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1Johann Radon Institute for Computational and Applied Mathematics (RICAM),

Austrian Academy of Sciences
Altenbergerstrasse 69, A-4040 Linz, Austria
Email: trung-thanh.nguyen@ricam.oeaw.ac.at

2Vrije Universiteit Brussel, Department of Electronics and Informatics,
Pleinlaan 2, 1050 Brussels, Belgium

Email: hsahli@etro.vub.ac.be
3Hanoi Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

Email: hao@math.ac.vn

Abstract

The application of infrared thermography to the detection and characterization of buried
landmines (more generally, buried objects) is introduced. The problem is aimed at detecting
the presence of objects buried under the ground and characterize them by estimating their
thermal and geometrical properties using infrared measurements on the soil surface. Math-
ematically, this problem can be stated as an inverse problem for reconstructing a piecewise
constant coefficient of a three-dimensional heat equation in a parallelepiped from only one
measurement taken at one plane of its boundary (the air-soil interface). Due to the lack of
spatial information in the observed data, this problem is extremely ill-posed. In order to
reduce its ill-posedness, keeping in mind the application of detecting buried landmines, we
make use of some simplification steps and propose a two-step method for solving it. The
performance of the proposed algorithm is illustrated with numerical examples.

Keywords: infrared thermography, landmine detection, coefficient identification, heat equa-
tion, discrete adjoint method
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1 Introduction

Thermal infrared (IR) technique has been applied to the detection of shallowly buried landmines
for more than a decade and has been found to be promising for non-metallic mines. Its aim
is to detect and distinguish landmines from other buried objects (false alarms) using diurnal
IR measurements of the air-soil interface. The detection lies on the difference of the thermal
characteristics between the soil and the buried objects. Indeed, the presence of buried objects
affects the diurnal heat conduction inside the soil. Consequently, the soil temperature on the
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ground above the objects is often different from that of the background. This temperature can
be measured by an IR imaging system placed above the soil area.

From measured thermal images, it is possible to detect the presence of shallowly buried
anomalies using image processing techniques such as segmentation [4]. However, to classify
these anomalies, one has to estimate their physical properties (thermal diffusivity), size and
shape. Such a problem is often solved in two steps. The first step, referred to as thermal
modeling for shallowly buried objects, aims at predicting the soil temperature provided that the
thermal properties of the soil and the buried objects under investigation are known and given.
In this step, a forward thermal model, which represents the physical theory of heat transfer
processes inside the soil and on the soil surface, is established. In the second step, referred to
as inverse problem setting for landmine detection, the forward thermal model and acquired IR
images are used to detect the presence of buried objects and characterize them based on the
estimation of their thermal and geometrical properties.

The forward thermal model helps understanding the effect of buried objects on the soil-
surface thermal signatures while the inverse problem helps classifying the detected objects. So
far, most of the works in IR technique for landmine detection have focused on defining and
validating thermal models for buried landmines (see, e.g. [14, 23, 19, 25, 26]). However, there
are just a few works considering the inverse problem [19, 25, 26]. Mathematically, the inverse
problem is stated as the estimation of a piecewise constant coefficient of the heat equation from
measurements on a surface of the boundary of the domain under investigation. There are two
main difficulties in dealing with this problem: (i) it is extremely difficult to have a thermal model
which is valid under different soil and weather conditions; (ii) the lack of spatial information in
observed data since it is only taken at the air-soil interface while the coefficient needed to be
estimated is a 3-D function. This is different from most of the publications on this topic in the
literature in which the measured data is available on the whole boundary or even in the whole
domain (see, e.g., [2, 7, 9, 11, 13, 17]).

Note that IR cameras do not measure the temperature of the soil surface itself but the thermal
radiation emitted from the soil surface. In order to use the measured IR images in thermal
modeling, a pre-processing chain, consisting of: 1) radiometric calibration; 2) temporal co-
registration; 3) apparent temperature conversion; and 4) inverse perspective (ground) projection,
must be applied. The output of this pre-processing chain is an image sequence of the soil-surface
apparent temperature. A detailed description of the pre-processing steps is given in [4]. In this
work, we consider the measured IR images as the soil-surface temperature measured during the
period of analysis.

In [27] we proposed and validated a thermal model with the estimation of soil thermal
properties from in situ measurements. This approach enables us to apply the thermal model
in a wide range of soil and weather conditions, i.e. the first difficulty can be overcome. In this
paper, we focus on surmounting the second difficulty of the inverse problem. For simplicity, we
assume that there is only one buried object in the soil domain under investigation. Although this
assumption is not always true in practice, in many cases it is possible to subdivide the soil area
into small areas so that each of them contains only one object. This can be done using anomaly
detection techniques [25]. We note that this assumption does not reduce the ill-posedness of
the inverse problem. To further simplify the problem, keeping in mind our application of buried
landmine detection, we assume that the buried object is an upright cylinder, but its horizontal
cross-section is not necessarily circular. Under these assumptions, a buried object is specified
by (i) its depth of burial, (ii) its height, (iii) its horizontal cross-section, and (iv) its thermal
diffusivity. In this work we propose a two-step method for solving the inverse problem. In the
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first step, we consider a given cross-section, and we estimate three parameters, namely, the depth
of burial, the height, and the thermal diffusivity. This approach helps reducing the ill-posedness
of the estimation problem as it reduces the number of unknown parameters. However, its result
depends on the accuracy of the cross-section being given by the anomaly detection procedures.
In the second step, we use the result of the previous step as an initial guess for estimating the
full parameter vector, namely, the depth of burial, the height and the thermal diffusivity on
a horizontal plane of the soil domain across the object. The cross-section is improved via the
estimated thermal diffusivity on this plane. This step should improve the result of the first step.

In our approach, the inverse problem is stated as a least-squares minimization problem. To
solve it, we make use of quasi-Newton trust region algorithm accompanied with discrete adjoint
method for calculating the gradient of the objective functional and BFGS method for updating
the Hessian of the objective functional. The performance of the algorithm is illustrated with
some simulated numerical examples. More numerical results with real experimental data were
reported in [29]. In that paper, we also analyzed the effects of several factors, e.g. the size of
the object, its orientation (tilted cylinder), the uncertainty of the soil thermal diffusivity, on the
identification results.

The paper is organized as follows: Section 2 is devoted to the mathematical formulation of
the problem. In Section 3 we introduce a discrete inverse problem and formulate its gradient
using the adjoint method. The two-step method for solving the inverse problem is presented in
Section 4. Section 5 shows the performance of the proposed algorithms with some numerical
examples. Finally, some conclusions are drawn in Section 6.

2 Mathematical statement of the problem

This section is devoted to the mathematical formulation of the inverse problem for landmine
detection. To formulate the inverse problem, we make use of the forward thermal model which
was introduced in [25, 27].

Figure 1: The soil volume with a buried object.

