On the Zeta Function of Curves over Finite Fields

Nurdagül Anbar (joint work with Henning Stichtenoth)

Sabancı University

RICAM, Workshop 2: Algebraic Curves over Finite Fields 11-15 November 2013

L-polynomial of a curve

\mathcal{X} : a <u>nice</u> curve over \mathbb{F}_q of genus g.

The Zeta function of \mathcal{X} ,

$$Z_{\mathcal{X}}(t) = rac{L_{\mathcal{X}}(t)}{(1-t)(1-qt)} \; ,$$

where $L_{\mathcal{X}}(t) \in \mathbb{Z}[t]$ of degree 2*g*.

 $L_{\mathcal{X}}(t) = a_0 + a_1 t + \ldots + a_{2g} t^{2g}$ (*L*-polynomial of \mathcal{X})

•
$$a_0 = 1$$

• $a_1 = N - (q + 1)$, where N is the number of rational points of \mathcal{X}

•
$$a_{2g-i} = q^{g-i}a_i$$
 for $i = 0, ..., g$

L-polynomial of a curve

 \mathcal{X} : a <u>nice</u> curve over \mathbb{F}_q of genus g.

The Zeta function of \mathcal{X} ,

$$Z_{\mathcal{X}}(t) = rac{L_{\mathcal{X}}(t)}{(1-t)(1-qt)} \; ,$$

where $L_{\mathcal{X}}(t) \in \mathbb{Z}[t]$ of degree 2g.

 $L_{\mathcal{X}}(t) = a_0 + a_1 t + \ldots + a_{2g} t^{2g}$ (*L*-polynomial of \mathcal{X})

• $a_0 = 1$

• $a_1 = N - (q + 1)$, where N is the number of rational points of \mathcal{X}

•
$$a_{2g-i} = q^{g-i}a_i$$
 for $i = 0, ..., g$

L-polynomial of a curve

- \mathcal{X} : a <u>nice</u> curve over \mathbb{F}_q of genus g.
- The Zeta function of \mathcal{X} ,

$$Z_{\mathcal{X}}(t) = rac{L_{\mathcal{X}}(t)}{(1-t)(1-qt)} \; ,$$

where $L_{\mathcal{X}}(t) \in \mathbb{Z}[t]$ of degree 2g.

- $L_{\mathcal{X}}(t) = a_0 + a_1 t + \ldots + a_{2g} t^{2g}$ (L-polynomial of \mathcal{X})
 - $a_0 = 1$
 - $a_1 = N (q+1)$, where N is the number of rational points of \mathcal{X}

•
$$a_{2g-i} = q^{g-i}a_i$$
 for $i = 0, ..., g$

Some notation

Remember: \mathcal{X} is defined over \mathbb{F}_q

$$egin{aligned} F_d &:= \mathbb{F}_{q^d} \ \mathcal{X}_d &: ext{the curve } \mathcal{X} ext{ over } F_d \ N_d &: ext{the number of rational points of } \mathcal{X}_d \ S_d &:= N_d - (q^d + 1) \ B_r &: ext{the number of degree } r ext{ points of } \mathcal{X} \end{aligned}$$

$$L(t) = L_{\mathcal{X}}(t) = 1 + a_1t + \ldots + a_{2g}t^{2g}$$

$$S_d = da_d - \sum_{j=1}^{d-1} S_{d-j}a_j$$
 with $S_1 = N_1 - (q+1) = a_1$
 $rB_r = \sum_{d|r} \mu(\frac{r}{d})(q^d + 1 + S_d)$ for all $r \ge 1$,

for all $r \geq 1$, where $\mu(.)$ is the Möbius function.

