
www.oeaw.ac.at

www.ricam.oeaw.ac.at

On the generalized
discrepancy principle for

Tikhonov regularization in
Hilbert scales

S. Lu, S. Pereverzyev, Y. Shao, U.
Tautenhahn

RICAM-Report 2009-19



ON THE GENERALIZED DISCREPANCY PRINCIPLE FOR
TIKHONOV REGULARIZATION IN HILBERT SCALES

S. LU, S. V. PEREVERZEV, Y. SHAO, AND U. TAUTENHAHN

Dedicated to Charles W. Groetsch

Abstract. For solving linear ill-posed problems regularization methods are
required when the right hand side and the operator are with some noise. In
the present paper regularized solutions are obtained by Tikhonov regularization
in Hilbert scales and the regularization parameter is chosen by the generalized
discrepancy principle. Under certain smoothness assumptions we provide order
optimal error bounds that characterize the accuracy of the regularized solution.
It appears that for getting small error bounds a proper scaling of the penalizing
operator B is required. For the computation of the regularization parameter
fast algorithms of Newton type are constructed which are based on special
transformations. These algorithms are globally and monotonically convergent.
The results extend earlier results where the problem operator is exactly given.
Some of our theoretical results are illustrated by numerical experiments.

1. Introduction

In this paper we are interested in solving ill-posed problems

A0x = y0, (1.1)

where A0 ∈ L(X, Y ) is a linear, injective and bounded operator with non-closed
range R(A0) and X, Y are Hilbert spaces with corresponding inner products (·, ·)
and norms ‖ ·‖. Throughout we assume that y0 ∈ R(A0) so that (1.1) has a unique
solution x† ∈ X. We further assume that (y0, A0) are unknown and

(i) yδ ∈ Y is the available noisy right hand side with ‖y0 − yδ‖ ≤ δ,
(ii) Ah ∈ L(X, Y ) is the available noisy operator with ‖A0 − Ah‖ ≤ h.

In recent literature, many aspects of treating ill-posed problems with noisy right
hand side and noisy operator have been studied, see, e. g., [1, 4, 6, 10, 11, 12,
15, 22, 23, 24, 26, 37, 39, 43, 48]. Ill-posed problems with noisy right hand side
and noisy operator arise in different applications. For example, in astronomical
observations the point spread function may be changing due to unknown physical
conditions leading to a problem with only partially known forward operator. Some
special applied ill-posed problems with noisy operators may, e. g., be found in
[2, 18, 20, 29, 36].
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The numerical treatment of ill-posed problems (1.1) with noisy data (yδ, Ah)
requires the application of special regularization methods. In the method of
Tikhonov regularization in Hilbert scales a regularized solution xδ,h

α is obtained by
solving the minimization problem

min
x∈X

Jα(x) , Jα(x) = ‖Ahx− yδ‖2 + α‖Bsx‖2, (1.2)

where α > 0 is the regularization parameter, B : D(B) ⊂ X → X is some
unbounded densely defined self-adjoint strictly positive definite operator and s is
some generally nonnegative real number that controls the strength of smoothness
to be introduced into the regularization method. In many practical problems the
operator B is chosen to be a differential operator.

In the special case h = 0, Tikhonov regularization in Hilbert scales has been
introduced by Natterer [33]. In Natterer’s paper it is shown that under the
assumptions ‖B−ax‖ ∼ ‖A0x‖ and ‖Bpx†‖ ≤ E the Tikhonov regularized solution
xδ,0

α of the problem (1.2) guarantees order optimal error bounds ‖xδ,0
α − x†‖ =

O(δp/(a+p)) for the p-range 0 < p ≤ 2s + a in case α is chosen a priori by
α ∼ δ2(a+s)/(a+p). In the meantime regularization in Hilbert scales became quite
popular, see, e. g., [34, 38, 40, 41], where method (1.2) has been studied with α
chosen a posteriori by the discrepancy principle, [5, 41] where method (1.2) has
been generalized to a general regularization scheme, [14, 25, 27, 28, 32], where
extensions to the case of general source conditions including infinitely smoothing
operators A0 have been treated or [5, 17, 21, 35, 38, 42], where extensions to the
nonlinear case may be found. To the authors best knowledge, however, there seem
to be no results in the more general case h 6= 0.

The accuracy of the regularized solution xδ,h
α depends on the choice of the

regularization parameter. One of the most prominent a posteriori rules for choosing
α in case of noisy right hand side and noisy operator is the
Generalized discrepancy principle (GDP): Choose α = αD as the solution of the
nonlinear equation

‖Ahx
δ,h
α − yδ‖ = δ + h‖Bsxδ,h

α ‖. (1.3)

This a posteriori rule for choosing α goes back to Goncharsky et al. [7, 8].
For B = I, the generalized discrepancy principle has intensively been studied by
Vainikko in the influential contributions [46, 47, 48]. For the more general case
B 6= I some results may be found in [16, 31, 43, 44, 45, 49].

