Good towers of function fields

Peter Beelen

RICAM Workshop on Algebraic Curves Over Finite Fields

12th of November 2013
joint with Alp Bassa and Nhut Nguyen

Recursive towers

- Explicit recursive towers have given rise to good lower bounds on $A(q)$.

Recursive towers

- Explicit recursive towers have given rise to good lower bounds on $A(q)$.
- A recursive towers is obtained by an equation $0=\varphi(X, Y) \in \mathbb{F}_{q}[X, Y]$ such that
- $F_{0}=\mathbb{F}_{q}\left(x_{0}\right)$,
- $F_{i+1}=F_{i}\left(x_{i+1}\right)$ with $\varphi\left(x_{i+1}, x_{i}\right)=0$ for $i \geq 0$.

Recursive towers

- Explicit recursive towers have given rise to good lower bounds on $A(q)$.
- A recursive towers is obtained by an equation $0=\varphi(X, Y) \in \mathbb{F}_{q}[X, Y]$ such that
- $F_{0}=\mathbb{F}_{q}\left(x_{0}\right)$,
- $F_{i+1}=F_{i}\left(x_{i+1}\right)$ with $\varphi\left(x_{i+1}, x_{i}\right)=0$ for $i \geq 0$.
- Garcia \& Stichtenoth introduced an explicit tower with the equation

$$
\left(x_{i+1} x_{i}\right)^{q}+x_{i+1} x_{i}=x_{i}^{q+1} \text { over } \mathbb{F}_{q^{2}}
$$

This tower is optimal: $\lambda(\mathcal{F})=q-1$.

Recursive towers

- Explicit recursive towers have given rise to good lower bounds on $A(q)$.
- A recursive towers is obtained by an equation $0=\varphi(X, Y) \in \mathbb{F}_{q}[X, Y]$ such that
- $F_{0}=\mathbb{F}_{q}\left(x_{0}\right)$,
- $F_{i+1}=F_{i}\left(x_{i+1}\right)$ with $\varphi\left(x_{i+1}, x_{i}\right)=0$ for $i \geq 0$.
- Garcia \& Stichtenoth introduced an explicit tower with the equation

$$
\left(x_{i+1} x_{i}\right)^{q}+x_{i+1} x_{i}=x_{i}^{q+1} \text { over } \mathbb{F}_{q^{2}}
$$

This tower is optimal: $\lambda(\mathcal{F})=q-1$.

Optimal towers and modular theory

- Elkies gave a modular interpretation of this Garcia-Stichtenoth tower using Drinfeld modular curves.
- Recipe to construct optimal towers using modular curves.
- All (?) currently known optimal towers can be (re)produced using modular theory.

Optimal towers and modular theory

- Elkies gave a modular interpretation of this Garcia-Stichtenoth tower using Drinfeld modular curves.
- Recipe to construct optimal towers using modular curves.
- All (?) currently known optimal towers can be (re)produced using modular theory.
- Not always directly clear! An example.

An example of a good tower

- In E.C. Lötter, On towers of function fields over finite fields, Ph.D. thesis, University of Stellenbosch, March 2007, a good tower over $\mathbb{F}_{7^{4}}$ with limit 6 .

An example of a good tower

- In E.C. Lötter, On towers of function fields over finite fields, Ph.D. thesis, University of Stellenbosch, March 2007, a good tower over $\mathbb{F}_{7^{4}}$ with limit 6 . Modular?

An example of a good tower

- In E.C. Lötter, On towers of function fields over finite fields, Ph.D. thesis, University of Stellenbosch, March 2007, a good tower over $\mathbb{F}_{7^{4}}$ with limit 6 . Modular?
- After a change of variables, it is defined recursively by

$$
w^{5}=v \frac{v^{4}-3 v^{3}+4 v^{2}-2 v+1}{v^{4}+2 v^{3}+4 v^{2}+3 v+1}
$$

An example of a good tower

- In E.C. Lötter, On towers of function fields over finite fields, Ph.D. thesis, University of Stellenbosch, March 2007, a good tower over $\mathbb{F}_{7^{4}}$ with limit 6 . Modular?
- After a change of variables, it is defined recursively by

