{2} \leq q^{2}+1+2 g q-\frac{\left(N_{1}-q-1\right)^{2}}{g}
$$

where N_{r} is the number of $\mathbb{F}_{q^{r}}$-rational points of \mathcal{X}.

Classical Bounds

Let \mathcal{X} be a projective, irreducible, non-singular curve of genus g, defined over \mathbb{F}_{q}. If N is the number of \mathbb{F}_{q}-rational points of \mathcal{X} then

- Hasse-Weil-Serre:

$$
|N-(q+1)| \leq g\left\lfloor 2 q^{1 / 2}\right\rfloor .
$$

- "Zeta":

$$
N_{2} \leq q^{2}+1+2 g q-\frac{\left(N_{1}-q-1\right)^{2}}{g}
$$

where N_{r} is the number of $\mathbb{F}_{q^{r}}$-rational points of \mathcal{X}.

- Stöhr-Voloch (baby version): If \mathcal{X} has a plane model of degree d, and a finite number of inflection points, then

$$
N \leq g-1+d(q+2) / 2
$$

Morphisms vs. Linear Series

Let \mathcal{X} be a proj. irred. smooth curve of genus g defined over \mathbb{F}_{q}.

Morphisms vs. Linear Series

Let \mathcal{X} be a proj. irred. smooth curve of genus g defined over \mathbb{F}_{q}.Associted to a non-degenerated morphism $\phi=\left(f_{0}: \ldots: f_{n}\right): \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$, there exists a base-point-free linear series, of dimension n and degree d, given by

Morphisms vs. Linear Series

Let \mathcal{X} be a proj. irred. smooth curve of genus g defined over \mathbb{F}_{q}.Associted to a non-degenerated morphism $\phi=\left(f_{0}: \ldots: f_{n}\right): \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$, there exists a base-point-free linear series, of dimension n and degree d, given by

$$
\mathcal{D}=\left\{\operatorname{div}\left(\sum_{i=0}^{n} a_{i} f_{i}\right)+E \mid a_{0}, \ldots, a_{n} \in \mathbb{K}\right\}
$$

Morphisms vs. Linear Series

Let \mathcal{X} be a proj. irred. smooth curve of genus g defined over \mathbb{F}_{q}.Associted to a non-degenerated morphism
$\phi=\left(f_{0}: \ldots: f_{n}\right): \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$, there exists a base-point-free linear series, of dimension n and degree d, given by

$$
\mathcal{D}=\left\{\operatorname{div}\left(\sum_{i=0}^{n} a_{i} f_{i}\right)+E \mid a_{0}, \ldots, a_{n} \in \mathbb{K}\right\}
$$

where

$$
E:=\sum_{P \in \mathcal{X}} e_{P} P, \quad \text { with } e_{P}=-\min \left\{v_{P}\left(f_{0}\right), \ldots, v_{P}\left(f_{n}\right)\right\}
$$

and $d=\operatorname{deg} E$

Order sequence

For each point $P \in \mathcal{X}$, we have

$$
\phi(P)=\left(\left(t^{e_{P}} f_{0}\right)(P): \ldots:\left(t^{e_{P}} f_{n}\right)(P)\right)
$$

where $t \in \mathbb{K}(\mathcal{X})$ is a local parameter at P.

Order sequence

For each point $P \in \mathcal{X}$, we have

$$
\phi(P)=\left(\left(t^{e_{P}} f_{0}\right)(P): \ldots:\left(t^{e_{P}} f_{n}\right)(P)\right)
$$

where $t \in \mathbb{K}(\mathcal{X})$ is a local parameter at P.
For each point $P \in \mathcal{X}$, we define a sequence of non-negative integers

$$
\left(j_{0}(P), \ldots, j_{n}(P)\right)
$$

where $j_{0}(P)<\ldots<j_{n}(P)$, are called (\mathcal{D}, P) orders.

Order sequence

For each point $P \in \mathcal{X}$, we have

$$
\phi(P)=\left(\left(t^{e_{P}} f_{0}\right)(P): \ldots:\left(t^{e_{P}} f_{n}\right)(P)\right)
$$

where $t \in \mathbb{K}(\mathcal{X})$ is a local parameter at P.
For each point $P \in \mathcal{X}$, we define a sequence of non-negative integers

$$
\left(j_{0}(P), \ldots, j_{n}(P)\right)
$$

where $j_{0}(P)<\ldots<j_{n}(P)$, are called (\mathcal{D}, P) orders. This can be obtained from

$$
\left\{j_{0}(P), \cdots, j_{n}(P)\right\}:=\left\{v_{P}(D): D \in \mathcal{D}\right\} .
$$