The paper is organized as follows. In Section 2 we give order optimality results
for regularized solutions obtained by method (1.2) with α chosen by the generalized
discrepancy principle(1.3). In particular, we point out that a proper scaling of
the operator B is required and discuss in some detail the standard case s = 0. In
Section 3 we discuss computational aspects for method (1.2) with the parameter
choice (1.3) in the special case h = 0. We study properties of equation (1.3) and
transform this equation into an equivalent equation with two free parameters (µ, ν).
We search for parameters (µ, ν) ⊂ R2 for which Newton’s method for computing
the regularization parameter converges globally and monotonically. In Section 4
we extend our results of Section 3 to the more general case h > 0 and construct
globally convergent Newton type methods for solving the nonlinear equation (1.3).
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In the final Section 5 we provide numerical experiments that illustrate some of our
theoretical results.

2. Order optimal error bounds

In order to guarantee convergence rates for ‖xδ,h
α − x†‖, certain smoothness

assumptions are necessary which we formulate in terms of some densely defined
unbounded self-adjoint strictly positive operator B : X → X. We introduce a
Hilbert scale (Xr)r∈R induced by B which is the completion of ∩∞k=0D(Bk) with
respect to the Hilbert space norm

‖x‖r = ‖Brx‖, r ∈ R

and consider the following two classical assumptions.
Assumption A1. For some positive constants m and a we assume the link
condition

m‖x‖−a ≤ ‖A0x‖ for all x ∈ X.

Assumption A2. For some positive constants E and p we assume the solution
smoothness x† = B−pv with v ∈ X and ‖v‖ ≤ E, that is,

x† ∈ Mp,E =
{
x ∈ X

∣∣∣ ‖x‖p ≤ E
}
.

Assumption A1 characterizes the smoothing properties of the operator A0

relative to the operator B−1, and Assumption A2 characterizes the smoothness
of the unknown solution x† allowing the study of different smoothness situations
for x†. It can be shown that under a two-sided link condition ‖A0x‖ ∼ ‖x‖−a

and Assumption A2, the best possible worst case error for identifying x† from
noisy data (yδ, Ah) is of the order O

(
(δ + h)p/(p+a)

)
. From [45] we know that the

regularized solution xδ,h
α with α chosen by the generalized discrepancy principle

provides the optimal order for s = p. Since p is generally unknown there arises
the question about order optimal error bounds if regularization is carried out with
s 6= p. An order optimality proof for the p-range p ∈ [1, 2 + a] in case s = 1 may
be found in [43]. We follow this way of proof, exploit the interpolation inequality

‖z‖r ≤ ‖z‖(s−r)/(s+a)
−a ‖z‖(a+r)/(s+a)

s (2.1)

which holds true for any r ∈ [−a, s], a + s 6= 0 (see, e. g., [19]) and obtain

Theorem 2.1. Let ‖B−1‖ ≤ 1, let Assumptions A1 and A2 with p ∈ [s, 2s + a] be
satisfied and let xδ,h

α be the Tikhonov regularized solution of problem (1.2) with α
chosen by the generalized discrepancy principle (1.3). Then,

‖xδ,h
α − x†‖ ≤ 2E

a
p+a

(
δ + h‖x†‖s

m

) p
p+a

. (2.2)

Proof. In our first step of the proof we show that for α chosen by (1.3) we have

‖xδ,h
α ‖s ≤ ‖x†‖s. (2.3)
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For the proof of (2.3) we use Jα(xδ,h
α ) ≤ Jα(x†) and obtain due to the GDP (1.3),

the triangle inequality, 0 ≤ s ≤ p and ‖B−1‖ ≤ 1 that(
δ + h‖xδ,h

α ‖s

)2
+ α‖xδ,h

α ‖2
s ≤

(
δ + h‖x†‖

)2
+ α‖x†‖2

s

≤
(
δ + h‖x†‖s

)2
+ α‖x†‖2

s.