Some notation

Remember: \mathcal{X} is defined over \mathbb{F}_q

$$\begin{split} F_d &:= \mathbb{F}_{q^d} \\ \mathcal{X}_d: \text{ the curve } \mathcal{X} \text{ over } F_d \\ N_d: \text{ the number of rational points of } \mathcal{X}_d \\ S_d &:= N_d - (q^d + 1) \\ B_r: \text{ the number of degree } r \text{ points of } \mathcal{X} \\ L(t) &= L_{\mathcal{X}}(t) = 1 + a_1 t + \ldots + a_{2g} t^{2g} \\ S_d &= da_d - \sum_{j=1}^{d-1} S_{d-j} a_j \text{ with } S_1 = N_1 - (q+1) = a_1 \\ rB_r &= \sum_{d|r} \mu(\frac{r}{d})(q^d + 1 + S_d) \text{ for all } r \geq 1 , \end{split}$$

for all $r\geq 1$, where $\mu(.)$ is the Möbius function.

Some recursively defined functions over \mathbb{Z} :

 $\sigma_0 := 0$ and for all $r \ge 1$,

$$\sigma_r(T_1,\ldots,T_r) := rT_r - \sum_{j=1}^{r-1} \sigma_{r-j}(T_1,\ldots,T_{r-j}) \cdot T_j$$
$$\beta_r(T_1,\ldots,T_r) := \sum_{d|r} \mu(\frac{r}{d}) \sigma_d(T_1,\ldots,T_d) + \sum_{d|r} \mu(\frac{r}{d})(q^d+1)$$
$$\varphi_r(T_1,\ldots,T_{r-1}) := rT_r - \beta_r(T_1,\ldots,T_r)$$

 $\sigma_r(a_1,\ldots,a_r)=S_r=N_r-(q^r+1)$ and $\beta_r(a_1,\ldots,a_r)=rB_r$

$$\implies$$
 $ra_r = \varphi_r(a_1, \ldots, a_{r-1}) + rB_r$

Some recursively defined functions over \mathbb{Z} :

 $\sigma_0 := 0$ and for all $r \ge 1$,

$$\sigma_r(T_1,\ldots,T_r) := rT_r - \sum_{j=1}^{r-1} \sigma_{r-j}(T_1,\ldots,T_{r-j}) \cdot T_j$$
$$\beta_r(T_1,\ldots,T_r) := \sum_{d|r} \mu(\frac{r}{d}) \sigma_d(T_1,\ldots,T_d) + \sum_{d|r} \mu(\frac{r}{d}) (q^d + 1)$$
$$\varphi_r(T_1,\ldots,T_{r-1}) := rT_r - \beta_r(T_1,\ldots,T_r)$$

 $\sigma_r(a_1,\ldots,a_r)=S_r=N_r-(q^r+1) \text{ and } \beta_r(a_1,\ldots,a_r)=rB_r$

 \implies ra $_{r}=arphi_{r}(a_{1},\ldots,a_{r-1})+$ r B_{r}

Some recursively defined functions over \mathbb{Z} :

 $\sigma_0 := 0$ and for all $r \ge 1$,

$$\sigma_r(T_1,\ldots,T_r) := rT_r - \sum_{j=1}^{r-1} \sigma_{r-j}(T_1,\ldots,T_{r-j}) \cdot T_j$$
$$\beta_r(T_1,\ldots,T_r) := \sum_{d|r} \mu(\frac{r}{d}) \sigma_d(T_1,\ldots,T_d) + \sum_{d|r} \mu(\frac{r}{d}) (q^d+1)$$
$$\varphi_r(T_1,\ldots,T_{r-1}) := rT_r - \beta_r(T_1,\ldots,T_r)$$

 $\sigma_r(a_1,\ldots,a_r)=S_r=N_r-(q^r+1)$ and $\beta_r(a_1,\ldots,a_r)=rB_r$

$$\implies$$
 $ra_r = \varphi_r(a_1, \ldots, a_{r-1}) + rB_r$

Necessary conditions on the coefficients of L-polynomial

Theorem

Let \mathcal{X} be a non-singular, absolutely irreducible, projective curve defined over \mathbb{F}_q and let $L_{\mathcal{X}}(t) = 1 + a_1t + \ldots + a_{2g}t^{2g}$ be its L-polynomial. Then the inequalities

$$ra_r \geq \varphi_r(a_1,\ldots,a_{r-1})$$

hold for $r = 1, \ldots, g$.