2.1 Forward thermal model

Consider an open rectangular parallelepiped Ω, which is composed of soil volume containing a
buried object as shown in Figure 1. We associate the soil volume with an orthonormal Cartesian
coordinate system in which the coordinate of a point is denoted by x = (x1, x2, x3). Without
loss of generality, we assume that Ω = {x : 0 < xi < li, i = 1, 2, 3}. We denote by Γ the
boundary of Ω and Γ1

i = {x ∈ Γ : xi = 0}, Γ2
i = {x ∈ Γ : xi = li}, i = 1, 3. We note that Γ1

3
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is the air-soil interface (soil surface), the only portion of the soil volume accessible to thermal
IR measurements, and Γ2

3 is the bottom of the soil volume. For the simplicity of notation, the
union of the vertical boundaries of Ω is denoted by Γ1,2 (Γ1,2 = (Γ \ Γ1

3) \ Γ
2
3). The duration of

analysis is denoted by (0, te) and Sj
i,te

:= Γj
i ×(0, te), i = 1, 2, 3, j = 1, 2; S1,2

te
:= Γ1,2×(0, te). In

this work, for simplicity, we assume that the soil and the object are isotropic and homogeneous,
i.e. their thermal properties are constant. Moreover, the soil moisture content variation is
assumed to be negligible during the period of analysis. Then the soil-temperature distribution
T (x, t), (x, t) ∈ Qte = Ω× (0, te), can be approximated by the following system [25]:







































∂T
∂t
(x, t)−

3
∑

i=1

∂
∂xi

(

α(x)∂T (x,t)
∂xi

)

= 0, (x, t) ∈ Qte ,

−α(x) ∂T
∂x3

(x, t) + pT (x, t) = q(t), (x, t) ∈ S1
3,te ,

T (x, t) = T∞, (x, t) ∈ S2
3,te ,

∂T
∂n

(x, t) = 0, (x, t) ∈ S1,2
te

,

T (x, 0) = g(x), x ∈ Ω,

(1)

where α(x) (m2/s) is the thermal diffusivity (of the soil and the buried object) in the domain.
In this system, the first equation approximates the soil-temperature distribution inside the soil
without external heat sources, the second one represents the heat flux at the air-soil interface due
to convection and radiation, the third equation means that the soil temperature at a sufficiently
deep depth is uniform (T∞ is a constant), the fourth one is based on the assumption that the
buried object does not disturb the soil around the vertical boundaries, the last one represents
the distribution of the soil temperature at the beginning of the analysis. For the derivation of
this model, we refer the reader to [25, 27].

Under the assumption that the soil and the buried object are homogeneous, the thermal
diffusivity α(x) is described by a piecewise constant function

α(x) =

{

αo, x ∈ Ω1,

αs, x ∈ Ω \ Ω1.

Here αs and αo are the thermal diffusivity of the soil and the object, respectively; Ω1 is the
sub-domain of Ω occupied by the object.

In practical applications, it should be remarked that the bare-soil thermal diffusivity αs, the
boundary parameters p, q(t) and the initial condition g(x) are generally not available. In [27],
we proposed methods for estimating these parameters from in situ measurements. In this paper,
we therefore assume that these parameters are given.

It was proved in [25] that, under the hypothesis that p > 0, q(t) ∈ H1(0, te) and g(x) ∈
H1(Ω), the forward thermal model (1) has a unique weak solution in the Sobolev spaceH1,1(Qte),
i.e. T (x, t) belongs to the Sobolev space H1,1(Qte) and satisfies the following system



















∫

Qte

Ttηdxdt+
∫

Qte

αTxηxdxdt+
∫

S1
3,te

pTηdx′3dt =
∫

S1
3,te

qηdx′3dt, ∀η ∈ Ĥ1,0(Qte),

T (x, t) = T∞, (x, t) ∈ S2
3,te ,

T (x, 0) = g(x), x ∈ Ω,

(2)

with dx′3 = dx1dx2 and Ĥ1,0(Qte) being the subspace of H1,0(Qte) consisting of all functions
which vanish at the boundary S2

3,te . Moreover, the weak solution satisfies the following energy
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inequality:
‖T‖H1,1(Qte )

≤ C
{

‖q‖H1(0,te) + ‖g‖H1(Ω) + |T∞|
}

, (3)

where C is a positive constant independent of T .
In formulating the thermal model (1), we have assumed that the soil is isotropic and ho-

mogeneous and the soil surface is flat. This assumption, of course, is not always accurate. In
a heat transfer process, when the temperature is rather high, the heat transfer characteristics
usually depend on the temperature. However, in our case, the temperature is moderate, it is
reasonable to suppose that these parameters are independent of the temperature. Of course,
it is interesting to consider the case of temperature-depending coefficients but it is the subject
of a future work. In addition, we only consider a small soil volume in our application, say, 50
cm by 50 cm by 50 cm around each object. Within such a small area, this assumption may be
reasonable. The validity of the proposed forward problem for shallowly buried landmines was
verified in [25, 27].

2.2 Statement of the inverse problem

Given the forward thermal model (2) (or, equivalently, (1)) and IR images measured at the
air-soil interface, we now can state the inverse problem for landmine detection, i.e. estimating
the thermal coefficient α(x) of the domain under consideration. It should be noted that the
measured IR images can be considered as measured soil temperature at the air-soil interface, i.e.
the boundary Γ1

3 of the domain Ω. The estimation problem is aimed at finding α(x) such that
the simulated soil-surface temperature using the forward model (2) fits the measured data. The
most common way to set up this problem is the least-squares approach. Mathematically, it is
equivalent to the following minimization problem

min
α(x)

F(α) :=
1

2

te
∫

0

∫

Γ1
3

[T (x, t;α) − θ(x, t)]2 dx′3dt, (4)

where θ(x, t) is the measured soil-surface temperature (IR images). Here we use the notation
T (x, t;α) to emphasize the dependence of the solution to the forward problem (2) on the coeffi-
cient α(x).

We note that, since thermal properties of materials are positive and finite, the following
bound constraints must be taken into account in solving the inverse problem (4) subject to (2)

0 < αl ≤ α(x) ≤ αu, x ∈ Ω, (5)

where [αl, αu] is the range to which the thermal diffusivity of the object is expected to belong.

2.3 On the existence and uniqueness

It is well-known that the coefficient estimation problem (4) subject to (2) and (5) may not have
any solution unless the parameter space is properly chosen. The existence of a solution to the
problem is guaranteed by the continuity of the objective functional F(α) and the compactness of
a subset of the parameter space to which the parameter belongs. In the literature, the parameter
space may be chosen to be H1(Ω) in order to guarantee the compactness of a bounded set in
this space in L2(Ω)-norm [15, 16]. However, in this work, the coefficient α(x) is discontinuous
in Ω. It does not belong to H1(Ω) and therefore we have to look for it in another space. As
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discussed in [9, 13], the space BV (Ω) of functions f ∈ L1(Ω) of bounded variation in Ω ([8])
is a candidate. The next step is to find a set of functions satisfying the bound constraints (5)
and is compact in L1(Ω). To this end, we consider the set KC which consists of all functions
α(x) ∈ L∞(Ω) satisfying (5) and their total variations are bounded by a constant C > 0. The
compactness of KC in L1-norm was proved by Gutman [9].

