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Classical Bounds
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g, defined over F,. If IV is the number of Fy-rational points of
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Preliminaries and the Stéhr-Voloch Theory

Classical Bounds

Let X be a projective, irreducible, non-singular curve of genus
g, defined over F,. If IV is the number of Fy-rational points of
X then

@ Hasse-Weil-Serre:

IN = (¢+1)| < gl24"2].
@ "Zeta”: )
(Ni—q—1)

g
where N, is the number of F r-rational points of X.

@ Stohr-Voloch (baby version): If X has a plane model of
degree d, and a finite number of inflection points, then

No <@+ 14 2gq —

N <g—1+d(qg+2)/2.
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Variation of the Stéhr-Voloch approach

Morphisms vs. Linear Series

Let X be a proj. irred. smooth curve of genus g defined over
IF,.
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Morphisms vs. Linear Series

Let X be a proj. irred. smooth curve of genus g defined over
IF,.Associted to a non-degenerated morphism

o= (fo:...: fn): X — P*(K), there exists a base-point-free
linear series, of dimension n and degree d, given by

Herivelto Bor




tion of the Sto

Morphisms vs. Linear Series

Let X be a proj. irred. smooth curve of genus g defined over
IF,.Associted to a non-degenerated morphism

o= (fo:...: fn): X — P*(K), there exists a base-point-free
linear series, of dimension n and degree d, given by

n
D= <{div Zaz‘fi +FE | ag,...,anp € K,
i=0

Herivelto Bor




Variation of the Stéhr-Voloch approach

Morphisms vs. Linear Series

Let X be a proj. irred. smooth curve of genus g defined over
IF,.Associted to a non-degenerated morphism

o= (fo:...: fn): X — P*(K), there exists a base-point-free
linear series, of dimension n and degree d, given by

n
D = div Zaz‘fi +FE | ag,...,anp € K,
i=0

where

F = Z epP, withep = —min{UP(fO)a ...,UP(fn)}
Pex

and d =degF




Results

Order sequence

For each point P € X', we have

O(P) = ((t" fo)(P) : .. : (7 fn)(P)),

where t € K(X) is a local parameter at P.
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Results

Order sequence

For each point P € X', we have

O(P) = ((t" fo)(P) : .. : (7 fn)(P)),

where t € K(X) is a local parameter at P.
For each point P € X, we define a sequence of non-negative
integers

(Jo(P), - dn (P))

where jo(P) < ... < jn(P), are called (D, P) orders.
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Results

Order sequence

@ We define L;(P) to be the intersection of all hyperplanes H
of P*(K) such that vp(¢*(H)) > jit1(P). Therefore, we
have

Lo(P) C Ll(P) c---C Ln_l(P)
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of P*(K) such that vp(¢*(H)) > jit1(P). Therefore, we
have
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Results

Order sequence

@ We define L;(P) to be the intersection of all hyperplanes H

of P*"(K) such that vp(¢*(H)) > ji+1(P). Therefore, we
have

Lo(P) C Ll(P) c---C Ln_l(P)
@ L;(P) is called i-th osculating space at P.
@ Note that Ly = {P}, L1(P) is the tangent line at P, etc.
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Results

Order sequence

[+

We define L;(P) to be the intersection of all hyperplanes H
of P*(K) such that vp(¢*(H)) > jit1(P). Therefore, we
have

Lo(P) C Ll(P) c---C Ln_l(P)

©

L;(P) is called i-th osculating space at P.
Note that Ly = {P}, L1(P) is the tangent line at P, etc.
L,,—1(P) is the osculating hyperplane.

©

©
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Exemplos

Via Wronskianos

Theorem

Let t be a local parameter at a point P € X. Suppose that each
coordinate f; of the morphism ¢ = (fo : ... : fn) is reqular at P.
If jo, ..., js—1 are the s first (D, P)-orders of P, then js is the
smallest integer such that the points

(DY fo)(P) : .. : (DY) f)(P)),

where 1 =0, ..., s are linearly independent over K. Moreover,
L;(P), the i-th osculating space at P is generated by these
points.
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Exemplos

Via Wronskians

The order sequence (jo(P), ..., jn(P)) is the same for all but
finitely many points P € X. This sequence is called the order
sequence of X with respect to D, and it is denoted by

(€0, -ees €n)-

This sequence is also obtained as the minimal sequence (in
lexicographic order), for which
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finitely many points P € X. This sequence is called the order
sequence of X with respect to D, and it is denoted by

(€0, -ees €n)-

This sequence is also obtained as the minimal sequence (in
lexicographic order), for which

det(D{ f;)o<ij<n # 0,

where t € K(X) is a separating variable.
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Exemplos

