Graduate seminar Snichara Nayak () Upscaling: A neview by C.L. Former, 2002 calculatory permeability: A review my ph Renard and G. de Mars. Ty, 1996 x - x - x - x - x Flow models: can be divided into two groups. 1 - Those for which the parameters one osterned by callbration on an osserved pressue record 2 - Those for which there are no such record upscelling Objectives - Define the upscaling problem. - purlished techniques for calculating the permeabolity. Model prostem. LX Lac Nac Hr 1 Ly Hr = nx. hx each of size Hui Hyi Hz fine cells each of size hu-lig-liz region with boundary 22. Let u se a floor vector with Components (Unv, w) and p be the pressure field in an incompressible fluid in a poroes medium

Then two equating that desense the
flow one:
1-Darcy's low:
$$u = -k \cdot \forall P$$

2- The mass balance equation:
 $\forall \cdot u = 0$
where K is the Permeability tensor -
equivalent permeability ferrior taken
to represent a heterogeneous medium
Effective permeability key:
A term used for a medicien that
is statistically homogeneous on a large scale.
Upscaling proslem:
 $Upscaling proslem:$
 $u = -k \cdot \forall P$
 $\forall \cdot u = 0$
is near the solution of the fine scale
problem

Methods:
1- Heuristic Methods
2-Deterministic Method
3- Stochastic Method
Intequalities for the equivalent permeability:
Microentermedice
[O wiener, 1912, cardwell & parsons, 1945,
6. Matheron, 1967, 6. Dagan, 1989]
-Wiener bounds (fundamental inequality)
Muh & Key & Ma
where
$$M_{L}$$
 = harmonic mean
and Ma = antiburatic mean
and Ma = antiburatic mean
 $Ma = antiburatic mean$
 $Ma = antiburatic mean$

2-Hashen and Shtrikman bounds: [Hushin & Shtrikma, 1963] (med for isotropic borning medica) Ma - fito (K1-K0)² Ma - fito (K1-K0)² < Kef < Ma - fito (K1-K0)² (D-fo) Ko+foki < Kef < Ma - (D-fi) K1+fiko

y

wah Kae = 2 [(f1-f0)(K1-K0) +)/(f1-f0)²(K1-K0)²+UK0K1] Note This nelation is valid of the mesait is chranant by a 90°. fo ZO.S => for Km = fikoki + folla / Ko (2lla-ke) I m* + for Ko (2.11-Ko) fo 6 0.5 =7 ket Z km $= k_0 k_1 \frac{f_0 M_{a} + f_1 \sqrt{k_0 (2m^* - k_0)}}{f_0 k_0 k_1 + f_1 m^* \sqrt{k_0 (2m^* - k_0)}}$ with m* = fiko + foki Ma= fiki+foko 0= fito (ki-ko)

 \bigcirc

$$\frac{e \operatorname{ard} \operatorname{well} \operatorname{argl} \operatorname{parsons} \operatorname{baunds}}{\left[\operatorname{R} \cdot \operatorname{Knucl} - \operatorname{Romeu}_{1} | \overline{q} \, \overline{q} \, \overline{q} \right] \operatorname{Definerillot}_{1} | \overline{q} \, \overline{q} \, \overline{q} \right]} \\ - \operatorname{Take} \operatorname{He}_{e}_{e}_{e}_{e} \operatorname{anehc} \operatorname{mean}_{e}_{f}_{f}_{hvo} \\ \operatorname{Cardwell}_{ond} \operatorname{parsons}_{brods}_{hvos}_{hvos}_{h}_{h}_{hvos$$

3- prover average:
[Journel et al. 1986]

$$\rightarrow$$
 key be equal to a power average (or
average of order P) with an exponent P
in the interval -1 and +1.
 $Mp = \langle kP \rangle^{1/P} = (\frac{1}{V} \int_{V} K(x)^{P} dV)^{1/P}$
Where $Mp =$ mean of order P
 $\langle \gamma = average operative$
Note: $P = -1$ corresponds to the harmonic mean
 $\lim_{V \to 0} Mp$ to the geometric mean
 $\lim_{V \to 0} Mp$ to the geometric mean
for staddisdically homegeners and
isotropic medice B. Noethoger, 1994 ostam:
 $p = 1 - \frac{2}{D}$
In the case of a log-normal meditum,
Ababre et al-1989 ostains:
 $Mp = Mg = exp(\frac{Po^{2}}{dnk})$
where $Mg : geometric mean$
 $of Ink = vaniance of the ligenthmile.
 $fr a binary medium ;$
 $Keg = [to kot + d, k, f]^{1/P}$$

(9)

grid cell will he:

$$\widetilde{K}_{N} = \frac{Q + h}{A \Delta f}$$
Where $Q = the total -flux -through
-the face of area A= Hyttz
$$\Delta f = \text{pressure drop}.$$

$$- \text{ so taking the B.C.s and supertrythe
flow solutions can be obtained.
In one dimension local methods are enact.
The flow equators in one-dimension
reduced to
$$\frac{\partial u}{\partial x} = 0, \quad \frac{u}{K} = -\frac{\partial f}{\partial x}$$
Integrating w.m.t or over one coarse grid
cell, the Jacove first equation shows that
u is constant.
and second equation grives the galue:

$$\frac{\Delta f 1 + y_{2}}{V_{2}}$$
where $\Delta f + y_{2} = -\frac{1}{2} \text{ and } 1 + \frac{1}{2}$ indicate that
and the limits $1 - \frac{1}{2}$ and $1 + \frac{1}{2}$ indicate that
and the limits $1 - \frac{1}{2}$ and $1 + \frac{1}{2}$ indicate that
a belongs to cell with$$$

10)

From the defenition $k = \frac{u + ln}{\Delta l_{1-1}/2}$ ie. the effective permeasility in one coarse cell its find to se the harmonic average $k = \frac{Mn}{l}$ average k = Mx// #x The total flux through all of the coarse grid cells, deduced from the Proase grid equation, 13 $\tilde{u} = SP \int_{0}^{L_{\mathcal{R}}} \frac{1}{\tilde{k}}$ where SP is the total pressure along. This is the exact result because $\int_{-\infty}^{L_{n}} \frac{1}{k} = \int_{-\infty}^{1/2} \frac{1}{k} + \frac{1}{2} \int_{-\infty}^{1/2} \frac{1}{k} + \int_{-\infty}^{L_{n}} \frac{1}{k} + \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{k}$ Non local or glos al methods: - to This case considers the flow over the entire domain at the scale of the fine-mery grid with several sets of s.c. on the sides of the domain . stochastic Methods: Refer to sergery & Arethic (next day)