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Abstract. This paper is concerned with the construction of graded
meshes for approximating so-called singular solutions of elliptic boundary
value problems by means of multipatch discontinuous Galerkin Isogeo-
metric Analysis schemes. Such solutions appear, for instance, in domains
with re-entrant corners on the boundary of the computational domain,
in problems with changing boundary conditions, in interface problems,
or in problems with singular source terms. Making use of the analytic
behavior of the solution, we construct the graded meshes in the neighbor-
hoods of such singular points following a multipatch approach. We prove
that appropriately graded meshes lead to the same convergence rates as
in the case of smooth solutions with approximately the same number
of degrees of freedom. Representative numerical examples are studied in
order to confirm the theoretical convergence rates and to demonstrate
the efficiency of the mesh grading technology in Isogeometric Analysis.

Key words: Elliptic boundary value problems, domains with geometric
singular points or edges, discontinuous coefficients, isogeometric analysis,
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1 Introduction

The gradient of the solution of elliptic boundary value problems can ex-
hibit singularities in the vicinities of re-entrant corners or edges. The
same is true in case of changing boundary conditions or interface prob-
lems. This singular behavior of the gradients was discovered and analyzed
in the famous work by Kondrat’ev [19]. We refer the reader to the mono-
graphs [14, 15, 20] for a more recent and comprehensive presentation of
related results. It is well known that these singularities may cause loss
in the approximation order of the standard discretization methods like
the finite element method, see the classical monograph [29] or the more
recent paper [6]. In the case of two dimensional problems with singular
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boundary points, grading mesh techniques have been developed for finite
element methods in order to recover the full approximation order, see the
classical textbook [25] and the more recent publications [6, 5, 13], and [3]
for three-dimensional problems. Here, we devise graded meshes for solv-
ing elliptic problems with singular solutions by means of discontinuous
Galerkin Isogeomentric Analysis method (dG IgA).

In the IgA frame, the use of B-splines or NURBS basis functions al-
low complicated CAD geometries to be exactly represented, and the key
point of Hughes et al. [16] was to make use of the same basis to approxi-
mate the solution of the problem under consideration. Since this pioneer
paper, applications of IgA method have been considered in many fields,
see [9]. Here, we apply a multipatch symmetric dG IgA method which
has been extensively studied for diffusion problems in volumetric compu-
tational domains and on surfaces in [24] and [23], respectively, see also
[22] for comprehensive presentation. The solution of the problem is inde-
pendently approximated in every subdomain by IgA, without imposing
any matching grid conditions and without any continuity requirements
for the discrete solution across the subdomain interfaces. Symmetrized
numerical fluxes with interior penalty jump terms, see, e.g., [11, 27, 10],
are introduced on the interfaces in order to treat the discontinuities of the
discrete solution and to interchange information between the non match-
ing grids. As we will see later, the consideration of the numerical scheme
in this general context makes it more flexible to be applied on zone-type
subdivisions of Ω, which have been found to be quite convenient for treat-
ing elliptic boundary value problems in domains with singular boundary
points.

This paper aims at the construction of graded dG IgA meshes in the
zones located near the singular points in order to recover full convergence
rates like in the case of smooth solutions on uniform meshes. The grading
of the mesh is mainly determined by the analytic behavior of the solution
u around the singular points and follows the spirit of grading mesh tech-
niques using layers, which have been proposed for finite element methods
in [25, 6, 5]. According to this, having an a priori knowledge about the
location of the singular point, e.g. the re-entrant corner, the domain Ω is
subdivided into zones, called layers in [6, 5], and then a further subdivision
of Ω into subdomains (also called patches in IgA), say TH(Ω) := {Ωi}Ni=1,
is performed in such way that TH(Ω) is in correspondence with the initial
zone partition. On the other hand, the solution can be split into a sum
of a regular part ur ∈ W l≥2,2(Ω) and a singular part us ∈ W 1+ε,2(Ω),
with known ε ∈ (0, 1), i.e., u = ur + us, see, e.g., [14]. The analytical
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form of us contains terms with singular exponents in the radial direction.
We use this information and construct appropriately graded meshes in
the zones around the singular points. The resulting graded meshes have a
“zone-wise character”, this means that the grid size of the graded mesh in
every zone determines the mesh of every subdomain which belongs into
this zone, where we assume that every subdomain belongs to only one
zone (the ideal situation is every zone to be a subdomain). We mention
that the mesh grading methodology is developed and is analyzed for the
classical two dimensional problem with a re-entrant corner. The proposed
methodology can be generalized and applied to other situations. This is
shown by the numerical examples presented in Section 4.

The particular properties of the produced graded meshes help us to
show optimal error estimates for the dG IgA method, which exhibit opti-
mal convergence rates. The error estimates for the proposed method are
proved by using a variation of Céa’s Lemma and using B-spline quasi-
interpolation estimates for u ∈ W 1,2(Ω) ∩ W l≥2,p∈(1,2](TH(Ω)), which
have been proved in [24]. More precisely, these interpolation estimates
have subdomain character and are expressed with respect to the mesh
size hi of the corresponding subdomain Ωi. For the domains away from
the singular point, the solution is smooth (see ur part in previous split-
ting), and we can derive the usual interpolation estimates. Conversely,
for the subdomains Ωi, for which the boundary ∂Ωi touches the singu-
lar point, the singular part us of the solution u can be considered as a
function from the Sobolev space W 2,p∈(1,2)(Ωi). Now the estimates given
in [24] enable us to derive error estimates for the singular part us. This
makes the whole error analysis easier in comparision with the techniques
earliere developed for the finite element method, e.g., in [6, 2, 13].

We mention that, in the literature, other IgA techniques have been
proposed for solving two-dimensional problems with singularities very
recently. In [26] and [17], the mapping technique has been developed,
where the original B-spline finite dimensional space has been enriched by
generating singular functions which resemble the types of the singular-
ities of the problem. The mappings constructed on this enriched space
describe the geometry singularities explicitly. Also in [8], by studying
the anisotropic character of the singularities of the problem, the one-
dimensional approximation properties of the B-splines are generalized for
two-dimensional problems, in order to produce anisotropic refined meshes
in the regions of the singular points.