Via Wronskians

The order sequence (jo(P), ..., jn(P)) is the same for all but
finitely many points P € X. This sequence is called the order
sequence of X with respect to D, and it is denoted by

(€0, -ees €n)-

This sequence is also obtained as the minimal sequence (in
lexicographic order), for which

det(D{ f;)o<ij<n # 0,

where t € K(X) is a separating variable.A curve X is called
classical w.r.t. ¢ (or D) if (eg,€1,...,6,) = (0,1,...,m).
Otherwise, X is called non-classical.
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Exemplos

Frobenius orders

Suppose ¢ is defined over Fy, i.e., f; € Fy(X) for all i =0, ..., n.
The sequence of non-negative integers (v, ..., 1), chosen
minimally (lex order ) such that

(fg> (ﬁ%)
D f, ... D”f

det | 7 R )
pYvg . Dy,

where ¢ is a separating variable of F(X), is called Fg-order
sequence of X with respect to ¢.

Sao Carlos




Exemplos

Frobenius order

It is known that

{vo, s vn—1} = {eo; s enf\{er},

for some I € {1,...,n}.
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Exemplos

Frobenius order

It is known that

{vo, s vn—1} = {eo; s enf\{er},

for some I € {1,...,n}.The v;’s are called F,-Frobenius orders.
If

(10, ey Un—1) = (0, ...,n — 1),

then the curve X is called F,-Frobenius classical w.r.t.

?.
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Exemplos

Frobenius order

It is known that

{vo, s vn—1} = {eo; s enf\{er},

for some I € {1,...,n}.The v;’s are called F,-Frobenius orders.
If

(10, ey Un—1) = (0, ...,n — 1),

then the curve X is called F,-Frobenius classical w.r.t.
¢.Otherwise, X is called F,-Frobenius non-classical.
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Stohr-Voloch Theorem

Theorem

Let Xbe a projective, irreducible smooth curve of genus g,
defined over Fy. If ¢ : X — P™(K) is a non-degenerated
morphism defined over Iy, with IFy-Frobenius orders
(Y0, ..oy Un—1), then
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Stohr-Voloch Theorem

Theorem

Let Xbe a projective, irreducible smooth curve of genus g,
defined over Fy. If ¢ : X — P™(K) is a non-degenerated
morphism defined over Iy, with IFy-Frobenius orders
(Y0, ..oy Un—1), then

(1 + .. +vn—1)(29 —2)+ (¢ +n)d

N <

; (1)
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where d is the degree of D associated to ¢.
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Exemplos

Stohr-Voloch Theorem

Theorem

Let Xbe a projective, irreducible smooth curve of genus g,
defined over Fy. If ¢ : X — P™(K) is a non-degenerated
morphism defined over Iy, with Fq-Frobenius orders
(Y0, ey VUn—1), then

1+ ..+ vn-1)(29 —2) + (g + n)d

N < 1
1> - ) ()

where d is the degree of D associated to ¢.

remark. Over the last twenty years, the Stohr-Voloch Theory
has been used as a key ingredient for many results related to
points on curves over finite fields.
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Exemplos

A variation of the Stohr-Voloch approach

Fix positive integers u and m, with m > u and mdc(u, m) = 1.
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Exemplos

A variation of the Stohr-Voloch approach

Fix positive integers u and m, with m > u and mdc(u, m) = 1.
The ideia is to estimate the number of points P € X such that

the line defined by ®4u(¢(P)) and ®4m(¢(P)), intersects the
(n — 2)-th osculating space of ¢(X) at P.
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A variation of the Stohr-Voloch approach

Fix positive integers u and m, with m > u and mdc(u, m) = 1.
The ideia is to estimate the number of points P € X such that
the line defined by ®4u(¢(P)) and ®4m(¢(P)), intersects the
(n — 2)-th osculating space of ¢(X) at P. Let D be the linear
series associated to ¢ and ¢ be a local parameter at P.
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Exemplos

A variation of the Stohr-Voloch approach

Fix positive integers u and m, with m > u and mdc(u, m) = 1.
The ideia is to estimate the number of points P € X such that
the line defined by ®4u(¢(P)) and ®4m(¢(P)), intersects the

(n — 2)-th osculating space of ¢(X) at P. Let D be the linear
series associated to ¢ and ¢ be a local parameter at P. We know
that the (n — 2)-th osculating hyperplane at P is generated by

(DY) f)(P) « ...t (DY £)(P)),  i=0,...n—2,

where t local parameter at P, and jo, ..., j, are the
(D, P)-orders.
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Exemplos

A variation of the Stohr-Voloch approach

It is easy to see that P satisfies the geometric properties above
if and only if

fo(P)T" AP faP)"
fo(P)T" AP (P
gt | DOFf)p) (PP .. (D@ | —o.