$$
w^{5}=v \frac{v^{4}-3 v^{3}+4 v^{2}-2 v+1}{v^{4}+2 v^{3}+4 v^{2}+3 v+1}
$$

- Tower by Elkies $X_{0}\left(5^{n}\right)_{n \geq 2}$ given by

$$
y^{5}+5 y^{3}+5 y-11=\frac{(x-1)^{5}}{x^{4}+x^{3}+6 x^{2}+6 x+11}
$$

An example of a good tower

- In E.C. Lötter, On towers of function fields over finite fields, Ph.D. thesis, University of Stellenbosch, March 2007, a good tower over $\mathbb{F}_{7^{4}}$ with limit 6 . Modular?
- After a change of variables, it is defined recursively by

$$
w^{5}=v \frac{v^{4}-3 v^{3}+4 v^{2}-2 v+1}{v^{4}+2 v^{3}+4 v^{2}+3 v+1}
$$

- Tower by Elkies $X_{0}\left(5^{n}\right)_{n \geq 2}$ given by

$$
y^{5}+5 y^{3}+5 y-11=\frac{(x-1)^{5}}{x^{4}+x^{3}+6 x^{2}+6 x+11}
$$

- Relation turns out to be $1 / v-v=x$ and $1 / w-w=y$.

An example of a good tower

- In E.C. Lötter, On towers of function fields over finite fields, Ph.D. thesis, University of Stellenbosch, March 2007, a good tower over $\mathbb{F}_{7^{4}}$ with limit 6 . Modular?
- After a change of variables, it is defined recursively by

$$
w^{5}=v \frac{v^{4}-3 v^{3}+4 v^{2}-2 v+1}{v^{4}+2 v^{3}+4 v^{2}+3 v+1}
$$

- Tower by Elkies $X_{0}\left(5^{n}\right)_{n \geq 2}$ given by

$$
y^{5}+5 y^{3}+5 y-11=\frac{(x-1)^{5}}{x^{4}+x^{3}+6 x^{2}+6 x+11}
$$

- Relation turns out to be $1 / v-v=x$ and $1 / w-w=y$.

An example of a good tower (continued)

- Turns out that the equation

$$
w^{5}=v \frac{v^{4}-3 v^{3}+4 v^{2}-2 v+1}{v^{4}+2 v^{3}+4 v^{2}+3 v+1}
$$

occurred 100 years ago in the first letter of Ramanujan to Hardy.

An example of a good tower (continued)

- Turns out that the equation

$$
w^{5}=v \frac{v^{4}-3 v^{3}+4 v^{2}-2 v+1}{v^{4}+2 v^{3}+4 v^{2}+3 v+1}
$$

occurred 100 years ago in the first letter of Ramanujan to Hardy.

- The equation relates two values of the Roger-Ramanujan continued fraction, which can be used to parameterize $X(5)$.

An example of a good tower (continued)

- Turns out that the equation

$$
w^{5}=v \frac{v^{4}-3 v^{3}+4 v^{2}-2 v+1}{v^{4}+2 v^{3}+4 v^{2}+3 v+1}
$$

occurred 100 years ago in the first letter of Ramanujan to Hardy.

- The equation relates two values of the Roger-Ramanujan continued fraction, which can be used to parameterize $X(5)$.
- Obtain an optimal tower over $\mathbb{F}_{p^{2}}$ if $p \equiv \pm 1(\bmod 5)$ and a good tower over $\mathbb{F}_{p^{4}}$ if $p \equiv \pm 2(\bmod 5)$.

An example of a good tower (continued)

- Turns out that the equation

$$
w^{5}=v \frac{v^{4}-3 v^{3}+4 v^{2}-2 v+1}{v^{4}+2 v^{3}+4 v^{2}+3 v+1}
$$

occurred 100 years ago in the first letter of Ramanujan to Hardy.

- The equation relates two values of the Roger-Ramanujan continued fraction, which can be used to parameterize $X(5)$.
- Obtain an optimal tower over $\mathbb{F}_{p^{2}}$ if $p \equiv \pm 1(\bmod 5)$ and a good tower over $\mathbb{F}_{p^{4}}$ if $p \equiv \pm 2(\bmod 5)$. For the splitting one needs that ζ_{5} is in the constant field.