Order sequence

For each point $P \in \mathcal{X}$, we have

$$
\phi(P)=\left(\left(t^{e_{P}} f_{0}\right)(P): \ldots:\left(t^{e_{P}} f_{n}\right)(P)\right)
$$

where $t \in \mathbb{K}(\mathcal{X})$ is a local parameter at P.
For each point $P \in \mathcal{X}$, we define a sequence of non-negative integers

$$
\left(j_{0}(P), \ldots, j_{n}(P)\right)
$$

where $j_{0}(P)<\ldots<j_{n}(P)$, are called (\mathcal{D}, P) orders. This can be obtained from

$$
\left\{j_{0}(P), \cdots, j_{n}(P)\right\}:=\left\{v_{P}(D): D \in \mathcal{D}\right\} .
$$

Order sequence

- We define $L_{i}(P)$ to be the intersection of all hyperplanes H of $\mathbb{P}^{n}(\mathbb{K})$ such that $v_{P}\left(\phi^{*}(H)\right) \geq j_{i+1}(P)$. Therefore, we have

$$
L_{0}(P) \subset L_{1}(P) \subset \cdots \subset L_{n-1}(P)
$$

Order sequence

- We define $L_{i}(P)$ to be the intersection of all hyperplanes H of $\mathbb{P}^{n}(\mathbb{K})$ such that $v_{P}\left(\phi^{*}(H)\right) \geq j_{i+1}(P)$. Therefore, we have

$$
L_{0}(P) \subset L_{1}(P) \subset \cdots \subset L_{n-1}(P)
$$

- $L_{i}(P)$ is called i-th osculating space at P.

Order sequence

- We define $L_{i}(P)$ to be the intersection of all hyperplanes H of $\mathbb{P}^{n}(\mathbb{K})$ such that $v_{P}\left(\phi^{*}(H)\right) \geq j_{i+1}(P)$. Therefore, we have

$$
L_{0}(P) \subset L_{1}(P) \subset \cdots \subset L_{n-1}(P)
$$

- $L_{i}(P)$ is called i-th osculating space at P.
- Note that $L_{0}=\{P\}, L_{1}(P)$ is the tangent line at P, etc.

Order sequence

- We define $L_{i}(P)$ to be the intersection of all hyperplanes H of $\mathbb{P}^{n}(\mathbb{K})$ such that $v_{P}\left(\phi^{*}(H)\right) \geq j_{i+1}(P)$. Therefore, we have

$$
L_{0}(P) \subset L_{1}(P) \subset \cdots \subset L_{n-1}(P)
$$

- $L_{i}(P)$ is called i-th osculating space at P.
- Note that $L_{0}=\{P\}, L_{1}(P)$ is the tangent line at P, etc.
- $L_{n-1}(P)$ is the osculating hyperplane.

Via Wronskianos

Theorem

Let t be a local parameter at a point $P \in \mathcal{X}$. Suppose that each coordinate f_{i} of the morphism $\phi=\left(f_{0}: \ldots: f_{n}\right)$ is regular at P. If j_{0}, \ldots, j_{s-1} are the s first (\mathcal{D}, P)-orders of P, then j_{s} is the smallest integer such that the points

$$
\left(\left(D_{t}^{\left(j_{s}\right)} f_{0}\right)(P): \ldots:\left(D_{t}^{\left(j_{s}\right)} f_{n}\right)(P)\right)
$$

where $i=0, \ldots, s$ are linearly independent over \mathbb{K}. Moreover, $L_{i}(P)$, the i-th osculating space at P is generated by these points.

Via Wronskianos

Theorem

Let t be a local parameter at a point $P \in \mathcal{X}$. Suppose that each coordinate f_{i} of the morphism $\phi=\left(f_{0}: \ldots: f_{n}\right)$ is regular at P. If j_{0}, \ldots, j_{s-1} are the s first (\mathcal{D}, P)-orders of P, then j_{s} is the smallest integer such that the points

$$
\left(\left(D_{t}^{\left(j_{s}\right)} f_{0}\right)(P): \ldots:\left(D_{t}^{\left(j_{s}\right)} f_{n}\right)(P)\right)
$$

where $i=0, \ldots, s$ are linearly independent over \mathbb{K}. Moreover, $L_{i}(P)$, the i-th osculating space at P is generated by these points.