(Dt(jn—z)fo)(p) (ng"—z)fl)(P) (Dt(j"_z)fn)(P)
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Exemplos

A variation of the Stohr-Voloch approach

This leads us to study the following functions

i A o
fd f g
AP oPr=2 .= det Dt(po)fo D,SpO)fl D,gpo)fn

o N Yl PR

in Fy(X), where t € Fy(X) is a separating variable, and
00, P1, "+, Pn—2 are non-negative integers.
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Exemplos

A variation of the Stohr-Voloch approach

This leads us to study the following functions

i A o
fd f g
AP oPr=2 .= det Dt(po)fo D,SpO)fl D,gpo)fn

o N Yl PR
in Fy(X), where t € Fy(X) is a separating variable, and

00, P1,"** , Pn—2 are non-negative integers. It can be shown that
there exist non-zero function in F,(X) of the above type.
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Exemplos

A variation of the Stohr-Voloch approach

Let 0 < kg < ... < kp—2 be the smallest sequnce (lex order) such
that A, 0Pr=2 2 0. The k;’s will be called (¢*, ¢")-Frobenius
orders of X w.r.t. ¢. If K, =i for¢=20,1,...,n — 2, we say that
the curve is (¢%, ¢"™)-Frobenius classical. Otherwise, X is
called (¢, ¢")-Frobenius non-classical.
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Exemplos

A variation of the Stohr-Voloch approach

Let 0 < kg < ... < kp—2 be the smallest sequnce (lex order) such
that AP0 Pr=2 2 (). The k;’s will be called (¢“, ¢™)-Frobenius
orders of X w.r.t. ¢. If K, =i for¢=20,1,...,n — 2, we say that
the curve is (¢%, ¢"™)-Frobenius classical. Otherwise, X is
called (¢, ¢")-Frobenius non-classical.

Proposition

There exist integers I and J such that
{0y s -2} = {10, s Un—1 P\ w1} = {10, -+ -1\ {0 }-
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Exemplos

Invariants

Based on the previus proposition, one can see that the sequence
(Ko, -, Kn—2) depends only on the morphism.




Exemplos

Invariants

Based on the previus proposition, one can see that the sequence
(Ko, -, Kn—2) depends only on the morphism.

Definition
The (¢*,q™)-Frobenius divisor de of D is defined by Ty m =

div( A2 (f18))+ (ko +R1+ .+ kn—2)div(dt)+(¢" +q"+n—1)E,

where t is a separating variable of Fy(X), E =3 pcyepP and
ep = —min{vp(fo), .., vp(fa)}-
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Exemplos

Invariants

The following can be checked

@ The divisor T, ,, is effective.
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The following can be checked
@ The divisor T, ,, is effective.

@ All the points P € X(Fyr), for 7 = u,m,m — u are in the
support of Ty .
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Exemplos

Invariants

The following can be checked
@ The divisor T, ,, is effective.

@ All the points P € X(Fyr), for 7 = u,m,m — u are in the
support of Ty .

Now the idea is to estimate the weights of the points

PeX(Fp)UX(Fygn)UX(F )

on the support of Ty, .




Exemplos

Estimating the weights of the points on T,

Let P € X(F,) with (D, P)-orders jo, ji,...,jn. Then
n—2
vp(Tum) = ¢“51 + D (Jiva — ki),
i=0

and equality holds if and only if

det((‘h)) %0 mod p.
Ks/ /) o<i<n,0<s<n—2
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Exemplos

Estimating the weights

Proposition

Let P € X be an arbitrary point with (D, P)-orders jo, ji, .-+ jn-

Then )
'UP(Tu,m) > Z(Jl - K/i)7
i=0
and if

det((‘h)) =0 mod p,
Ks/ / 0<i,s<n—2

strict inequality holds.




Exemplos

Estimating the weights

Proposition

Let P € X be a point Fr-rational, for r = u,m, with
(D, P)-orders jo,ji, - jn- Then

n—1

vp(Tum) > max > (ji — Kiz1),1
i=1

Moreover, if

. n—1
det <<‘7Z>> mod p and Z(ji—/%—l) >1
Ks/ /1<i<n—1,0<s<n—2

=1

11|
o

then the strict inequality holds.
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Exemplos

Estimating the weights

Proposition

Let P € X be a F m—u-rational point. Then

vp (Tu,m) > qu .
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The main result

Let X be a projective, irreducible, smooth curve of genus g,
defined over Fy, and let N, be its number of Fyr rational points,
forr=1,u,m,m — u.
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The main result

Let X be a projective, irreducible, smooth curve of genus g,
defined over Fy, and let N, be its number of Fyr rational points,
forr=1um,m—u. If p : X — P"(K) is a non-degenerated
morphism, defined over Fq, with (¢*,q™)-Frobenius orders
(Ko, K1y -y Kn—2),then
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The main result