Example

$$egin{aligned} a_1 &\geq -(q+1) \ 2a_2 &\geq a_1^2 + a_1 - (q^2 - q) \ 3a_3 &\geq -a_1^3 + a_1 + 3a_1a_2 - (q^3 - q) \ 4a_4 &\geq -a_1^4 - a_1^2 - 4a_1^2a_2 + 4a_1a_3 + 2a_2 - (q^4 - q^2) \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Necessary conditions on the coefficients of L-polynomial

Theorem

Let \mathcal{X} be a non-singular, absolutely irreducible, projective curve defined over \mathbb{F}_q and let $L_{\mathcal{X}}(t) = 1 + a_1t + \ldots + a_{2g}t^{2g}$ be its L-polynomial. Then the inequalities

$$ra_r \geq \varphi_r(a_1,\ldots,a_{r-1})$$

hold for $r = 1, \ldots, g$.

Example

$$egin{aligned} &a_1 \geq -(q+1)\ &2a_2 \geq a_1^2 + a_1 - (q^2 - q)\ &3a_3 \geq -a_1^3 + a_1 + 3a_1a_2 - (q^3 - q)\ &4a_4 \geq -a_1^4 - a_1^2 - 4a_1^2a_2 + 4a_1a_3 + 2a_2 - (q^4 - q^2) \end{aligned}$$

The converse of the Theorem

Problem:

Let $(a_1, a_2, \ldots, a_m) \in \mathbb{Z}^m$ satisfying $ra_r \ge \varphi_r(a_1, \ldots, a_{r-1})$ for all $r = 1, \ldots, m$. Is there a curve \mathcal{X} of genus g over \mathbb{F}_q whose L-polynomial has the form

$$L(t) = 1 + a_1t + a_2t^2 + \ldots + a_mt^m + \ldots$$
 ?

Not in general!

Hasse-Weil Theorem: $L(t)=\prod_{k=1}^{2g}(1-w_kt)$ with $\mid w_k\mid=\sqrt{q}$

$$\implies |a_r| \leq \binom{2g}{r} \cdot \sqrt{q^r}$$
 for $r = 1, \dots, g$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

The converse of the Theorem

Problem:

Let $(a_1, a_2, \ldots, a_m) \in \mathbb{Z}^m$ satisfying $ra_r \ge \varphi_r(a_1, \ldots, a_{r-1})$ for all $r = 1, \ldots, m$. Is there a curve \mathcal{X} of genus g over \mathbb{F}_q whose L-polynomial has the form

$$L(t) = 1 + a_1t + a_2t^2 + \ldots + a_mt^m + \ldots$$
 ?

Not in general!

Hasse-Weil Theorem: $L(t)=\prod_{k=1}^{2g}(1-w_kt)$ with $\mid w_k\mid=\sqrt{q}$

$$\implies |a_r| \leq \binom{2g}{r} \cdot \sqrt{q^r}$$
 for $r = 1, \dots, g$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

The converse of the Theorem

Problem:

Let $(a_1, a_2, \ldots, a_m) \in \mathbb{Z}^m$ satisfying $ra_r \ge \varphi_r(a_1, \ldots, a_{r-1})$ for all $r = 1, \ldots, m$. Is there a curve \mathcal{X} of genus g over \mathbb{F}_q whose L-polynomial has the form

$$L(t) = 1 + a_1t + a_2t^2 + \ldots + a_mt^m + \ldots$$
 ?

Not in general!

Hasse-Weil Theorem: $L(t) = \prod_{k=1}^{2g} (1 - w_k t)$ with $\mid w_k \mid = \sqrt{q}$

$$\implies |a_r| \leq \binom{2g}{r} \cdot \sqrt{q^r} \text{ for } r = 1, \dots, g \; .$$

Theorem (A., Stichtenoth)

Let a_1, \ldots, a_m be integers such that $ra_r \ge \varphi_r(a_1, \ldots, a_{r-1})$ for $r = 1, \ldots, m$. Then there is an integer $g_0 \ge m$ such that for all $g \ge g_0$, there exists a curve over \mathbb{F}_q of genus g whose L-polynomial has the form

$$L(t) \equiv 1 + a_1 t + \ldots + a_m t^m \mod t^{m+1}$$

Remember:
$$ra_r = \varphi_r(a_1, \ldots, a_{r-1}) + rB_r$$
 for $r \ge 1$.