The rest of the paper is organized as follows. The problem description,
the weak formulation and the dG IgA discrete analogue are presented in
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Section 2. Section 3 discusses the construction of the appropriately graded
IgA meshes, and provides the proof for obtaining the full approximation
order of the dG IgA method on the graded meshes. Several two and three
dimensional examples are presented in Section 4. Finally, we draw some
conclusion.

2 Problem description and dG IgA discretization

First, let us introduce some notation. We define the differential operator

Da = Dα1
1 · · ·D

αd
d ,with Dj =

∂

∂xj
, D(0,...,0)u = u, (2.1)

where α = (α1, ..., αd), witn αj ≥ 0, j = 1, ..., d, denotes a multi-index

of the degree |α| =
∑d

j=1 αj . For a bounded Lipschitz domain Ω ⊂ Rd,
d = 2, 3 we denote by W l,p(Ω), with l ≥ 1 and 1 ≤ p ≤ ∞, the usual
Sobolev function spaces endowed with the norms

‖u‖W l,p(Ω) =
( ∑

0≤|α|≤m

‖Dαu‖pLp(Ω)

) 1
p , (2.2a)

‖u‖W l,∞(Ω) = max0≤|α|≤m‖Dαu‖∞. (2.2b)

More details about Sobolev’s function spaces can be found in [1]. We
often write a ∼ b, meaning that Cma ≤ b ≤ CMa, with Cm and CM are
positive constants independent of the discretization parameters.

2.1 The model problem

Let us assume that the boundary of ΓD = ∂Ω of Ω contains geometric
singular parts. In particular, for d = 2, we consider domains which have
corner boundary points with internal angles greater than π. For d = 3, we
consider that case where the domain Ω can be described in the form Ω =
Ω2×Z, where Ω2 ⊂ R2 and Z = [0, zM ] is an interval. The cross section of
Ω has only one corner with an interior angle ω ∈ (π, 2π). This means that
the ∂Ω has only one singular edge which is Γs := {(0, 0, z), 0 ≤ z ≤ zM}.
The remaining parts of ΓD are considered as smooth, see Fig. 2(a) and
Fig. 2(b) for an illustration of the domains.

For simplicity, we restrict our study to the following model problem

−div(α∇u) = f in Ω, u = uD on ∂Ω, (2.3)
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where the coefficient α(x) ∈ L∞(Ω) is a piecewise constant function,
bounded from above and below by positive constants, f ∈ L2(Ω) and

uD ∈ H
1
2 (∂Ω) are given data. The variational formulation of (2.3) reads

as follows: find u ∈W 1,2(Ω) such that u = uD on ΓD = ∂Ω and

a(u, v) = l(v), ∀v ∈W 1,2
0 (Ω), (2.4a)

where

a(u, v) =

∫

Ω
α∇u · ∇v dx and l(v) =

∫

Ω
fv dx. (2.4b)

It is clear that, under the assumptions made above, there exists a unique
solution of the variational problem (2.4) due to Lax-Milgram’s lemma.

We follow the theoretical analysis of the regularity of solution pre-
sented in [15]. We consider the two-dimensional case. Suppose that the
ΓD has only one singular corner, say Ps, with internal angle ω ∈ (π, 2π),
and that the boundary parts from the one and the other side of Ps are
straight lines, see Fig. 2(a). We consider the local cylindrical coordinates
(r, θ) with origin Ps, and define the cone (a circular sector with angular
point Ps).

C = {(x, y) ∈ Ω : x = r cos(θ), y = r sin(θ), 0 < r < R, 0 < θ < ω}. (2.5)

We construct a highly smooth cut-off function ξ in C, such that ξ ∈ C∞,
and it is supported inside the cone C. It has been shown in [15], that
the solution u of the problem (2.4) can be written as a sum of a regular
function ur ∈W l≥2,2(Ω) and a singular function us,

u = ur + us, (2.6)

with

us = ξ(r)γrλ sin(λθ), (2.7)

where γ is the stress intensity factor (for the two-dimensional problems
is a real number depending only on f) and λ = π

ω ∈ (0, 1) is an exponent
which determines the strength of the singularity. Since λ < 1, by an
easy computation, we can show that the singular function us does not
belong to W 2,2(Ω) but to W l=2,p(Ω) with p = 2/(2− λ). Consequently,
the regularity properties of u in C are mainly determined by the regularity
properties of us, and we can assume that u ∈ W 1,2(Ω) ∩W l,p(TH(Ω)),
(see below details for the TH(Ω)).
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Remark 1. For the expression (2.7), we admit that the computational
domain has only one non-convex corner and only Dirichlet boundary con-
ditions are prescribed on ∂Ω. Similar expression can be derived if there
are more non-convex corners and if there are other type of boundary
conditions, see details in [15].

2.2 The dG IgA discrete scheme

2.2.1 Isogeometric Analysis Spaces We assume a non-overlapping
subdivision TH(Ω) := {Ωi}Ni=1 of the computational domain Ω such that
Ω̄ =

⋃N
i=1 Ω̄i with Ωi ∩ Ωj = ∅ for i 6= j. The subdivision TH(Ω) is

considered to be compatible with the discontinuities of the coefficient
α, i.e., the jumps can only appear on the interfaces Fij = ∂Ωi ∩ ∂Ωj
between the subdomains. For the sake of brevity in our notations, the
set of common interior faces are denoted by FI . The collection of the
faces that belong to ∂Ω are denoted by FB, i.e., F ∈ FB, if there is a
Ωi ∈ TH(Ω) such that F = ∂Ωi∩∂Ω. We denote the set of all subdomain
faces by F = FI ∪ FB.