On the other hand, it can be proved that the objective functional F(α) is continuous from
L1(Ω) into L2(S

1
3,te) (see [25]). Then we have the following existence result for the minimization

problem.

Theorem 2.1. (Existence) The minimization problem (4) subject to (2) has at least one
solution in the subset KC of the space BV (Ω) of functions of bounded variation.

Although some results on the uniqueness of the coefficient identification problem have been
published in the literature, most of the published works requires more than one (even infinitely
many) measurements on the whole boundary or even in the whole domain for the coefficient to
be uniquely determined, see, e.g., [7, 9, 10, 11]. Recently, the uniqueness for a one-dimensional
coefficient estimation problem with piecewise constant coefficient and one measurement taken
at one end of the one-dimensional rod was proved by Hoang and Ramm [12]. However, the
technique used in the paper cannot be generalized to multidimensional cases. Moreover, for
this problem, the main difficulty is due to the lack of spatial data as we want to determine the
three-dimensional coefficient when only one measurement on a part of the boundary is given.
Therefore, the uniqueness question is still open to us. For some simple cases, the analysis is
under investigation.

3 Discretized inverse problem

To solve numerically the minimization problem (4) subject to (2), we make use of a quasi-
Newton trust region algorithm proposed by Coleman and Li [3] with BFGS method for updating
the Hessian of the objective functional. The algorithm has been implemented in the Matlab
Optimization Toolbox in the function fmincon [22]. To calculate the gradient of the objective
functional, the adjoint technique is widely used [18, 5, 6, 21, 24]. This technique helps calculating
the gradient of the objective functional just by solving one forward problem and one adjoint
problem. It is usually applied in the way that the adjoint problem of the forward model (2) is
formulated, then both the objective functional and its gradient are approximated by discrete
forms for numerical computations. The formulation of this approach is quite straightforward.
However, many numerical trials have indicated that this approach might provide inaccurate
approximates for the gradient of the objective functional, and even it might not converge at
all [30, 1]. In this work, we therefore apply the technique in another way. That is, we first
discretize the forward model and formulate the discrete objective functional corresponding to
the discrete forward model. Then its gradient is exactly calculated via the solution of the discrete
forward model and its adjoint problem.

3.1 Numerical methods for the forward model

In this work, we apply a finite difference splitting scheme to the forward problem [20, 27]. We
note that, other discretization techniques such as the finite element method can also be used. We
divide the domain Ω into parallelepipeds by the planes {xi = kihi}, with ki = 0, 1, . . . , Ni; hi =
li/Ni. To simplify the notation, we set x(k) = (k1h1, k2h2, k3h3)

′, k = (k1, k2, k3)
′ and ∆h =
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h1h2h3. We also denote by ei the unit normal vector along the xi-direction in R3, i.e. e1 =
(1, 0, 0)′ and so on. In the following, we need the following notations

ωi(k) = {x ∈ Ω : kihi ≤ xi ≤ (ki + 1)hi, (kj − 0.5) hj ≤ xj ≤ (kj + 0.5) hj , ∀j 6= i},

Ω̄−
i = {k : 0 ≤ ki ≤ Ni − 1, 0 ≤ kj ≤ Nj , ∀j 6= i}.

We define the following mean values of the coefficient α(x)

α+
i (k) =

1

|ωi(k)|

∫

ωi(k)

α(x)dx, k ∈ Ω̄−
i ,

where |ωi(k)| denotes the volume of ωi(k). We also denote by α−
i (k) := α+

i (k − ei). The
interval [0, te] is divided into Nt equal sub-intervals by the points ti, i = 0, Nt : 0 = t0 ≤ t1 =
∆t ≤ t2 = 2∆t ≤ · · · ≤ tNt = te. We denote by T n(k) an approximate value of T (x(k), tn)
and T n = {T n(k), k ∈ Ω̄−

3 }. The symbols T n
xi

and T n
x̄i

denote the forward and backward
finite difference quotients of T n, respectively. In [27], using discrete approximations of the first
equation of (2), we proposed the following finite difference splitting scheme























T 0 = gh,

(E1 +∆tA1)T
n+ 1

3 = T n,

(E2 +∆tA2)T
n+ 2

3 = T n+ 1

3 ,

(E3 +∆tA3)T
n+1 = T n+ 2

3 +∆tFn+ 1

2 ,

(6)

for n = 0, Nt − 1 with gh(k) = g(x(k)), and the operators defined by

(A1T
n)(k) =















α−
1
(k)Tn

x̄1
(k)

h1
−

α+

1
(k)Tn

x1
(k)

h1
, 1 ≤ k1 ≤ N1 − 1,

−
α+

1
(k)

h1
T n
x1
(k), k1 = 0,

α−
1
(k)

h1
T n
x̄1
(k), k1 = N1.

(7)

(A2T
n)(k) =



















α−
2
(k)Tn

x̄2
(k)

h2
−

α+

2
(k)Tn

x2
(k)

h2
, 1 ≤ k2 ≤ N2 − 1,

−
α+

2
(k)Tn

x2
(k)

h2
, k2 = 0,

α−
2
(k)Tn

x̄2
(k)

h2
, k2 = N2.

(8)

(A3T
n)(k) =



















α−
3
(k)Tn

x̄3
(k)

h3
−

α+

3
(k)Tn

x3
(k)

h3
, 1 ≤ k3 ≤ N3 − 2,

−
α+

3
(k)Tn

x3
(k)

h3
+ pTn(k)

h3
, k3 = 0,

α−
3
(k)Tn

x̄3
(k)

h3
+

α+

3
(k)Tn(k)

h2
3

, k3 = N3 − 1.

(9)

The symbol Ei denotes the identity matrix associated with Ai, i = 1, 3. Finally, the matrix
Fn+ 1

2 is given by

Fn+ 1

2 (k) =















q(tn)+q(tn+1)
2h3

, if k3 = 0,
α+

3
(k)T∞

h2
3

, if k3 = N3 − 1,

0 otherwise.

(10)

It was proved that the above splitting scheme converges to the unique solution of (2) [27,
25]. Moreover, this scheme is absolutely stable and faster than other implicit schemes and its
implementation is simple.



8

3.2 Discrete minimization problem

In the sequel, we consider (6) as the discrete forward model for shallowly buried objects. Cor-
responding to this model, the objective functional (4) is replaced by the following discrete one:

Fh(α) :=
∆th1h2

2

Nt
∑

n=0

∑

k∈Γ1
3h

[T n(k;α) − θn(k1, k2)]
2 , (11)

with
{

T n(k;α), k ∈ Ω̄−
3 , n = 0, Nt

}

being the solution of the discrete forward problem (6) as-
sociated with the coefficient α(x) and

{

θn(k1, k2), 0 ≤ ki ≤ Ni, n = 0, Nt

}

being the measured
soil-surface temperature at the space and time grid nodes. Here, Γ1

3h represents the set of
grid points on the soil-surface. It is clear that the discrete objective functional Fh(α) is an
approximation of the continuous one.