Via Wronskianos

Theorem

Let t be a local parameter at a point $P \in \mathcal{X}$. Suppose that each coordinate f_{i} of the morphism $\phi=\left(f_{0}: \ldots: f_{n}\right)$ is regular at P. If j_{0}, \ldots, j_{s-1} are the s first (\mathcal{D}, P)-orders of P, then j_{s} is the smallest integer such that the points

$$
\left(\left(D_{t}^{\left(j_{s}\right)} f_{0}\right)(P): \ldots:\left(D_{t}^{\left(j_{s}\right)} f_{n}\right)(P)\right)
$$

where $i=0, \ldots, s$ are linearly independent over \mathbb{K}. Moreover, $L_{i}(P)$, the i-th osculating space at P is generated by these points.

Via Wronskians

The order sequence $\left(j_{0}(P), \ldots, j_{n}(P)\right)$ is the same for all but finitely many points $P \in \mathcal{X}$. This sequence is called the order sequence of \mathcal{X} with respect to \mathcal{D}, and it is denoted by

$$
\left(\epsilon_{0}, \ldots, \epsilon_{n}\right)
$$

This sequence is also obtained as the minimal sequence (in lexicographic order), for which

Via Wronskians

The order sequence $\left(j_{0}(P), \ldots, j_{n}(P)\right)$ is the same for all but finitely many points $P \in \mathcal{X}$. This sequence is called the order sequence of \mathcal{X} with respect to \mathcal{D}, and it is denoted by

$$
\left(\epsilon_{0}, \ldots, \epsilon_{n}\right)
$$

This sequence is also obtained as the minimal sequence (in lexicographic order), for which

$$
\operatorname{det}\left(D_{t}^{\left(\epsilon_{i}\right)} f_{j}\right)_{0 \leq i, j \leq n} \neq 0
$$

where $t \in \mathbb{K}(\mathcal{X})$ is a separating variable.

Via Wronskians

The order sequence $\left(j_{0}(P), \ldots, j_{n}(P)\right)$ is the same for all but finitely many points $P \in \mathcal{X}$. This sequence is called the order sequence of \mathcal{X} with respect to \mathcal{D}, and it is denoted by

$$
\left(\epsilon_{0}, \ldots, \epsilon_{n}\right)
$$

This sequence is also obtained as the minimal sequence (in lexicographic order), for which

$$
\operatorname{det}\left(D_{t}^{\left(\epsilon_{i}\right)} f_{j}\right)_{0 \leq i, j \leq n} \neq 0,
$$

where $t \in \mathbb{K}(\mathcal{X})$ is a separating variable.A curve \mathcal{X} is called classical w.r.t. $\phi($ or $\mathcal{D})$ if $\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{n}\right)=(0,1, \ldots, n)$. Otherwise, \mathcal{X} is called non-classical.

Frobenius orders

Suppose ϕ is defined over \mathbb{F}_{q}, i.e., $f_{i} \in \mathbb{F}_{q}(\mathcal{X})$ for all $i=0, \ldots, n$. The sequence of non-negative integers $\left(\nu_{0}, \ldots, \nu_{n-1}\right)$, chosen minimally (lex order) such that

$$
\operatorname{det}\left(\begin{array}{ccc}
f_{0}^{q} & \ldots & f_{n}^{q} \\
D_{t}^{\left(\nu_{0}\right)} & f_{0} & \ldots \\
\vdots & \ldots & D_{t}^{\left(\nu_{0}\right)} f_{n} \\
D_{t}^{\left(\nu_{n-1}\right)} & f_{0} & \ldots \\
D_{t}^{\left(\nu_{n-1}\right)} f_{n}
\end{array}\right) \neq 0
$$

where t is a separating variable of $\mathbb{F}_{q}(\mathcal{X})$, is called \mathbb{F}_{q}-order sequence of \mathcal{X} with respect to ϕ.

Frobenius order

It is known that

$$
\left\{\nu_{0}, \ldots, \nu_{n-1}\right\}=\left\{\epsilon_{0}, \ldots, \epsilon_{n}\right\} \backslash\left\{\epsilon_{I}\right\}
$$

for some $I \in\{1, \ldots, n\}$.

Frobenius order

It is known that

$$
\left\{\nu_{0}, \ldots, \nu_{n-1}\right\}=\left\{\epsilon_{0}, \ldots, \epsilon_{n}\right\} \backslash\left\{\epsilon_{I}\right\},
$$

for some $I \in\{1, \ldots, n\}$. The ν_{i} 's are called \mathbb{F}_{q}-Frobenius orders.

Frobenius order

It is known that

$$
\left\{\nu_{0}, \ldots, \nu_{n-1}\right\}=\left\{\epsilon_{0}, \ldots, \epsilon_{n}\right\} \backslash\left\{\epsilon_{I}\right\},
$$

for some $I \in\{1, \ldots, n\}$.The ν_{i} 's are called \mathbb{F}_{q}-Frobenius orders. If

$$
\left(\nu_{0}, \ldots, \nu_{n-1}\right)=(0, \ldots, n-1),
$$

then the curve \mathcal{X} is called \mathbb{F}_{q}-Frobenius classical w.r.t. ϕ.