In the multi-patch (multi-subdomain) IgA context, each subdomain
is represented by a B-spline (or NURBS) mapping. To accomplish this,
we associate each Ωi with a vector of knots Ξd

i = (Ξ1
i , ..., Ξ

ι
i , ..., Ξ

d
i ),

with Ξι
i = {ξι1, ξι2, ..., ξιn}, ι = 1, . . . , d, which are set on the parametric

domain Ω̂ = (0, 1)d. The interior knots of Ξd
i are considered without

repetitions and form a mesh T
(i)

hi,Ω̂
= {Êm}Mi

m=1 in Ω̂, where Êm are the

micro elements. Given a micro element Êm ∈ T (i)

hi,Ω̂
, we denote by hÊm =

diameter(Êm), and the local grid size hi is defined to be the maximum

diameter of all Êm ∈ T (i)

hi,Ω̂
, that is hi = max{hÊm}. We refer the reader

to [9] for more information about the meaning of the knot vectors in CAD
and IgA.

Assumption 1 The meshes T
(i)

hi,Ω̂
defined by the knots Ξd

i are quasi-

uniform, i.e., there exist a constant σ ≥ 1 such that σ−1 ≤ hÊm
hÊm+1

≤ σ.

On each T
(i)

hi,Ω̂
, we derive the finite dimensional space B̂(i)

hi
spanned by

B-spline (or NURBS) basis functions of degree k, see more details in [9,
7, 28],

B̂(i)
hi

= span{B̂(i)
j (x̂)}

dim(B̂(i)
hi

)

j=0 . (2.8a)
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Every B̂
(i)
j (x̂) function in (2.8a) is derived by means of tensor products

of one-dimensional B-spline basis functions, i.e.

B̂
(i)
j (x̂) = B̂

(i)
ι=1,j1

(x̂1) · · · B̂(i)
ι=d,jd

(x̂d). (2.8b)

In the following, we suppose that the one-dimensional B-splines in (2.8b)
have the same degree k. Finally, having the B-spline spaces, we can rep-
resent each subdomain Ωi by the parametric mapping

Φi : Ω̂ → Ωi, Φi(x̂) =
∑

j

C
(i)
j B̂

(i)
j (x̂) := x ∈ Ωi, (2.9a)

with x̂ = Ψi(x) := Φ−1i (x), (2.9b)

where C
(i)
j are the B-spline control points, i = 1, ..., N , cf. [9].

We construct a mesh T
(i)
hi,Ωi

= {Em}Mi
m=1 for every Ωi, whose vertices

are the images of the vertices of the corresponding parametric mesh T
(i)

hi,Ω̂

through Φi. Notice that, the above subdomain mesh construction can
result in non-matching meshes along the patch interfaces.

Further, by taking advantage of the properties of Φi, we define the
global finite dimensional B-spline (dG) space

Bh(TH) := B(i)
hi

(Ωi)× ...× B(N)
hN

(ΩN ), (2.10a)

where every B(i)
hi

(Ωi) is defined on T
(i)
hi,Ωi

as follows:

B(i)
hi

(Ωi) := {B(i)
j |Ωi : B

(i)
j (x) = B̂

(i)
j ◦Ψi(x), for B̂

(i)
j ∈ B̂(i)

hi
}. (2.10b)

Later, the solution u of the problem (2.4) will be approximated by the
discrete (dG) solution uh ∈ Bh(TH).

2.2.2 Discrete Problem The problem (2.4) is independently dis-
cretized in every Ωi using the spaces (2.10b) without imposing con-
tinuity requirements for the B-spline basis functions on the interfaces
Fij = ∂Ωi ∩ ∂Ωj and also non-matching grids may exist. Using the nota-

tion φ
(i)
h := φh|Ωi , we define the average and the jump of φh ∈ Bh(TH) on

Fij ∈ FI by

{φh} :=
1

2
(φ

(i)
h + φ

(j)
h ), and JφhK := φ

(i)
h − φ

(j)
h , (2.11a)



8 U. Langer, A. Mantzaflaris, S. E. Moore, I. Toulopoulos

Ωj

Ωi

Fij

Φi

Φj

̂
Ei

̂
Ej

Ei

Ej

̂
Ω

˜
E

Fig. 1. The parametric domain and two adjacent subdomains with different underlying
meshes red and blue.

and, for Fi ∈ FB,

{φh} := φ
(i)
h , and JφhK := φ

(i)
h . (2.11b)

The discrete problem is specified by the symmetric dG IgA method,
see [24], and reads as follows: find uh ∈ Bh(TH) such that

ah(uh, φh) =l(φh) + pD(uD, φh), ∀φh ∈ Bh(TH), (2.12a)

where the dG bilinear form is given by

ah(uh, φh) =
N∑

i=1

(
ai(uh, φh)−

∑

Fij⊂∂Ωi

(1

2
si(uh, φh) + pi(uh, φh)

))

(2.12b)

with the bilinear forms (cf. also [11]):

ai(uh, φh) =

∫

Ωi

α∇uh∇φh dx, (2.12c)

si(uh, φh) =

∫

Fij

{α∇uh} · nFij JφhK + {α∇φh} · nFij JuhK ds, (2.12d)

pi(uh, φh) =





∫
Fij

(
µα(j)

hj
+ µα(i)

hi

)
JuhKJφhK ds, if Fij ∈ FI ,

∫
Fi

µα(i)

hi
JuhKJφhK ds, if Fij ∈ FB,

(2.12e)

pD(uD, φh) =

∫

Fi

µα(i)

hi
uDφh ds, Fi ∈ FB. (2.12f)
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Here the unit normal vector nFij is oriented from Ωi towards the interior
of Ωj . The penalty parameter µ > 0 must be chosen large enough in order
to ensure the stability of the dG IgA method [24].

Ω

θ

r

ω = 3π
2

R

(a)

Ω

ω

y

x

z

(b)

Ps
Z0

Z1

Z2

Ω0

Ω1

Ω2 Ω3

Ω4

(c)

Fig. 2. The domains, (a) two-dimensional with corner singularity, (b) three-
dimensional with re-entrant edge, (c) subdivision of Ω into zones and subdomains.