Since t → (δ + ht)2 + αt2 is increasing we obtain (2.3). In our second step of the
proof we show that for every element x ∈ X with ‖x‖s ≤ ‖x†‖s we have under the
side conditions p ∈ [s, 2s + a], a > 0 and ‖x†‖p ≤ E the estimate

‖x− x†‖ ≤ (2E)a/(p+a)‖x− x†‖p/(p+a)
−a . (2.4)

For the proof of (2.4) we introduce the abbreviation z := x† − x and derive three
estimates. Due to ‖x‖s ≤ ‖x†‖s and Cauchy-Schwarz inequality we have a first
estimate

‖z‖2
s ≤ 2

(
Bsx†, Bsz

)
=
(
Bpx†, B2s−pz

)
≤ 2E‖z‖2s−p. (2.5)

From (2.1) with r := 2s− p we have a second estimate

‖z‖2s−p ≤ ‖z‖(p−s)/(s+a)
−a ‖z‖(a+2s−p)/(s+a)

s . (2.6)

A further application of (2.1) with r := 0 gives a third estimate

‖z‖ ≤ ‖z‖s/(s+a)
−a ‖z‖a/(s+a)

s . (2.7)

Now, a proper combination of the three estimates (2.5)–(2.7) gives (2.4). In our
third step of the proof we derive an estimate for ‖xδ,h

α − x†‖−a. Due to Assumption
A1, the triangle inequality, the GDP (1.3), ‖B−1‖ ≤ 1 and estimate (2.3) we obtain

‖xδ,h
α − x†‖−a ≤ 1

m
‖Ah(x

δ,h
α − x†)‖

≤ 1

m

(
δ + h‖xδ,h

α ‖+ ‖Ahx
δ,h
α − yδ‖

)
≤ 1

m

(
2δ + 2h‖x†‖s

)
. (2.8)

Now, estimate (2.2) follows from (2.4) with x = xδ,h
α and (2.8). �

From Theorem 2.1 we obtain

Corollary 2.2. Let xδ,h
α be the Tikhonov regularized solution of problem (1.2) with

s = 0, let α be chosen by the generalized discrepancy principle (1.3) with s = 0
and let x† obey x† = (A∗A)p/2v with ‖v‖ ≤ E. Then, for p ∈ (0, 1],

‖xδ,h
α − x†‖ ≤ 2E

1
p+1

(
δ + h‖x†‖

) p
p+1 . (2.9)

Proof. For the choice B = (A∗A)−1/2, Assumption A2 is equivalent to the source
condition x† = (A∗A)p/2v with ‖v‖ ≤ E and A1 holds true with a = 1 and m = 1.
Hence, the result of Corollary 2.2 follows from Theorem 2.1. �
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Remark 2.3. The order optimality result ‖xδ,h
α − x†‖ = O

(
(δ + h)p/(p+1)

)
of Corol-

lary 2.2 may also be found in [48]. The proof in [48] is done for a general
regularization scheme and requires to choose α from the nonlinear equation

‖Ahx
δ,h
α − yδ‖ = C

(
δ + h‖xδ,h

α ‖
)

with some C > 1. The convergence rate proof in [48] is more complicated as our
proof and provides compared with our estimate (2.9) larger constants that even
depend on h and are therefore only valid for h sufficiently small.

Now we consider without loss of generality the special case s = 1 and ask the
question if replacing B by βB with some constant β influences the accuracy of
the regularized solution. The answer is yes in the case h 6= 0 for the regularized
solution of problem (1.2) with α chosen by the generalized discrepancy principle
(1.3). Assume that xδ,h

α,β is obtained by solving

min
x∈X

Jα(x), Jα(x) = ‖Ahx− yδ‖2 + α‖βBx‖2 (2.10)

with α chosen by the generalized discrepancy principle, that is, α = αD is the
solution of the equation

‖Ahx
δ,h
α,β − yδ‖ = δ + h‖βBxδ,h

α,β‖. (2.11)

Then we observe two limit relations:

Proposition 2.4. Let xδ,h
α,β be given by (2.10) with α = αD chosen by the general-

ized discrepancy principle (2.11). Then, following two limit relations are valid:

(i) For β →∞ we have xδ,h
α,β → 0.

(ii) For β → 0 we have xδ,h
α,β → xδ,h

γ where xδ,h
γ = (A∗

hAh + γB∗B)−1A∗
hyδ and

γ is the solution of the equation ‖Ahx
δ,h
γ − yδ‖ = δ.

The observation in Proposition 2.4 has consequences. A wrong choice of β
leads to a bad regularized solution xδ,h

α,β. For β chosen too large, the regularized
solution is close to zero, whereas for β chosen too small, the regularized solution is
generally highly oscillating. As a result, there exists an optimal β-value for which
the total error becomes minimal. The error bound in Theorem 2.1 tells us that
β = 1/‖B−1‖ seems to be a good a priori choice.