Frobenius order

It is known that

$$
\left\{\nu_{0}, \ldots, \nu_{n-1}\right\}=\left\{\epsilon_{0}, \ldots, \epsilon_{n}\right\} \backslash\left\{\epsilon_{I}\right\},
$$

for some $I \in\{1, \ldots, n\}$.The ν_{i} 's are called \mathbb{F}_{q}-Frobenius orders. If

$$
\left(\nu_{0}, \ldots, \nu_{n-1}\right)=(0, \ldots, n-1),
$$

then the curve \mathcal{X} is called \mathbb{F}_{q}-Frobenius classical w.r.t. ϕ.Otherwise, \mathcal{X} is called \mathbb{F}_{q}-Frobenius non-classical.

Stöhr-Voloch Theorem

Theorem

Let \mathcal{X} be a projective, irreducible smooth curve of genus g, defined over \mathbb{F}_{q}. If $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ is a non-degenerated morphism defined over \mathbb{F}_{q}, with \mathbb{F}_{q}-Frobenius orders $\left(\nu_{0}, \ldots, \nu_{n-1}\right)$, then

Stöhr-Voloch Theorem

Theorem

Let \mathcal{X} be a projective, irreducible smooth curve of genus g, defined over \mathbb{F}_{q}. If $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ is a non-degenerated morphism defined over \mathbb{F}_{q}, with \mathbb{F}_{q}-Frobenius orders $\left(\nu_{0}, \ldots, \nu_{n-1}\right)$, then

Stöhr-Voloch Theorem

Theorem

Let \mathcal{X} be a projective, irreducible smooth curve of genus g, defined over \mathbb{F}_{q}. If $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ is a non-degenerated morphism defined over \mathbb{F}_{q}, with \mathbb{F}_{q}-Frobenius orders $\left(\nu_{0}, \ldots, \nu_{n-1}\right)$, then

$$
\begin{equation*}
N_{1} \leq \frac{\left(\nu_{1}+\ldots+\nu_{n-1}\right)(2 g-2)+(q+n) d}{n} \tag{1}
\end{equation*}
$$

Stöhr-Voloch Theorem

Theorem

Let \mathcal{X} be a projective, irreducible smooth curve of genus g, defined over \mathbb{F}_{q}. If $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ is a non-degenerated morphism defined over \mathbb{F}_{q}, with \mathbb{F}_{q}-Frobenius orders $\left(\nu_{0}, \ldots, \nu_{n-1}\right)$, then

$$
\begin{equation*}
N_{1} \leq \frac{\left(\nu_{1}+\ldots+\nu_{n-1}\right)(2 g-2)+(q+n) d}{n} \tag{1}
\end{equation*}
$$

where d is the degree of \mathcal{D} associated to ϕ.

Stöhr-Voloch Theorem

Theorem

Let \mathcal{X} be a projective, irreducible smooth curve of genus g, defined over \mathbb{F}_{q}. If $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ is a non-degenerated morphism defined over \mathbb{F}_{q}, with \mathbb{F}_{q}-Frobenius orders $\left(\nu_{0}, \ldots, \nu_{n-1}\right)$, then

$$
\begin{equation*}
N_{1} \leq \frac{\left(\nu_{1}+\ldots+\nu_{n-1}\right)(2 g-2)+(q+n) d}{n} \tag{1}
\end{equation*}
$$

where d is the degree of \mathcal{D} associated to ϕ.
remark. Over the last twenty years, the Stöhr-Voloch Theory has been used as a key ingredient for many results related to points on curves over finite fields.

A variation of the Stöhr-Voloch approach

Fix positive integers u and m, with $m>u$ and $m d c(u, m)=1$.

A variation of the Stöhr-Voloch approach

Fix positive integers u and m, with $m>u$ and $m d c(u, m)=1$. The ideia is to estimate the number of points $P \in \mathcal{X}$ such that the line defined by $\Phi_{q^{u}}(\phi(P))$ and $\Phi_{q^{m}}(\phi(P))$, intersects the $(n-2)$-th osculating space of $\phi(\mathcal{X})$ at P.

A variation of the Stöhr-Voloch approach

Fix positive integers u and m, with $m>u$ and $m d c(u, m)=1$. The ideia is to estimate the number of points $P \in \mathcal{X}$ such that the line defined by $\Phi_{q^{u}}(\phi(P))$ and $\Phi_{q^{m}}(\phi(P))$, intersects the $(n-2)$-th osculating space of $\phi(\mathcal{X})$ at P. Let \mathcal{D} be the linear series associated to ϕ and t be a local parameter at P.

