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Abstract. In this article we study the regularization of optimization problems by Tikhonov
regularization. The optimization problems are subject to pointwise inequality constraints in L2(Ω).
We derive a-priori regularization error estimates if the regularization parameter as well as the noise
level tend to zero. We rely on an assumption that is a combination of a source condition and
of a structural assumption on the active sets. Moreover, we introduce a strategy to choose the
regularization parameter in dependence of the noise level. We prove convergence of this parameter
choice rule with optimal order.
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1. Introduction. In this article we consider optimization problems that can
be interpreted as optimal control problems or as inverse problems. We study the
regularization of the minimization problem:

Minimize
1
2
‖Su− z‖2Y

such that ua ≤ u a.e. on Ωa
and u ≤ ub a.e. on Ωb.

Here, Ω ⊂ Rn, n ≥ 1, is a bounded, measurable set, Y a Hilbert space, z ∈ Y a
given function. The operator S : L2(Ω)→ Y is linear and continuous. The inequality
constraints are prescribed on measurable subsets Ωa,Ωb ⊂ Ω. The functions ua, ub :
Ω→ R ∪ {−∞,+∞} are given with ui ∈ L∞(Ωi), i ∈ {a, b}.
This simple model problem allows for two distinct interpretations. Viewed as an
optimal control problem, the unknown u is the control, the inequality constraints are
pointwise inequality constraints, the function z is the desired state. From the inverse
problem point of view, the unknown u represents for example coefficients that have to
be reconstructed from the (possible noisy) measurement z, the inequality constraints
reflect a-priori information and restrict the solution space.
Although both interpretations sound very differently, the underlying problem is ill-
posed, no matter which point of view one prefers. Ill-posedness may arise due to non-
existence of unique solutions: If z is not in the range of S and inequality constraints
are not prescribed on the whole domain Ω, i.e., Ωa 6= Ω or Ωb 6= Ω, then a solution is
not guaranteed to exist. Uniqueness of solutions can be proven only under additional
assumptions, e.g. injectivity of S. If solutions exist, they may be unstable with respect
to perturbations, which is critical if only error-prone measurements zδ ≈ z of the
exact data z are available. In addition, every discretization of the original problem
introduces perturbations.
In order to overcome these difficulties, regularization methods were developed and
investigated during the last decades. We will focus here on Tikhonov regularization
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with some positive regularization parameter α > 0. The regularized problem is given
by:

Minimize
1
2
‖Su− zδ‖2Y +

α

2
‖u‖2L2(Ω)

such that ua ≤ u a.e. on Ωa
and u ≤ ub a.e. on Ωb.

Here, zδ with ‖z − zδ‖ ≤ δ is the perturbed state to the noise level δ > 0. For
given α > 0 this problem has a unique solution, which is stable with respect to
perturbations. The additional Tikhonov regularization term can be interpreted in the
context of optimal control as control costs.
Once a regularized problem is solved, one is interested in the convergence for (α, δ)↘
0. Additionally, one wants to find conditions that guarantee (or explain) convergence
rates with respect to α and δ. These questions are studied in the literature about
inverse problems. Convergence results were developed for linear and nonlinear inverse
problems, see e.g. [3]. One of the most famous sufficient conditions is the so-called
source condition, which assumes that the solution of the original problem is in the
range of the dual operator S?.
A comprehensive study of inverse problems subject to convex constraints can be found
in [3, Section 5.4]. There convergence of the regularization scheme given a source
condition is proven. As mentioned in [8], a source condition is unlikely to hold in an
optimal control setting if z is not attainable, i.e., there is no feasible u such that z =
Su. Then the optimal control u0 might be bang-bang, i.e. it is a linear combination of
characteristic functions, hence u0 is in general discontinuous with u0 6∈ H1(Ω). This
contradicts a fulfillment of the source condition as in many examples the range of S?
contains H1(Ω) or C(Ω̄). In [8] a regularity assumption on the active sets is used as a
suitable substitution of the source condition. The active set is the subset of Ω, where
the inequality constraints for u0 are active. Such a condition is also employed in [2, 4].
In [2] this condition was used to prove a-priori error estimates for the discretization
error in the controls. In [4] the regularity condition was used to prove stability of
bang-bang controls for problems in a non-autonomous ODE setting. However, the
regularity assumption implies that the control constraints are active everywhere, i.e.,
u0 ∈ {ua, ub} a.e. on Ω. In particular, situations are not covered, where the control
constraints are inactive on a large part of Ω or if only one-sided constraints are given.
In this paper, we will combine both approaches: we will use a source condition on
the part of the domain, where the inequality constraints are inactive, and we will
use a structural assumption on the active sets, see Section 3. Then we prove a-priori
convergence rates if (α, δ) tends to zero, see Theorem 3.14. These rates allow for an
a-priori choice of the regularization parameter α in dependence of δ.
However such an a-priori choice is not possible in practice, as it requires exact know-
ledge about the unknown solution u0 in terms of parameters appearing in the struc-
tural assumption on the active sets. Here, one is interested to find a rule to determine
α without any a-priori information on the unknown solution u0. In the inverse prob-
lem context an important parameter choice rule is the so-called Morozov discrepancy
principle [6]. There, α is determined as the parameter that brings the residual in the
equation Su− zδ below a certain threshold. In Section 4, we extend this principle to
account for the presence of control constraints and the non-attainability of the exact
data z. Then we prove that the resulting regularization scheme gives under suitable
assumptions the same convergence rate with respect to δ as the best a-priori choice,
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see Theorem 4.7.
Simultaneously, we will study the regularization of the following minimization prob-
lem: given β ≥ 0,

Minimize
1
2
‖Su− z‖2Y + β‖u‖L1(Ω)

subject to the inequality constraints. Here it is worth noting that the presence of the
L1-term does not make the problem well-posed. Indeed, the remarks about existence
and stability of solutions above are still valid.
This is in contrast to the analysis of problems in sequence spaces. There one has
l1 ↪→ l2, and the regularization by l1-norms is even stronger than the one by l2-
norms. Moreover, since l1 = (c0)∗ it is possible to prove the existence of solutions of
optimization problems in l1 by means of the weak-star topology. This is not the case
for L1(Ω): this space has no pre-dual, hence the notion of weak-star convergence does
not make sense, and optimization problems may not have solutions in L1(Ω).
In contrast to the existing literature on inverse problems, we do not assume that
Su0 = z holds, which corresponds to an optimal functional value of zero of problem
(P). Instead we develop convergence results for S(u0 − uα,δ). These are equivalent
to estimates of Suα,δ − z in the case Su0 = z.
The paper is organized as follows. In Section 2 we formulate the problem under con-
sideration and derive some basic properties. Section 3 is devoted to the derivation of
error estimates with respect to α and δ. There we use a combination of a (power-type)
source condition and a structural assumption on the active set, see Assumption 3.2.
Finally, in Section 4, we describe a parameter choice rule to determine the parameter
α. We prove convergence rates for this method.

2. Problem setting and preliminary results. Let us recall the optimization
problem that we want to regularize:

Minimize
1
2
‖Su− z‖2Y + β‖u‖L1(Ω)

such that ua ≤ u a.e. on Ωa
and u ≤ ub a.e. on Ωb.

 (P)

We assume that S : L2(Ω) → Y is linear and continuous. In many applications
this operator S is compact. Furthermore, we assume that the Hilbert space adjoint
operator S? maps into L∞(Ω), i.e., S? ∈ L(Y, L∞(Ω)). The parameter β is a non-
negative number.
The set of feasible functions u is given by

Uad := {u ∈ L2(Ω) : ua ≤ u on Ωa, u ≤ ub on Ωb}

with ui ∈ L∞(Ωi), i ∈ {a, b}, and ua ≤ 0 and 0 ≤ ub a.e. on Ωa and Ωb, respectively.
For convenience we use sometimes ua(x) = −∞ if x 6∈ Ωa and ub(x) =∞ if x 6∈ Ωb. In
an inverse problem context Uad represents given a-priori informations, whereas from
an optimal control point of view, Uad contains the admissible controls. We remark,
that the assumption ua ≤ 0 ≤ ub is not a restriction. If, e.g., ua > 0 on a subset
Ω1 ⊂ Ω, we can decompose the L1-norm as ‖u‖L1(Ω) = ‖u‖L1(Ω\Ω1) +

∫
Ω1
u. Hence,

on Ω1 the L1-norm in Uad is in fact a linear functional, and thus the problem can be
handled in an analogous way.
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We will denote by PUad the L2-projection onto the feasible set Uad. This projection
acts pointwise on functions v ∈ L2(Ω) and can be written as

(PUad(v))(x) = min
(
max

(
v(x), ua(x)

)
, ub(x)

)
.