3 IgA on graded meshes

In many realistic applications, we very often have to solve problems sim-
ilar to (2.4) in domains with non-smooth boundary parts, that possess
geometric singularities, for instance, non-convex corners, see Fig. 2. It
is well-known that the numerical methods loose accuracy when they are
applied to this type of problems. This occurs as a result of the reduced
regularity of the solutions in the vicinity of the non-smooth parts [14].
When finite element methods are used, graded meshes have been utilized
around the singular boundary parts in order to obtain optimal conver-
gence rates, see e. g. [6, 3], see also [13] for dG methods. The basic idea
of this grading mesh technique is to use the a priori knowledge of the
singular behavior of the solution around the singular boundary points,
cf. (2.7) and (2.6)), and consequently adjust accordingly the size of the
elements.

The purpose of this paper is to extend the grading mesh techniques
from the finite element method to dG IgA framework for solving boundary
value problems like (2.4) in the presence of singular points. We develop a
mesh grading algorithm around the singular boundary parts inspired by
the grading mesh methodology using layers, therefore, extending the ap-
proach used in finite element methods, cf. [6, 5], to isogeometric analysis.
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Next, we construct the graded mesh and show that the proposed dG IgA
method exhibits optimal convergence rates as for the problems with high
regularity solutions. We present our mesh grading technique and the cor-
responding analysis for two-dimensional problems. In Section 4, we also
apply our methodology to some three-dimensional examples and discuss
the numerical results.

3.1 A priori mesh grading

The grading of the meshes around the singular points is guided by the
exponent λ, which specifies the regularity of the function us, see (2.7),
and by the location of the singular boundary point too. Next, we discuss
the construction of the mesh for the case of one singular geometric point
on ∂Ω.

Let Ps be the singular point and let Us := {x ∈ Ω : |Ps − x| ≤ R =
LUh, with LU ≥ 2} be an area around Ps in Ω, which is further subdi-
vided into ζM ring-type zones Zζ , ζ = 0, .., ζM , such that the distance from

Ps is D(Zζ ,Ps) := C(nζh)
1
µ , where C = R

1− 1
µ and 0 ≤ nζ < LU . By µ ∈

(0, 1], we denote the grading control parameter. The radius of every zone

is defined to be RZζ := D(Zζ+1,Ps) − D(Zζ ,Ps) = C(nζ+1h)
1
µ − C(nζh)

1
µ ,

where we suppose that there is a ν > 0 such that nζ+1 = nζ + ν with
1 ≤ ν < LU − 1. In particular, we set RZM = R−D(ZM−1,Ps).

For convenience, we assume that the initial subdivision TH(Ω) fits to
the Zζ ring zone partition in order to fulfill the following conditions, for
an illustration, see Fig. 2(c) with ζM = 3:

– The subdomains can be grouped into those which belong (entirely)
into the area Us and those that belong (entirely) into Ω \ Us. This
means that there is no Ωi, i = 1, ..., N such that Us ∩ Ωi 6= ∅ and
(Ω \ Us) ∩Ωi 6= ∅.

– Every ring zone Zζ is partitioned into “circular” subdomains Ωiζ ,
which have radius RΩiζ equal to the radius of the zone, that is RΩiζ =

RZζ . For computational efficiency reasons, we prefer, if it is possible,
every zone to be only represented by one subdomain. This essentially
depends on the characteristics of the problem, i.e., the shape of Ω and
the coefficient α.

– The zone Z0 is represented by one subdomain, say Ωi0 , and the mesh

T
(i0)
hi0

(Ωi0) includes all the micro-elements E such that ∂E ∩ Ps 6= ∅.

We construct the meshes T
(iζ)
hiζ

(Ωiζ ) (we will explain later how we can

choose the grid size) in order to satisfy the following properties: for Ωiζ
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with distance D(Zζ ,Ps) from Ps, the mesh size hiζ is defined to be hiζ =

O(hR1−µ
Ωiζ

) and for T
(i0)
hi0

(Ωi0) the mesh size is of order hi0 = O(h
1
µ ). Thus,

we have the following relations:

Cmh
1
µ ≤ hiζ ≤ CMh

1
µ , if Ωiζ ∩ Ps 6= ∅, (3.1a)

CmhR
1−µ
Ωiζ
≤ hiζ ≤ CMhD

1−µ
(Zζ ,Ps)

, if Ωiζ ∩ Ps = ∅. (3.1b)

We need to specify the mesh size for every T
(iζ)
hiζ

(Ωiζ ) in order to satisfy

inequalities (3.1). We set the mesh size of T
(iζ)
hiζ

(Ωiζ ) to be of order hiζ =

O(RZζν
−(1/µ)), and, for a uniform subdomain mesh, we can set

hiζ = C
(nζ + ν)h)

1
µ − (nζh)

1
µ

int(ν
1
µ )

,

where C = R
1− 1

µ and int(ν−µ) denotes the nearest integer to ν−µ. Notice
that the grading has “a subdomain character” and is mainly determined
by the parameter µ ∈ (0, 1]. For µ = 1, we get hiζ = h, i.e., means we get
quasi-uniform meshes. Using inequality µ ≤ 1 and inequality (a + b)γ ≤
2γ−1(aγ + bγ), which can easily be shown since the function tγ is convex
in (0,∞), we arrive at the estimates

hiζ = C
((nζ + ν)h)

1
µ − (nζh)

1
µ

int(ν
1
µ )

≤ C
Cµ(nζh)

1
µ + Cµ(νh)

1
µ − (nζh)

1
µ

int(ν
1
µ )

≤ (C1,R,µ,νnζ)
1
µhh

1
µ
−1 ≤

(C1,R,µ,νnζ)
1
µ

n
1−µ
µ

ζ

h
((
nζh

) 1
µ

)1−µ

≤ (C2,µ,νnζ)
1
µhD1−µ

(Zζ ,Ps)
, (3.2)

which gives the right inequality in (3.1b). By the initial choice of hiζ , we
have hiζ = RΩiζ /int(ν

−µ). Since 1 > 1− µ ≥ 0, we can easily show that

1

int(ν
1
µ )
R1−1+µ
Ωiζ

≥ Cmh, (3.3)

with Cm = 1
2((nζ + ν)

1
µ − n

1
µ

ζ ). From the choice grid sizes made above
and (3.3), we can derive the left inequality in (3.1b).
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Remark 2. It is possible to apply other techniques, see for example [6, 5],
of constructing graded meshes, where we could prove optimal rates for
the dG IgA method. We prefer the way that is described above for its
simplicity and because it suits to the spirit of the dG IgA methodology.