Drinfeld modules over an elliptic curve

- $A:=\mathbb{F}_{q}[T, S] /(f(T, S))$ is the coordinate ring of an elliptic curve E defines over \mathbb{F}_{q} by a Weierstrass equation $f(T, S)=0$ with

$$
\begin{equation*}
f(T, S)=S^{2}+a_{1} T S+a_{3} S-T^{3}-a_{2} T^{2}-a_{4} T-a_{6}, a_{i} \in \mathbb{F}_{q} . \tag{1}
\end{equation*}
$$

Drinfeld modules over an elliptic curve

- $A:=\mathbb{F}_{q}[T, S] /(f(T, S))$ is the coordinate ring of an elliptic curve E defines over \mathbb{F}_{q} by a Weierstrass equation $f(T, S)=0$ with

$$
\begin{equation*}
f(T, S)=S^{2}+a_{1} T S+a_{3} S-T^{3}-a_{2} T^{2}-a_{4} T-a_{6}, a_{i} \in \mathbb{F}_{q} . \tag{1}
\end{equation*}
$$

- We write $A=\mathbb{F}_{q}[E]$.
- $P=\left(T_{P}, S_{P}\right) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ is a rational point of E.
- We set the ideal $<T-T_{P}, S-S_{P}>$ as the characteristic of F (the field F is yet to be determined).

Drinfeld modules over an elliptic curve

- $A:=\mathbb{F}_{q}[T, S] /(f(T, S))$ is the coordinate ring of an elliptic curve E defines over \mathbb{F}_{q} by a Weierstrass equation $f(T, S)=0$ with $f(T, S)=S^{2}+a_{1} T S+a_{3} S-T^{3}-a_{2} T^{2}-a_{4} T-a_{6}, a_{i} \in \mathbb{F}_{q}$.
- We write $A=\mathbb{F}_{q}[E]$.
- $P=\left(T_{P}, S_{P}\right) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ is a rational point of E.
- We set the ideal $<T-T_{P}, S-S_{P}>$ as the characteristic of F (the field F is yet to be determined).
- We consider rank 2 Drinfeld modules ϕ specified by the following polynomials

$$
\left\{\begin{array}{l}
\phi_{T}:=\tau^{4}+g_{1} \tau^{3}+g_{2} \tau^{2}+g_{3} \tau+T_{P} \tag{2}\\
\phi_{S}:=\tau^{6}+h_{1} \tau^{5}+h_{2} \tau^{4}+h_{3} \tau^{3}+h_{4} \tau^{2}+h_{5} \tau+S_{P}
\end{array}\right.
$$

Relations between the variables

$$
\left\{\begin{array}{l}
\phi_{T}:=\tau^{4}+g_{1} \tau^{3}+g_{2} \tau^{2}+g_{3} \tau+T_{P}, \\
\phi_{S}:=\tau^{6}+h_{1} \tau^{5}+h_{2} \tau^{4}+h_{3} \tau^{3}+h_{4} \tau^{2}+h_{5} \tau+S_{P}
\end{array}\right.
$$

- S, T satisfy $f(T, S)=0$ and (clearly) $S T=T S$, implying $\phi_{S} \phi_{T}=\phi_{T} \phi_{S}$.
- Since $f(T, S)=0$, we have $\phi_{f(T, S)}=0$.

Relations between the variables

$$
\left\{\begin{array}{l}
\phi_{T}:=\tau^{4}+g_{1} \tau^{3}+g_{2} \tau^{2}+g_{3} \tau+T_{P}, \\
\phi_{S}:=\tau^{6}+h_{1} \tau^{5}+h_{2} \tau^{4}+h_{3} \tau^{3}+h_{4} \tau^{2}+h_{5} \tau+S_{P}
\end{array}\right.
$$

- S, T satisfy $f(T, S)=0$ and (clearly) $S T=T S$, implying $\phi_{S} \phi_{T}=\phi_{T} \phi_{S}$.
- Since $f(T, S)=0$, we have $\phi_{f(T, S)}=0$.
- ϕ is a Drinfeld module if and only if it satisfies $\phi_{f(T, S)}=0$ and $\phi_{T} \phi_{S}=\phi_{S} \phi_{T}$.

Relations between the variables

$$
\left\{\begin{array}{l}
\phi_{T}:=\tau^{4}+g_{1} \tau^{3}+g_{2} \tau^{2}+g_{3} \tau+T_{P} \\
\phi_{S}:=\tau^{6}+h_{1} \tau^{5}+h_{2} \tau^{4}+h_{3} \tau^{3}+h_{4} \tau^{2}+h_{5} \tau+S_{P}
\end{array}\right.
$$

- S, T satisfy $f(T, S)=0$ and (clearly) $S T=T S$, implying $\phi_{S} \phi_{T}=\phi_{T} \phi_{S}$.
- Since $f(T, S)=0$, we have $\phi_{f(T, S)}=0$.
- ϕ is a Drinfeld module if and only if it satisfies $\phi_{f(T, S)}=0$ and $\phi_{T} \phi_{S}=\phi_{S} \phi_{T}$.
- In general characteristic $\phi_{f(T, S)}=0$ is implied by $\phi_{T} \phi_{S}=\phi_{S} \phi_{T}$