In the optimization problem (P), the function z ∈ Y corresponds to an exact mea-
surement, i.e., it is obtained without measurement errors. In many applications only
perturbed measurements zδ ∈ Y are available for some error or noise level δ > 0 with
‖z − zδ‖Y ≤ δ.
In order to derive estimates w.r.t. the regularization parameter α ≥ 0 and noise level
δ ≥ 0, we define a family of optimization problems

Minimize Jα,δ(u) :=
1
2
‖Su− zδ‖2Y +

α

2
‖u‖2L2 + β‖u‖L1

such that ua ≤ u a.e. on Ωa
and u ≤ ub a.e. on Ωb.

 (Pα,δ)

We will use the conventions z0 := z and Jα(u) := Jα,0(u). In the sequel, we use the
following notation for the solutions, states and adjoint states for the problems (Pα,δ)
and (Pα,0):

uα := argminu∈Uad Jα(u), yα := Suα, pα := S?(z0 − yα),
uα,δ := argminu∈Uad Jα,δ(u), yα,δ := Suα,δ, pα,δ := S?(zδ − yα,δ).

In particular, we denote by u0 a solution of the original problem (P) if it exists. The
solution set of (P) is denoted with U0. We will call the functions y and p states and
adjoint states in accordance with the denotation in the optimal control literature.
Throughout the paper, c denotes a generic constant, which may change from line to
line, but which does not depend on relevant quantities like α, δ.
Remark 2.1. All considerations can be transferred one-to-one to the case that
(Ω,Σ, µ) is a given measure space with µ(Ω) < +∞. Then one has to use Lp(Ω) :=
Lp(Ω;µ) with norm ‖u‖Lp := (

∫
Ω
|u|p dµ)1/p, 1 ≤ p < ∞. This would allow to in-

clude boundary control problems and identification of initial values in time-dependent
problems.

2.1. Existence and optimality conditions. Let us first recall the results on
existence of solutions of minimizers.
Theorem 2.2. Let α, δ ≥ 0 be given. Assume further that α > 0 or Ωa = Ωb = Ω
holds. Then the problem (Pα,δ) has a minimizer uα,δ.
If in addition α > 0 holds or the operator S is injective then this solution is uniquely
determined.
Please observe, that in the case α = 0 one has to assume Ωa = Ωb = Ω to ensure
existence of solutions of (P) regardless of the value of β. Otherwise, minimizers will
not exist in general. To obtain existence of minimizers in this case, one has to use a
measure space setting, see [1].
If a solution of the minimization problem exists, then it can be characterized by
first-order necessary optimality conditions.
Theorem 2.3 ([8, Lemma 2.2]). Let α, δ ≥ 0 and let uα,δ be a solution of Jα,δ.
Then, there exists a subgradient λα,δ ∈ ∂‖uα,δ‖L1(Ω), such that with the adjoint state
pα,δ = S?(zδ − yα,δ) the variational inequality

(αuα,δ − pα,δ + β λα,δ, u− uα,δ) ≥ 0 ∀u ∈ Uad, (2.1)
4



is satisfied.
Since problem (P) is a convex optimization problem, the first order necessary opti-
mality condition is also sufficient for optimality.
Standard arguments (see [7, Section 2.8]) lead to a pointwise a.e. interpretation of the
variational inequality:

(αuα,δ(x)−pα,δ(x)+β λα,δ(x), u−uα,δ(x)) ≥ 0 ∀u ∈ R : ua(x) ≤ u ≤ ub(x), (2.2)

which in turn implies the following relation between uα,δ and pα,δ in the case α > 0:

uα,δ(x) =



ua(x) if pα,δ(x) < αua(x)− β
1
α (pα,δ(x) + β) if αua(x)− β ≤ pα,δ(x) ≤ −β
0 if |pα,δ(x)| < β
1
α (pα,δ(x)− β) if β ≤ pα,δ(x) ≤ αub(x) + β

ub(x) if αub(x) + β < pα,δ(x)

a.e. on Ω. (2.3)

In the case α = 0, (2.2) is equivalent to

u0,δ(x)



= ua(x) if p0,δ(x) < −β
∈ [ua(x), 0] if p0,δ(x) = −β
= 0 if |p0,δ(x)| < β

∈ [0, ub(x)] if p0,δ(x) = β

= ub(x) if β < p0,δ(x)

a.e. on Ω. (2.4)

This implies that u0(x) is uniquely determined by p0(x) on the set, where |p0(x)| 6= β
holds. Moreover, we conclude the bound |p0,δ| ≤ β on the parts of Ω where no
inequality constraints are prescribed:
Lemma 2.4. Let u0,δ be a solution of J0,δ with associated adjoint state p0,δ. Then it
holds

p0,δ(x) ≥ −β a.e. on Ω \ Ωa,
p0,δ(x) ≤ +β a.e. on Ω \ Ωb.

In particular, we have |p0,δ(x)| ≤ β a.e. on Ω \ (Ωa ∪ Ωb).
Proof. Take x ∈ Ω \ Ωa. The pointwise variational inequality (2.2) imply

(−p0,δ(x) + β λ0,δ(x), u− u0,δ(x)) ≥ 0 ∀u ∈ R : u ≤ ub(x).

Since u := u0,δ − 1 ≤ ub − 1 ≤ ub, this implies −p0,δ(x) + β λ0,δ(x) ≤ 0. Hence
p0,δ(x) ≥ β λ0,δ(x) ≥ −β almost everywhere on x ∈ Ω \Ωa. On Ω \Ωb the inequality
p0,δ(x) ≤ +β follows analogously.

2.2. Structure of the solution set in case α = 0. The aim of this section
is to derive some basic properties of the solution set for the original problem (P).
In general it is possible that there exists no solution, a unique solution or multiple
solutions. For the remainder of this section we assume that the solution set U0 is not
empty.
Albeit U0 is not necessarily single-valued, one can prove that the optimal state and
the L1-norm of the optimal control is uniquely determined.
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Lemma 2.5. The set

{y ∈ Y : ∃u0 ∈ U0 with y = Su0}

is single-valued. If β > 0 the set

{t ∈ R : ∃u0 ∈ U0 with t = ‖u0‖L1}

is single-valued, too.
Proof. Let u0, ũ0 ∈ U0 be given. Since u 7→ ‖Su − zδ‖2L2 and u 7→ β‖u‖L1 are
convex, both must be linear on the line segment [u0, ũ0]. This implies Su0 = Sũ0 and
‖u0‖L1 = ‖ũ0‖L1 in case β > 0.
As a consequence, there exists a unique solution if S is injective. However, even if S
is not injective, the solution with minimal L2(Ω)-norm is unique.
Lemma 2.6. There exists a unique solution in U0 with minimal L2-norm.
Proof. It is easy to see that the set U0 is convex, non-empty, and closed in L2(Ω).
Due to the strict convexity of the L2(Ω)-norm, the problem

min
u∈U0

‖u‖L2

has a unique solution.
Later we shall see that if the sequence uα converges, it converges to the solution of
(P) with minimal L2(Ω)-norm.

2.3. Monotonicity and continuity. A direct consequence of the optimality is
the monotonicity of the mapping α 7→ ‖uα‖L2 .
Lemma 2.7. The mapping α 7→ ‖uα‖L2 is monotonically decreasing from (0,+∞) to
R. In addition, the mapping α 7→ 1

2‖yα−yd‖
2
Y +β‖uα‖L1 is monotonically increasing

from (0,+∞) to R.
If the problem (P) has a solution then these mappings are monotone from [0,+∞) to
R, i.e.,

‖uα‖L2 ≤ ‖u0‖L2

holds for all solutions u0 of (P) and all α > 0.
Proof. Let α, α′ ≥ 0 be given. Using the optimality of (yα′ , uα′) and (yα, uα) for the
functionals Jα′ and Jα, respectively, we have

Jα(yα, uα) ≤ Jα(yα′ , uα′) and − Jα′(yα, uα) ≤ −Jα′(yα′ , uα′).

