On the Zeta Function of Curves over Finite Fields

Nurdagül Anbar
(joint work with Henning Stichtenoth)

Sabancı University

RICAM, Workshop 2: Algebraic Curves over Finite Fields 11-15 November 2013

L-polynomial of a curve

\mathcal{X} : a nice curve over \mathbb{F}_{q} of genus g.

The Zeta function of \mathcal{X},
where $L_{\mathcal{X}}(t) \in \mathbb{Z}[t]$ of degree $2 g$.

L-polynomial of a curve

\mathcal{X} : a nice curve over \mathbb{F}_{q} of genus g.
The Zeta function of \mathcal{X},

$$
Z_{\mathcal{X}}(t)=\frac{L_{\mathcal{X}}(t)}{(1-t)(1-q t)}
$$

where $L_{\mathcal{X}}(t) \in \mathbb{Z}[t]$ of degree $2 g$.

L-polynomial of a curve

\mathcal{X} : a nice curve over \mathbb{F}_{q} of genus g.
The Zeta function of \mathcal{X},

$$
Z_{\mathcal{X}}(t)=\frac{L_{\mathcal{X}}(t)}{(1-t)(1-q t)},
$$

where $L_{\mathcal{X}}(t) \in \mathbb{Z}[t]$ of degree $2 g$.
$L_{\mathcal{X}}(t)=a_{0}+a_{1} t+\ldots+a_{2 g} t^{2 g}(L$-polynomial of $\mathcal{X})$

- $a_{0}=1$
- $a_{1}=N-(q+1)$, where N is the number of rational points of \mathcal{X}
- $a_{2 g-i}=q^{g-i} a_{i}$ for $i=0, \ldots, g$

Some notation

Remember: \mathcal{X} is defined over \mathbb{F}_{q}
$F_{d}:=\mathbb{F}_{q^{d}}$
\mathcal{X}_{d} : the curve \mathcal{X} over F_{d}
N_{d} : the number of rational points of \mathcal{X}_{d}
$S_{d}:=N_{d}-\left(q^{d}+1\right)$
B_{r} : the number of degree r points of \mathcal{X}

Some notation

Remember: \mathcal{X} is defined over \mathbb{F}_{q}
$F_{d}:=\mathbb{F}_{q^{d}}$
\mathcal{X}_{d} : the curve \mathcal{X} over F_{d}
N_{d} : the number of rational points of \mathcal{X}_{d}
$S_{d}:=N_{d}-\left(q^{d}+1\right)$
B_{r} : the number of degree r points of \mathcal{X}
$L(t)=L_{\mathcal{X}}(t)=1+a_{1} t+\ldots+a_{2 g} t^{2 g}$

$$
\begin{gathered}
S_{d}=d a_{d}-\sum_{j=1}^{d-1} S_{d-j} a_{j} \text { with } S_{1}=N_{1}-(q+1)=a_{1} \\
r B_{r}=\sum_{d \mid r} \mu\left(\frac{r}{d}\right)\left(q^{d}+1+S_{d}\right) \text { for all } r \geq 1,
\end{gathered}
$$

for all $r \geq 1$, where $\mu($.$) is the Möbius function.$

Some recursively defined functions over \mathbb{Z} :
$\sigma_{0}:=0$ and for all $r \geq 1$,

$$
\begin{gathered}
\sigma_{r}\left(T_{1}, \ldots, T_{r}\right):=r T_{r}-\sum_{j=1}^{r-1} \sigma_{r-j}\left(T_{1}, \ldots, T_{r-j}\right) \cdot T_{j} \\
\beta_{r}\left(T_{1}, \ldots, T_{r}\right):=\sum_{d \mid r} \mu\left(\frac{r}{d}\right) \sigma_{d}\left(T_{1}, \ldots, T_{d}\right)+\sum_{d \mid r} \mu\left(\frac{r}{d}\right)\left(q^{d}+1\right) \\
\varphi_{r}\left(T_{1}, \ldots, T_{r-1}\right):=r T_{r}-\beta_{r}\left(T_{1}, \ldots, T_{r}\right)
\end{gathered}
$$

Some recursively defined functions over \mathbb{Z} :