3. Tikhonov regularization in the special case h = 0

In this section we discuss computational aspects for method (1.2) with the
parameter choice (1.3) in the special case h = 0. Without loss of generality we
restrict our considerations to the special case s = 1. In this special case, the
regularized solution of problem (1.2) with Ah replaced by A0 will be denoted by xδ

α.
For computing this regularized solution with α = αD chosen by the discrepancy
principle (1.3), we observe that α = αD may be found by solving the nonlinear
equation

f(α) := ‖A0x
δ
α − yδ‖2 − δ2 = 0. (3.1)
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Our next proposition tells us that f : R+ → R is monotonically increasing and
that equation (3.1) possesses a unique positive solution αD > 0 provided

‖Pyδ‖ < δ < ‖yδ‖. (3.2)

Here P is the orthogonal projector onto R(T )⊥ and T is given by T = A0B
−1.

Proposition 3.1. Let xδ
α = (A∗

0A0 + αB∗B)−1A∗
0yδ, let f be defined by (3.1) and

let vδ
α = (A∗

0A0 + αB∗B)−1B∗Bxδ
α. Then:

(i) f : R+ → R is continuous and obeys the limit relations

lim
α→0

f(α) = ‖Pyδ‖2 − δ2 and lim
α→∞

f(α) = ‖yδ‖2 − δ2.

(ii) f : R+ → R is monotonically increasing and its derivative is given by

f ′(α) = 2α(Bvδ
α, Bxδ

α) > 0. (3.3)

(iii) f : R+ → R is convex for small α-values, but concave for large α-values.
Its second derivative is given by

f ′′(α) = 2(Bvδ
α, Bxδ

α)− 6α(Bvδ
α, Bvδ

α). (3.4)

(iv) Assume that the data yδ obey (3.2). Then the equation f(α) = 0 possesses
a unique positive solution αD > 0.

The proof of Proposition 3.1 is standard and may be derived from results in [5].
From property (iii) we conclude that global and monotone convergence of Newton’s
method for solving equation (3.1) cannot be guaranteed. In the literature, different
alternatives for solving nonlinear equations of the type (3.1) have been proposed:

(1) In [9], see also [5, Prop. 9.8], the function g(r) := f(r−1) is introduced.
This function appears to be decreasing and convex. As a consequence,
Newton’s method for solving g(r) = 0 converges for arbitrary positive
starting values r0 < rD globally and monotonically from the left to the
unique solution rD = α−1

D .
(2) In the trust region version of the Gauss-Newton method for solving nonlinear

least squares problems, a trust region step requires to solve for given ∆
the equation ‖xδ

α‖ = ∆. This can effectively be realized by solving the
equivalent secular equation h(α) := ‖xδ

α‖−1−∆−1 = 0 by Newton’s method,
see [30] and [3, Subsection 7.3.3].

The above two ideas motivate us
(1) to introduce the function h : R+ → R by h(α) := ‖A0x

δ
α − yδ‖µ − δµ,

(2) to introduce the function g : R+ → R by g(r) := h(rν),
(3) to consider the nonlinear equation

g(r) := h(rν) = ‖A0x
δ
rν − yδ‖µ − δµ = 0 (3.5)

and to ask following question: For which pairs (µ, ν) ⊂ R2 it can be guaranteed
that Newton’s method applied to the nonlinear equation g(r) = 0 converges globally
and monotonically to the unique solution rD = α

1/ν
D of equation (3.5)?

To answer this question we start by computing the first two derivatives of g.
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Proposition 3.2. Let x = xδ
rν be the solution of (A∗

0A0 + rνB∗B)x = A∗
0yδ and

v = vδ
rν be the solution of (A∗

0A0 + rνB∗B)v = B∗Bxδ
rν . Then the first and second

derivative of the function g : R+ → R defined by (3.5) are given by

g′(r) = µνr2ν−1(Bv,Bx)‖A0x− yδ‖µ−2 (3.6)

and

g′′(r) = µ(µ− 2)ν2r2ν−2(A0v, A0x− yδ)
2‖A0x− yδ‖µ−4

+ µν(2ν − 1)r2ν−2‖A0v‖2‖A0x− yδ‖µ−2

− µν(ν + 1)r3ν−2‖Bv‖2‖A0x− yδ‖µ−2. (3.7)

Proof. The function g possesses the representation

g(r) = f
µ/2
1 (rν)− δµ with f1(α) = ‖A0x

δ
α − yδ‖2.

For the first derivative we have

g′(r) =
µ

2
νrν−1f

µ/2−1
1 (rν)f ′1(r

ν).

We use the identity f ′1 = f ′, exploit that f ′ is given by (3.3) and obtain (3.6). For
the second derivative of g we have

g′′(r) =
µ

2
ν(ν − 1)rν−2f

µ/2−1
1 (rν)f ′1(r

ν)

+
µ

2

(
µ

2
− 1

)
ν2r2ν−2f

ν/2−2
1 (rν)f ′21 (rν)

+
µ

2
ν2r2ν−2f

µ/2−1
1 (rν)f ′′1 (rν).