Step 1: For all $m \ge 1$ and all $(a_1, \ldots, a_{m-1}) \in \mathbb{Z}^{m-1}$,

 $arphi_m(a_1,\ldots,a_{m-1})\equiv 0\mod m$.

Step 2:

Define
$$b_r := r^{-1}(ra_r - \varphi_r(a_1, ..., a_{r-1}))$$
 for $r = 1, ..., m$.

Equivalent statement:

Remember:
$$ra_r = \varphi_r(a_1, \ldots, a_{r-1}) + rB_r$$
 for $r \ge 1$.

Step 1: For all $m \ge 1$ and all $(a_1, \ldots, a_{m-1}) \in \mathbb{Z}^{m-1}$,

$$\varphi_m(a_1,\ldots,a_{m-1})\equiv 0 \mod m$$
.

Step 2: Define $b_r := r^{-1}(ra_r - \varphi_r(a_1, ..., a_{r-1}))$ for r = 1, ..., m

Equivalent statement:

Remember:
$$ra_r = \varphi_r(a_1, \ldots, a_{r-1}) + rB_r$$
 for $r \ge 1$.

Step 1: For all $m \ge 1$ and all $(a_1, \ldots, a_{m-1}) \in \mathbb{Z}^{m-1}$,

$$\varphi_m(a_1,\ldots,a_{m-1})\equiv 0 \mod m$$
.

Step 2: Define $b_r := r^{-1}(ra_r - \varphi_r(a_1, ..., a_{r-1}))$ for r = 1, ..., m.

Equivalent statement:

Remember:
$$ra_r = \varphi_r(a_1, \ldots, a_{r-1}) + rB_r$$
 for $r \ge 1$.

Step 1: For all $m \ge 1$ and all $(a_1, \ldots, a_{m-1}) \in \mathbb{Z}^{m-1}$,

$$\varphi_m(a_1,\ldots,a_{m-1})\equiv 0 \mod m$$
.

Step 2:

Define $b_r := r^{-1}(ra_r - \varphi_r(a_1, ..., a_{r-1}))$ for r = 1, ..., m.

Equivalent statement:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

The proof of Step 2:

The proof is by construction.

• For given b_1, \ldots, b_m , there exists a curve \mathcal{Y} over \mathbb{F}_q with $B_1(\mathcal{Y}) \ge b_1, \ldots, B_m(\mathcal{Y}) \ge b_m$.

• Define the sets S_1 consisting of exactly b_r points of degree r for r = 1, ..., m $S_2 := \{Q \in \mathcal{Y} \mid Q \notin S_1 \text{ and } \deg Q \leq m\}$

• Construct an Artin-Schreier cover $\widetilde{\mathcal{Y}}$ such that each $P \in S_1$ totally ramifies and each $Q \in S_2$ gets inert.

The proof of Step 2:

The proof is by construction.

• For given b_1, \ldots, b_m , there exists a curve \mathcal{Y} over \mathbb{F}_q with $B_1(\mathcal{Y}) \geq b_1, \ldots, B_m(\mathcal{Y}) \geq b_m$.

• Define the sets S_1 consisting of exactly b_r points of degree r for r = 1, ..., m $S_2 := \{Q \in \mathcal{Y} \mid Q \notin S_1 \text{ and } \deg Q \leq m\}$

• Construct an Artin-Schreier cover $\widetilde{\mathcal{Y}}$ such that each $P\in S_1$ totally ramifies and each $Q\in S_2$ gets inert.

The proof of Step 2:

The proof is by construction.

• For given b_1, \ldots, b_m , there exists a curve \mathcal{Y} over \mathbb{F}_q with $B_1(\mathcal{Y}) \geq b_1, \ldots, B_m(\mathcal{Y}) \geq b_m$.