It should be noted that, in the discrete problem, the coefficient α(x), x ∈ Ω, can be replaced
by the average values α+

i (k), k ∈ Ω̄−
3 , i = 1, 3. For shortening the notation, in the following,

we denote by αi(k) := α+
i (k) and αi := {αi(k), k ∈ Ω̄−

3 }. Since α(x) is bounded by (5), the
average values αi(k) are also bounded by

0 < αl ≤ αi(k) ≤ αu, k ∈ Ω̄−
3 , i = 1, 3. (12)

For each i = 1, 3, it is clear from (7)–(9) that the coefficient matrix Ai depends on (and only
on) αi (in the following, we sometimes use the notation Ai(αi) to emphasize the dependence of
Ai on αi). Moreover, F is a function of α3(k) for k3 = N3 − 1. For simplicity, we assume that
the object is shallowly buried, so the deep layers consist of only homogeneous soil. Under this
assumption, we have α3(k) = αs for k3 = N3 − 1. Therefore, Fn+ 1

2 (k) does not depend on the
unknown coefficient. Moreover, with the assumption that the object is so small that the vertical
boundary layers of the soil domain contain only homogeneous soil, we have that αi(k) = αs at
the vertical boundary points, e.g. for k1 = 0 or k1 = N1. Hence, we only need to consider the
variables αi(k) for 1 ≤ k1 ≤ N1 − 1, 1 ≤ k2 ≤ N2 − 1, 0 ≤ k3 ≤ N3 − 2. This assumption helps
reducing the complexity of the numerical implementation.

We also note that the discrete forward model (6) can be rewritten as

{

A(α)T n+1 − T n = ∆tC(α)Fn+ 1

2 , n = 0, Nt − 1,

T 0 = gh,
(13)

where

A(α) = (E1 +∆tA1(α1)) (E2 +∆tA2(α2)) (E3 +∆tA3(α3)) ,

C(α) = (E1 +∆tA1(α1)) (E2 +∆tA2(α2)) .

By considering the average values of the coefficient α(x) as the unknown parameters, the pa-
rameter space in this case is finite dimensional. Hence, the subset of the unknown parameters
satisfying the constraints (12) is compact in this space. Moreover, we will prove in the next sec-
tion that the objective function (11) is differentiable. Thus, the discrete optimization problem
has at least one solution. We state this property in the following theorem.

Theorem 3.1. The discrete optimization problem (11) subject to (6) and (12) has at least one
solution.
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3.3 Gradient of the discrete objective functional

The objective of this section is to calculate the gradient of the discrete objective functional
(11). To this end, we consider an infinitesimal variation δα of the coefficient α. By denoting
α′(x) = α(x) + δα(x) and α′

i(k) = αi(k) + δαi(k), we have from (11) that

Fh(α
′)−Fh(α) =

∆th1h2
2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[

T n(k1, k2, 0;α
′)− θn(k1, k2)

]2

−
∆th1h2

2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[T n(k1, k2, 0;α) − θn(k1, k2)]
2

=
∆th1h2

2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[Un(k1, k2, 0)]
2

+∆th1h2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

Un(k1, k2, 0) [T
n(k1, k2, 0;α) − θn(k1, k2)] ,

(14)

where Un(k) = T n(k;α′) − T n(k;α), n = 0, Nt − 1, k ∈ Ω̄−
3 . It follows from (13) that U :=

{Un(k), n = 0, Nt − 1, k ∈ Ω̄−
3 } is the solution of the following problem

{

[

A(α)Un+1
]

(k)− Un(k) = ∆t
[

δC(α)Fn+ 1

2

]

(k)−
[

δA(α)T n+1
]

(k, α′), k ∈ Ω̄−
3 , n = 0, Nt − 1,

U0 = 0,

where δC(α) = C(α′) − C(α) and δA(α) = A(α′) − A(α). Consider an arbitrary matrix η =
{ηn(k), n = 0, Nt − 1, k ∈ Ω̄−

3 }. Multiplying both sides of the first equation by ηn(k), summing
up the results with respect to k ∈ Ω̄−

3 and n = 1, Nt − 1, we have

Nt−1
∑

n=0

∑

k∈Ω̄−
3

[

A(α)Un+1
]

(k)ηn+1(k)−

Nt−1
∑

n=0

∑

k∈Ω̄−
3

Un(k)ηn+1(k)

= ∆t

Nt−1
∑

n=0

∑

k∈Ω̄−
3

[

δC(α)Fn+ 1

2

]

(k)ηn+1(k)−

Nt−1
∑

n=0

∑

k∈Ω̄−
3

[

δA(α)T n+1
]

(k, α′)ηn+1(k).

If η satisfies the following equation

Nt−1
∑

n=0

∑

k∈Ω̄−
3

[

A(α)Un+1
]

(k)ηn+1(k)−

Nt−1
∑

n=0

∑

k∈Ω̄−
3

Un(k)ηn+1(k)

=
1

h3

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

Un(k1, k2, 0) [T
n(k1, k2, 0;α) − θn(k1, k2)] ,

(15)
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then the variation of the discrete objective functional is given by

Fh(α
′)−Fh(α) =

∆th1h2
2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[Un(k1, k2, 0)]
2

+∆t2∆h

Nt−1
∑

n=0

∑

k∈Ω̄−
3

[

δC(α)Fn+ 1

2

]

(k)ηn+1(k)

−∆t∆h

Nt−1
∑

n=0

∑

k∈Ω̄−
3

[

δA(α)T n+1
]

(k, α′)ηn+1(k).

(16)

Before deriving the gradient of Fh(α), let us first define the discrete adjoint problem from (15).
Suppose that ξ =

{

ξn(k), k ∈ Ω̄−
3 , n = 0, Nt

}

is specified by

ξn(k) =

{

1
h3

[T n(k;α) − θn(k1, k2)] if k3 = 0,

0 otherwise,
(17)

then we have from (15) the following discrete adjoint problem

{

A∗(α)ηn − ηn+1 = ξn, n = Nt − 1, Nt − 2, . . . , 2,

A∗(α)ηNt = ξNt ,
(18)

with A∗(α) being the adjoint operator of A(α). Since the matrices Ai, i = 1, 2, 3, are positive
semi-definite and symmetric as proved in [27], we have

A∗(α) = (E3 +∆tA3)(E2 +∆tA2)(E1 +∆tA1).

With the above representation of the operator A∗(α), the discrete adjoint problem can be
rewritten in the following form

• For n = Nt :










(E3 +∆tA3)η
Nt+

2

3 = ξNt ,

(E2 +∆tA2)η
Nt+

1

3 = ηNt+
2

3 ,

(E1 +∆tA1)η
Nt = ηNt+

1

3 .