3.2 Quasi-interpolant, error estimates

Next, we study the error estimates of the method (2.12). For the purposes
of our analysis, we consider the enlarged space

W l,p
h := W 1,2(Ω) ∩W l≥2,p(TH(Ω)) + Bh(TH(Ω)), (3.4)

where p ∈ (max{1, 2d
d+2(l−1)}, 2]. Let us mention that we allow different

l and p in different subdomains Ωi. In particular, for subdomains Ωi ∩
Us = ∅, we can set in (3.4) p = 2, for subdomains Ωi ∩ Us 6= ∅, we set
1 < p = 2

2−λ < 2. The space W 1,2
h is equipped with the broken dG-norm

‖u‖2dG(Ω) =
N∑

i=1

(
α(i)‖∇u(i)‖2L2(Ωi)

+ pi(u
(i), u(i))

)
, u ∈W 1,2

h . (3.5)

Let f ∈ W 1,2(Ω) ∩W l≥2,p(TH(Ω)) with p ∈ (max{1, 2d
d+2(l−1)}, 2], then

we can construct a quasi-interpolant Πhf ∈ Bh(TH) such that Πhf = f
for all f ∈ Bh(TH). We refer to [28], see also [7], for more details about
the construction of Πhf . We have the following approximation estimate.

Lemma 1. Let u ∈W 1,2(Ω)∩W l,p(TH(Ω)) with p ∈ (max{1, 2d
d+2(l−1)}, 2]

and l ≥ 2, and let E = Φi(Ê), Ê ∈ T
(i)

hi,Ω̂
. Then, for 0 ≤ m ≤ l ≤

k + 1, there exist an quasi-interpolant Πhu ∈ Bh(TH) and constants
Ci := Ci

(
maxl0≤l(‖Dl0Φi‖L∞(Ωi))

)
such that

∑

E∈T (i)
hi,Ωi

|u−Πhu|pWm,p(E) ≤ Ci‖u‖W l,p(Ωi)h
p(l−m)
i . (3.6)

Furthermore, we have the following estimates in the ‖.‖dG(Ω) norm

‖u−Πhu‖dG(Ω) ≤
N∑

i=1

Ci

(
h
δ(l,p,d)
i ‖u‖W l,p(Ωi)

)
+ (3.7a)

N∑

i=1

∑

Fij⊂∂Ωi

Ciα
(j) hi
hj

(
h
δ(l,p,d)
i ‖u‖W l,p(Ωi)

)
,

‖uh −Πhu‖dG(Ω) ≤‖u−Πhu‖dG(Ω) +
N∑

i=1

Cih
δ(l,p,d)
i ‖u‖W l,p(Ωi), (3.7b)
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where δ(l, p, d) = l + (d2 −
d
p − 1).

Proof. The proof is given in [24]. 2

Remark 3. If hi and hj are the grid sizes of two adjacent subdomains
Ωi and Ωj , then relations (3.1) immediately yield the two-side estimate
σm,ζ ≤ hi/hj ≤ σM,ζ , where the positive constants σm,ζ and σM,ζ only de-
pend on the quantities which specify the initial zone partition Zζ . Hence,
in what follows, estimate (3.7a) will be used in the form ‖u−Πhu‖dG(Ω) ≤∑N

i=1Cih
δ(l,p,d)
i . We mention that the analysis presented here can easily

be extended to non-matching grids, see [24]. We also note that the meshes

T
(iζ)
hiζ

(Ωiζ ) satisfy the Assumption 1.

We emphasize that Lemma 1 provides local estimates which hold in every
subdomain Ωi. This help us to investigate the accuracy of the method in
every zone Zζ of Us separately. We give an approximation estimate for
the case where ur ∈W l,2(Ω) with l ≥ k + 1, see (2.6).

For all Ωiζ ∈ Zζ , the local interpolation estimate (3.7a) gives

‖us −Πhus‖dG(Us) ≤
∑

iζ

hλiζCiζ , (3.8)

since us ∈W l=2,p= 2
2−λ (Ω).

Theorem 1. Let Zζ be a zone partition of Ω with the properties listed in

the previous section, and let T
(i)
hi

(Ωi) be the meshes of the subdomains as
described in Section 3.1. Then, for the solution u of (2.4a), we have the
error estimate

‖u− uh‖dG(Ω) ≤ hrC, with r = min{k, λ/µ}, (3.9)

where the constant C > 0 is determined by the quasi uniform mesh prop-
erties, see (3.1), and the constants Ci of Lemma 1.

Proof. Let Πhu ∈ Bh(TH) be the quasi-interpolant of Lemma 1. Using
the triangle inequality, we obtain

‖u− uh‖dG(Ω) ≤ ‖uh −Πhu‖dG(Ω) + ‖u−Πhu‖dG(Ω). (3.10)

Moreover, representation (2.6) yields

‖u−Πhu‖dG(Ω) ≤ ‖us −Πhus‖dG(Ω) + ‖ur −Πhur‖dG(Ω). (3.11)
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Using the fact that ur ∈ W l≥k+1,2(Ω), Lemma 1, the mesh properties
(3.1) and inequalities 0 < µ ≤ 1, we have

‖ur −Πhur‖dG(Ω) ≤ C1h
k
µ + C2h

k ≤ Chk, (3.12)

where the constants C1 and C2 are determined by the constants that
appear in (3.1) and (3.7a). Therefore, it remains to estimate the first
term in (3.11). By (3.1a) and (3.8), we obtain the estimate