Adding both inequalities yields

(α− α′)‖uα‖2L2 ≤ (α− α′)‖uα′‖2L2 ,

which is equivalent to (α − α′)(‖uα‖2L2 − ‖uα′‖2L2) ≤ 0. Hence, the mapping α 7→
‖uα‖L2 is monotonically decreasing from (0,+∞) to R.
Let us take α′ > α. Then we have using the monotonicity of α 7→ ‖uα‖L2

Jα(yα, uα) ≤ Jα(yα′ , uα′) =
1
2
‖yα′ − yd‖2Y + β‖uα′‖L1 +

α′

2
‖uα′‖2L2

≤ 1
2
‖yα′ − yd‖2Y + β‖uα′‖L1 +

α′

2
‖uα‖2L2 .
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Hence we have for α′ > α

1
2
‖yα − yd‖2Y + β‖uα‖L1 ≤ 1

2
‖yα′ − yd‖2Y + β‖uα′‖L1 .

If a solution exists for α = 0, then these arguments extend to the case α = 0 with u0

being any solution (P).
For further references, we state the following obvious consequence of the previous
result, which is boundedness of the sequence {uα}α>0 in L2(Ω).
Corollary 2.8. The set of solutions {uα}α>0 is bounded in L2(Ω) if and only if
(P) is solvable, i.e., U0 6= ∅.
Proof. If U0 6= ∅, the assertion follows from Lemma 2.7.
Now, let us assume that {uα}α>0 is bounded in L2(Ω). Due to the reflexivity of
L2(Ω), there is a sequence αn and u ∈ L2(Ω), such that αn ↘ 0 and uαn ⇀ u in
L2(Ω) as n → ∞. Since Uad is weakly closed, we obtain u ∈ Uad. Let ũ ∈ Uad be
arbitrary. We obtain

J0(Su, u) ≤ lim inf
n→∞

J0(Suαn , uαn) (since S is weakly continuous)

≤ lim inf
n→∞

Jαn(Suαn , uαn) (by definition)

≤ lim inf
n→∞

Jαn(Sũ, ũ) (by optimality of uαn)

= J0(Sũ, ũ),

which implies u ∈ U0, and in particular U0 6= ∅.
Before we study the behavior of solutions for α→ 0, let us state the following result,
which will be one key to prove convergence rates.
Proposition 2.9. Let α, α′ > 0 and δ, δ′ ≥ 0 be given. Then it holds

‖yα′,δ′ − yα,δ‖2Y + α ‖uα′,δ′ − uα,δ‖2L2

≤ (α′ − α) (uα′,δ′ , uα,δ − uα′,δ′) + (zδ − zδ′ , yα′,δ′ − yα,δ)Y .

If (Pα,δ) is solvable for α = 0 and noise levels δ, δ′, the estimate holds true for
α, α′ ≥ 0.
Proof. For δ = δ′ this result can be found in [8, Lemma 3.1].
We start with the variational inequalities (2.1) for (α, δ) and (α′, δ′). Testing with
uα′,δ′ and uα,δ, respectively, leads to

(αuα,δ − pα,δ + β λα,δ, uα′,δ′ − uα,δ) ≥ 0,
(α′ uα′,δ′ − pα′,δ′ + β λα′,δ′ , uα,δ − uα′,δ′) ≥ 0.

Adding both inequalities yields

− α ‖uα′,δ′ − uα,δ‖2L2 − (α′ − α) (uα′,δ′ , uα′,δ′ − uα,δ)
+ β (λα,δ − λα′,δ′ , uα′,δ′ − uα,δ)− (pα,δ − pα′,δ′ , uα′,δ′ − uα,δ) ≥ 0.

Due to the monotonicity of the subdifferential, we have (λα′,δ′−λα,δ, uα′,δ′−uα,δ) ≥ 0.
Inserting the definition of the adjoint state, we get immediately

(pα,δ − pα′,δ′ , uα′,δ′ − uα,δ) = (zδ − zδ′ , yα′,δ′ − yα,δ) + ‖yα′,δ′ − yα,δ‖2Y ,
7



which implies

− (α′ − α) (uα′,δ′ , uα′,δ′ − uα,δ)− (zδ − zδ′ , yα′,δ′ − yα,δ)
≥ α ‖uα′,δ′ − uα,δ‖2L2 + ‖yα′,δ′ − yα,δ‖2Y .

A first consequence of this result is the local Lipschitz continuity of the map α 7→ uα,δ
from (0,+∞) to L2(Ω) for fixed δ.
Corollary 2.10. Let us fix δ ≥ 0. Then the mapping α 7→ uα,δ is locally Lipschitz
continuous from (0,+∞) to L2(Ω).
Setting α′ = δ = δ′ = 0 in Proposition 2.9, yields
Lemma 2.11. Let α ≥ 0 be given. Let u0 be a solution of (P). Then it holds

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 ≤ α (u0, u0 − uα). (2.5)

3. Error estimates. In this section, we will develop the a-priori convergence
result. Let some measurement zδ be given with measurement error δ > 0, ‖z−zδ‖Y ≤
δ, where z corresponds to exact measurement. Here, z is unknown to us, only zδ is
accessible. In order to approximate a solution u0 of (P), we solve the regularized
problem (Pα,δ) for (α, δ)→ 0.
Throughout this section we assume that a solution u0 of (P) exists. We will estimate
the error as

‖uα,δ − u0‖L2 ≤ ‖uα,δ − uα‖L2 + ‖uα − u0‖L2 ,

i.e., we will separate the noise error and the regularization error.

3.1. Estimate of the noise error. At first, let us estimate the error ‖uα −
uα,δ‖L2 , arising due to the measurement error or noise level δ.
Theorem 3.1. Let α > 0 be given. Then for the solution with noise level δ > 0 we
obtain the estimates

‖uα − uα,δ‖L2 ≤ δ

2
√
α
, and ‖yα − yα,δ‖Y ≤ δ.

Proof. Proposition 2.9 with δ′ = 0 and α = α′ gives

‖yα − yα,δ‖2Y + α ‖uα − uα,δ‖2L2 ≤ (zδ − z, yα − yα,δ)Y
≤ δ ‖yα − yα,δ‖Y

The assertion of the theorem follows immediately by Young’s inequality.

3.2. Regularity assumption. Let us now state our regularity assumption,
which will us allow later to prove convergence rates for α→ 0.

Assumption 3.2. Let u0 be a solution of (P). Let us assume that there exist a set
I ⊂ Ω, a function w ∈ Y , and positive constants κ, c such that it holds:

1. (source condition) I ⊃ {x ∈ Ω : |p0(x)| = β} and

χI u0 = χI PUad (S?w) .
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2. (structure of active set) A = Ω \ I and for all ε > 0

meas
(
{x ∈ A : 0 <

∣∣|p0(x)| − β
∣∣ < ε}

)
≤ c εκ, (3.1)

with the convention that κ := +∞ if the left-hand side of (3.1) is 0 for some
ε > 0.

The set I contains the set {x ∈ Ω : |p0(x)| = β}, which is the set of points, where
u0(x) cannot be uniquely determined from p0(x), compare (2.4). On this set, we
assume that u0 fulfills a local source condition. The set A contains the points, where
the inequality constraints are active, since it holds by construction that |p0(x)| 6= β
on A, which implies u0(x) ∈ {ua(x), 0, ub(x)}, cf. (2.4) and Lemma 3.4 below.
Let us comment on the relation of Assumption 3.2 to other conditions in the literature.
The classical source condition for linear inverse problems reads u0 = S?w. In [3],
this was slightly adapted to inequality constrained problems. There the condition
u0 = PUad (S?w) was employed. For the choice I = Ω, A = ∅, this condition is
a special case of Assumption 3.2, see also Corollary 3.11 below. The authors used
in [8] an approach different to source conditions. The condition investigated there
corresponds to the case I = ∅, A = Ω, κ = 1 of Assumption 3.2. This condition was
also employed in [2, 4] in a different context.
Remark 3.3. We will show in Theorem 3.14, that if some u0 ∈ U0 (together with
p0 = S?(zδ − Su0)) fulfills Assumption 3.2, the sequence of regularized solutions uα
will converge towards u0. This implies, that at most one u0 ∈ U0 can satisfy Assump-
tion 3.2. In view of Lemmata 2.6 and 2.7 this has to be the solution with the minimal
L2-norm in U0.
Under Assumption 3.2, we will derive a boundedness result for u0 on the active set
A.
Lemma 3.4. Let Assumption 3.2 be satisfied. Then it holds |p0(x)| 6= β on A and

ua(x) > −∞ a.e. on {x ∈ Ω : p0(x) < −β}
ub(x) < +∞ a.e. on {x ∈ Ω : p0(x) > β}

Moreover, for almost all x ∈ A we have u0(x) ∈ {ua(x), 0, ub(x)}, hence u0|A ∈
L∞(A).
Proof. By definition of A, we have that |p0(x)| 6= β. Hence, the characterization of
u0 in (2.4) gives u0(x) ∈ {ua(x), 0, ub(x)}. Moreover, this implies that ua is finite on
the set {x : p0(x) < −β}, i.e., ua has a representative that is bounded from below on
this set. The same argumentation applies to the set {x : p0(x) > β}, which proves
u0|A ∈ L∞(A).
Remark 3.5. Following [2, Lemma 3.2], one can prove that for p0 ∈ C1(Ω̄) satisfying