Theorem

Let X be a projective, irreducible, smooth curve of genus g,
defined over Fy, and let N, be its number of Fyr rational points,
forr=1um,m—u. If p : X — P"(K) is a non-degenerated
morphism, defined over Fq, with (¢*,q™)-Frobenius orders
(Ko, K1y -y Kn—2),then

(Cl — Cy — Cm — Cm—u)Nl I CuNu ain CmNm ain Cm—uNm—u
< (K14 .o+ 8n-2)29—2)+ (" + q¢* +n— 1), (3)

where d is the degree of the linear series D associated to ¢.
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Exemplos

The main result

Theorem

and ¢, are the lower bound for the weights of P € X(Fqr) on the
divisor Ty m, for r = 1,u,m,m —u. Moreover, cp—y > q* €
1> q“+2(n-1).
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Some Consequences

Coroll

Let X be a projective, irreducible, smooth curve of genus g,

defined over Fy, and let N, be its number of Fyr rational points,
forr=1,u,m,m — u.
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Some Consequences

Coroll

Let X be a projective, irreducible, smooth curve of genus g,
defined over Fy, and let N, be its number of Fyr rational points,
forr=1u,m,m—ulf X is (¢*, q")-Frobenius classical w.r.t.
a non-degenerated morphism ¢ : X — P"(K) defined over I,
then




Exemplos

Some Consequences

Corollary

Let X be a projective, irreducible, smooth curve of genus g,
defined over Fy, and let N, be its number of Fyr rational points,
forr=1u,m,m—ulf X is (¢*, q")-Frobenius classical w.r.t.
a non-degenerated morphism ¢ : X — P"(K) defined over I,
then

m—=1)Ny+(n—1)Nm+¢"Nm—u<(n—1)(n—-2)(g —1)

+(¢" +¢" +n—1)d,

where d is the degree of the linear series D associated to ¢.
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Exemplos

Some Consequences

Corollary

Let X be a projective, irreducible, smooth curve of genus g,
defined over Fy, and let N, be its number of Fyr rational points,
forr=1u,m,m—ulf X is (¢*, q")-Frobenius classical w.r.t.
a non-degenerated morphism ¢ : X — P"(K) defined over I,
then

m—=1)Ny+(n—1)Nm+¢"Nm—u<(n—1)(n—-2)(g —1)

+(@" +¢" +n—1)d,
where d is the degree of the linear series D associated to ¢.

Remark. p < d is sufficient condition for X to ber
(¢", q"™)-Frobenius classical.
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Some comparisons

Let X be a plane curve of genus g and degree d given by
f(z,y) =0, where f(z,y) € Fylz,y]. For s € {1,...,d — 3},
consider the Veronese morphism.

ps=1:z:y:a?: .zl 9% X — PM(K),

where ¢ + 7 < s.




Some comparisons

Let X be a plane curve of genus g and degree d given by
f(z,y) =0, where f(z,y) € Fylz,y]. For s € {1,...,d — 3},
consider the Veronese morphism.

ps=1:z:y:a?: .zl 9% X — PM(K),

where ¢ + 7 < s.
We know that the linear series D, associated to ¢ is
base-point-free, of degree sd and dimension

M= (8;2> 1= (s2 4 39)/2.
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Examples

If X is (¢%, ¢™)-Frobenius classical for D;, then the new result
gives us

(M = 1)Ny + (M — 1)Nn + ¢“ Ny < (M — 1)(M — 2)(g — 1)

+sd(q"™ +q" + M —1).

If we have (¢, ¢")-Frobenius classicality for Do, then the result
yields

AN, + 4Ny + ¢"Npp—yy < 12(g — 1) +2d(¢" +¢" +4).  (4)
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Examples

Example
Let X be a curve of degree 6 over Fs given by

Z x"y 2" = 0.

r+s+k=6

We wil estimate N3, the number of Foy-rationail points of X.
We use the new bound for m =3 e uw = 1. It is known that
Ny =0 and Ny = d(d + ¢> — 1)/2 = 42. We have

Bound N3 <

Hasse-Weil | 131 (5)
Storh-Voloch | 96

New bound | 60

Herivelto Borges ICMC-USP-Sao Carlos
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Examples

For p="T and q = p® = 343 consider the a curva de Fermat
X5 45T = T

over Fsy3. It is known that N1 = 16416, and it can be checked
that the curve is (q,q?)-Frobenius classical for Dy. Thus we have

Bound Ny <
Hasse-Weil 1154882
Zeta 1006356 | (6)
Garcia-Stohr-Voloch | 957233
new bound 152874

Using computer, one can check that 152874 is the actual value
Herivelto Borges ICMC-USP-Sao Carlos
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The end

Thanks!!
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