Relations between the variables

$$
\left\{\begin{array}{l}
\phi_{T}:=\tau^{4}+g_{1} \tau^{3}+g_{2} \tau^{2}+g_{3} \tau+T_{P} \\
\phi_{S}:=\tau^{6}+h_{1} \tau^{5}+h_{2} \tau^{4}+h_{3} \tau^{3}+h_{4} \tau^{2}+h_{5} \tau+S_{P}
\end{array}\right.
$$

- S, T satisfy $f(T, S)=0$ and (clearly) $S T=T S$, implying $\phi_{S} \phi_{T}=\phi_{T} \phi_{S}$.
- Since $f(T, S)=0$, we have $\phi_{f(T, S)}=0$.
- ϕ is a Drinfeld module if and only if it satisfies $\phi_{f(T, S)}=0$ and $\phi_{T} \phi_{S}=\phi_{S} \phi_{T}$.
- In general characteristic $\phi_{f(T, S)}=0$ is implied by $\phi_{T} \phi_{S}=\phi_{S} \phi_{T}$
- Writing down a Drinfeld module amounts to solving a system of polynomial equations over F.

Gekeler's description

Theorem (Gekeler)
The algebraic set describing isomosphism classes of normalized rank 2 Drinfeld modules over $A=\mathbb{F}_{q}[E]$ consists of h_{E} rational curves.

Gekeler's description

Theorem (Gekeler)
The algebraic set describing isomosphism classes of normalized rank 2 Drinfeld modules over $A=\mathbb{F}_{q}[E]$ consists of h_{E} rational curves.

- This means that there exist one-parameter families of isomorphism classes of normalized rank 2 Drinfeld modules (described by a parameter we denote by u).

Gekeler's description

Theorem (Gekeler)

The algebraic set describing isomosphism classes of normalized rank 2 Drinfeld modules over $A=\mathbb{F}_{q}[E]$ consists of h_{E} rational curves.

- This means that there exist one-parameter families of isomorphism classes of normalized rank 2 Drinfeld modules (described by a parameter we denote by u).
- If $c \in F^{*}$ satisfies $c \phi=\psi c$, then $c \in \mathbb{F}_{q^{2}}$.

Gekeler's description

Theorem (Gekeler)

The algebraic set describing isomosphism classes of normalized rank 2 Drinfeld modules over $A=\mathbb{F}_{q}[E]$ consists of h_{E} rational curves.

- This means that there exist one-parameter families of isomorphism classes of normalized rank 2 Drinfeld modules (described by a parameter we denote by u).
- If $c \in F^{*}$ satisfies $c \phi=\psi c$, then $c \in \mathbb{F}_{q^{2}}$.
- The quantities $g_{1}^{q+1}, g_{2}, g_{3}^{q+1}, h_{1}^{q+1}, h_{2}, h_{3}^{q+1}, h_{4}, h_{5}^{q+1}$ are invariant under isomorphism (and hence expressible in u).

Gekeler's description

Theorem (Gekeler)

The algebraic set describing isomosphism classes of normalized rank 2 Drinfeld modules over $A=\mathbb{F}_{q}[E]$ consists of h_{E} rational curves.

- This means that there exist one-parameter families of isomorphism classes of normalized rank 2 Drinfeld modules (described by a parameter we denote by u).
- If $c \in F^{*}$ satisfies $c \phi=\psi c$, then $c \in \mathbb{F}_{q^{2}}$.
- The quantities $g_{1}^{q+1}, g_{2}, g_{3}^{q+1}, h_{1}^{q+1}, h_{2}, h_{3}^{q+1}, h_{4}, h_{5}^{q+1}$ are invariant under isomorphism (and hence expressible in u).
- Furthermore Gekeler showed that supersingular Drinfeld modules in characteristic P are defined over $\mathbb{F}_{q^{e}}$, with $e=2 \operatorname{ord}(P) \operatorname{deg}(P)$.