∇p0(x) 6= 0 for all x ∈ Ω̄ with |p0(x)| = β

Assumption 3.2 is fulfilled with A = Ω and κ = 1. Under these conditions, a-priori
discretization error estimates for the variational discretization of a distributed optimal
control for an elliptic equation were proven in [2]. This is remarkable since classical
error estimates contain negative powers of α and thus are not applicable to the case
α = 0.
Remark 3.6. Let us consider an one-dimensional example with Ω = (0, 1). First, let
the function p0 be given by p0(x) = β+xs, with some power s > 0. Then the measure
of the set {|p0| = β} is zero, and Assumption 3.2 is fulfilled with A = Ω and κ = 1/s.
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Second, let the function p0 be defined as

p0(x) = β +

{
0 if x ≤ 1/2
(x− 1/2)s if x > 1/2

with s > 0. If s is integer then p0 belongs to Cs(Ω̄). In order that Assumption 3.2 can
be fulfilled, the sets I and A must be chosen such that I ⊃ (0, 1/2) and A ⊂ (1/2, 1).
If A = (1/2, 1) is chosen then it follows that κ = 1/s.
Remark 3.7. Let us comment on situations, where the special case κ = +∞ in
Assumption 3.2.2 occurs. If Ω is connected, p0 is not continuous and bounded away
from zero then Assumption 3.2 is fulfilled with κ = +∞, e.g. Ω = (−1, 1), p0(x) =
sign(x). If p0 is a continuous function but Ω is not connected, then one can construct
an analogous example allowing to set κ = +∞.

3.3. Estimate of the regularization error. Now let us start with the conver-
gence analysis of the regularization error uα− u0. Invoking the source condition part
of Assumption 3.2, we have
Lemma 3.8. Let Assumption 3.2.1 (source condition) be satisfied. Then there is a
constant c > 0 independent of α such that

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 + ‖p0 − pα‖2L∞ ≤ c α {α+ meas(Aα)} ,

where meas(Aα) is the Lebesgue-measure of the set Aα ⊂ A, where Aα is given by

Aα = {x ∈ A : uα(x) 6= u0(x)}. (3.2)

Proof. Due to the properties of the projection, we have from the source condition in
Assumption 3.2

(χI(u0 − S?w), u− u0) ≥ 0 ∀u ∈ Uad,

which implies

(χIu0, u0 − uα) ≤ (χIS∗w, u0 − uα).

Using this in inequality (2.5), we can estimate

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 ≤ α (u0, u0 − uα)
≤ α {(χIS?w, u0 − uα) + (χAu0, u0 − uα)} .

Writing SχI(u0 − uα) = S((1− χA)(u0 − uα)) = y0 − yα − SχA(u0 − uα) we find

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 ≤ α {(S?w,χI(u0 − uα)) + (χAu0, u0 − uα)}
= α {(w, y0 − yα)− (S?w,χA(u0 − uα)) + (u0, χA(u0 − uα))} .

On the set A, we have |p0| 6= β, which by Lemma 3.4 implies that u0 ∈ L∞(A). This
enables us to estimate

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 ≤ c α
{
‖y0 − yα‖Y + ‖u0 − uα‖L1(A)

}
10



with a constant c > 0 depending on ‖w‖Y , ‖S?w‖L∞(A), and ‖u0‖L∞(A) but indepen-
dent of α. Since meas(Aα) is finite, we have

‖u0 − uα‖L1(A) ≤ meas(Aα)1/2‖u0 − uα‖L2 , (3.3)

which gives

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 ≤ c α
{
‖y0 − yα‖Y + meas(Aα)1/2‖u0 − uα‖L2

}
.

Applying Young’s inequality and continuity of S? : Y 7→ L∞(Ω) finishes the proof for
I 6= ∅.
If the set I, on which the source condition should hold, is empty, we can strengthen
the result of the Lemma. This will allow us later to prove improved convergence rates
in this case.
Corollary 3.9. Let Assumption 3.2 be satisfied with A = Ω. Then there is a
constant c > 0 independent of α, such that

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 + ‖p0 − pα‖2L∞ ≤ c α meas(Aα)

with Aα as in (3.2).
Proof. Using (2.5), the boundedness of ‖u0‖L∞ and Young’s inequality, we obtain

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 ≤ α (u0, u0 − uα)

≤ c α meas(Aα)1/2‖u0 − uα‖L2

≤ c α meas(Aα) +
α

2
‖u0 − uα‖2L2 .

With these results we can prove a first basic estimate of the regularization error in
states and adjoints.
Corollary 3.10. Let Assumption 3.2.1 (source condition) be satisfied. Then there
is a constant c > 0 independent of α, such that

‖y0 − yα‖Y + ‖p0 − pα‖L∞ ≤ c α1/2.

Proof. The claim follows directly from Lemma 3.8, since by Corollary 2.8, the L1(Ω)-
norms of uα are uniformly bounded with respect to α ≥ 0.
If we assume a source condition on the whole domain Ω, i.e., I = Ω, as for example
in [3], one can prove rates as a consequence of Lemma 3.8, since Aα ⊂ A = ∅.
Corollary 3.11. Let Assumption 3.2 with I = Ω be satisfied, that is, we assume
that there is w ∈ Y , such that u0 = PUad(S?w). Then

‖y0 − yα‖Y ≤ α ‖w‖Y ,

‖u0 − uα‖L2 ≤
√
α

2
‖w‖Y

for all α ≥ 0.
Now we will make use of the structural assumption on the active set in Assumption 3.2.
Lemma 3.12. Let Assumption 3.2.2 (structure of the active set) be satisfied with
κ <∞ and A = Ω \ I having positive measure.
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Then there exists a constant c > 0, such that

meas(Aα) ≤ c (ακ + ‖p0 − pα‖κL∞)

for all α > 0.
Proof. Let us divide A in disjoint sets depending on the values of p0 and pα, see also
Table 3.1 below,

A1 := {x ∈ A : β or − β lies between p0 and pα}
A2 := {x ∈ A : p0, pα ≤ −β and pα ≥ −β + αua}
A3 := {x ∈ A : p0, pα ≥ +β and pα ≤ β + αub}.

(3.4)

p0 < −β |p0| < β p0 > β

pα ≤ −β + αua u0 = uα = ua A1 A1

pα ∈ (−β + αua,−β] A2 A1 A1

|pα| < β A1 u0 = uα = 0 A1

pα ∈ [β, β + αub) A1 A1 A3

pα ≥ β + αub A1 A1 u0 = uα = ub
Table 3.1

Partition of A, used in Proof of Lemma 3.12

Let us recall the definition of Aα = {x ∈ Ω : uα(x) 6= u0(x)} as given in (2.5). Then
it follows that it holds Aα = A1 ∪ A2 ∪ A3: In fact, on A \ (A1 ∪ A2 ∪ A3) we have
u0 = uα due to the necessary optimality condition Theorem 2.3, confer Table 3.1.
Let us now derive bounds of the measures of the sets A1, A2 and A3. Here, we
will develop upper bounds of

∣∣|p0| − β
∣∣ to apply Assumption 3.2. On A1 we find∣∣|p0| − β

∣∣ ≤ ∣∣p0 − pα|.
On A2 we have that p0 < −β, and hence by Lemma 3.4 we obtain ua > −∞, i.e.,
A2 ⊂ Ωa. Additionally, it holds αua < pα + β ≤ 0 on A2. Hence, we can estimate on
A2 ∣∣|p0| − β

∣∣ = |p0 + β| ≤ |p0 − pα|+ |pα + β| ≤ |p0 − pα|+ α|ua|.