• For n = Nt − 1, Nt − 2, . . . , 2 :











(E3 +∆tA3)η
n+ 2

3 = ξn + ηn+1,

(E2 +∆tA2)η
n+ 1

3 = ηn+
2

3 ,

(E1 +∆tA1)η
n = ηn+

1

3 .

This problem is solved in a similar way as the discrete forward model (6).
We now turn back to the gradient of the discrete objective functional. We can prove by

induction that [28]

∆th1h2
2

Nt
∑

n=0

N1
∑

k1=0

N2
∑

k2=0

[Un(k1, k2, 0)]
2 = o(δα). (19)
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We also have

δC(α) = [E1 +∆tA1(α
′
1)][E2 +∆tA2(α

′
2)]− [E1 +∆tA1(α1)][E2 +∆tA2(α2)]

= ∆tδA1(α1)[E2 +∆tA2(α
′
2)] + ∆t[E1 +∆tA1(α1)]δA2(α2),

with δAi(αi) = Ai(α
′
i)−Ai(αi). We note that Fn+ 1

2 (k) does not depend on either the coefficient

α(x) or the values of k1 and k2. Therefore, A1F
n+ 1

2 (k) = 0 and A2F
n+ 1

2 (k) = 0 for k ∈ Ω̄−
3 .

By elementary arguments, we also have that δC(α)Fn+ 1

2 = 0. From these equalities, (16) and
(19), the variation of the objective functional can be rewritten as

Fh(α
′)−Fh(α) = −∆t∆h

Nt
∑

n=1

∑

k∈Ω̄−
3

(δA(α)T n) (k, α′)ηn(k) + o(δα). (20)

The variation δA(α) can be represented by

δA(α) = δA1(α) + δA2(α) + δA3(α),

where

δA1(α) = ∆tδA1(α1)
[

E2 +∆tA2(α
′
2)
]

[E3 +∆tA3(α
′
3)],

δA2(α) = ∆t[E1 +∆tA1(α1)]δA2(α2)[E3 +∆tA3(α
′
3)],

δA3(α) = ∆t[E1 +∆tA1(α1)][E2 +∆tA2(α2)]δA3(α3).

From (7)–(9) we have that for each i ∈ {1, 2, 3}, the coefficient matrix Ai is continuous in αi,
so Ai(α

′
i) converges to Ai(αi) as δα tends to zero. To derive the gradient of the objective

functional, it is sufficient to formulate the directional derivatives of Ai(αi)T
n with respect to

αi(k). For k ∈ Ω̄−
3 : 1 ≤ k1 ≤ N1 − 1, we have

[

δA1(α)T n
]

(k) =
∆t

h1

(

[E2 +∆tA2(α
′
2)][E3 +∆tA3(α

′
3)]T

n
)

x̄1
(k)δα1(k − e1)

−
∆t

h1

(

[E2 +∆tA2(α
′
2)][E3 +∆tA3(α

′
3)]T

n
)

x1
(k)δα1(k).

Therefore,

∂[A1(α1)T
n](m)

∂α1(k)
=











−∆t
h1

([E2 +∆tA2(α
′
2)][E3 +∆tA3(α

′
3)]T

n)x1
(k) if m = k,

∆t
h1

([E2 +∆tA2(α
′
2)][E3 +∆tA3(α

′
3)]T

n)x1
(k) if m = k + e1,

0 otherwise.

(21)

Since A2 and A3 do not depend on α1, taking the limit as δα1 tends to zero, we have from (20)
and (21) that

∂Fh

∂α1(k)
= −∆t∆h

Nt
∑

n=1

∑

m∈Ω̄−
3

∂
[(

A1T n
)

(m)
]

∂α1(k)
ηn(m)

= −∆t∆h

Nt
∑

n=1

{

∂
[(

A1T n
)

(k)
]

∂α1(k)
ηn(k) +

∂
[(

A1T n
)

(k + e1)
]

∂α1(k)
ηn(k + e1)

}

= −∆t2∆h

Nt
∑

n=1

[(E2 +∆tA2)(E3 +∆tA3)T
n]x1

(k)ηnx1
(k).

(22)
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Denoting by µi = ∆t/h2i , i = 1, 2, 3, we obtain, for 1 ≤ k2 ≤ N2 − 1, 1 ≤ k3 ≤ N3 − 2,

[(E2 +∆tA2)(E3 +∆tA3)T
n] (k) =

− µ2α2(k − e2)[T
n(k − e2) + µ3α3(k − e2 − e3)h3T

n
x̄3
(k − e2)− µ3α3(k − e2)h3T

n
x3
(k − e2)]

+ [1 + µ2(α2(k − e2) + α2(k))] [T
n(k) + µ3α3(k − e3)h3T

nx̄3(k)− µ3α3(k)h3T
n
x3
(k)]

− µ2α2(k)[T
n(k + e2) + µ3α3(k + e2 − e3)h3T

n
x̄3
(k + e2)− µ3α3(k + e2)h3T

n
x3
(k + e2)].

(23)

Similarly, for 1 ≤ k2 ≤ N2 − 1, k3 = 0, we have

[(E2 +∆tA2)(E3 +∆tA3)T
n] (k) =

− µ2α2(k − e2) {(1 + µ3ph3)T
n(k − e2)− µ3α3(k − e2)[T

n(k − e2 + e3)− T n(k − e2)]}

+ [1 + µ2(α2(k − e2) + α2(k))] {(1 + µ3ph3)T
n(k)− µ3α3(k)[T

n(k + e3)− T n(k)]}

− µ2α2(k){(1 + µ3ph3)T
n(k + e2)− µ3α3(k + e2)[T

n(k + e2 + e3)− T n(k + e2)]}.

(24)

The directional derivatives of the objective functional with respect to α1(k), 1 ≤ k1 ≤ N1−1, 1 ≤
k2 ≤ N2−1, 0 ≤ k3 ≤ N3−2, are calculated using (22)–(24). The derivatives of Fh with respect
to α2(k) and α3(k) are given by similar formulae. For more details, we refer the reader to [25].

4 Simplifications of the inverse problem

The optimization problem (11) subject to (6) and (12) for estimating the coefficient α(x) is
severely ill-posed due to the lack of spatial information in the measured data. Numerical tests
have indicated that it is difficult to obtain reliable estimates unless more constraints or sim-
plifications are used. The choice of the constraints or simplifications depends on particular
applications. As our objective is to detect landmines and distinguish them from other false
alarms, we assume that the buried objects to be reconstructed are cylinders but, for generality,
their cross-sections are not necessarily circular. Moreover, they are upright buried. Under these
assumptions, a buried object is specified by (i) depth of burial, (ii) height, (iii) horizontal cross-
section, and (iv) thermal diffusivity. In this work we propose a two-step method for solving
the inverse problem. In the first step, we consider a given cross-section, and we estimate three
parameters, namely, the depth of burial, the height, and the thermal diffusivity. This approach
helps reducing the ill-posedness of the estimation problem as it reduces dramatically the num-
ber of unknown parameters (only three parameters are to be reconstructed). However, its result
depends on the accuracy of the cross-section being given by anomaly detection procedures [25].