We use the identities f ′1 = f ′ and f ′′1 = f ′′, exploit that f ′ and f ′′ are given by
(3.3) and (3.4), respectively, and obtain

g′′(r) = µν(ν − 1)r2ν−2‖A0x− yδ‖µ−2(Bv,Bx)

+ µ(µ− 2)ν2r4ν−2‖A0x− yδ‖µ−4(Bv,Bx)2

+ µν2r2ν−2‖A0x− yδ‖µ−2
(
(Bv,Bx)− 3rν‖Bv‖2

)
= µ(µ− 2)ν2r4ν−2‖A0x− yδ‖µ−4(Bv,Bx)2

+ µν(2ν − 1)r2ν−2‖A0x− yδ‖µ−2(Bv,Bx)

− 3µν2r3ν−2‖A0x− yδ‖µ−2‖Bv‖2.

We rewrite the first summand by using the identity (Bv,Bx) = r−ν(A0v, yδ−A0x),
rewrite the second summand by using the identity (Bv,Bx) = ‖A0v‖2 + rν‖Bv‖2,
collect terms and obtain (3.7). �

The use of formulas (3.6) and (3.7) allows us to search for (µ, ν)-domains G ⊂ R2

with non-changing sign for the derivatives g′ and g′′. In particular, we will show
that the situation of Figure 1 is valid. In the proof which is given in the next
proposition we exploit in some parts of G = ∪4

i=1Gi that due to Cauchy-Schwarz
inequality we have

(A0v, A0x− yδ) ≤ ‖A0v‖‖A0x− yδ‖. (3.8)
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µ

ν

−1 1 2

−1

0.5
G1 : g′ < 0, g′′ > 0 G2 : g′ > 0, g′′ < 0

G3 : g′ > 0, g′′ < 0 G4 : g′ < 0, g′′ > 0

µν = 1

µν = 1

Figure 1: (µ, ν) – domain G with non-changing sign for the derivatives g′ and g′′

Proposition 3.3. Let G1 – G4 be the domains of Figure 1. Then, g : R+ → R
defined by (3.5) obeys

(i) g′ < 0 and g′′ > 0 for (µ, ν) ∈ G1 ∪G4 and
(ii) g′ > 0 and g′′ < 0 for (µ, ν) ∈ G2 ∪G3.

Proof. For the first and second derivative of g we use the formulas (3.6) and (3.7)
of Proposition 3.2, respectively, observe that (Bv,Bx) > 0, decompose the second
derivative into the sum g′′(r) = s1 + s2 + s3 and distinguish four cases.

Case (µ, ν) ∈ G1 = {(µ, ν) ∈ R2 | −∞ < µ < 0 ∧ 0 < ν ≤ 1
2
}: In this case we

have g′ < 0, s1 > 0, s2 ≥ 0 and s3 > 0, which proves part (i) for (µ, ν) ∈ G1.
Case (µ, ν) ∈ G2 = {(µ, ν) ∈ R2 | 0 < µ < ∞ ∧ 0 < ν ≤ 1

2
∧ µν ≤ 1}: In this

case we have g′ > 0, s1 < 0 for µ < 2, s1 ≥ 0 for µ ≥ 2, s2 ≤ 0 and s3 < 0. Hence,
in the subcase µ < 2 we have g′′(r) < 0. In the subcase µ ≥ 2 we use (3.8) and
obtain s1 ≤ µ(µ− 2)ν2r2ν−2‖A0v‖2‖A0x− yδ‖µ−2. Consequently,

s1 + s2 ≤ µν(µν − 1)r2ν−2‖A0v‖2‖A0x− yδ‖µ−2 ≤ 0, (3.9)

which yields g′′(r) < 0 and proves part (ii) for (µ, ν) ∈ G2.
Case (µ, ν) ∈ G3 = {(µ, ν) ∈ R2 | − ∞ < µ < 0 ∧ −1 ≤ ν < 0 ∧ µν ≥ 1}:

In this case we have g′ > 0, s1 > 0, s2 < 0 and s3 ≤ 0. Due to (3.8), the first
summand can be estimated by

s1 ≤ µ(µ− 2)ν2r2ν−2‖A0v‖2‖A0x− yδ‖µ−2,

which yields (3.9). Hence, g′′(r) < 0, which proves part (ii) for (µ, ν) ∈ G3.
Case (µ, ν) ∈ G4 = {(µ, ν) ∈ R2 | 0 < µ < ∞ ∧ −1 ≤ ν < 0}: In this case we

have g′ < 0, s1 ≥ 0 for µ ≥ 2, s1 < 0 for µ < 2, s2 > 0 and s3 ≥ 0. Hence, in the
subcase µ ≥ 2 we have g′′(r) > 0. In the subcase µ < 2 we use (3.8) and obtain
s1 ≥ µ(µ− 2)ν2r2ν−2‖A0v‖2‖A0x− yδ‖µ−2. Consequently,

s1 + s2 ≥ µν(µν − 1)r2ν−2‖A0v‖2‖A0x− yδ‖µ−2 > 0,

which yields g′′(r) > 0 and proves part (i) for (µ, ν) ∈ G4. �

In the next proposition we formulate conditions under which Newton’s method
for solving nonlinear equations converges globally and monotonically.
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Proposition 3.4. Let g : R+ → R be twice continuously differentiable and assume
that the equation g(r) = 0 has a unique solution rD > 0. Assume further that the
starting value r0 obeys 0 < r0 < rD and that either

(i) g′ < 0 and g′′ > 0 or (ii) g′ > 0 and g′′ < 0.

Then, Newton’s method for solving g(r) = 0 converges globally and monotonically
from the left and the speed of convergence is locally quadratic.

Due to formula (3.6), Newton’s method rk+1 = rk − g(rk)/g
′(rk), k = 0, 1, 2, . . . ,

for solving the nonlinear equation (3.5) possesses the form

rk+1 = rk −
‖A0x

δ
rν
k
− yδ‖µ − δµ

µνr2ν−1
k (Bvδ

rν
k
, Bxδ

rν
k
)‖A0xδ

rν
k
− yδ‖µ−2

. (3.10)

From Propositions 3.3 and 3.4 we obtain that this iteration method converges
monotonically from the left for arbitrary starting values r0 ∈ (0, rD) and arbitrary
(µ, ν) ∈ G = ∪4

i=1Gi, which is the main result of this section.

Theorem 3.5. Let αD be the solution of equation (3.1), rD := α
1/ν
D be the so-

lution of equation (3.5), (µ, ν) ∈ ∪4
i=1Gi and G1 – G4 the domains of Figure 1.

Then, Newton’s method (3.10) for solving equation (3.5) converges globally and
monotonically from the left for starting values 0 < r0 < rD. In particular,

(1) for (µ, ν) ∈ G1 ∪G2 and 0 < α0 < αD, the sequence (αk) := (rν
k) converges

monotonically from the left to αD,
(2) for (µ, ν) ∈ G3 ∪ G4 and α0 > αD, the sequence (αk) := (rν

k) converges
monotonically from the right to αD.

Remark 3.6. We made numerical experiments to check for which (µ, ν) the Newton
iteration (3.10) gives fast convergence of the sequence (αk) := (rν

k). We found that
in the domain (µ, ν) ∈ G1 ∪G2 fast convergence is guaranteed for (µ, ν) = (2, 0.5)
and that in the domain (µ, ν) ∈ G3 ∪ G4 fast convergence is guaranteed for
(µ, ν) = (−1,−1). Due to this observation and the results of Theorem 3.5 we
propose following strategy of applying Newton’s method (3.10) where we have
global convergence for arbitrary starting values α0 > 0:

(i) Choose α0 > 0 and compute the discrepancy d = ‖A0x
δ
α0
− yδ‖. Then,

depending on the magnitude of d, we proceed either according to (ii) or
according to (iii).

(ii) If d < δ, then we know from Proposition 3.1 that α0 < αD. In this case,
Theorem 3.5 tells us that for (µ, ν) ∈ G1 ∪ G2 the sequence (αk) := (rν

k)
converges monotonically from the left to αD. Hence, in case d < δ we start
the Newton iteration (3.10) with (µ, ν) = (2, 0.5).

(iii) If d > δ, then we know from Proposition 3.1 that α0 > αD. In this case,
Theorem 3.5 tells us that for (µ, ν) ∈ G3 ∪ G4 the sequence (αk) := (rν

k)
converges monotonically from the right to αD. Hence, in case d > δ we
start the Newton iteration (3.10) with (µ, ν) = (−1,−1).

For s = 1 in equation (1.3), the results of Theorem 3.5 and Remark 3.6 lead us
to following algorithm.
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Algorithm 1 Global convergent Newton iteration for equation (1.3) with h = 0.

Input: ε > 0, yδ, A0, B, δ and α > 0.
1: Solve (A∗

0A0 + αB∗B)x = A∗
0yδ and compute d := ‖A0x− yδ‖.

2: if d < δ then µ := 2, ν := 1
2
, r := α1/ν else µ := −1, ν := −1, r := α1/ν .