Analogously we get that
∣∣|p0| − β

∣∣ ≤ |p0 − pα| + αub holds on A3. Consequently, it
holds

0 <
∣∣|p0| − β

∣∣ ≤ max(‖ua‖L∞(Ωa), ‖ub‖L∞(Ωb))α+ |p0 − pα| ≤ c α+ ‖p0 − pα‖L∞

a.e. on Aα. Applying Assumption 3.2 we can bound the measure of Aα and obtain
meas(Aα) ≤ c (α+ ‖p0 − pα‖L∞)κ.
Let us prove the corresponding result for the special case κ = +∞.
Corollary 3.13. Let Assumption 3.2 be satisfied with κ = +∞ and A = Ω \ I
having positive measure. Then there exists a number α∞, such that

meas(Aα) = 0

for all α < α∞.
Proof. As in the proof of the previous Lemma we obtain

meas(Aα) ≤ c (α+ ‖p0 − pα‖L∞)κ
′
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for all κ′ > 0. By Corollary 3.10, there exists α∞, such that the term α+‖p0−pα‖L∞
is smaller than one for all α ∈ (0, α∞). Since κ′ can be chosen arbitrarily large, this
proves that meas(Aα) = 0 for all α ∈ (0, α∞).
With these results we can prove our convergence result.
Theorem 3.14. Let Assumption 3.2 be satisfied.
Let d be defined as

d =


1

2−κ if κ ≤ 1,
1 if κ > 1 and A 6= Ω,
κ+1

2 if κ > 1 and A = Ω.

Then for every αmax > 0 there exists a constant c > 0, such that

‖y0 − yα‖Y ≤ c αd

‖p0 − pα‖L∞ ≤ c αd

‖u0 − uα‖L2 ≤ c αd−1/2

holds for all α ∈ (0, αmax]. If κ <∞ then we have in addition

‖u0 − uα‖L1(A) ≤ c αd−1/2+κ d/2

for all α ∈ (0, αmax].
If κ =∞ there is a constant α∞ > 0, such that

u0 = uα a.e. on A

holds for all α ∈ (0, α∞).
Proof. The case I = Ω, A = ∅ with the convention κ = +∞ is proven in Corollary 3.11,
which yields the claimed estimates for d = 1.
Let us assume now that A has positive measure. By Lemma 3.8, we have

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 + ‖p0 − pα‖2L∞ ≤ c α {α+ meas(Aα)} .

If on one hand κ = ∞, the claim follows from Corollary 3.13 and (3.3). If on the
other hand κ is finite, then according to Lemma 3.12, we can bound the measure of
Aα and obtain

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 + ‖p0 − pα‖2L∞ ≤ c α {α+ ακ + ‖p0 − pα‖κL∞} .

Let us consider the case κ < 2. Then by Young’s inequality

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 + ‖p0 − pα‖2L∞ ≤ c
{
α2 + ακ+1 + α

2
2−κ

}
.

Since

min{2, 1 + κ, 2/(2− κ)} =

{
2/(2− κ) if 0 ≤ κ ≤ 1
2 if 1 ≤ κ ≤ 2.

this proves the claim for κ < 2.
If κ ≥ 2, then we find using Corollary 3.10

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 + ‖p0 − pα‖2L∞ ≤ c α
{
α+ ακ + ακ/2

}
,
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which proves the claimed convergence rates of ‖y0 − yα‖Y , ‖u0 − uα‖L2 , and ‖p0 −
pα‖L∞ . The convergence result for ‖u0−uα‖L1(A) follows now from (3.3), Lemma 3.12,
and Corollary 3.13.
If A = Ω and κ ≥ 1 hold, we have from Corollary 3.9 and Lemma 3.12

‖y0 − yα‖2Y + α ‖u0 − uα‖2L2 + ‖p0 − pα‖2L∞ ≤ c α meas(Aα)
≤ c α (ακ + ‖p0 − pα‖κL∞).

We already proved ‖p0 − pα‖L∞ ≤ c α. Using this in the above inequality gives the
claim with d = κ+1

2 .

Example 3.15. Let us discuss Assumption 3.2 and the resulting convergence rates
for the simple settings discussed in Remark 3.6 for Ω = (0, 1).
If p0 is given by p0(x) = xs, s > 0, then Assumption 3.2 is fulfilled with A = Ω and
κ = 1/s. Then with σ given by

σ =

{
1
2s if s < 1.

1
2(2s−1) if s ≥ 1,

Theorem 3.14 yields the convergence rate ‖u0 − uα‖L2 ≤ c ασ. Here, we see that with
increasing smoothness of p0 the convergence rate tends to zero.
For the second example, we take the function p0 be defined as

p0(x) = β +

{
0 if x ≤ 1/2
(x− 1/2)s if x > 1/2

with s > 0. Let us set I = (0, 1/2), A = [1/2, 1). Suppose that the source condition
Assumption 3.2.1 is fulfilled. Then we can expect the convergence rates

‖u0 − uα‖L2 ≤ c αmin( 1
2 ,

1
2(2s−1) ).

Again, the convergence rate degenerates with increasing smoothness of p0.

3.4. Power-type source condition. The aim of this section is to choose a
weaker source condition. We replace Assumption 3.2.1 with
Assumption 3.16. Let u0 be a solution of (P). Let us assume that there exists a
function w̃ ∈ L2(Ω), and a positive constant ν ∈ (0, 1), such that

χI u0 = χI PUad

(
(S?S)ν/2w̃

)
holds.
Let us prove an analogous result to Theorem 3.14. We will outline the main steps.
First, we use [5, Theorem 1] to turn the power-type source condition into an approx-
imate source condition. This implies the existence of K > 0, such that for all R > 0
there exists w ∈ Y , v ∈ L2(Ω) with

‖w‖Y ≤ R, ‖v‖L2 ≤ KR
ν
ν−1 , χI u0 = χI PUad (S?w + v) .

Proceeding as in Lemma 3.8, we obtain

‖y0−yα‖2Y +α ‖u0−uα‖2L2 +‖p0−pα‖2L∞ ≤ c
(
α2R2 +αR

2 ν
ν−1 +α (R+c)2 meas(Aα)

)
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for all R > 0. By Lemma 3.12, we conclude

‖p0 − pα‖2L∞ ≤ c
(
α2R2 + αR

2 ν
ν−1 + α (R+ c)2 (ακ + ‖p0 − pα‖κL∞)

)
.

Now we use the approach R = αγ , with γ < 0. This yields the rate

‖p0 − pα‖2L∞ ≤ c
(
α2+2 γ + α1+γ 2 ν

ν−1 + α1+2 γ ‖p0 − pα‖κL∞
)
. (3.5)

In case κ ≥ 2, (3.5) with γ = ν−1
2 and Corollary 3.10 implies

‖p0 − pα‖L∞ ≤ c α
1+ν
2 .

In case κ < 2 we use Young’s inequality in (3.5) and obtain

‖p0 − pα‖2L∞ ≤ c
(
α2+2 γ + α1+γ 2 ν

ν−1 + α
2 (1+2 γ)

2−κ
)
.

In case κ (1 + ν) ≤ 2, using γ = κ (ν−1)
2 (2−ν κ) , this yields

‖p0 − pα‖L∞ ≤ c α
1

2−ν κ ,

whereas in case κ (1 + ν) > 2, using γ = ν−1
2 , this yields

‖p0 − pα‖L∞ ≤ c α
1+ν
2 .

Theorem 3.17. Let Assumptions 3.2.2 and 3.16 be satisfied. Let d be defined as

d =

{
1

2−κ ν if κ (1 + ν) ≤ 2
(1 + ν)/2 if κ (1 + ν) > 2.

Then, for all αmax > 0, there is a constant c > 0, such that

‖y0 − yα‖Y ≤ c αd

‖p0 − pα‖L∞ ≤ c αd

‖u0 − uα‖L2 ≤ c αd−1/2

holds for all α ∈ (0, αmax].
We briefly comment on the case I = Ω (in particular κ = +∞ in Assumption 3.2.2)
and ν < 1, i.e., a power-type source condition on Ω is satisfied. According to the
arguments given above, our technique resembles the standard rate ‖u0 − uα‖L2 ≤
c αν/2, which is known from the literature for linear-quadratic objectives.