In the second step, we reconstruct the full parameter vector, namely, the depth of burial, the
height and the mean values of the thermal diffusivity on a horizontal plane of the soil domain
across the object. Since this problem is severely ill-posed, we need a good initial guess in order
to obtain a reasonable estimate. For this purpose, the result of the previous step is used. The
cross-section is improved via the estimated mean values of the thermal diffusivity. This step
should improve the result of the first step. In the following, we refer the first and the second
steps as Step 1 and Step 2, respectively.

With the assumption of cylindrical shape of the object, we can represent the coefficient α(x)
as follows

α(x) =

{

α12(x1, x2), if ̺1 ≤ x3 ≤ ̺2,

αs, otherwise,
(25)
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(a) (b)

Figure 2: (a) Horizontal cross-section of the soil domain across the object; (b) The location of
the object in depth.

where ̺1 and ̺2 are the locations of the top and the bottom surfaces of the object in the soil
volume (0 < ̺1 < ̺2 < l3), and α12(x1, x2), 0 ≤ xi ≤ li, i = 1, 2, is the coefficient on a
horizontal surface of the soil domain across the object (Figure 2(a)). For simplicity, we assume
that the height of the object is not less than the corresponding grid size, that is, ̺2 − ̺1 ≥
h3. Furthermore, if we denote by γ13i(k1, k2) the projection of ωi(k) on the surface Γ1

3, and
αi
12(k1, k2), 1 ≤ ki ≤ Ni − 1, i = 1, 2, 3, specified by

αi
12(k1, k2) =

1

h1h2

∫

γ1
3i(k1,k2)

α12(x1, x2)dx1dx2

and suppose that the location of the top surface of the object falls into the grid intervals [(k′3 −
0.5)h3, (k

′
3 + 0.5)h3) and [k∗3h3, (k

∗
3 + 1)h3), while the bottom surface falls into the intervals

[(k′′3 − 0.5)h3, (k
′′
3 + 0.5)h3) and [k∗∗3 h3, (k

∗∗
3 + 1)h3) (see Figure 2(b)). That is,

(k′3 − 0.5)h3 ≤ ̺1 < (k′3 + 0.5)h3, (k′′3 − 0.5)h3 ≤ ̺2 < (k′′3 + 0.5)h3,

k∗3h3 ≤ ̺1 < (k∗3 + 1)h3, k∗∗3 h3 ≤ ̺2 < (k∗∗3 + 1)h3,

then the average values αi(k), 1 ≤ k1 ≤ N1 − 1, 1 ≤ k2 ≤ N2 − 1, 0 ≤ k3 ≤ N3 − 2, can be
represented as

αi(k) =































αs, if k3 < k′3,
1
h3

{

αs[̺1 − (k′3 − 0.5)h3] + αi
12(k1, k2)[(k

′
3 + 0.5)h3 − ̺1]

}

, if k3 = k′3,

αi
12(k1, k2), if k′3 + 1 ≤ k3 ≤ k′′3 − 1,
1
h3

{

αi
12(k1, k2)[̺2 − (k′′3 − 0.5)h3] + αs[(k

′′
3 + 0.5)h3 − ̺2]

}

, if k3 = k′′3 ,

αs, if k3 > k′′3 ,

for i = 1, 2 and

α3(k) =































αs, if k3 < k∗3 ,
1
h3

{

αs[̺1 − k∗3h3] + α3
12(k1, k2)[(k

∗
3 + 1)h3 − ̺1]

}

, if k3 = k∗3 ,

α3
12(k1, k2), if k∗3 + 1 ≤ k3 ≤ k∗∗3 − 1,
1
h3

{

α3
12(k1, k2)[̺2 − k∗∗3 h3] + αs[(k

∗∗
3 + 1)h3 − ̺2]

}

, if k3 = k∗∗3 ,

αs, if k3 > k∗∗3 .
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If we consider the average values αi
12(k1, k2), 1 ≤ k1 ≤ N1 − 1, 1 ≤ k2 ≤ N2 − 1, and ̺1, ̺2 as

new variables, the derivatives of αi, i = 1, 2, with respect to these variables are given by

∂αi(k)

∂αi
12(k1, k2)

=























1
h3
[(k′3 + 0.5)h3 − ̺1], if k3 = k′3,

1
h3
[̺2 − (k′′3 − 0.5)h3], if k3 = k′′3 ,

1, if k′3 + 1 ≤ k3 ≤ k′′3 − 1,

0, otherwise.

∂αi(k)

∂̺1
=

{

1
h3
[αs − αi

12(k1, k2)], if k3 = k′3,

0, otherwise.

∂αi(k)

∂̺2
=

{

1
h3
[αi

12(k1, k2)− αs], if k3 = k′′3 ,

0, otherwise.

Similar formulae are obtained for α3. Using the chain rule, we have the derivatives of the
objective functional Fh with respect to the new variables αi

12(k1, k2), 1 ≤ k1 ≤ N1 − 1, 1 ≤
k2 ≤ N2 − 1, i = 1, 2, 3, and ̺1, ̺2. Finally, the height of the object is given by ς = ̺2 − ̺1.

In solving the estimation problem, some constraints of the unknown parameters must be
taken into account. It is obvious that the average values αi

12(k) are bounded by αl and αu as in
(12), i.e.

0 < αl ≤ αi
12 ≤ αu. (26)

We also remark that, as analyzed in [25], the detection can only be possible for shallowly buried
objects, say, at most 10-cm deep for common anti-personnel (AP) mines. Hence, the depth of
burial ̺1 should not be too large. Moreover, since we assume that the soil-surface contains only
homogeneous soil, the depth of burial must be positive. More precisely, we have

0 < ̺l1 ≤ ̺1 ≤ ̺u1 < l3, (27)

where dl1 is a small positive value which prevents the depth of burial from converging to zero
and du1 is the maximum depth of burial at which the object is still detectable.

Concerning the height of the object, we have indicated in [25] that the effect of the object’s
height on the soil-surface temperature contrast is very small. The contrasts associated with
two values of the height are still distinguishable only if these values do not greater than a
certain threshold (e.g. approximately 5 cm for common AP mines). Hence, an estimated value
of the height is reliable only in this range, i.e. the following constraints should be added to the
estimation problem

h3 ≤ ς ≤ ςu, (28)

where ςu is the maximum height of the object at which the estimation is still reliable. Note that
this parameter must be chosen so that ̺u1 + ςu < l3.