A variation of the Stöhr-Voloch approach

Fix positive integers u and m, with $m>u$ and $m d c(u, m)=1$. The ideia is to estimate the number of points $P \in \mathcal{X}$ such that the line defined by $\Phi_{q^{u}}(\phi(P))$ and $\Phi_{q^{m}}(\phi(P))$, intersects the $(n-2)$-th osculating space of $\phi(\mathcal{X})$ at P. Let \mathcal{D} be the linear series associated to ϕ and t be a local parameter at P. We know that the $(n-2)$-th osculating hyperplane at P is generated by

$$
\left(\left(D_{t}^{\left(j_{i}\right)} f_{0}\right)(P): \ldots:\left(D_{t}^{\left(j_{i}\right)} f_{n}\right)(P)\right), \quad i=0, \ldots, n-2
$$

where t local parameter at P, and j_{0}, \ldots, j_{n} are the (\mathcal{D}, P)-orders.

A variation of the Stöhr-Voloch approach

It is easy to see that P satisfies the geometric properties above if and only if
$\operatorname{det}\left(\begin{array}{cccc}f_{0}(P)^{q^{m}} & f_{1}(P)^{q^{m}} & \ldots & f_{n}(P)^{q^{m}} \\ f_{0}(P)^{q^{u}} & f_{1}(P)^{q^{u}} & \ldots & f_{n}(P)^{q^{u}} \\ \left(D_{t}^{\left(j_{0}\right)} f_{0}\right)(P) & \left(D_{t}^{\left(j_{0}\right)} f_{1}\right)(P) & \ldots & \left(D_{t}^{\left(j_{0}\right)} f_{n}\right)(P) \\ \vdots & \vdots & \ldots & \vdots \\ \left(D_{t}^{\left(j_{n-2}\right)} f_{0}\right)(P) & \left(D_{t}^{\left(j_{n-2}\right)} f_{1}\right)(P) & \ldots & \left(D_{t}^{\left(j_{n-2}\right)} f_{n}\right)(P)\end{array}\right)=0$.

A variation of the Stöhr-Voloch approach

This leads us to study the following functions

in $\mathbb{F}_{q}(\mathcal{X})$, where $t \in \mathbb{F}_{q}(\mathcal{X})$ is a separating variable, and $\rho_{0}, \rho_{1}, \cdots, \rho_{n-2}$ are non-negative integers.

A variation of the Stöhr-Voloch approach

This leads us to study the following functions

in $\mathbb{F}_{q}(\mathcal{X})$, where $t \in \mathbb{F}_{q}(\mathcal{X})$ is a separating variable, and $\rho_{0}, \rho_{1}, \cdots, \rho_{n-2}$ are non-negative integers. It can be shown that there exist non-zero function in $\mathbb{F}_{q}(\mathcal{X})$ of the above type.

A variation of the Stöhr-Voloch approach

Let $0 \leq \kappa_{0}<\ldots<\kappa_{n-2}$ be the smallest sequnce (lex order) such that $\mathcal{A}_{t}{ }^{\rho_{0}, \ldots, \rho_{n-2}} \neq 0$. The κ_{i} 's will be called $\left(q^{u}, q^{m}\right)$-Frobenius orders of \mathcal{X} w.r.t. ϕ. If $\kappa_{i}=i$ for $i=0,1, \ldots, n-2$, we say that the curve is $\left(q^{u}, q^{m}\right)$-Frobenius classical. Otherwise, \mathcal{X} is called (q^{u}, q^{m})-Frobenius non-classical.

A variation of the Stöhr-Voloch approach

Let $0 \leq \kappa_{0}<\ldots<\kappa_{n-2}$ be the smallest sequnce (lex order) such that $\mathcal{A}_{t}{ }^{\rho_{0}, \ldots, \rho_{n-2}} \neq 0$. The κ_{i} 's will be called $\left(q^{u}, q^{m}\right)$-Frobenius orders of \mathcal{X} w.r.t. ϕ. If $\kappa_{i}=i$ for $i=0,1, \ldots, n-2$, we say that the curve is $\left(q^{u}, q^{m}\right)$-Frobenius classical. Otherwise, \mathcal{X} is called $\left(q^{u}, q^{m}\right)$-Frobenius non-classical.