3.5. A-priori parameter choice. We will now combine the error estimates
with respect to noise level and regularization. This will give an a-priori choice α = α(δ)
with best possible convergence order.
Theorem 3.18. Let Assumption 3.2 be satisfied.
Let us choose α := α(δ) = δ1/d with d as in Theorem 3.14. Then for every δmax > 0
there is a positive constant c = c(δmax) independent of δ, such that

‖yδα − y0‖Y ≤ c δ, and ‖uδα − u0‖L2 ≤ c δs
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holds for all δ ∈ (0, δmax) with s defined by

s = 1− 1
2 d

=


κ
2 if κ ≤ 1,
1
2 if κ > 1 and A 6= Ω,
κ
κ+1 if κ > 1 and A = Ω.

A similar result can be derived for the power-type source condition Assumption 3.16
as employed in the previous section.
Let us remark that such an a-priori choice of α is barely possible in practice, as the
constants κ and ν appearing in Assumptions 3.2 and 3.16 are not known a-priori,
as they depend heavily on the unknown solution of the unregularized problem and
the possibly unaccessible noise-less data. Nevertheless, such an a-priori convergence
result can be used as benchmark to compare the convergence order of a-posteriori
parameter choices.

3.6. Additional results for the special case A = Ω. If Assumption 3.2 holds
with A = Ω, one can obtain additional results regarding stability of solutions. At
first, we show a superlinear growth rate of the functional J0 with respect to the
L1(Ω)-norm. A related result can be found in [4, Theorem 3.4] corresponding to the
case κ = 1.
Theorem 3.19. Let us suppose that Assumption 3.2 is fulfilled with A = Ω. Then
there exists a constant c > 0 such that for all u ∈ Uad ∩ L∞(Ω) with y := Su it holds

J0(y, u)− J0(y0, u0) ≥ 1
2
‖y − y0‖2Y + c

‖u− u0‖
1+ 1

κ

L1

‖u− u0‖
1
κ

L∞

.

Proof. Using the relation p0 = S?(z − y0) we can rewrite

J0(y, u)− J0(y0, u0) =
1
2
‖y − y0‖2Y + (−p0, u− u0) + β (‖u‖L1 − ‖u0‖L1). (3.6)

Let us define the set B by

B := {x ∈ Ω : u0(x) = 0}.

Let λ0 ∈ ∂‖u0‖L1 be given by the optimality condition (2.1). Then it holds

β (‖u‖L1 − ‖u0‖L1) ≥
∫

Ω\B
β λ0 (u− u0) + β ‖u− u0‖L1(B)

since u0 = 0 on B.
Let ε > 0 be given. Let us define Bε := {x ∈ Ω \B : |p0(x)| ≥ β + ε}. Then it holds∫

Ω\B
(β λ0 − p0) (u− u0) =

∫
Bε

(β λ0 − p0) (u− u0) +
∫

Ω\(B∪Bε)
(β λ0 − p0) (u− u0)

≥ ε ‖u− u0‖L1(Bε) − ε ‖u− u0‖L1(Ω\(B∪Bε)),

where we used that λ0 = sign(u0) on Ω \ B, and (β λ0 − p0) (u − u0) ≥ 0 by (2.1).
Using Assumption 3.2 to estimate the measure of the set Ω\(B∪Bε) we proceed with

ε ‖u− u0‖L1(Bε) − ε ‖u− u0‖L1(Ω\(B∪Bε)

≥ ε ‖u− u0‖L1(Ω\B) − 2 ε ‖u− u0‖L1(Ω\(B∪Bε))

≥ ε ‖u− u0‖L1(Ω\B) − 2 ε ‖u− u0‖L∞ meas(Ω \ (B ∪Bε))
≥ ε ‖u− u0‖L1(Ω\B) − c εκ+1‖u− u0‖L∞ ,
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where c is a constant c ≥ 1. Setting ε := c−2/κ‖u− u0‖1/κL1 ‖u− u0‖−1/κ
L∞ yields∫

Ω\B
(βλ0 − p0) (u− u0) ≥ c

‖u− u0‖
1+ 1

κ

L1(Ω\B)

‖u− u0‖
1
κ

L∞

. (3.7)

It remains to estimate
∫
B
−p0 (u− u0) + β‖u− u0‖L1(B). Since u0 = 0 on B, we have∫

B

−p0 (u− u0) + β‖u− u0‖L1(B) =
∫
B

(β sign(u)− p0)u.

Defining B̃ε := {x ∈ B : |p0(x)| ≤ β − ε}, we can estimate∫
B

(β sign(u)− p0)u ≥
∫
B̃ε

ε |u| ≥ ε ‖u‖L1(B) − ε ‖u‖L1(B\B̃ε).

Again the measure of B \ B̃ε can be bounded proportionally to εκ, which gives with
similar arguments as above∫

B

−p0(u− u0) + β‖u− u0‖L1(B) ≥ c
‖u− u0‖

1+ 1
κ

L1(B)

‖u− u0‖
1
κ

L∞

. (3.8)

Combining (3.6), (3.7), and (3.8) gives the claim.
As one can see in the proof, this result cannot be strengthened if one assumes that β is
positive. There is also a connection to sufficient optimality conditions of second-order
that take strongly active constraints into account. There, the strongly active sets are
used to obtain a certain growth of the objective with respect to the L1-norm.
Using the previous result on the growth of the functional, one can also prove a stability
result for the controls. From Theorem 3.1 we can deduce |J0(yδ0, u

δ
0)−J0(y0, u0)| ≤ c δ

in the case β = 0. This would give together with the previous theorem the estimate
‖uδ0 − u0‖L1 ≤ c δ

κ
κ+1 . We will however derive a slightly stronger result by a direct

proof.
Theorem 3.20. Let control constraints be prescribed everywhere on Ω, i.e. Ωa =
Ωb = Ω. Let us suppose that Assumption 3.2 is fulfilled with A = Ω. Then there
exists a constant c > 0 independent of δ such that

‖u0 − uδ0‖L1 ≤ c δκ,
‖u0 − uδ0‖L2 ≤ c δ κ2 .

Proof. Let us define the following subset of Ω

Aδ0 := {x ∈ Ω : u0 6= uδ0}.

By Theorem 3.1, we have ‖p0 − pδ0‖L∞ ≤ c δ. On the set {x ∈ Ω :
∣∣|p0(x)| − β

∣∣ >
‖p0−pδ0‖L∞} we have that p0−β and pδ0−β as well as p0 +β and pδ0 +β have the same
signs, which implies that on this set u0 = uδ0 holds. Hence, we obtain the inclusion

Aδ0 = {x ∈ Ω : u0 6= uδ0} ⊂
{
x ∈ Ω :

∣∣|p0(x)| − β
∣∣ ≤ ‖p0 − pδ0‖L∞

}
,

and the measure of this set can be bounded by ‖p0 − pδ0‖κL∞ due to Assumption 3.2.
This implies

‖u0 − uδ0‖L2 ≤ ‖u0 − uδ0‖L∞ meas(Aδ0)

≤ c ‖p0 − pδ0‖κL∞
≤ c δκ.
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The estimate ‖u0 − uδ0‖L2 ≤ ‖u0 − uδ0‖
1/2
L∞‖u0 − uδ0‖

1/2
L∞ together with the fact that

u0, u
δ
0 are bounded uniformly in L∞(Ω) due to the control constraints yields the claim.

4. A parameter choice rule. An important issue in regularization methods
is the choice of the regularization parameter in dependence of the noise level or dis-
cretization. Several principles are known in the context of inverse problems, see [3],
with the Morozov discrepancy principle [6] being one of the most important ones.
There the parameter α is defined as a function of δ as

α(δ) := sup{α > 0 : ‖Suδα − zδ‖Y ≤ τδ}

with a given constant τ > 1. That is, the parameter is chosen such that the residuum
in the ill-posed equation Su = z is below a certain threshold that is proportional
to δ. A direct application of this principle to the regularization of our optimization
problem is not possible since the residual Su0 − z is in general non-zero.
Using the inequality ‖Suδα − zδ‖Y ≤ ‖S(uα − u0)‖Y + δ, we can replace the residual
Suδα − zδ by the error in the states S(uα − u0): choosing α according to

α̂(δ) = sup{α > 0 : ‖S(uδα − u0)‖Y ≤ (τ − 1)δ}

gives α̂(δ) ≤ α(δ). While there is no sensible upper bound available of ‖Suδα − zδ‖Y
in the context of our optimization problem, we can derive an upper bound of ‖S(uδα−
u0)‖Y that can be computed explicitly without the knowledge of u0.
Throughout this section we require that control constraints are prescribed everywhere
on Ω, i.e., Ωa = Ωb = Ω. In order to simplify the exposition of the results, we set the
parameter β = 0 in the sequel.
Lemma 4.1. It holds

1
4
‖yδα − y0‖2Y ≤

∫
{pδα>0}

pδα (ub − uδα) +
∫
{pδα<0}

pδα (ua − uδα) + ‖z − zδ‖2Y .

