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Recursive towers

I Explicit recursive towers have given rise to good lower bounds
on A(q).

I A recursive towers is obtained by an equation
0 = ϕ(X ,Y ) ∈ Fq[X ,Y ] such that

I F0 = Fq(x0),
I Fi+1 = Fi (xi+1) with ϕ(xi+1, xi ) = 0 for i ≥ 0.

I Garcia & Stichtenoth introduced an explicit tower with the
equation

(xi+1xi )
q + xi+1xi = xq+1

i over Fq2 .

This tower is optimal: λ(F) = q − 1.
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Optimal towers and modular theory

I Elkies gave a modular interpretation of this
Garcia–Stichtenoth tower using Drinfeld modular curves.

I Recipe to construct optimal towers using modular curves.

I All (?) currently known optimal towers can be (re)produced
using modular theory.

I Not always directly clear! An example.
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An example of a good tower

I In E.C. Lötter, On towers of function fields over finite fields,
Ph.D. thesis, University of Stellenbosch, March 2007, a good
tower over F74 with limit 6.

Modular?

I After a change of variables, it is defined recursively by

w5 = v
v4 − 3v3 + 4v2 − 2v + 1

v4 + 2v3 + 4v2 + 3v + 1

I Tower by Elkies X0(5n)n≥2 given by

y5 + 5y3 + 5y − 11 =
(x − 1)5

x4 + x3 + 6x2 + 6x + 11
.

I Relation turns out to be 1/v − v = x and 1/w − w = y .
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An example of a good tower (continued)

I Turns out that the equation

w5 = v
v4 − 3v3 + 4v2 − 2v + 1

v4 + 2v3 + 4v2 + 3v + 1

occurred 100 years ago in the first letter of Ramanujan to
Hardy.

I The equation relates two values of the Roger–Ramanujan
continued fraction, which can be used to parameterize X (5).

I Obtain an optimal tower over Fp2 if p ≡ ±1 (mod 5) and a
good tower over Fp4 if p ≡ ±2 (mod 5). For the splitting one
needs that ζ5 is in the constant field.
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Drinfeld modules over an elliptic curve

I A := Fq[T ,S ]/(f (T , S)) is the coordinate ring of an elliptic
curve E defines over Fq by a Weierstrass equation
f (T , S) = 0 with

f (T , S) = S2 + a1TS + a3S −T 3− a2T 2− a4T − a6, ai ∈ Fq.
(1)

I We write A = Fq[E ].

I P = (TP ,SP) ∈ Fq × Fq is a rational point of E .

I We set the ideal < T − TP ,S − SP > as the characteristic of
F (the field F is yet to be determined).

I We consider rank 2 Drinfeld modules φ specified by the
following polynomials{

φT := τ4 + g1τ
3 + g2τ

2 + g3τ + TP ,

φS := τ6 + h1τ
5 + h2τ

4 + h3τ
3 + h4τ

2 + h5τ + SP .

(2)
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Relations between the variables

{
φT := τ4 + g1τ

3 + g2τ
2 + g3τ + TP ,

φS := τ6 + h1τ
5 + h2τ

4 + h3τ
3 + h4τ

2 + h5τ + SP .

I S ,T satisfy f (T , S) = 0 and (clearly) ST = TS , implying
φSφT = φTφS .

I Since f (T ,S) = 0, we have φf (T ,S) = 0.

I φ is a Drinfeld module if and only if it satisfies φf (T ,S) = 0
and φTφS = φSφT .

I In general characteristic φf (T ,S) = 0 is implied by
φTφS = φSφT

I Writing down a Drinfeld module amounts to solving a system
of polynomial equations over F .
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Gekeler’s description

Theorem (Gekeler)

The algebraic set describing isomosphism classes of normalized
rank 2 Drinfeld modules over A = Fq[E ] consists of hE rational
curves.

I This means that there exist one-parameter families of
isomorphism classes of normalized rank 2 Drinfeld modules
(described by a parameter we denote by u).