Proposition

There exist integers I and J such that

$$
\left\{\kappa_{0}, \ldots, \kappa_{n-2}\right\}=\left\{\nu_{0}, \ldots, \nu_{n-1}\right\} \backslash\left\{\nu_{I}\right\}=\left\{\mu_{0}, \ldots, \mu_{n-1}\right\} \backslash\left\{\mu_{J}\right\} .
$$

Invariants

Based on the previus proposition, one can see that the sequence ($\kappa_{0}, \ldots, \kappa_{n-2}$) depends only on the morphism.

Invariants

Based on the previus proposition, one can see that the sequence ($\kappa_{0}, \ldots, \kappa_{n-2}$) depends only on the morphism.

Definition

The $\left(q^{u}, q^{m}\right)$-Frobenius divisor de of \mathcal{D} is defined by $T_{u, m}=$ $\operatorname{div}\left(\mathcal{A}_{t}^{\kappa_{0}, \ldots, \kappa_{n-2}}\left(f_{i}^{\prime} s\right)\right)+\left(\kappa_{0}+\kappa_{1}+\ldots+\kappa_{n-2}\right) \operatorname{div}(d t)+\left(q^{m}+q^{u}+n-1\right) E$, where t is a separating variable of $\mathbb{F}_{q}(\mathcal{X}), E=\sum_{P \in \mathcal{X}} e_{P} P$ and $e_{P}=-\min \left\{v_{P}\left(f_{0}\right), \ldots, v_{P}\left(f_{n}\right)\right\}$.

Invariants

The following can be checked

- The divisor $T_{u, m}$ is effective.

Invariants

The following can be checked

- The divisor $T_{u, m}$ is effective.
- All the points $P \in \mathcal{X}\left(\mathbb{F}_{q^{r}}\right)$, for $r=u, m, m-u$ are in the support of $T_{u, m}$.

Invariants

The following can be checked

- The divisor $T_{u, m}$ is effective.
- All the points $P \in \mathcal{X}\left(\mathbb{F}_{q^{r}}\right)$, for $r=u, m, m-u$ are in the support of $T_{u, m}$.

Invariants

The following can be checked

- The divisor $T_{u, m}$ is effective.
- All the points $P \in \mathcal{X}\left(\mathbb{F}_{q^{r}}\right)$, for $r=u, m, m-u$ are in the support of $T_{u, m}$.
Now the idea is to estimate the weights of the points

$$
P \in \mathcal{X}\left(\mathbb{F}_{q^{u}}\right) \cup \mathcal{X}\left(\mathbb{F}_{q^{m}}\right) \cup \mathcal{X}\left(\mathbb{F}_{q^{m-u}}\right)
$$

on the support of $T_{u, m}$.

Estimating the weights of the points on $T_{u, m}$

Proposition

Let $P \in \mathcal{X}\left(\mathbb{F}_{q}\right)$ with (\mathcal{D}, P)-orders $j_{0}, j_{1}, \ldots, j_{n}$. Then

$$
v_{P}\left(T_{u, m}\right) \geq q^{u} j_{1}+\sum_{i=0}^{n-2}\left(j_{i+2}-\kappa_{i}\right)
$$

and equality holds if and only if

$$
\operatorname{det}\left(\binom{j_{i}}{\kappa_{s}}\right)_{2 \leq i \leq n, 0 \leq s \leq n-2} \not \equiv 0 \bmod p
$$

Estimating the weights

Proposition

Let $P \in \mathcal{X}$ be an arbitrary point with (\mathcal{D}, P)-orders $j_{0}, j_{1}, \ldots, j_{n}$. Then

$$
v_{P}\left(T_{u, m}\right) \geq \sum_{i=0}^{n-2}\left(j_{i}-\kappa_{i}\right)
$$

and if

$$
\operatorname{det}\left(\binom{j_{i}}{k_{s}}\right)_{0 \leq i, s \leq n-2} \equiv 0 \quad \bmod p
$$

strict inequality holds.

Estimating the weights

Proposition

Let $P \in \mathcal{X}$ be a point $\mathbb{F}_{q^{r}}$-rational, for $r=u$, m, with (\mathcal{D}, P)-orders $j_{0}, j_{1}, \ldots, j_{n}$. Then

$$
v_{P}\left(T_{u, m}\right) \geq \max \left\{\sum_{i=1}^{n-1}\left(j_{i}-\kappa_{i-1}\right), 1\right\}
$$

Moreover, if
$\operatorname{det}\left(\binom{j_{i}}{\kappa_{s}}\right)_{1 \leq i \leq n-1,0 \leq s \leq n-2} \equiv 0 \bmod p$ and $\sum_{i=1}^{n-1}\left(j_{i}-\kappa_{i-1}\right) \geq 1$
then the strict inequality holds.