Proof. By optimality of (y0, u0) we have

0 ≤ J0(yδα, u
δ
α)− J0(y0, u0)

=
1
2
‖yδα − z‖2Y −

1
2
‖y0 − z‖2Y + (S(u0 − uδα)− (y0 − yδα), zδ − yδα)Y

= −(yδα − z, y0 − yδα)− 1
2
‖y0 − yδα‖2Y − (y0 − yδα, zδ − yδα)Y + (u0 − uδα, pδα)L2

= −1
2
‖y0 − yδα‖2Y + (u0 − uδα, pδα)L2 − (zδ − z, y0 − yδα)Y ,

where we did a Taylor expansion of J0 at yδα. It remains to derive an upper bound for
(u0 − uδα, pδα)L2 , in order to eliminate the unknown u0 from the final estimate. We
can bound the integral by bounding u0 by the control bounds in dependence of the
sign of pδα:

(u0 − uδα, pδα)L2 ≤
∫
{pδα>0}

pδα (ub − uδα) +
∫
{pδα<0}

pδα (ua − uδα).

Applying Young’s inequality to the term −(zδ − z, y0 − yδα)Y gives the claim.
18



This result motivates the following definition of the regularization parameter in de-
pendence of δ:

α(δ) := sup

{
α > 0 :

∫
{pδα>0}

pδα (ub − uδα) +
∫
{pδα<0}

pδα (ua − uδα) ≤ 1
2
τ2δ2

}
(4.1)

Here, the constant τ > 0 can be chosen arbitrary. By convention, we set α(δ) = 0 if
the set on the right hand side in (4.1) is empty.
The construction of α(δ) is tailored to the case that u0 is at the bounds everywhere
in Ω. This can be seen in the proof of Lemma 4.1 above, where we replaced u0 by
ua and ub. Hence, the results that follow rely on the fulfillment of Assumption 3.2
with A = Ω. That is, we assume that u0 is everywhere at the bounds. It is an open
problem, to extend these considerations to the general case I 6= ∅, A 6= Ω.
As it will turn out later, we have α(δ) > 0 under Assumption 3.2. At first let us prove
that α(δ) < +∞ for sufficiently small δ.
Lemma 4.2. Let us assume that S?z 6= 0. Suppose further that there is a number
σ > 0 such that ub(x) > σ and −σ > ua(x) a.e. on Ω.
Then for δ sufficiently small, we have α(δ) < +∞.
Proof. Since û ≡ 0 is admissible, we have for α → ∞ that uδα → 0 in L2(Ω), and
hence yδα → 0 in Y , and pδα → S?zδ in L∞(Ω). This implies

−
∫
{pδα>0}

pδα u
δ
α −

∫
{pδα<0}

pδα u
δ
α = −

∫
Ω

pδα u
δ
α → 0

Due to the assumption it holds∫
{pδα>0}

pδα ub +
∫
{pδα<0}

pδα ua ≥ σ‖pδα‖L1 .

Hence we have

lim
α→∞

∫
{pδα>0}

pδα (ub − uδα) +
∫
{pδα<0}

pδα (ua − uδα) ≥ σ‖S?zδ‖L1

≥ σ
(
‖S?z‖L1 −meas(Ω)‖S?‖L(Y,L∞) δ

)
.

If δ satisfies

δ ≥ min
(

‖S?z‖L1

2 meas(Ω)‖S?‖L(Y,L∞)
,

(σ‖S?z‖L1)1/2

τ

)
the term

∫
{pδα>0} p

δ
α (ub − uδα) +

∫
{pδα<0} p

δ
α (ua − uδα) is larger than 1

2τ
2δ2 for large α.

Consequently α(δ) < +∞ for these small δ.
Second, we prove α(δ) > 0 under our regularity assumption. In order to get this
lower bound on α(δ) we prove an upper bound of the quantity

∫
{pδα>0} p

δ
α (ub− uδα) +∫

{pδα<0} p
δ
α (ua − uδα) first.

Lemma 4.3. Let us suppose Assumption 3.2 is satisfied with A = Ω and κ < ∞.
Then it holds

0 ≤
∫
{pδα>0}

pδα (ub − uδα) +
∫
{pδα<0}

pδα (ua − uδα) ≤ c α (‖pδα − p0‖κL∞ + ακ) (4.2)
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with a constant c > 0 independent of α, δ.
Proof. The non-negativity of the integrals follows from uδα ∈ Uad, i.e., ua ≤ uδα ≤ ub
a.e. in Ω.
By the optimality conditions for the regularized problem, cf. Theorem 2.3 and in-
equality (2.2), it holds

pδα(x)
(
u(x)− uδα(x)

)
≤ αuδα(x)

(
u(x)− uδα(x)

)
f.a.a. x ∈ Ω and for all u ∈ Uad.

Let us first consider the integral over the set {pδα > 0}. Here, we distinguish subsets
according to the sign of p0. By Assumption 3.2, we have that the set {p0 = 0} has
zero measure. On the set {p0 > 0} we have u0 = ub, whereas it holds u0 = ua on
{p0 < 0}. Hence we have∫

{pδα>0, p0>0}
pδα (ub − uδα) ≤

∫
{pδα>0, p0>0, u0 6=uδα}

αuδα (u0 − uδα).

Analogously to Lemma 3.12, we obtain

meas({u0 6= uδα}) ≤ c(‖pδα − p0‖κL∞ + ακ).

This implies the estimate∫
{pδα>0, p0>0}

pδα (ub − uδα) ≤ α meas({u0 6= uδα}) ‖uδα‖L∞‖ ‖uδα − u0‖L∞

≤ c α (‖pδα − p0‖κL∞ + ακ).

In addition we have with ε > 0∫
{pδα>0, p0<0}

pδα (ub − uδα) ≤
∫
{pδα>0, p0<0}

αuδα (ub − uδα)

≤
∫
{pδα>0, p0≤−ε}

αuδα (ub − uδα) +
∫
{pδα>0,−ε<p0<0}

αuδα (ub − uδα).

Let us estimate the measure of both integration regions. By Chebyshev’s inequality
it holds for all q ≥ 1

meas({pδα > 0, p0 ≤ −ε}) ≤ meas({|pδα − p0| > ε}) ≤
‖pδα − p0‖qLq

εq
.

By Assumption 3.2.2 we have

meas({−ε < p0 < 0}) ≤ c εκ.

With ε := ‖pδα − p0‖
q
κ+q
Lq we obtain∣∣∣∣∣
∫
{pδα>0, p0<0}

pδα (ub − uδα)

∣∣∣∣∣ ≤ c α ‖pδα − p0‖
κq
κ+q
Lq ,

where the constant c is in particular independent of q. Hence we obtain for q →∞∣∣∣∣∣
∫
{pδα>0, p0<0}

pδα (ub − uδα)

∣∣∣∣∣ ≤ c α ‖pδα − p0‖κL∞ .
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With similar arguments we find the upper bound for the second integral in (4.2).
A close inspection of the proof yields that the constant c in (4.2) depends only on
‖ua‖L∞ , ‖ub‖L∞ , and the constant of Assumption 3.2.2 appearing in (3.1).
Let us remark that the result of this Lemma is not true if Assumption 3.2 is fulfilled
with A 6= Ω, that is if a non-trivial subset I ⊂ Ω exists, where p0 is zero, and u0 is
not at the bounds.
With the help of the previous Lemma 4.3, we can prove that α(δ) is positive.
Corollary 4.4. Let us suppose Assumption 3.2 is satisfied with A = Ω and κ <∞.
Then α(δ) > 0.
Proof. Since control constraints are given everywhere on Ω, uδα and hence pδα are
uniformly bounded in L∞(Ω). Then the right-hand side of (4.2) tends to zero for
α→ 0, which implies that for sufficiently small α, this quantity is smaller than 1

2τ
2δ2.