Example

- Let $A=\mathbb{F}_{2}[T, S] /(f(T, S))$ with

$$
\begin{equation*}
f(T, S):=S^{2}+S+T^{3}+T^{2} \tag{3}
\end{equation*}
$$

- Choose $T_{P}=S_{P}=0$, condition $\phi_{f(T, S)}=0$ gives us

$$
\begin{aligned}
& h_{5}=0, h_{4}+h_{5}^{3}+g_{3}^{3}=0, h_{3}+h_{4}^{2} h_{5}+h_{4} h_{5}^{4}+g_{2}^{2} g_{3}+g_{2} g_{3}^{4}+g_{3}^{7}=0, \\
& h_{2}+h_{3}^{2} h_{5}+h_{3} h_{5}^{8}+h_{4}^{5}+g_{1}^{2} g_{3}+g_{1} g_{3}^{8}+g_{2}^{5}+g_{2}^{4} g_{3}^{3}+g_{2}^{2} g_{3}^{9}+g_{2} g_{3}^{12}=0, \\
& h_{1}+h_{2}^{2} h_{5}+h_{2} h_{5}^{16}+h_{3}^{4} h_{4}+h_{3} h_{4}^{8}+g_{1}^{4} g_{2}+g_{1}^{4} g_{3}^{3}+g_{1}^{2} g_{3}^{17}+g_{1} g_{2}^{8}+g_{1} g_{3}^{24}+g_{2}^{10} g_{3} \\
& +g_{2}^{9} g_{3}^{4}+g_{2}^{5} g_{3}^{16}+g_{3}^{16}+g_{3}=0, \\
& h_{1}^{2} h_{5}+h_{1} h_{5}^{32}+h_{2}^{4} h_{4}+h_{2} h_{4}^{16}+h_{3}^{9}+g_{1}^{9}+g_{1}^{8} g_{2}^{2} g_{3}+g_{1}^{8} g_{2} g_{3}^{4}+g_{1}^{4} g_{2} g_{3}^{32}+g_{1}^{2} g_{2}^{16} g_{3} \\
& +g_{1} g_{2}^{16} g_{3}^{8}+g_{1} g_{2}^{8} g_{3}^{32}+g_{2}^{21}+g_{2}^{16}+g_{2}+g_{3}^{48}+g_{3}^{33}+g_{3}^{3}+1=0, \\
& h_{1}^{4} h_{4}+h_{1} h_{4}^{32}+h_{2}^{8} h_{3}+h_{2} h_{3}^{16}+h_{5}^{64}+h_{5}+g_{1}^{18} g_{3}+g_{1}^{17} g_{3}^{8}+g_{1}^{16} g_{2}^{5}+g_{1}^{16}+g_{1}^{9} g_{3}^{64} \\
& +g_{1}^{4} g_{2}^{33}+g_{1} g_{2}^{40}+g_{1}+g_{2}^{32} g_{3}^{16}+g_{2}^{32} g_{3}+g_{2}^{16} g_{3}^{64}+g_{2}^{2} g_{3}+g_{2} g_{3}^{64}+g_{2} g_{3}^{4}=0, \\
& h_{1}^{8} h_{3}+h_{1} h_{3}^{3} 2+h_{2}^{17}+h_{4}^{64}+h_{4}+g_{1}^{36} g_{2}+g_{1}^{33} g_{2}^{8}+g_{1}^{32} g_{3}^{16}+g_{1}^{32} g_{3}+g_{1}^{16} g_{3}^{128}+g_{1}^{9} g_{2}^{64} \\
& +g_{1}^{2} g_{3}+g_{1} g_{3}^{128}+g_{1} g_{3}^{8}+g_{2}^{80}+g_{2}^{65}+g_{2}^{5}+1=0, \\
& h_{1}^{16} h_{2}+h_{1} h_{2}^{32}+h_{3}^{64}+h_{3}+g_{1}^{73}+g_{1}^{64} g_{2}^{16}+g_{1}^{64} g_{2}+g_{1}^{16} g_{2}^{128}+g_{1}^{4} g_{2}+g_{1} g_{2}^{128}+g_{1} g_{2}^{8} \\
& \\
& +g_{3}^{256}+g_{3}^{16}+g_{3}=0, \\
& h_{1}^{33}+h_{2}^{64}+h_{2}+g_{1}^{144}+g_{1}^{129}+g_{1}^{9}+g_{2}^{256}+g_{2}^{16}+g_{2}=0, \\
& h_{1}^{64}+h_{1}+g_{1}^{256}+g_{1}^{16}+g_{1}=0 .
\end{aligned}
$$

