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> Not always directly clear! An example.
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An example of a good tower (continued)

» Turns out that the equation

v —3v344v2 —2v 41
=v
vh 4+ 2v3 +4v2 +3v + 1

w

occurred 100 years ago in the first letter of Ramanujan to
Hardy.

» The equation relates two values of the Roger-Ramanujan
continued fraction, which can be used to parameterize X(5).

» Obtain an optimal tower over > if p= 41 (mod 5) and a
good tower over [« if p= =42 (mod 5). For the splitting one
needs that (s is in the constant field.
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v

We write A = Fg[E].
P = (Tp,Sp) € Fq x Fy is a rational point of E.

We set the ideal < T — Tp,S — Sp > as the characteristic of
F (the field F is yet to be determined).

We consider rank 2 Drinfeld modules ¢ specified by the
following polynomials

v

v

v

o =1+ @7 + g7 + g7 + Tp,
¢s =70 + hy75 4 hot* + h373 + hg7? 4 hsT + Sp.
(2)
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Relations between the variables

o7 =1+ @’ + gor? + g3 + Tp,
bs =70 4+ hi7® + hot* + h373 + ha® + hsT + Sp.

» S, T satisfy f(T,S) =0 and (clearly) ST = TS, implying
PsOT = TS

» Since f(T,S) =0, we have ¢¢(7 ) = 0.

> ¢ is a Drinfeld module if and only if it satisfies ¢ s) =0
and ¢7¢s = ¢soT.

> In general characteristic ¢¢(1 sy = 0 is implied by
PTPs = PsoT

» Writing down a Drinfeld module amounts to solving a system
of polynomial equations over F.
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Gekeler's description

Theorem (Gekeler)

The algebraic set describing isomosphism classes of normalized
rank 2 Drinfeld modules over A = [F[E] consists of hg rational
curves.

» This means that there exist one-parameter families of
isomorphism classes of normalized rank 2 Drinfeld modules
(described by a parameter we denote by u).

» If ¢ € F* satisfies c¢ = vc, then c € Fo.
» The quantities g{’“,gg,ggﬂ, hi’“, ho, hg“, ha, hg“ are
invariant under isomorphism (and hence expressible in u).

» Furthermore Gekeler showed that supersingular Drinfeld
modules in characteristic P are defined over [Fge, with
e = 2 ord(P) deg(P).



Example
> Let A=TF,[T,S]/(f(T,S)) with
f(T,S):=S>+S+T*+ T2 (3)
» Choose Tp = Sp = 0, condition ¢r(T.s) = 0 gives us

3 3 2 4 2 4 7
hs =0, hs + hg + g5 =0, h3 + hyhs + hahs + g5 83 + 8283 + 83 =0,
2 3 5 2 8 5 4 3 2 9 12
ha + h3h5 + h3h5 +h4 + 8183 +8183 +8 8,85 +8,8 +8&8° =0,
2 16 4 8 4 4 3 2 17 8 24 10
hy + hyhs + hohg” + hyhy + hshy + g1 g2 + 8783 + 8183 + 818 +818 +8& &

9 4 5 16 16
+g83 +88 +8 +&3=0,
2 32 4 16 9 9 8 2 8 4 4 32 2 16
hihs + h1hs™ + hyha + hohy” + hs + g1 + 818,83 + 818283 + 818283 + 818 &3
16 8 8 32 21 16 48 33 3
+e18 83 + 8188 +8& +8& +&,teg te te+1=0,

4 32, .8 16 , 64 18 17 8, 16 5, 16 , O 64
hihy + h1hy”™ + hyh3 + hph3” + hg” + hs + 81783 + 8 83 + 81 & +8 +8183

4 33 40 32 16 32 16 64 2 64 4
+818 +81&, +e1itey e +8 8+8 83 +88 +828; +88 =0,
8 3 17 64 36 33 8 32 16 32 16 128 9 64
hih3 + h1h32 + hy' + hy" + hy + g7 82+ 81 8 + 81 83 +81 8 +8 8 +88&

2 128 8 80 65 5
+g183 t818° +8183 +8& +8& +& +1=0,
16 32 64 73 64 16 64 16 128 4 128 8
hy"hy + h1hy™ + h3" +h3 +g1” +8) 8 +8 & +8 & T88& t818&  +818
256 16
+g3 +g +t&=0