$\sigma_{0}:=0$ and for all $r \geq 1$,

$$
\begin{gathered}
\sigma_{r}\left(T_{1}, \ldots, T_{r}\right):=r T_{r}-\sum_{j=1}^{r-1} \sigma_{r-j}\left(T_{1}, \ldots, T_{r-j}\right) \cdot T_{j} \\
\beta_{r}\left(T_{1}, \ldots, T_{r}\right):=\sum_{d \mid r} \mu\left(\frac{r}{d}\right) \sigma_{d}\left(T_{1}, \ldots, T_{d}\right)+\sum_{d \mid r} \mu\left(\frac{r}{d}\right)\left(q^{d}+1\right) \\
\varphi_{r}\left(T_{1}, \ldots, T_{r-1}\right):=r T_{r}-\beta_{r}\left(T_{1}, \ldots, T_{r}\right)
\end{gathered}
$$

$\sigma_{r}\left(a_{1}, \ldots, a_{r}\right)=S_{r}=N_{r}-\left(q^{r}+1\right) \quad$ and $\quad \beta_{r}\left(a_{1}, \ldots, a_{r}\right)=r B_{r}$

Some recursively defined functions over \mathbb{Z} :

$\sigma_{0}:=0$ and for all $r \geq 1$,

$$
\begin{gathered}
\sigma_{r}\left(T_{1}, \ldots, T_{r}\right):=r T_{r}-\sum_{j=1}^{r-1} \sigma_{r-j}\left(T_{1}, \ldots, T_{r-j}\right) \cdot T_{j} \\
\beta_{r}\left(T_{1}, \ldots, T_{r}\right):=\sum_{d \mid r} \mu\left(\frac{r}{d}\right) \sigma_{d}\left(T_{1}, \ldots, T_{d}\right)+\sum_{d \mid r} \mu\left(\frac{r}{d}\right)\left(q^{d}+1\right) \\
\varphi_{r}\left(T_{1}, \ldots, T_{r-1}\right):=r T_{r}-\beta_{r}\left(T_{1}, \ldots, T_{r}\right)
\end{gathered}
$$

$\sigma_{r}\left(a_{1}, \ldots, a_{r}\right)=S_{r}=N_{r}-\left(q^{r}+1\right) \quad$ and $\quad \beta_{r}\left(a_{1}, \ldots, a_{r}\right)=r B_{r}$

$$
\Longrightarrow r a_{r}=\varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)+r B_{r}
$$

Necessary conditions on the coefficients of L-polynomial

Theorem

Let \mathcal{X} be a non-singular, absolutely irreducible, projective curve defined over \mathbb{F}_{q} and let $L_{\mathcal{X}}(t)=1+a_{1} t+\ldots+a_{2 g} t^{2 g}$ be its L-polynomial. Then the inequalities

$$
r a_{r} \geq \varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)
$$

hold for $r=1, \ldots, g$.

Necessary conditions on the coefficients of L-polynomial

Theorem

Let \mathcal{X} be a non-singular, absolutely irreducible, projective curve defined over \mathbb{F}_{q} and let $L_{\mathcal{X}}(t)=1+a_{1} t+\ldots+a_{2 g} t^{2 g}$ be its L-polynomial. Then the inequalities

$$
r a_{r} \geq \varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)
$$

hold for $r=1, \ldots, g$.

Example

$$
\begin{aligned}
& a_{1} \geq-(q+1) \\
& 2 a_{2} \geq a_{1}^{2}+a_{1}-\left(q^{2}-q\right) \\
& 3 a_{3} \geq-a_{1}^{3}+a_{1}+3 a_{1} a_{2}-\left(q^{3}-q\right) \\
& 4 a_{4} \geq-a_{1}^{4}-a_{1}^{2}-4 a_{1}^{2} a_{2}+4 a_{1} a_{3}+2 a_{2}-\left(q^{4}-q^{2}\right)
\end{aligned}
$$

The converse of the Theorem

Problem:

Let $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}$ satisfying $r a_{r} \geq \varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)$ for all $r=1, \ldots, m$. Is there a curve \mathcal{X} of genus g over \mathbb{F}_{q} whose L-polynomial has the form

$$
L(t)=1+a_{1} t+a_{2} t^{2}+\ldots+a_{m} t^{m}+\ldots \quad ?
$$

The converse of the Theorem

Problem:

Let $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}$ satisfying $r a_{r} \geq \varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)$ for all $r=1, \ldots, m$. Is there a curve \mathcal{X} of genus g over \mathbb{F}_{q} whose L-polynomial has the form

$$
L(t)=1+a_{1} t+a_{2} t^{2}+\ldots+a_{m} t^{m}+\ldots \quad ?
$$

Not in general!