Example

- The condition $\phi_{T} \phi_{S}=\phi_{S} \phi_{T}$ gives us

$$
\begin{aligned}
& h_{5}^{2} g_{3}+h_{5} g_{3}^{2}=0, \\
& h_{4}^{2} g_{3}+h_{4} g_{3}^{4}+h_{5}^{4} g_{2}+h_{5} g_{2}^{2}=0, \\
& h_{3}^{2} g_{3}+h_{3} g_{3}^{8}+h_{4}^{4} g_{2}+h_{4} g_{2}^{4}+h_{5}^{8} g_{1}+h_{5} g_{1}^{2}=0, \\
& h_{2}^{2} g_{3}+h_{2} g_{3}^{16}+h_{3}^{4} g_{2}+h_{3} g_{2}^{8}+h_{4}^{8} g_{1}+h_{4} g_{1}^{4}+h_{5}^{16}+h_{5}=0, \\
& h_{1}^{2} g_{3}+h_{1} g_{3}^{32}+h_{2}^{4} g_{2}+h_{2} g_{2}^{16}+h_{3}^{8} g_{1}+h_{3} g_{1}^{8}+h_{4}^{16}+h_{4}=0, \\
& h_{1}^{4} g_{2}+h_{1} g_{2}^{32}+h_{2}^{8} g_{1}+h_{2} g_{1}^{16}+h_{3}^{16}+h_{3}+g_{3}^{64}+g_{3}=0, \\
& h_{1}^{8} g_{1}+h_{1} g_{1}^{32}+h_{2}^{16}+h_{2}+g_{2}^{64}+g_{2}=0, \\
& h_{1}^{16}+h_{1}+g_{1}^{64}+g_{1}=0 .
\end{aligned}
$$

Example

- The condition $\phi_{T} \phi_{S}=\phi_{S} \phi_{T}$ gives us

$$
\begin{aligned}
& h_{5}^{2} g_{3}+h_{5} g_{3}^{2}=0, \\
& h_{4}^{2} g_{3}+h_{4} g_{3}^{4}+h_{5}^{4} g_{2}+h_{5} g_{2}^{2}=0, \\
& h_{3}^{2} g_{3}+h_{3} g_{3}^{8}+h_{4}^{4} g_{2}+h_{4} g_{2}^{4}+h_{5}^{8} g_{1}+h_{5} g_{1}^{2}=0, \\
& h_{2}^{2} g_{3}+h_{2} g_{3}^{16}+h_{3}^{4} g_{2}+h_{3} g_{2}^{8}+h_{4}^{8} g_{1}+h_{4} g_{1}^{4}+h_{5}^{16}+h_{5}=0, \\
& h_{1}^{2} g_{3}+h_{1} g_{3}^{32}+h_{2}^{4} g_{2}+h_{2} g_{2}^{16}+h_{3}^{8} g_{1}+h_{3} g_{1}^{8}+h_{4}^{16}+h_{4}=0, \\
& h_{1}^{4} g_{2}+h_{1} g_{2}^{32}+h_{2}^{8} g_{1}+h_{2} g_{1}^{16}+h_{3}^{16}+h_{3}+g_{3}^{64}+g_{3}=0, \\
& h_{1}^{8} g_{1}+h_{1} g_{1}^{32}+h_{2}^{16}+h_{2}+g_{2}^{64}+g_{2}=0, \\
& h_{1}^{16}+h_{1}+g_{1}^{64}+g_{1}=0 .
\end{aligned}
$$

Groebner basis

- Variable elimination, some simplifications and a Groebner basis computation on a computer give a complete description of all rank 2 normalized Drinfeld modules.

Computational results (an example)

Let $\alpha^{5}+\alpha^{2}+1=0$. The quantities $g_{1}^{3}, g_{2}, g_{3}^{3}, h_{1}^{3}, h_{2}, h_{3}^{3}, h_{4}, h_{5}^{3}$ can all be expressed in a parameter u.

Computational results (an example)

Let $\alpha^{5}+\alpha^{2}+1=0$. The quantities $g_{1}^{3}, g_{2}, g_{3}^{3}, h_{1}^{3}, h_{2}, h_{3}^{3}, h_{4}, h_{5}^{3}$ can all be expressed in a parameter u.

- The parameter u itself is first expressed in terms of $g_{1}^{3}, \ldots, h_{5}^{3}$.

Computational results (an example)

Let $\alpha^{5}+\alpha^{2}+1=0$. The quantities $g_{1}^{3}, g_{2}, g_{3}^{3}, h_{1}^{3}, h_{2}, h_{3}^{3}, h_{4}, h_{5}^{3}$ can all be expressed in a parameter u.