3: Solve (A∗
0A0 + αB∗B)v = B∗Bx and compute s := (v, B∗Bx).

4: Update rnew := r − dµ − δµ

µνr2ν−1sdµ−2
.

5: if |rnew − r| ≥ ε|r| then
r := rnew, α := rν , x := (A∗

0A0 + αB∗B)−1A∗
0yδ, d := ‖A0x− yδ‖

and goto 3 else stop.

4. Tikhonov regularization in the general case h 6= 0

In this section we discuss computational aspects for the method (1.2) with the
parameter choice (1.3) in the general case h 6= 0. Again, without loss of generality,
we restrict our considerations to the case s = 1. For properties of equation (1.3) and
conditions under which this equation possesses a unique solution αD we consider
the equivalent equation

f(α) = ‖Ahx
δ,h
α − yδ‖2 −

(
δ + h‖Bxδ,h

α ‖
)2

= 0. (4.1)

Our next proposition tells us that f is monotonically increasing and that equation
(4.1) possesses a unique positive solution αD > 0 provided

‖Phyδ‖ − h‖x†δ,h‖ < δ < ‖yδ‖. (4.2)

Here Ph is the orthogonal projector onto R(Th)
⊥, Th is given by Th = AhB

−1 and
x†δ,h is the Moore-Penrose solution of the perturbed linear system Thx = yδ (if it
exists). If x†δ,h does not exists, then ‖Bxδ,h

α ‖ → ∞ for α → 0 and the left inequality
of (4.2) is automatically satisfied.
Proposition 4.1. Let f be defined by (4.1), let xδ,h

α be the solution of (1.2) with
s = 1, and let vδ,h

α = (A∗
hAh + αB∗B)−1B∗Bxδ,h

α . Then:
(i) f : R+ → R is continuous and obeys the limit relations

lim
α→0

f(α) = ‖Phyδ‖2 −
(
δ + h‖x†δ,h‖

)2
and lim

α→∞
f(α) = ‖yδ‖2 − δ2.

(ii) f : R+ → R is monotonically increasing and its derivative is given by

f ′(α) = 2
(
α + h2 + hδ/‖Bxδ,h

α ‖
)

(Bvδ,h
α , Bxδ,h

α ) > 0.

(iii) Assume that (4.2) holds. Then the equation f(α) = 0 possesses a unique
positive solution αD > 0.

The proof of Proposition 4.1 is analogous to [24, Prop. 4.5], where the special
case B = I has been treated. Now, analogously to Section 3 we introduce the
function h : R+ → R by

h(α) := ‖Ahx
δ,h
α − yδ‖µ − (δ + h‖Bxδ,h

α ‖)µ
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where xδ,h
α is the solution of the operator equation (A∗

hAh + αB∗B)x = A∗
hyδ,

transform (1.3) into an equivalent equation

g(r) := h(rν) = ‖Ahx
δ,h
rν − yδ‖µ −

(
δ + h‖Bxδ,h

rν ‖
)µ

= 0 (4.3)

with two free parameters (µ, ν) and ask, as in Section 3, the following question:
For which pairs (µ, ν) ⊂ R2 it can be guaranteed that Newton’s method applied to
the nonlinear equation g(r) = 0 converges globally and monotonically to the unique
solution rD = α

1/ν
D of equation (4.3)?

To answer this question, we decompose the functions h and g into the sum
h = h1 + h2 and g = g1 + g2, respectively, where

g1(r) = h1(r
ν) = ‖Ahx

δ,h
rν − yδ‖µ,

g2(r) = h2(r
ν) = −

(
δ + h‖Bxδ,h

rν ‖
)µ

. (4.4)

We observe that for the derivatives of g1 there hold analogous formulas as given in
Proposition 3.2. For the first two derivatives of the function g2 we have

Proposition 4.2. Let x = xδ,h
rν be the solution of (A∗

hAh + rνB∗B)x = A∗
hyδ and

v = vδ,h
rν be the solution of (A∗

hAh + rνB∗B)v = B∗Bxδ,h
rν . Then the first and second

derivative of the function g2 : R+ → R defined by (4.4) are given as follows:

g′2(r) = hµνrν−1 (δ + h‖Bx‖)µ−1 ‖Bx‖−1(Bv,Bx) (4.5)

and

g′′2(r) = c2
[
µν2(Bv,Bx)2 (δ + h‖Bx‖)− hµ(µ− 1)ν2‖Bx‖(Bv,Bx)2

− 3µν2‖Bx‖2‖Bv‖2 (δ + h‖Bx‖)

+ µν(ν − 1)r−ν‖Bx‖2(Bv,Bx) (δ + h‖Bx‖)
]

(4.6)

with c2 = hr2ν−2‖Bx‖−3(δ + h‖Bx‖)µ−2.