Estimating the weights

Proposition

Let $P \in \mathcal{X}$ be a $\mathbb{F}_{q^{(m-u)} \text {-rational point. Then }}$

$$
v_{P}\left(T_{u, m}\right) \geq q^{u} .
$$

The main result

Theorem

Let \mathcal{X} be a projective, irreducible, smooth curve of genus g, defined over \mathbb{F}_{q}, and let N_{r} be its number of $\mathbb{F}_{q^{r}}$ rational points, for $r=1, u, m, m-u$.

The main result

Theorem

Let \mathcal{X} be a projective, irreducible, smooth curve of genus g, defined over \mathbb{F}_{q}, and let N_{r} be its number of $\mathbb{F}_{q^{r}}$ rational points, for $r=1, u, m, m-u$.

The main result

Theorem

Let \mathcal{X} be a projective, irreducible, smooth curve of genus g, defined over \mathbb{F}_{q}, and let N_{r} be its number of $\mathbb{F}_{q^{r}}$ rational points, for $r=1, u, m, m-u$. If $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ is a non-degenerated morphism, defined over \mathbb{F}_{q}, with $\left(q^{u}, q^{m}\right)$-Frobenius orders $\left(\kappa_{0}, \kappa_{1}, \ldots, \kappa_{n-2}\right)$,then

The main result

Theorem

Let \mathcal{X} be a projective, irreducible, smooth curve of genus g, defined over \mathbb{F}_{q}, and let N_{r} be its number of $\mathbb{F}_{q^{r}}$ rational points, for $r=1, u, m, m-u$. If $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ is a non-degenerated morphism, defined over \mathbb{F}_{q}, with $\left(q^{u}, q^{m}\right)$-Frobenius orders $\left(\kappa_{0}, \kappa_{1}, \ldots, \kappa_{n-2}\right)$, then

$$
\begin{align*}
& \left(c_{1}-c_{u}-c_{m}-c_{m-u}\right) \mathbf{N}_{\mathbf{1}}+c_{u} \mathbf{N}_{\mathbf{u}}+c_{m} \mathbf{N}_{\mathbf{m}}+c_{m-u} \mathbf{N}_{\mathbf{m}-\mathbf{u}} \\
\leq & \left(\kappa_{1}+\ldots+\kappa_{n-2}\right)(2 g-2)+\left(q^{m}+q^{u}+n-1\right) d, \tag{3}
\end{align*}
$$

where d is the degree of the linear series \mathcal{D} associated to ϕ.

The main result

Theorem

and c_{r} are the lower bound for the weights of $P \in \mathcal{X}\left(\mathbb{F}_{q^{r}}\right)$ on the divisor $T_{u, m}$, for $r=1, u, m, m-u$. Moreover, $c_{m-u} \geq q^{u} e$ $c_{1} \geq q^{u}+2(n-1)$.

Some Consequences

Corollary

Let \mathcal{X} be a projective, irreducible, smooth curve of genus g, defined over \mathbb{F}_{q}, and let N_{r} be its number of $\mathbb{F}_{q^{r}}$ rational points, for $r=1, u, m, m-u$.

Some Consequences

Corollary

Let \mathcal{X} be a projective, irreducible, smooth curve of genus g, defined over \mathbb{F}_{q}, and let N_{r} be its number of $\mathbb{F}_{q^{r}}$ rational points, for $r=1, u, m, m-u$.

Some Consequences

Corollary

Let \mathcal{X} be a projective, irreducible, smooth curve of genus g, defined over \mathbb{F}_{q}, and let N_{r} be its number of $\mathbb{F}_{q^{r}}$ rational points, for $r=1, u, m, m-u$.If \mathcal{X} is $\left(q^{u}, q^{m}\right)$-Frobenius classical w.r.t. a non-degenerated morphism $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ defined over \mathbb{F}_{q}, then

Some Consequences

Corollary

Let \mathcal{X} be a projective, irreducible, smooth curve of genus g, defined over \mathbb{F}_{q}, and let N_{r} be its number of $\mathbb{F}_{q^{r}}$ rational points, for $r=1, u, m, m-u$.If \mathcal{X} is $\left(q^{u}, q^{m}\right)$-Frobenius classical w.r.t. a non-degenerated morphism $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ defined over \mathbb{F}_{q}, then

$$
\begin{gathered}
(n-1) \mathbf{N}_{\mathbf{u}}+(n-1) \mathbf{N}_{\mathbf{m}}+q^{u} \mathbf{N}_{\mathbf{m}-\mathbf{u}} \leq(n-1)(n-2)(g-1) \\
+\left(q^{m}+q^{u}+n-1\right) d,
\end{gathered}
$$

where d is the degree of the linear series \mathcal{D} associated to ϕ.