33 64 144 129 9 256 16
h"+hy th+g +&  +e +8 +& +&=0,

256

W + by + g7 + g1° + g1 = 0.
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» The condition ¢p7¢s = PpspT gives us

higs + hsgl =0,
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h'llgg + h1g232 + hggl + h2g116 + h;ﬁ + h3 + g§4 +g3 =0,
Mg + g + e+ + gt + g =0,

B b+ g%+ g =0
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Groebner basis

» Variable elimination, some simplifications and a Groebner
basis computation on a computer give a complete description
of all rank 2 normalized Drinfeld modules.
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Computational results (an example)

Let o® + a? + 1 = 0. The quantities g13,g2,g33, h‘;’, ho, hg’, ha, hg
can all be expressed in a parameter u.

» The parameter u itself is first expressed in terms of g13, vy hg’.

» Afterwards, all variables are expressed in terms of u.

For example

3 (u+a®)3(u+ a®®)(u+ a3 (u? + a®u + a?7)3
83 =«
(u~+a®)?(u+ al®)?(u+ al6)?(u+ al9)?(u + o)’
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Isogenies

Definition
Let ¢ and 1 be two Drinfeld modules. We say ¢ and 1) are
isogenous if there exists A € F{7} such that for all a € A,

APa = P
Such A is called an isogeny.

> Isogenies exists only between modules of the same rank.

Example (continue)

Let A\=7 —a e F{7} and 1 is another Drinfeld A-module defined
by

{ wTZ:T4+/1T3—|—/2T2—|-I3T—|—Tp, (4)

Ys =710 + 117° + to7t + 137> + ta7? + 157 + Sp.



Isogenies
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Aps = 1hsA. (6)



Isogenies

» A\=17—a¢€ F{r} is an isogeny from ¢ to 1 if and only if
AGT =T A (5)
and
Aps = PsA. (6)
» Solving (5) gives us
Q@ tatl | glaq2+q+1 L @a®l f ma=nc Fq.  (7)
» Solving (6) gives us
B A i I A e R T A

hza® tIt 4 p a9t 4 pa = B € .



Towers from isogenous Drinfeld modules

Idea to get a tower equation

» Connect two one parameter families (using variables up and
u1) with an isogeny of the form 7 — ag. We can use the
resulting algebraic relations to construct two inclusions

» We have Fg(up) C Fg(ao, uo, u1) D Fg(ur).

» Relating the variables up and u; gives a polynomial equation
o(u1, up) = 0.



Towers from isogenous Drinfeld modules

Idea to get a tower equation

» Connect two one parameter families (using variables up and
u1) with an isogeny of the form 7 — ag. We can use the
resulting algebraic relations to construct two inclusions

» We have Fg(up) C Fg(ao, uo, u1) D Fg(ur).

» Relating the variables up and u; gives a polynomial equation
o(u1, up) = 0.

> lterating this gives a tower recursively defined by

o(xit1,x) =0
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Example (continued)

» Relating the variables is easy and we find:

» The tower equation ¢;(xj+1,x;) = 0:

(04,17x,-3 + oa?gxi2 4+ x; + a?o)
(S + a?x? + atx +a?)

i

_ 3 2
0 =X+ Xij1t

(a?ox? + a12Xi2 + a?ox,- + a,ﬂ) (af}x,-3 + a14x,-2 + a}g)

i i
Xi+1 .
(3 + a2*x? 4+ atx; + a?) (3 4+ a?*x? + afx; + a?)
» Here a; = o¥



Example (continued)

» Relating the variables is easy and we find:
» The tower equation ¢;(xj+1,x;) = 0:

(a7 + axF + xi + o)

i

2
X1+
(¢ +a?'x? +afxi+af) "

0= Xi3+1 +

L (abd +aif + )
Xi+1 .
(x,-3 + a%“x,? + af-‘x; + a?)

(393 + al?x? 4 a30x; + ")
(x,-3 + a%“x,? + af}x,- + a?)

> Here a; = of
» The resulting tower F = (Fy, F2,...) is defined by

> Fl = F210 (X]_).
> Fir1 = Fi(xi+1) with ¢i(xit1, %) = 0.

» Limit of the resulting tower is at least 1.



Thank you for your attention!