The converse of the Theorem

Problem:

Let $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in \mathbb{Z}^{m}$ satisfying $r a_{r} \geq \varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)$ for all $r=1, \ldots, m$. Is there a curve \mathcal{X} of genus g over \mathbb{F}_{q} whose L-polynomial has the form

$$
L(t)=1+a_{1} t+a_{2} t^{2}+\ldots+a_{m} t^{m}+\ldots \quad ?
$$

Not in general!
Hasse-Weil Theorem: $L(t)=\prod_{k=1}^{2 g}\left(1-w_{k} t\right)$ with $\left|w_{k}\right|=\sqrt{q}$

$$
\Longrightarrow\left|a_{r}\right| \leq\binom{ 2 g}{r} \cdot \sqrt{q^{r}} \quad \text { for } r=1, \ldots, g .
$$

Theorem (A., Stichtenoth)

Let a_{1}, \ldots, a_{m} be integers such that $r a_{r} \geq \varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)$ for $r=1, \ldots, m$. Then there is an integer $g_{0} \geq m$ such that for all $g \geq g_{0}$, there exists a curve over \mathbb{F}_{q} of genus g whose L-polynomial has the form

$$
L(t) \equiv 1+a_{1} t+\ldots+a_{m} t^{m} \quad \bmod t^{m+1}
$$

Sketch of the proof

Remember: $r a_{r}=\varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)+r B_{r}$ for $r \geq 1$.

Sketch of the proof

Remember: $r a_{r}=\varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)+r B_{r}$ for $r \geq 1$.
Step 1:
For all $m \geq 1$ and all $\left(a_{1}, \ldots, a_{m-1}\right) \in \mathbb{Z}^{m-1}$,

$$
\varphi_{m}\left(a_{1}, \ldots, a_{m-1}\right) \equiv 0 \quad \bmod m
$$

Equivalent statement:
Let b_{1}, \ldots, b_{m} be non-negative integers. Then there is a constant
$g_{0} \geq m$ such that for all integers $g \geq g_{0}$ there exists a curve \mathcal{X} over \mathbb{F}_{q} of genus g such that \mathcal{X} has exactly b_{r} points of degree r,

Sketch of the proof

Remember: $r a_{r}=\varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)+r B_{r}$ for $r \geq 1$.
Step 1:
For all $m \geq 1$ and all $\left(a_{1}, \ldots, a_{m-1}\right) \in \mathbb{Z}^{m-1}$,

$$
\varphi_{m}\left(a_{1}, \ldots, a_{m-1}\right) \equiv 0 \quad \bmod m
$$

Step 2:
Define $b_{r}:=r^{-1}\left(r a_{r}-\varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)\right)$ for $r=1, \ldots, m$.
Equivalent statement:

Sketch of the proof

Remember: $r a_{r}=\varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)+r B_{r}$ for $r \geq 1$.
Step 1:
For all $m \geq 1$ and all $\left(a_{1}, \ldots, a_{m-1}\right) \in \mathbb{Z}^{m-1}$,

$$
\varphi_{m}\left(a_{1}, \ldots, a_{m-1}\right) \equiv 0 \quad \bmod m
$$

Step 2:

Define $b_{r}:=r^{-1}\left(r a_{r}-\varphi_{r}\left(a_{1}, \ldots, a_{r-1}\right)\right)$ for $r=1, \ldots, m$.
Equivalent statement:
Let b_{1}, \ldots, b_{m} be non-negative integers. Then there is a constant $g_{0} \geq m$ such that for all integers $g \geq g_{0}$ there exists a curve \mathcal{X} over \mathbb{F}_{q} of genus g such that \mathcal{X} has exactly b_{r} points of degree r, for $r=1, \ldots, m$.

The proof of Step 2 :

The proof is by construction.

- Define the sets
S_{1} consisting of exactly b_{r} points of degree r for $r=1 \ldots \ldots m$
\square and $\operatorname{deg} Q$ $m\}$

The proof of Step 2:

The proof is by construction.