- The parameter u itself is first expressed in terms of $g_{1}^{3}, \ldots, h_{5}^{3}$.
- Afterwards, all variables are expressed in terms of u.

Computational results (an example)

Let $\alpha^{5}+\alpha^{2}+1=0$. The quantities $g_{1}^{3}, g_{2}, g_{3}^{3}, h_{1}^{3}, h_{2}, h_{3}^{3}, h_{4}, h_{5}^{3}$ can all be expressed in a parameter u.

- The parameter u itself is first expressed in terms of $g_{1}^{3}, \ldots, h_{5}^{3}$.
- Afterwards, all variables are expressed in terms of u.

For example

$$
g_{3}^{3}=\alpha \frac{\left(u+\alpha^{5}\right)^{3}\left(u+\alpha^{26}\right)\left(u+\alpha^{27}\right)^{3}\left(u^{2}+\alpha^{20} u+\alpha^{27}\right)^{3}}{\left(u+\alpha^{6}\right)^{2}\left(u+\alpha^{10}\right)^{2}\left(u+\alpha^{16}\right)^{2}\left(u+\alpha^{19}\right)^{2}\left(u+\alpha^{28}\right)^{5}}
$$

Isogenies

Definition

Let ϕ and ψ be two Drinfeld modules. We say ϕ and ψ are isogenous if there exists $\lambda \in F\{\tau\}$ such that for all $a \in A$,

$$
\lambda \phi_{a}=\psi_{a} \lambda .
$$

Such λ is called an isogeny.

Isogenies

Definition

Let ϕ and ψ be two Drinfeld modules. We say ϕ and ψ are isogenous if there exists $\lambda \in F\{\tau\}$ such that for all $a \in A$,

$$
\lambda \phi_{a}=\psi_{a} \lambda .
$$

Such λ is called an isogeny.

- Isogenies exists only between modules of the same rank.

Isogenies

Definition

Let ϕ and ψ be two Drinfeld modules. We say ϕ and ψ are isogenous if there exists $\lambda \in F\{\tau\}$ such that for all $a \in A$,

$$
\lambda \phi_{a}=\psi_{a} \lambda
$$

Such λ is called an isogeny.

- Isogenies exists only between modules of the same rank.

Example (continue)

Let $\lambda=\tau-a \in F\{\tau\}$ and ψ is another Drinfeld A-module defined by

$$
\left\{\begin{array}{l}
\psi_{T}:=\tau^{4}+I_{1} \tau^{3}+I_{2} \tau^{2}+I_{3} \tau+T_{P} \tag{4}\\
\psi_{S}:=\tau^{6}+t_{1} \tau^{5}+t_{2} \tau^{4}+t_{3} \tau^{3}+t_{4} \tau^{2}+t_{5} \tau+S_{P}
\end{array}\right.
$$

Isogenies

- $\lambda=\tau-a \in F\{\tau\}$ is an isogeny from ϕ to ψ if and only if

$$
\begin{equation*}
\lambda \phi_{T}=\psi_{T} \lambda \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{S}=\psi_{s} \lambda \tag{6}
\end{equation*}
$$

Isogenies

- $\lambda=\tau-a \in F\{\tau\}$ is an isogeny from ϕ to ψ if and only if

$$
\begin{equation*}
\lambda_{T}=\psi_{T} \lambda \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda \phi_{S}=\psi_{s} \lambda \tag{6}
\end{equation*}
$$

- Solving (5) gives us

$$
\begin{equation*}
a^{q^{3}+q^{2}+q+1}+g_{1} a^{q^{2}+q+1}+g_{2} a^{q+1}+g_{3} a=\gamma \in \mathbb{F}_{q} \tag{7}
\end{equation*}
$$

- Solving (6) gives us

$$
\begin{array}{r}
a^{q^{5}+q^{4}+q^{3}+q^{2}+q+1}+h_{1} a^{q^{4}+q^{3}+q^{2}+q+1}+h_{2} a^{q^{3}+q^{2}+q+1} \\
+h_{3} a^{q^{2}+q+1}+h_{4} a^{q+1}+h_{5} a=\beta \in \mathbb{F}_{q} \tag{8}
\end{array}
$$

Towers from isogenous Drinfeld modules

Idea to get a tower equation

- Connect two one parameter families (using variables u_{0} and u_{1}) with an isogeny of the form $\tau-a_{0}$. We can use the resulting algebraic relations to construct two inclusions
- We have $\mathbb{F}_{q}\left(u_{0}\right) \subset \mathbb{F}_{q}\left(a_{0}, u_{0}, u_{1}\right) \supset \mathbb{F}_{q}\left(u_{1}\right)$.
- Relating the variables u_{0} and u_{1} gives a polynomial equation $\varphi\left(u_{1}, u_{0}\right)=0$.