‖us −Πhus‖dG(Z0) ≤ Ch
λ
i0 ≤ Ch

λ
µ (3.13)

in Z0, where the constant C is determined by the constants in (3.1) and
(3.7a). For the subdomains belonging to the remaining zones of Zζ , ζ 6= 0,
(3.1b) and (3.8) yield the estimates

‖us −Πhus‖dG(Zζ) ≤ Cζ 6=0h
λ
iζ
≤ Cζ 6=0

(
hD1−µ

(Zζ ,Ps)

)λ

≤ Cζ 6=0

(
hh

1−µ
µ
)λ ≤ Cζ 6=0h

λ
µ . (3.14)

Collecting (3.12), (3.13) and (3.14), we arrive at the interpolation
error estimate

‖u−Πhu‖dG(Ω) ≤ Chr, (3.15)

with r = min{k, λ/µ}. Now, inserting estimate (3.15) into (3.10) and
recalling estimate (3.7b), we can easily derive the error estimate (3.9). 2

4 Numerical examples

In this section, we present a series of numerical examples in order to con-
firm the theoretical results and to assess the effectiveness of the proposed
grading mesh technique. The first examples concern two-dimensional prob-
lems with boundary point singularities and with highly discontinuous co-
efficients. In the last examples, we consider applications of the method to
three-dimensional problems with an interior singularity and in domains
with singular edges having ω = 3π/2 interior angle. The numerical exam-
ples have been performed in G+++SMO1.

1 Geometry + Simulation Modules, http://www.gs.jku.at
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4.1 Implementation details

The grading of the mesh is done in the parameter domain. The underlying
assumption is that the given parameterization of the domain has uniform
speed along the patch. An ideal situation is to have an arc-length param-
eterization. Nevertheless, a well-behaving parameterization is one whose
speed is within a constant factor of the arc-length parameterization. This
is a reasonable assumption, also because CAD software typically try to
adhere to such a requirement, since it is desirable for CAD operations as
well.

For constructing the graded parameter mesh, we choose a number
of interior knots in each parametric direction and we place the knots
according to the grading parameter and the location of the singular point
in parameter space. In Fig. 3(a), we show the one-dimensional B-spline
basis on a graded mesh, and similarly in In Fig. 3(b), we present the
two- dimensional B-spline basis on the corresponding graded mesh. If the
location of the singular point is given in physical coordinates, we invert
the point to parameter space with a Newton iteration, to map it back
to parameter space. Under the assumption of a well-behaved B-spline

(a) (b)

Fig. 3. Basis functions on the graded mesh T
(iζ)

hiζ
,Ω̂

: (a) The 1d bases on µ = 0.6 grading,

(b) The 2D bases on µ = 0.6 grading.

geometry map, the parameter mesh is transformed from T
(iζ)

hiζ ,Ω̂
to T

(i)
hi,Ωi
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in such a way that the size of the physical elements are proportional to
their (pre-image) parametric elements. This property ensures that our
theoretical analysis applies in the experiments that we conducted.

For efficiency reasons, the mesh TH(Ω) is created by the grading func-
tion with the same number of knots as an equivalent uniform mesh with
grid size hi for each subdomain Ωi, but pulled towards the singularity
Ps using the grading parameter µ. This strategy satisfies Assumption 1
with a minimal number of knots. This approach also mimics the zones
construction introduced in Subsection 3.1, since it corresponds to a zone
partition that shrinks towards Ps at every refinement step.

In our experiments, we consider a mapping Φi produced on an ini-
tial knot vector Ξd

i , which exactly represents the subdomain Ωi, as the
isogeometric paradigm suggests. The knots are relocated during the grad-
ing procedure but without changing the shape or the parameterization of
the subdomains Ωi. If needed, the original coarse knots are inserted in
the discretization basis such that the exact representation of the origi-
nal shape is feasible. Nevertheless, in our implementation, we have the
freedom to use a different sequence of knots for the discretization space
without refining the initial geometry in this basis.

4.2 Numerical Examples for Two dimensional

4.2.1 Heart shaped domain To illustrate the efficiency of the pro-
posed mesh grading methodology and to validate the estimates of Sec-
tion 2, we consider the problem (2.4) in a curved domain (heart shape)
having a singular point Ps (re-entrant corner) with internal angle ω =
3π/2, see Fig. 4(a).

(a) (b) (c)

Fig. 4. Heart shape problem: (a) the computational domain and the subdomains, (b)
the graded meshes of the two subdomains, (c) the contours of uh solution.
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j1 j2 B
1
j (j1, j2) B2

j (j1, j2)

1 1 (0.00, 0.00) (0.00, 0.00)
2 1 (0.49, 0.49) (0.49, 0.49)
3 1 (0.97, 0.97) (0.97, 0.97)
1 2 (0.00,−0.81) (−0.81, 0.00)
2 2 (0.46,−0.16) (−0.16, 0.46)
3 2 (1.00, 0.94) (0.94, 1.00)
1 3 (0.35,−0.84) (−0.84, 0.35)
2 3 (0.71,−0.84) (−0.84, 0.71)
3 3 (0.85, 0.042) (0.04, 0.85)

Table 1. The control points for the two B-spline surfaces each with degree k = 2
depicted in Figure 4

without grading with grading

h/2s k = 1 k = 2
k = 1,
µ = 0.6

k = 2,
µ = 0.3

Convergence rates

s = 0 - - - -
s = 1 0.671469 0.68221 0.843026 1.49519
s = 2 0.678694 0.67322 0.894636 1.85785
s = 3 0.677558 0.669385 0.921219 2.02913
s = 4 0.675018 0.667797 0.938709 2.02562
s = 5 0.672622 0.667156 0.951475 2.00987

Table 2. Heart shape problem: The convergence rates in the dG-norm ‖.‖dg(Ω) with
and without grading.