I If c ∈ F ∗ satisfies cφ = ψc , then c ∈ Fq2 .

I The quantities gq+1
1 , g2, g

q+1
3 , hq+1

1 , h2, h
q+1
3 , h4, h

q+1
5 are

invariant under isomorphism (and hence expressible in u).

I Furthermore Gekeler showed that supersingular Drinfeld
modules in characteristic P are defined over Fqe , with
e = 2 ord(P) deg(P).
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Example
I Let A = F2[T ,S ]/(f (T ,S)) with

f (T ,S) := S2 + S + T 3 + T 2, (3)

I Choose TP = SP = 0, condition φf (T ,S) = 0 gives us

h5 = 0, h4 + h35 + g33 = 0, h3 + h24h5 + h4h
4
5 + g22 g3 + g2g

4
3 + g73 = 0,

h2 + h23h5 + h3h
8
5 + h54 + g21 g3 + g1g

8
3 + g52 + g42 g

3
3 + g22 g

9
3 + g2g

12
3 = 0,

h1 + h22h5 + h2h
16
5 + h43h4 + h3h

8
4 + g41 g2 + g41 g

3
3 + g21 g

17
3 + g1g

8
2 + g1g

24
3 + g102 g3

+ g92 g
4
3 + g52 g

16
3 + g163 + g3 = 0,

h21h5 + h1h
32
5 + h42h4 + h2h

16
4 + h93 + g91 + g81 g

2
2 g3 + g81 g2g

4
3 + g41 g2g

32
3 + g21 g

16
2 g3

+ g1g
16
2 g83 + g1g

8
2 g

32
3 + g212 + g162 + g2 + g483 + g333 + g33 + 1 = 0,

h41h4 + h1h
32
4 + h82h3 + h2h

16
3 + h645 + h5 + g181 g3 + g171 g83 + g161 g52 + g161 + g91 g

64
3

+ g41 g
33
2 + g1g

40
2 + g1 + g322 g163 + g322 g3 + g162 g643 + g22 g3 + g2g

64
3 + g2g

4
3 = 0,

h81h3 + h1h
3
32 + h172 + h644 + h4 + g361 g2 + g331 g82 + g321 g163 + g321 g3 + g161 g1283 + g91 g

64
2

+ g21 g3 + g1g
128
3 + g1g

8
3 + g802 + g652 + g52 + 1 = 0,

h161 h2 + h1h
32
2 + h643 + h3 + g731 + g641 g162 + g641 g2 + g161 g1282 + g41 g2 + g1g

128
2 + g1g

8
2

+ g2563 + g163 + g3 = 0,

h331 + h642 + h2 + g1441 + g1291 + g91 + g2562 + g162 + g2 = 0,

h641 + h1 + g2561 + g161 + g1 = 0.



Example

I The condition φTφS = φSφT gives us

h25g3 + h5g
2
3 = 0,

h24g3 + h4g
4
3 + h45g2 + h5g

2
2 = 0,

h23g3 + h3g
8
3 + h44g2 + h4g

4
2 + h85g1 + h5g

2
1 = 0,

h22g3 + h2g
16
3 + h43g2 + h3g

8
2 + h84g1 + h4g

4
1 + h165 + h5 = 0,

h21g3 + h1g
32
3 + h42g2 + h2g

16
2 + h83g1 + h3g

8
1 + h164 + h4 = 0,

h41g2 + h1g
32
2 + h82g1 + h2g

16
1 + h163 + h3 + g643 + g3 = 0,

h81g1 + h1g
32
1 + h162 + h2 + g642 + g2 = 0,

h161 + h1 + g641 + g1 = 0.

Groebner basis

I Variable elimination, some simplifications and a Groebner
basis computation on a computer give a complete description
of all rank 2 normalized Drinfeld modules.
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Computational results (an example)

Let α5 + α2 + 1 = 0. The quantities g3
1 , g2, g

3
3 , h

3
1, h2, h

3
3, h4, h

3
5

can all be expressed in a parameter u.