4.1 Cylindrical object with the given cross section

Our first idea is to reduce the ill-posedness of the inverse problem by applying image segmenta-
tion techniques to estimate the cross-section of the buried object and hence reduce the number of
unknown parameters. Image segmentation techniques help detecting the presence of an anomaly
in an image sequence and provides a rough estimate of its horizontal size and shape. The result



15

is a binary mask corresponding to the location and the shape of the anomaly, i.e. the (approxi-
mate) cross-section of the buried object. The inverse problem is then reduced to estimate only
three parameters: the thermal diffusivity, the depth of burial and the height of the object.

In [29] we developed a segmentation technique for both detecting the presence of anomalies
and estimating their sizes. The method makes use of a threshold criterion for the soil-surface
temperature contrast which is based on its dependence on the depth, size and thermal diffusivity
of the object. For more details, we refer to [29]. Here we assume that Γ̃1

3 is the estimated cross-
section of the buried object. With the estimated cross-section and the assumption that the
buried object is homogeneous, we have

α12(x1, x2) =

{

αo for (x1, x2) ∈ Γ̃1
3,

αs for (x1, x2) ∈ Γ1
3 \ Γ̃

1
3.

The unknown parameters need to be estimated in this case are αo, ̺1 and ς. The gradient of
the objective function with respect to these new variables are easily obtained using the chain
rule and the previous formulae. To avoid the dependence of the unknown parameters on their
units and absolute values, we introduce the following dimensionless variable

v =

(

̺1
l3
,
ς

l3
,
αo

αs

)′

.

The estimation problem is subject to the constraints of the forms (26)–(28).
To make the estimation problem stable, we apply Tikhonov regularization technique. More

precisely, we minimize the following objective functional

G1(v) = Fh(α) +
1

2
γ1‖v − v∗‖2, (29)

where v∗ is an approximation of the desired solution. The regularization parameter γ1 should
be properly chosen for each particular problem.

4.2 Cylindrical object with the estimation of the cross section

In order to improve the estimation results of Step 1, in this step, we estimate the cross-section
based on the estimation of the average values of the thermal diffusivity α12 on the horizontal
cross-section of the soil volume across the object. To this end, we assume that the unknown
parameters are v(k1, k2) = α3

12(k1, k2)/αs (the factor 1/αs is used to transform the parameters
to dimensionless ones), the dimensionless depth of burial ̺1/l3, and the height ς/l3. The average
values α1

12(k1, k2) and α2
12(k1, k2) are approximated by

α1
12(k1, k2) ≃

αs

2
[v(k1, k2) + v(k1 + 1, k2)],

α2
12(k1, k2) ≃

αs

2
[v(k1, k2) + v(k1, k2 + 1)].

With these approximations, we have

∂α1
12(k1, k2)

∂v(k1, k2)
=

∂α1
12(k1, k2)

∂v(k1 + 1, k2)
=

αs

2
,

∂α2
12(k1, k2)

∂v(k1, k2)
=

∂α2
12(k1, k2)

∂v(k1, k2 + 1)
=

αs

2
,

∂α3
12(k1, k2)

∂v(k1, k2)
= αs.
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The estimation problem is devoted to the reconstruction of the new vector V consisting of the
matrix v, ̺1/l3 and ς/l3. The objective functional is given as follows

G2(V ) = F(α) + γ2TV (α12), (30)

where TV (α12) is the total variation of the thermal diffusivity α12. The problem is also subject
to the constraints of the forms (26), (27) and (28). Here we use the total variation regularization
to preserve the discontinuity of the coefficient.

5 Numerical results

In this section, we illustrate the performance of the algorithms presented in the previous section
with a set of simulated data. Keeping in mind the application to landmine detection, the input
functions are taken similar to real conditions. A soil domain of 0.35×0.35×0.4 (m3) is considered
and the time interval of analysis is chosen to be te = 16 (h) (from 8:00 till 24:00, this choice
is based on analysis on the effect of the solar radiation on the soil temperature, see [25]). The
discretization grid sizes are chosen as h = (0.01, 0.01, 0.01) (m) and ∆t = 120 (s) resulting
in 35 × 35 × 41 space grid points and 481 time steps. We note that due to the small sizes of
landmines, the spatial grid sizes should not be chosen too large while, according to our numerical
trials, the time step can be more freely chosen. The soil is simulated as sand with the thermal
diffusivity αs = 6.402 × 10−7 m2/s.

8 10 12 14 16 18 20 22 24
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q
(t

)

Figure 3: The boundary function q(t).

The initial condition is uniform as g(x) = 293 (K) and the soil temperature at the bottom
surface T∞, which is assumed to be invariant in time, is set to be 293 (K) to make it con-
sistent with the initial condition. The parameters p and q(t) are calculated through weather
conditions [27]. In this example, we have p = 9.2272 × 10−6 and q(t) is depicted in Figure 3.
Since the soil-surface heat flux is the source of thermal signatures, the soil-surface temperature
contrast certainly depends on q(t). This was confirmed by numerical simulations in [27]. As a
consequence, the higher the heat flux, the deeper the object that could be detected.

In this work, we demonstrate the performance of the proposed algorithms with a circular
cylindrical object of radius 0.03 m and height 0.05 m buried in the center of the soil domain
at different depths. This object is of the same size as some anti-personnel mines [25]. Its
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thermal properties are also given as of 2, 4, 6-Trinitrotoluene (TNT — explosive) with αo =
1.139 × 10−7 m2/s.

As mentioned in the introduction, in dealing with real experimental data, a chain of pre-
processing steps must be applied for obtaining images representing the soil-surface apparent
temperature. However, in this work, as the data is simulated, these pre-processing steps are not
necessary. Instead, the measured data is given as the solution of the forward model. In order
to avoid the so-called inverse crime, we use an explicit finite difference method to simulate the
measured data. Then a random noise of magnitude of 0.1 K is added to the simulated data.
This noise level should take into account both the temperature resolution of IR cameras and the
model’s error. We remark that the most important information in the measured data is the soil-
surface temperature contrast between the object and the background, but not the temperature
itself. This temperature contrast is generally small, say, less than a few degrees Kelvin (see
Figures 4, 7 and 9(a)). Therefore, the noise level of 0.1 K is large in this situation, especially
when the object is deeply buried.
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Figure 4: Measured temperature contrast of Example 5.1.

Example 5.1. We start the numerical demonstration with the case that the object is buried at
0.01 m. The noisy measured soil-surface temperature contrast, which is the difference between
the soil-surface temperature above the object and that of the background, is depicted in Figure 4.

The exact dimensionless parameter vector in Step 1 is ve = (0.025, 0.125, 0.18)′ . We start
the algorithm of Step 1 at the initial guess v0 = (0.1, 0.1, 0.9)′ . The regularization parameter is
empirically chosen γ1 = 1 by ’trial-and-error’ tests. The approximation of the solution in the
regularization term is chosen as v∗ = (0.05, 0.1, 0.2)′ and the bound constraints

αl = 0.064 × 10−7, αu = 6.402 × 10−7,

̺l1 = 0.001, ̺u1 = 0.1, ςu = 0.06.