Towers from isogenous Drinfeld modules

Idea to get a tower equation

- Connect two one parameter families (using variables u_{0} and u_{1}) with an isogeny of the form $\tau-a_{0}$. We can use the resulting algebraic relations to construct two inclusions
- We have $\mathbb{F}_{q}\left(u_{0}\right) \subset \mathbb{F}_{q}\left(a_{0}, u_{0}, u_{1}\right) \supset \mathbb{F}_{q}\left(u_{1}\right)$.
- Relating the variables u_{0} and u_{1} gives a polynomial equation $\varphi\left(u_{1}, u_{0}\right)=0$.
- Iterating this gives a tower recursively defined by

$$
\varphi\left(x_{i+1}, x_{i}\right)=0
$$

Example (continued)

- Relating the variables is easy and we find:

Example (continued)

- Relating the variables is easy and we find:
- The tower equation $\varphi_{i}\left(x_{i+1}, x_{i}\right)=0$:

$$
\begin{gathered}
0=x_{i+1}^{3}+\frac{\left(\alpha_{i}^{17} x_{i}^{3}+\alpha_{i}^{29} x_{i}^{2}+x_{i}+\alpha_{i}^{30}\right)}{\left(x_{i}^{3}+\alpha_{i}^{24} x_{i}^{2}+\alpha_{i}^{4} x_{i}+\alpha_{i}^{9}\right)} x_{i+1}^{2}+ \\
\frac{\left(\alpha_{i}^{30} x_{i}^{3}+\alpha_{i}^{12} x_{i}^{2}+\alpha_{i}^{30} x_{i}+\alpha_{i}^{17}\right)}{\left(x_{i}^{3}+\alpha_{i}^{24} x_{i}^{2}+\alpha_{i}^{4} x_{i}+\alpha_{i}^{9}\right)} x_{i+1}+\frac{\left(\alpha_{i}^{4} x_{i}^{3}+\alpha_{i}^{14} x_{i}^{2}+\alpha_{i}^{19}\right)}{\left(x_{i}^{3}+\alpha_{i}^{24} x_{i}^{2}+\alpha_{i}^{4} x_{i}+\alpha_{i}^{9}\right)} .
\end{gathered}
$$

- Here $\alpha_{i}=\alpha^{8^{i}}$

Example (continued)

- Relating the variables is easy and we find:
- The tower equation $\varphi_{i}\left(x_{i+1}, x_{i}\right)=0$:

$$
\begin{gathered}
0=x_{i+1}^{3}+\frac{\left(\alpha_{i}^{17} x_{i}^{3}+\alpha_{i}^{29} x_{i}^{2}+x_{i}+\alpha_{i}^{30}\right)}{\left(x_{i}^{3}+\alpha_{i}^{24} x_{i}^{2}+\alpha_{i}^{4} x_{i}+\alpha_{i}^{9}\right)} x_{i+1}^{2}+ \\
\frac{\left(\alpha_{i}^{30} x_{i}^{3}+\alpha_{i}^{12} x_{i}^{2}+\alpha_{i}^{30} x_{i}+\alpha_{i}^{17}\right)}{\left(x_{i}^{3}+\alpha_{i}^{24} x_{i}^{2}+\alpha_{i}^{4} x_{i}+\alpha_{i}^{9}\right)} x_{i+1}+\frac{\left(\alpha_{i}^{4} x_{i}^{3}+\alpha_{i}^{14} x_{i}^{2}+\alpha_{i}^{19}\right)}{\left(x_{i}^{3}+\alpha_{i}^{24} x_{i}^{2}+\alpha_{i}^{4} x_{i}+\alpha_{i}^{9}\right)} .
\end{gathered}
$$

- Here $\alpha_{i}=\alpha^{8^{i}}$
- The resulting tower $\mathcal{F}=\left(F_{1}, F_{2}, \ldots\right)$ is defined by
- $F_{1}=\mathbb{F}_{2^{10}}\left(x_{1}\right)$.
- $F_{i+1}=F_{i}\left(x_{i+1}\right)$ with $\varphi_{i}\left(x_{i+1}, x_{i}\right)=0$.
- Limit of the resulting tower is at least 1 .

Thank you for your attention!