- For given b_{1}, \ldots, b_{m}, there exists a curve \mathcal{Y} over \mathbb{F}_{q} with $B_{1}(\mathcal{Y}) \geq b_{1}, \ldots, B_{m}(\mathcal{Y}) \geq b_{m}$.
- Define the sets
S_{1} consisting of exactly $b r$ points of degree r for $r=1$

$S_{2}:=\{Q \in \mathcal{Y}$$Q \notin S_{1}$ and $\left.\operatorname{deg} Q \leq m\right\}$ - Construct an Artin-Schreier cover $\tilde{\mathcal{Y}}$ such that each $P \in S_{1}$ totally ramifies and each $Q \in S_{2}$ gets inert

The proof of Step 2:

The proof is by construction.

- For given b_{1}, \ldots, b_{m}, there exists a curve \mathcal{Y} over \mathbb{F}_{q} with $B_{1}(\mathcal{Y}) \geq b_{1}, \ldots, B_{m}(\mathcal{Y}) \geq b_{m}$.
- Define the sets
S_{1} consisting of exactly b_{r} points of degree r for $r=1, \ldots, m$
$S_{2}:=\left\{Q \in \mathcal{Y} \mid Q \notin S_{1}\right.$ and $\left.\operatorname{deg} Q \leq m\right\}$

The proof of Step 2:

The proof is by construction.

- For given b_{1}, \ldots, b_{m}, there exists a curve \mathcal{Y} over \mathbb{F}_{q} with $B_{1}(\mathcal{Y}) \geq b_{1}, \ldots, B_{m}(\mathcal{Y}) \geq b_{m}$.
- Define the sets
S_{1} consisting of exactly b_{r} points of degree r for $r=1, \ldots, m$
$S_{2}:=\left\{Q \in \mathcal{Y} \mid Q \notin S_{1}\right.$ and $\left.\operatorname{deg} Q \leq m\right\}$
- Construct an Artin-Schreier cover $\widetilde{\mathcal{Y}}$ such that each $P \in S_{1}$ totally ramifies and each $Q \in S_{2}$ gets inert.

Special Case: $m=1$

Theorem

Let b be a non-negative integer. Then there are constants $\alpha(q)>0$ and $\beta(q)$ such that for all integers $g \geq \alpha(q) b+\beta(q)$, there exists a curve \mathcal{X} over \mathbb{F}_{q} of genus g having exactly b rational points.

Basis step: Curves with many rational points

$$
\text { - the Garcia-Stichtenoth tower (} q \text { : square) }
$$

\square

Special Case: $m=1$

Theorem

Let b be a non-negative integer. Then there are constants $\alpha(q)>0$ and $\beta(q)$ such that for all integers $g \geq \alpha(q) b+\beta(q)$, there exists a curve \mathcal{X} over \mathbb{F}_{q} of genus g having exactly b rational points.

Basis step: Curves with many rational points

- the Garcia-Stichtenoth tower (q : square)
- the Elkies et al. class field tower

Special Case: $m=1$

Theorem

Let b be a non-negative integer. Then there are constants $\alpha(q)>0$ and $\beta(q)$ such that for all integers $g \geq \alpha(q) b+\beta(q)$, there exists a curve \mathcal{X} over \mathbb{F}_{q} of genus g having exactly b rational points.

Basis step: Curves with many rational points

- the Garcia-Stichtenoth tower (q : square)
- the Elkies et al. class field tower

Remark: (q: square)

Let $p=\operatorname{char} \mathbb{F}_{q}$ and q be a square. Then g_{0} can be defined as $4 p(p+11) b$.

Remark:
Elkis et al.: For any q, there exists a sequence of curves \mathcal{X}_{i} over \mathbb{F}_{q} with

$$
\lim _{g \rightarrow \infty} \frac{N\left(\mathcal{X}_{i}\right)}{g\left(\mathcal{X}_{i}\right)}=c_{q}
$$

where $c_{q}>0$ is a constant depending only on q.

Remark:

Elkis et al.: For any q, there exists a sequence of curves \mathcal{X}_{i} over \mathbb{F}_{q} with

$$
\lim _{g \rightarrow \infty} \frac{N\left(\mathcal{X}_{i}\right)}{g\left(\mathcal{X}_{i}\right)}=c_{q}
$$

where $c_{q}>0$ is a constant depending only on q.
A., Stichtenoth: For any q, there exists a constant δ_{q} depending only on q such that for any $c \in\left[0, \delta_{q}\right]$ there exists a sequence of curves \mathcal{X}_{i} over \mathbb{F}_{q} with

$$
\lim _{g \rightarrow \infty} \frac{N\left(\mathcal{X}_{i}\right)}{g\left(\mathcal{X}_{i}\right)}=c
$$

Thanks for your attention!