The computational domain Ω consists of two subdomains shown in
Fig. 4(a), where the corresponding knot vectors are Ξ2

i = (Ξ1
i , Ξ

2
i ), i =

1, 2 with Ξ1
i = Ξ2

i = {0, 0, 0, 1, 1, 1} and are parametrized by k = 2 B-
spline basis with the control points given in Table 1. The exact solution
is given by u = r

π
ω sin(θπ/ω) with f and uD in (2.4) are specified by the

exact solution. We set α = 1 in the entireΩ. Note that u ∈W 1.5,2(Ω). The
problem has been solved using first (k = 1) and second (k = 2) order B-
spline spaces with grading parameter µ = 0.6 and µ = 0.3, respectively,
see Fig. 4(b). We plot the contours of the solution uh computed using
k = 2 B-splines in Figure 4(c). In Table 2, we display the convergence
rate of the error. In the left column (without grading), we present the rates
using quasi-uniform meshes. In the right column of the table, we show
the rates in the case of using graded meshes. As the theory predicts, the
convergence rates in left columns of both cases k = 1 and k = 2 are
mainly determined by the regularity of the solution. One the other hand,
the rates which correspond to the graded meshes tend to be optimal with
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respect to the B-spline degree k. This shows the adequacy of the proposed
graded mesh for solving this problem.

4.2.2 Kellogg’s Problem. It is known that the solutions of problem
(2.4) with rough diffusion coefficients may not be very smooth. Thus,
standard numerical method can not provide an (optimal) accurate ap-
proximation [12]. We examine such a case by solving the so-called Kellogg
test problem [18]. We consider the computational domain Ω = (−1, 1)2.
The diffusion coefficient α in (2.3) is supposed to be piecewise constant
taking the same value, say α := α13, in the first and third quadrants, and,
similarly, for the second and fourth quadrants, α := α24. This choice of

(a) (b) (c)

Fig. 5. Kellogg’s test problem: (a) The computational domain and the four subdo-
mains, (b) the graded meshes of the four subdomains, (c) the contours of uh solution.

the diffusion coefficient leads to the subdivision of Ω in the four subdo-
mains as it is shown in Fig. 5(a). The exact solution of the problem for
f = 0 is given in polar coordinates by u(r, θ) = rλϕ(θ), where

ϕ(θ) =





cos((π/2− σ)λ) cos((θ − π/2 + ρ)λ), if 0 ≤ θ < π/2,

cos(ρλ) cos((θ − π + σ)λ), if π/2 ≤ θ < π,

cos(σλ) cos((θ − π − ρ)λ), if π ≤ θ < 3π/2,

cos((π/2− ρ)λ) cos((θ − 3π/2− σ)λ), if 3π/2 ≤ θ ≤ 2π,
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where the numbers λ, ρ, σ satisfy the nonlinear relations




R := α13
α24

= − tan((π/2− σ)λ) cot(ρλ),
1
R = − tan(ρλ) cot(σλ),

R = − tan(σλ) cot((π/2− ρ)λ),

0 < λ < 2,

max{0, πλ− π} < 2λρ < min{πλ, π},
max{0, π − πλ} < −2λσ < min{π, 2π − λπ}.

For λ = 0.4, the solution u ∈W 1.4,2(Ω), and has discontinuous deriva-
tives across the interfaces. On the other hand, u ∈ W 2,1.25(Ω), and the
estimates presented in Section 3.3 can be applied. We solved the problem
using B-spline spaces with degrees k = 1 and k = 2 on uniform meshes.
We performed again the test using graded meshes with grading parameter
chosen such that λ/µ = k, see (3.9). In Fig. 5(b), we can see the graded
meshes of the subdomains. Fig. 5(c) shows the plot of the contours of
the dG solution uh computed for degree k = 1 B-splines. In Table 3, we
display the convergence rates of the solution. We observe that, in the case
of uniform meshes, the experimental order of convergence of the method
is 0.4 which is determined by the regularity of the solution. Conversely,
the rates in the right columns which correspond to the results using mesh
grading tend to be optimal with respect the order of the B-spline space.
A glimpse of the discrete solution uh is given in Fig. 6.

without grading with grading

h/2s k = 1 k = 2
k = 1,
µ = 0.40

k = 2,
µ = 0.20

Convergence rates

s = 0 - - - -
s = 1 0.655814 0.591165 0.830217 0.477657
s = 2 0.354865 0.355586 0.858329 1.15442
s = 3 0.368103 0.378796 0.879976 1.78696
s = 4 0.378375 0.385672 0.895984 1.84425
s = 5 0.385464 0.390348 0.906179 1.95223

Table 3. Kellogg’s test: The convergence rates in the dG-norm ‖.‖dg(Ω).

4.3 Three dimensional examples

4.3.1 Cube with interior point singularity. This test case is in-
spired by [21]. The computational domain is Ω = (−1, 1)3 which is decom-
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Fig. 6. Discrete solution of Kellogg’s problem plotted over the graded mesh.

posed into 8 subdomains, see Fig. 7(a). We choose the diffusion coefficient
α = 1 in the whole computational domain Ω. The solution of the problem
has a singular point at the origin of the axis and is given by u(x) = |x|λ
with λ = 0.85. It is easy to show that u ∈ W l=2,2(Ω). We solved the
problem using k = 1, k = 2 and k = 3 B-spline spaces on quasi-uniform
meshes. In Fig. 7(b), we plot the contours of solution uh computed by
k = 1 B-spline space. The convergence rates of the error corresponding
to non-graded meshes are shown in left columns of Table 4.

(a)

0.4

0.8

1.2

Sol

0

1.6

(b)

0.4

0.8

1.2

Sol

0

1.6

(c)

Fig. 7. Cube with interior singularity: (a) the decomposition of Ω into 8 subdomains
with the graded meshes of the subdomain, (b) the contours of the solution uh, (c) the
variance of the uh contours around the singular point.