Some Consequences

Corollary

Let \mathcal{X} be a projective, irreducible, smooth curve of genus g, defined over \mathbb{F}_{q}, and let N_{r} be its number of $\mathbb{F}_{q^{r}}$ rational points, for $r=1, u, m, m-u$.If \mathcal{X} is $\left(q^{u}, q^{m}\right)$-Frobenius classical w.r.t. a non-degenerated morphism $\phi: \mathcal{X} \longrightarrow \mathbb{P}^{n}(\mathbb{K})$ defined over \mathbb{F}_{q}, then

$$
\begin{gathered}
(n-1) \mathbf{N}_{\mathbf{u}}+(n-1) \mathbf{N}_{\mathbf{m}}+q^{u} \mathbf{N}_{\mathbf{m}-\mathbf{u}} \leq(n-1)(n-2)(g-1) \\
+\left(q^{m}+q^{u}+n-1\right) d
\end{gathered}
$$

where d is the degree of the linear series \mathcal{D} associated to ϕ.
Remark. $p<d$ is sufficient condition for \mathcal{X} to be r (q^{u}, q^{m})-Frobenius classical.

Some comparisons

Let \mathcal{X} be a plane curve of genus g and degree d given by $f(x, y)=0$, where $f(x, y) \in \mathbb{F}_{q}[x, y]$. For $s \in\{1, \ldots, d-3\}$, consider the Veronese morphism.

$$
\phi_{s}=\left(1: x: y: x^{2}: \ldots: x^{i} y^{j}: \ldots: y^{s}\right): \mathcal{X} \longrightarrow \mathbb{P}^{M}(\mathbb{K}),
$$

where $i+j \leq s$.

Some comparisons

Let \mathcal{X} be a plane curve of genus g and degree d given by $f(x, y)=0$, where $f(x, y) \in \mathbb{F}_{q}[x, y]$. For $s \in\{1, \ldots, d-3\}$, consider the Veronese morphism.

$$
\phi_{s}=\left(1: x: y: x^{2}: \ldots: x^{i} y^{j}: \ldots: y^{s}\right): \mathcal{X} \longrightarrow \mathbb{P}^{M}(\mathbb{K}),
$$

where $i+j \leq s$.
We know that the linear series \mathcal{D}_{s} associated to ϕ_{s} is base-point-free, of degree $s d$ and dimension

$$
M=\binom{s+2}{2}-1=\left(s^{2}+3 s\right) / 2
$$

Examples

If \mathcal{X} is $\left(q^{u}, q^{m}\right)$-Frobenius classical for \mathcal{D}_{s}, then the new result gives us

$$
\begin{gathered}
(M-1) \mathbf{N}_{\mathbf{u}}+(M-1) \mathbf{N}_{\mathbf{m}}+q^{u} \mathbf{N}_{\mathbf{m}-\mathbf{u}} \leq(M-1)(M-2)(g-1) \\
+s d\left(q^{m}+q^{u}+M-1\right)
\end{gathered}
$$

If we have $\left(q^{u}, q^{m}\right)$-Frobenius classicality for \mathcal{D}_{2}, then the result yields

$$
\begin{equation*}
4 N_{u}+4 N_{m}+q^{u} N_{m-u} \leq 12(g-1)+2 d\left(q^{m}+q^{u}+4\right) . \tag{4}
\end{equation*}
$$

Examples

Example

Let \mathcal{X} be a curve of degree 6 over \mathbb{F}_{3} given by

$$
\sum_{r+s+k=6} x^{r} y^{s} z^{k}=0
$$

We wil estimate N_{3}, the number of \mathbb{F}_{27}-rationail points of \mathcal{X}.
We use the new bound for $m=3$ e $u=1$. It is known that
$N_{1}=0$ and $N_{2}=d\left(d+q^{2}-1\right) / 2=42$. We have

Bound	$N_{3} \leq$
Hasse-Weil	131
Störh - Voloch	96
New bound	60

Examples

Example

For $p=7$ and $q=p^{3}=343$ consider the a curva de Fermat

$$
\mathcal{X}: x^{57}+y^{57}=z^{57}
$$

over \mathbb{F}_{343}. It is known that $N_{1}=16416$, and it can be checked that the curve is $\left(q, q^{2}\right)$-Frobenius classical for \mathcal{D}_{2}. Thus we have

Bound	$N_{2} \leq$
Hasse-Weil	1154882
Zeta	1006356
Garcia-Stöhr- Voloch	957233
new bound	152874

Using computer, one can check that 152874 is the actual value

Bounds for the number of Rational points on curves over finite fields

The end

Thanks!!