• Define the sets S_1 consisting of exactly b_r points of degree r for r = 1, ..., m $S_2 := \{Q \in \mathcal{Y} \mid Q \notin S_1 \text{ and } \deg Q \leq m\}$

• Construct an Artin-Schreier cover $\widetilde{\mathcal{Y}}$ such that each $P \in S_1$ totally ramifies and each $Q \in S_2$ gets inert.

The proof of Step 2:

The proof is by construction.

• For given b_1, \ldots, b_m , there exists a curve \mathcal{Y} over \mathbb{F}_q with $B_1(\mathcal{Y}) \geq b_1, \ldots, B_m(\mathcal{Y}) \geq b_m$.

• Define the sets S_1 consisting of exactly b_r points of degree r for r = 1, ..., m $S_2 := \{Q \in \mathcal{Y} \mid Q \notin S_1 \text{ and } \deg Q \leq m\}$

• Construct an Artin-Schreier cover $\widetilde{\mathcal{Y}}$ such that each $P \in S_1$ totally ramifies and each $Q \in S_2$ gets inert.

Special Case: m = 1

Theorem

Let b be a non-negative integer. Then there are constants $\alpha(q) > 0$ and $\beta(q)$ such that for all integers $g \ge \alpha(q)b + \beta(q)$, there exists a curve \mathcal{X} over \mathbb{F}_q of genus g having exactly b rational points.

Basis step: Curves with many rational points

- the Garcia-Stichtenoth tower (q: square)
- the Elkies et al. class field tower

Remark: (*q*: square)

Let $p = \operatorname{char} \mathbb{F}_q$ and q be a square. Then g_0 can be defined as 4p(p+11)b.

Special Case: m = 1

Theorem

Let b be a non-negative integer. Then there are constants $\alpha(q) > 0$ and $\beta(q)$ such that for all integers $g \ge \alpha(q)b + \beta(q)$, there exists a curve \mathcal{X} over \mathbb{F}_q of genus g having exactly b rational points.

Basis step: Curves with many rational points

- the Garcia-Stichtenoth tower (q: square)
- the Elkies et al. class field tower

Remark: (*q*: square)

Let $p = \operatorname{char} \mathbb{F}_q$ and q be a square. Then g_0 can be defined as 4p(p+11)b.

Special Case: m = 1

Theorem

Let b be a non-negative integer. Then there are constants $\alpha(q) > 0$ and $\beta(q)$ such that for all integers $g \ge \alpha(q)b + \beta(q)$, there exists a curve \mathcal{X} over \mathbb{F}_q of genus g having exactly b rational points.

Basis step: Curves with many rational points

- the Garcia-Stichtenoth tower (q: square)
- the Elkies et al. class field tower

Remark: (q: square)

Let $p = \operatorname{char} \mathbb{F}_q$ and q be a square. Then g_0 can be defined as 4p(p+11)b.

Remark:

Elkis et al.: For any q, there exists a sequence of curves \mathcal{X}_i over \mathbb{F}_q with

$$\lim_{g\to\infty}\frac{N(\mathcal{X}_i)}{g(\mathcal{X}_i)}=c_q \; ,$$

where $c_q > 0$ is a constant depending only on q.

A., Stichtenoth: For any q, there exists a constant δ_q depending only on q such that for any $c \in [0, \delta_q]$ there exists a sequence of curves \mathcal{X}_i over \mathbb{F}_q with

$$\lim_{g\to\infty}\frac{N(\mathcal{X}_i)}{g(\mathcal{X}_i)}=c \; .$$

Remark:

Elkis et al.: For any q, there exists a sequence of curves \mathcal{X}_i over \mathbb{F}_q with

$$\lim_{i\to\infty}\frac{N(\mathcal{X}_i)}{g(\mathcal{X}_i)}=c_q \; ,$$

where $c_q > 0$ is a constant depending only on q.

A., Stichtenoth: For any q, there exists a constant δ_q depending only on q such that for any $c \in [0, \delta_q]$ there exists a sequence of curves \mathcal{X}_i over \mathbb{F}_q with

$$\lim_{g\to\infty}\frac{N(\mathcal{X}_i)}{g(\mathcal{X}_i)}=c \; .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Thanks for your attention!