Therefore, the supremum in (4.1) is positive.
This proves that α(δ) is well-defined and not trivial under certain conditions. Now
let us turn to the convergence analysis of the regularization scheme for δ → 0. Here,
one has to ensure that the convergence α(δ) → 0 is not too fast, which would result
in a non-optimal convergence order.
Let us first prove the optimal convergence order for the states and adjoints.
Lemma 4.5. Let δ > 0 and α(δ) be given from (4.1). Then there is c > 0 independent
of δ such that

‖yα(δ) − y0‖Y + ‖yδα(δ) − y0‖Y ≤ c δ.

Proof. Let α := α(δ). Then by Lemma 4.1 and (4.1)

1
4
‖yδα − y0‖2Y ≤

1
2
τ2δ2 + δ2,

which gives ‖yδα − y0‖Y ≤ 2
√

1 + τ2/2 δ. By Proposition 2.9 we obtain

‖yα − y0‖Y ≤ ‖yδα − yα‖Y + ‖yδα − y0‖Y ≤ (1 + 2
√

1 + τ2/2) δ.

The next step is to establish a lower bound on α(δ).
Lemma 4.6. Let δ > 0 be given. Let α(δ) satisfy 0 < α(δ) <∞.
Let us suppose that Assumption 3.2 is satisfied with A = Ω.
If κ ≤ 1 and α(δ) ≤ 1 then there exists a constant c independent of δ such that

δ2

α(δ)
≤ c δκ.

If 1 ≤ κ <∞ then for each δmax > 0 there exists a constant c = c(δmax) independent
of δ such that if δ < δmax

δ2

α(δ)
≤ c δ

2κ
κ+1 .

Proof. Let us consider the regularized problem with regularization parameter α :=
2α(δ) > α(δ). Since α > α(δ) it holds

1
2
τ2δ2 ≤

∫
{pδα>0}

pδα (ub − uδα) +
∫
{pδα<0}

pδα (ua − uδα).
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By Lemma 4.3, we have

δ2 ≤ c α
(
‖pδα − p0‖κL∞ + ακ

)
.

Let us first investigate the case κ ≤ 1. Using the results of Theorems 3.1 and 3.14 on
a-priori regularization error estimates we obtain

δ2 ≤ c α
(
δκ + α

κ
2−κ + ακ

)
≤ 1

2
δ2 + c

(
α

2
2−κ + ακ+1

)
. (4.3)

Here we used again Young’s inequality. Hence, we get

δ2 ≤ c
(
α

2
2−κ + ακ+1

)
= c α

2
2−κ

(
1 + α

κ(1−κ)
2−κ

)
.

Since α(δ) ≤ 1 implies α ≤ 2, the term in brackets on the right-hand side is bounded
uniformly with respect to α, and we obtain

δ2−κ ≤ c α,

which is equivalent to

δ2

α
≤ c δκ,

where the constant c is independent of δ.
In the case κ > 1 we have to replace (4.3) according to Theorem 3.14 by δ2 ≤
c α (δκ + ακ). Let δmax > 0 be given. Applying Young’s inequality we get with
c = c(δmax)

δ2 ≤ 1
2δκ−1

max
δκ+1 + c ακ+1,

which is equivalent to

δ2

(
1− 1

2

(
δ

δmax

)κ−1
)
≤ c ακ+1.

This implies for δ < δmax that δ2

α(δ) ≤ c δ
2κ
κ+1 with c depending on δmax but not on δ.

Let us remark that in the case α(δ) > 1 the inequality δ2

α ≤ δ2 holds. That means,
we do not need an upper bound on α(δ) in the subsequent convergence analysis, only
the existence of the supremum is needed, i.e., α(δ) <∞.
Now, we have everything at hand to prove the main result of this section: convergence
of the regularization scheme with the same order with respect to δ as given by best
a-priori parameter choice, see Section 3.5.
Theorem 4.7. Let control constraints be given everywhere, i.e., Ωa = Ωb = Ω.
Moreover, let us suppose Assumption 3.2 is satisfied with A = Ω.
Then for every δmax > 0 there is a positive constant c = c(δmax) such that

‖uδα − u0‖Y ≤ c δs

holds for all δ ∈ (0, δmax) with s defined by

s =

{
κ
2 if κ ≤ 1,
κ
κ+1 if 1 < κ <∞.
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Proof. Let us set α := α(δ). Let us first prove the claim for κ ≤ 1. We have by
Proposition 2.9

α ‖u0 − uδα‖2L2 ≤ α (u0, u0 − uδα) + (zδ − z, y0 − yδα).

Since control constraints are prescribed everywhere, we have u0 ∈ L∞(Ω). Using
Lemma 4.5 we can then estimate

α ‖u0 − uδα‖2L2 ≤ c (α ‖u0 − uδα‖L1 + δ2).

Applying Lemma 4.6 gives in the case that α ≤ 1

‖u0 − uδα‖2L2 ≤ c(‖u0 − uδα‖L1 + δκ). (4.4)

If α is greater than 1, then it trivially holds

δ2

α
≤ δ2,

and (4.4) is valid in this case, too, with the constant c depending on δmax.
It remains to bound ‖u0−uδα‖L1 in terms of δ. To this end, let us define the following
subset of Ω:

B := {pδα 6= 0, sign(p0) = sign(pδα)}.

The measure of its complement can be bound using Assumption 3.2. Indeed, on Ω\B
the signs of p0 and pδα are different, which gives |p0| ≤ |p0−pδα| on Ω\B. Hence using
Assumption 3.2 and Lemma 4.5 we obtain

meas(Ω \B) ≤ c ‖p0 − pδα‖κL∞ ≤ c δκ. (4.5)

Let us investigate now the L1-norm of u0 − uδα on B. For ε > 0 let us define the set

Bε := B ∩ {|pδα| > ε}.

Since |p0| ≤ |pδα|+ |p0 − pδα| ≤ ε+ |p0 − pδα| on B \Bε, we have with Assumption 3.2
and Lemma 4.5

meas(B \Bε) ≤ c(‖p0 − pδα‖κL∞ + εκ) ≤ c(δκ + εκ). (4.6)

Let us recall that α satisfies the discrepancy estimate, cf. (4.1),∫
{pδα>0}

pδα (ub − uδα) +
∫
{pδα<0}

pδα (ua − uδα) ≤ 1
2
τ2δ2.

Here, the integrands in both integrals are positive functions, which allows us to restrict
the integration regions∫

{pδα>0}∩Bε
pδα (ub − uδα) +

∫
{pδα<0}∩Bε

pδα (ua − uδα) ≤ 1
2
τ2δ2.

Since |pδα| ≥ ε on Bε, it holds∫
{pδα>0}∩Bε

ε|ub − uδα|+
∫
{pδα<0}∩Bε

ε|uδα − ua| ≤
1
2
τ2δ2
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Since p0 and pδα have equal signs on Bε, and {pδα 6= 0} ⊃ Bε, we have

ε

∫
Bε

|u0 − uδα| ≤
1
2
τ2δ2,

which implies

‖u0 − uδα‖L1(Bε) ≤
1
2
τ2δ2ε−1.

This implies together with (4.5), (4.6) that

‖u0 − uδα‖L1 ≤ c(δκ + εκ + δ2ε−1).

With ε := δ
2
κ+1 we obtain for κ ≤ 1 and δ ≤ δmax

‖u0 − uδα‖L1 ≤ c(δκ + δ
2κ
κ+1 ) = c (1 + δ

κ(1−κ)
κ+1 )δκ ≤ c δκ (4.7)

which proves with (4.4)

‖u0 − uδα‖L2 ≤ c δκ/2

which is the optimal rate. Here the constant c depends on δmax.
Let us now sketch the proof for the case κ > 1. Here, we have to replace (4.4)
according to Lemma 4.6 by

‖u0 − uδα‖2L2 ≤ c(‖u0 − uδα‖L1 + δ
2κ
κ+1 ). (4.8)

Since we are in the situation κ > 1, we have to modify estimate (4.7) to

‖u0 − uδα‖L1 ≤ c(δκ + δ
2κ
κ+1 ) = c(δ

κ(κ−1)
κ+1 + 1)δ

2κ
κ+1 ≤ c δ

2κ
κ+1 ,

where c depends on δmax. This finishes the proof.
As mentioned in this section, it is an open problem, how these ideas can be transferred
to the the case that the control constraints are not active everywhere.
Moreover, it will be interesting to see how these results can be used to choose the
regularization parameter α in dependence of discretization parameters. In particular,
an adaptive algorithm that combines adaptive discretization schemes and adaptive
regularization parameter choices has to be developed.
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