I The parameter u itself is first expressed in terms of g3
1 , ..., h

3
5.

I Afterwards, all variables are expressed in terms of u.

For example

g3
3 = α

(u + α5)3(u + α26)(u + α27)3(u2 + α20u + α27)3

(u + α6)2(u + α10)2(u + α16)2(u + α19)2(u + α28)5
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Isogenies

Definition
Let φ and ψ be two Drinfeld modules. We say φ and ψ are
isogenous if there exists λ ∈ F{τ} such that for all a ∈ A,

λφa = ψaλ.

Such λ is called an isogeny.

I Isogenies exists only between modules of the same rank.

Example (continue)

Let λ = τ − a ∈ F{τ} and ψ is another Drinfeld A-module defined
by {

ψT := τ4 + l1τ
3 + l2τ

2 + l3τ + TP ,

ψS := τ6 + t1τ
5 + t2τ

4 + t3τ
3 + t4τ

2 + t5τ + SP .
(4)
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Example (continue)

Let λ = τ − a ∈ F{τ} and ψ is another Drinfeld A-module defined
by {

ψT := τ4 + l1τ
3 + l2τ

2 + l3τ + TP ,

ψS := τ6 + t1τ
5 + t2τ

4 + t3τ
3 + t4τ

2 + t5τ + SP .
(4)
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Isogenies

I λ = τ − a ∈ F{τ} is an isogeny from φ to ψ if and only if

λφT = ψTλ (5)

and
λφS = ψSλ. (6)

I Solving (5) gives us

aq
3+q2+q+1 + g1aq

2+q+1 + g2aq+1 + g3a = γ ∈ Fq. (7)

I Solving (6) gives us

aq
5+q4+q3+q2+q+1 + h1aq

4+q3+q2+q+1 + h2aq
3+q2+q+1

+h3aq
2+q+1 + h4aq+1 + h5a = β ∈ Fq.

(8)



Isogenies

I λ = τ − a ∈ F{τ} is an isogeny from φ to ψ if and only if

λφT = ψTλ (5)

and
λφS = ψSλ. (6)

I Solving (5) gives us

aq
3+q2+q+1 + g1aq

2+q+1 + g2aq+1 + g3a = γ ∈ Fq. (7)

I Solving (6) gives us

aq
5+q4+q3+q2+q+1 + h1aq

4+q3+q2+q+1 + h2aq
3+q2+q+1

+h3aq
2+q+1 + h4aq+1 + h5a = β ∈ Fq.

(8)



Towers from isogenous Drinfeld modules

Idea to get a tower equation

I Connect two one parameter families (using variables u0 and
u1) with an isogeny of the form τ − a0. We can use the
resulting algebraic relations to construct two inclusions

I We have Fq(u0) ⊂ Fq(a0, u0, u1) ⊃ Fq(u1).

I Relating the variables u0 and u1 gives a polynomial equation
ϕ(u1, u0) = 0.

I Iterating this gives a tower recursively defined by

ϕ(xi+1, xi ) = 0
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Example (continued)

I Relating the variables is easy and we find:

I The tower equation ϕi (xi+1, xi ) = 0:

0 = x3
i+1 +

(α17
i x3

i + α29
i x2

i + xi + α30
i )

(x3
i + α24

i x2
i + α4

i xi + α9
i )

x2
i+1+

(α30
i x3

i + α12
i x2

i + α30
i xi + α17

i )

(x3
i + α24

i x2
i + α4

i xi + α9
i )

xi+1+
(α4

i x3
i + α14

i x2
i + α19

i )

(x3
i + α24

i x2
i + α4

i xi + α9
i )
.

I Here αi = α8i

I The resulting tower F = (F1,F2, ...) is defined by
I F1 = F210(x1).
I Fi+1 = Fi (xi+1) with ϕi (xi+1, xi ) = 0.

I Limit of the resulting tower is at least 1.
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Thank you for your attention!