That means, the height of the object is assumed to be between 0.01 and 0.06 (m). This choice
is based on the analysis on the effect of the height on the soil-surface temperature mentioned in
the beginning of this section.

In Step 1, the cross-section of the object is estimated using an anomaly detection technique
that was presented in [29, 25]. The estimated cross-section is depicted in Figure 5(a). The figure
shows that the estimated cross-section is a bit larger than the true one which is represented by
the circle.
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Figure 5: Result of Example 5.1. Depth of burial = 0.01 m.
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Figure 5(b) shows the estimated cross-section in Step 2. This cross-section was drawn based
on the estimated values of α12. The estimation error of α12 is shown in Figure 5(c). The
estimated values of the thermal coefficient, the depth and the height of the object in both steps
are depicted in Figure 5(d) in which we plot the distribution of the coefficient in depth. Note
that the discontinuous points represent the upper (the depth of burial) and lower surfaces of
the object (the height is the distance between the discontinuities). The figure indicates that,
although we start the algorithm of Step 1 far from the true values, it still provides a quite good
estimate of the coefficient. We recall that in this test, the height is constrained to be between
0.01 and 0.06 m. In Step 2, the result of Step 1 is used as the initial guess. The regularization
parameter γ2 is also empirically chosen to be 10−2. As shown in Figure 5(b), the estimates for
the depth and the thermal diffusivity of Step 2 are improved in comparing to the result of Step
1. However, the estimate of the height is less accurate. This again confirms that the effect of
the object’s height on the soil-surface temperature is not as strong as other parameters do.

We should emphasize that, due to the small number of unknowns, Step 1 converges very fast
even we start the iterations far from the exact solution, see Figure 5(e), say, the objective
functional decreases dramatically in the first two iterations. The algorithm of Step 2 also
converges quickly thanks to the good initial guess provided by Step 1, see Figure 5(f).

Apart from the advantage of having a small number of unknowns in Step 1, the accurate
result of Step 1 shown above is also due to the good estimate of the cross-section of the object
as shown in Figure 5(a). In order to answer the question if we still can accurately reconstruct
the coefficient when the cross-section is not really accurately estimated, we show in Figure 6 the
results of both steps for another estimated cross-section. The figure shows that, due to the larger
estimated cross-section, the diffusivity of the object is not accurately reconstructed by Step 1.
However, the result of Step 2 is much better as shown in Figure 6(d). We also can see from
Figure 6(a)-(c) that the cross-section is improved in Step 2. This confirms the ability of Step 2
to improve results of Step 1 when the cross-section is not accurately reconstructed by anomaly
detection algorithms. Of course, due to the less accurate result of Step 1, more iterations were
needed to obtain an accurate estimate.

Example 5.2. It is natural that the deeper the object is buried, the more difficult to detect
and characterize it. To show the performance of the proposed algorithms for objects buried at
deeper depths, we now consider the case in which the same object is buried at the depth of 0.03
m. The measured soil-temperature contrast is plotted in Figure 7. All the parameters are the
same as in the previous example.

We start Step 1 at the initial guess v0 = (0.05, 0.1, 0.9)′ . The estimated cross-section used
in this step is depicted in Figure 8(a). The results of both steps are shown in Figure 8.

It is clear from the figure that the result of this example is not as good as the previous
one, but it is still reasonably good. We note that, as shown in Figure 7, the magnitude of the
measured soil-surface temperature contrast in this case is much smaller than in the previous
example. Therefore, it is understandable that the estimate in this example is less accurate
compared to the previous example.

Example 5.3. The above examples show that the accuracy of the estimates depends on the
depth at which the object is buried. Of course, it is impossible to detect an object which does
not show any signal (contrast) in the measured data. To show this, we consider the case when
the object is buried at 0.08 m. Figure 9 show that the algorithms of the two steps fail to estimate
the coefficient even when we start the iterations from a good initial guess in Step 1. It is clearly
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Figure 6: Result of Example 5.1 for a different estimated cross-section.
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Figure 7: Measured temperature contrast of Example 5.2.

due to the fact that the noisy measured temperature contrast is just a bit higher than the noise
level.

Example 5.4. Finally, let us test the algorithm with a parallelepiped of the sizes 0.07× 0.04×
0.05 (m3) located at the center of the soil domain and buried at 0.01 m. In this case, the cross-
section of the object is rectangular. For this object, we start the algorithm at the same initial
guess as in Example 5.1. The estimation results of the two steps are depicted in Figure 10.

It is clear from the figure that, the image segmentation technique only provides a very rough
estimate of the cross-section of the object. Therefore, the result of Step 1 is not really good
(Figure 10(a)). The advantage of Step 2 is again confirmed because it can improve both the
estimation of the cross-section, see Figure 10(b), and the distribution of the thermal diffusivity
in depth, see Figure 10(d).

6 Conclusion

We introduced the inverse problem setting for buried object detection. The problem was stated
as a least-squares minimization problem. The existence of a solution to this problem was given
in the space of functions of bounded variation.

In solving the inverse problem, we made use of quasi-Newton trust region method with the
adjoint technique for calculating the gradient of the objective functional. The adjoint technique
was not directly applied to the continuous inverse problem, but to the discretized one. This
approach enables calculating the exact gradient of the discrete objective functional.

In dealing with the inverse problem, we realized that the problem is extremely ill-posed.
In this work, to reduced the ill-posedness of the problem, emphasizing the application to anti-
personal landmine detection, we assumed that the objects are (not necessarily circular) cylindri-
cal and made use of a two-step method. In the first step, we use image segmentation techniques
to detect the presence of anomalies and derive rough estimates of their horizontal cross sections.
Then the inverse problem is reduced to estimate only three parameters: the depth of burial, the
height and the thermal diffusivity of each detected anomaly. In the second step, for improving
the result of the first step, we use this result as an initial guess to estimate the depth of burial,
the height and mean values of the thermal diffusivity on a horizontal cross-section of the soil
domain across the buried object.
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Figure 8: Result of Example 5.2. Depth of burial = 0.03 m.
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Figure 9: Result of Example 5.3. Depth of burial = 0.08 m.

The numerical examples show the potential of the proposed methods. The results also
confirm a natural phenomenon that the deeper the object is buried, the less accurate the re-
construction is. The numerical results showed good reconstruction results with shallowly buried
objects. However, the reconstruction is less accurate with the objects buried at deep depths.
This is one of the limitations of IR thermography which makes it to be referred to as a boundary
technique. More numerical results presented in [25, 29] also showed that the larger the object
is, the more accurate the reconstruction is.

The proposed inversion method in this work was confined to only upright cylindrical objects.
As future work, to enhance the practicality of the method, more general types of shapes should
be considered. It would be also interesting to tackle inhomogeneous soil and objects. Other
shape parametrization methods are also being investigated and the results will be reported in a
future publication.

Acknowledgments

The authors are grateful to the Associate Editor and the referees for their corrections and
suggestions for improving the paper. The work was partly done when N.T. Thành and D.N.
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