The rates are optimal for k = 1 B-spline space and sub-optimal for the
two other B-spline spaces, as it was expected according to the regularity of
the solution u. Note that the rates presented on the left columns in Table
4 are in agreement with the estimate given in (3.7a). We have performed
again the test using grading meshes for the last two B-spline spaces. The
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grading parameter µ has been chosen to be δ(l = 2, p = 2, d = 3)/µ = k,
see Lemma 1 and (3.9). In Fig. 7(c), the variate of the uh contours around
the singular point is shown. The rates obtained on graded meshes are
displayed in right columns of Table 4.

without grading with grading

h/2s k = 1 k = 2 k = 3
k = 1,
µ = 1.0

k = 2,
µ = 0.6

k = 3,
µ = 0.4

Convergence rates

s = 0 - - - - - -
s = 1 0.593 1.066 0.687 0.593 1.393 0.791
s = 2 0.839 1.306 1.234 0.839 1.766 1.870
s = 3 0.917 1.340 1.343 0.917 1.928 2.942
s = 4 0.953 1.346 1.350 0.953 1.959 3.080
s = 5 0.972 1.348 1.350 0.972 1.974 3.066

Table 4. Cube with interior singularity: The convergence rate of the error on uniform
and graded meshes.

We can observe that the rates approach the optimal rate for both
high-order B-spline spaces. This numerical example demonstrates that
the dG IgA method applied on the proposed graded meshes can exhibit
optimal convergence rates for interior singularity type problems as well.

4.3.2 Three-dimensional L-shape domain. Now the computational
domainΩ has 3d L-shape form and is given by

(
(−1, 1)2 \ (−1, 0)2

)
×[0, 1].

Even though the ”L-shape“ example has been mostly studied in the lit-
erature in its two-dimensional set up, (see for example anisotropic 2d
meshes for IgA discretizations in [8]), we believe that it is an interesting
test case, because we will see that the graded mesh of the plane can be
prolonged in a direction perpendicular to the singular edge for treating
the boundary singularities. Note that in this three dimensional setting,
the domain includes both corner and edge singularities, see Fig. 8(a).

We consider an exact solution given by u = rλ sin( θπω ), where λ = π/ω
and ω = 3π/2. We set ΓD = ∂Ω. The data f and uD of (2.3) are given by
the exact solution. The computational domain Ω consists of two subdo-
mains We have solved the problem using B-spline spaces of order k = 1
and k = 2 using quasi-uniform and graded meshes in both subdomains.
The grading parameter is defined by the relation δ(l, p, d)/µ = k. In
Fig. 8(b), we can see the graded meshes for µ = 0.6. The contours of
the corresponding approximate solution uh computed for k = 1 are pre-
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(a) (b)

40

80

120

Solution

0

126

(c)

Fig. 8. 3d L-shape test: (a) The domain Ω with the corners and the edge boundary
singularities, (b) The graded meshes of the two subdomain, (c) The contours of uh.

sented in Fig. 8(c). Table 5 displays the convergence rates of the error.
We observe the same behavior of the rates as in the previous examples.
The rates of the uniform meshes are determined by the regularity of the
solution (u ∈ W 1+λ,p=2(Ω)) for both B-spline spaces. The convergence
rates corresponding to graded meshes approach the optimal value. We
remark here that the same type of graded meshes have also been used in
finite element methods for approximating solutions of elliptic problems in
three-dimensional domains with edges, see [6, 5, 4].

without grading with grading

h/2s k = 1 k = 2
k = 1,
µ = 0.6

k = 2,
µ = 0.3

Convergence rates

s = 0 - - - -
s = 1 0.645078 0.477178 0.629909 0.387338
s = 2 0.650805 0.639951 0.869128 1.11198
s = 3 0.642971 0.670841 0.883655 1.80531
s = 4 0.644107 0.669949 0.902467 1.96533
s = 5 0.648100 0.668371 0.920065 2.00296

Table 5. 3d L-shape : The convergence rates of the error with respect to the dG norm
on uniform and graded meshes.

4.3.3 Three-dimensional heart shaped domain. In this example,
we consider an exact solution given by u = rλ sin(θπ/ω), where λ = π/ω
and ω = 3π/2. We again set ΓD = ∂Ω, and the data f and uD of (2.3)
are specified by the given exact solution. The computational domain Ω
consists of two subdomains. The problem is solved with B-spline spaces
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of order k = 1 and k = 2 using quasi-uniform and graded meshes in both
subdomains. The grading parameter is defined by the relation λ/µ = k.
In Fig. 9(b), we can see the graded meshes for µ = 0.6. The contours of
the corresponding approximate solution uh computed with degree k = 1
is presented in Fig. 9(c).

The convergence rates of the error corresponding to the quasi-uniform
meshes are shown in left columns (without grading) of Table 6, and the
rates corresponding to the graded meshes are shown in the right columns
of Table 6.

(a) (b)

1000

2000

3000

Solution

0

3.32e+03

(c)

Fig. 9. 3D heart test: (a) The domain Ω with the corners and edge boundary singu-
larities, (b) The graded meshes of the two subdomain, (c) The contours of uh.

without grading with grading

h/2s k = 1 k = 2
k = 1,
µ = 0.6

k = 2,
µ = 0.3

Convergence rates

s = 0 - - - -
s = 1 0.650805 0.675611 0.686633 0.964287
s = 2 0.642971 0.685756 0.846524 1.55143
s = 3 0.644107 0.674337 0.902119 1.91781
s = 4 0.6481 0.669817 0.925762 2.10561
s = 5 0.65251 0.667968 0.94134 2.09457

Table 6. 3d Heart : The convergence rates of the error with respect to the dG norm
on uniform and graded meshes.

5 Conclusion

We have presented mesh grading techniques for dG IgA discretizions of
elliptic boundary value problems in the presence of so-called singular
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points. Based on the a priori or a posteriori knowledge of the behaviour of
the exact solution around the singular points, we pre-defined the grading
of the mesh without increasing the knots but performing a relocation.
The grading refinement has a subdomain (patch) character in order to fit
well into the IgA framework. Optimal error estimates of the multipatch
dG IgA method have been shown when it is used on the graded meshes
proposed. The theoretical results have been confirmed by a number of
two- and three-dimensional test problems with known exact solutions.
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