Proof. Consider the equation (A∗
hAh + αB∗B)xδ,h

α = A∗
hyδ. Differentiating both

sides by α yields

B∗Bxδ,h
α + (A∗

hAh + αB∗B)
d

dα
xδ,h

α = 0,

or equivalently,
d

dα
xδ,h

α = −(A∗
hAh + αB∗B)−1B∗Bxδ,h

α =: −vδ,h
α .

Consequently,
d

dα
‖Bxδ,h

α ‖ =
d

dα

(
‖Bxδ,h

α ‖2
)1/2

= −‖Bxδ,h
α ‖−1(Bvδ,h

α , Bxδ,h
α ). (4.7)

Consider the equation (A∗
hAh + αB∗B)vδ,h

α = B∗Bxδ,h
α . Differentiating both sides

by α yields

B∗Bvδ,h
α + (A∗

hAh + αB∗B)
d

dα
vδ,h

α = B∗B
d

dα
xδ,h

α ,
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or equivalently,
d

dα
vδ,h

α = (A∗
hAh + αB∗B)−1

(
B∗B

d

dα
xδ,h

α −B∗Bvδ,h
α

)
= −2(A∗

hAh + αB∗B)−1B∗Bvδ,h
α .

Consequently,
d

dα
(Bvδ,h

α , Bxδ,h
α ) =

( d

dα
vδ,h

α , B∗Bxδ,h
α

)
+
(
B∗Bvδ,h

α ,
d

dα
xδ,h

α

)
=− 3‖Bvδ,h

α ‖2. (4.8)

Now we introduce the function f2(α) = δ + h‖Bxδ,h
α ‖. Due to (4.7), the first

derivative is given by

f ′2(α) = −h
(Bvδ,h

α , Bxδ,h
α )

‖Bxδ,h
α ‖

. (4.9)

From (4.7), (4.8), (4.9) and quotient rule we obtain

f ′′2 (α) = −h
(Bvδ,h

α , Bxδ,h
α )2 − 3‖Bvδ,h

α ‖2‖Bxδ,h
α ‖2

‖Bxδ,h
α ‖3

. (4.10)

The functions g2 and f2 are related by g2(r) = −fµ(rν). Consequently,

g′2(r) = −µνrν−1fµ−1
2 (rν)f ′2(r

ν). (4.11)

Substituting f2 and (4.9) into (4.11) gives (4.5). From (4.11) we have

g′′2(r) = − µν(ν − 1)rν−2fµ−1
2 (rν)f ′2(r

ν)

− µ(µ− 1)ν2r2ν−2fµ−2
2 (rν)f ′22 (rν)

− µν2r2ν−2fµ−1
2 (rν)f ′′2 (rν). (4.12)

Substituting f2, (4.9) and (4.10) into (4.12) gives (4.6). �

The use of formulas (4.5) and (4.6) allows us to search for (µ, ν)-domains H ⊂ R2

with non-changing sign for the derivatives g′2 and g′′2 . In particular, we will show
that the situation of Figure 2 is valid. In the proof which is given in the next
proposition we exploit in some parts of H = ∪4

i=1Hi that by Cauchy-Schwarz
inequality we have

(Bv,Bx) ≤ ‖Bv‖‖Bx‖. (4.13)

Proposition 4.3. Let H1 – H4 be the domains of Figure 2. Then, g2 : R+ → R
defined by (4.4) obeys

(i) g′2 < 0 and g′′2 > 0 for (µ, ν) ∈ H1 ∪H4 and
(ii) g′2 > 0 and g′′2 < 0 for (µ, ν) ∈ H2 ∪H3.

Proof. Scalar multiplication of the equation (A∗
hAh + rνB∗B)v = B∗Bx by v

yields (Bv,Bx) = ‖Ahv‖2 + rν‖Bv‖2. We substitute this expression into the third
summand of (4.6), collect terms and obtain

g′′(r) = c2 (δE + h‖Bx‖F )
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µ

ν

−1 1 2

−0.5

1

H1 : g′
2 < 0, g′′

2 > 0 H2 : g′
2 > 0, g′′

2 < 0

H3 : g′
2 > 0, g′′

2 < 0 H4 : g′
2 < 0, g′′

2 > 0

µν = −1

µν = −1

Figure 2: (µ, ν) – domain H with non-changing sign for the derivatives g′2 and g′′2

where c2 is given in Proposition 4.2 and

E = µν2(Bv,Bx)2 − µν(2ν + 1)‖Bv‖2‖Bx‖2

+ µν(ν − 1)r−ν‖Ahv‖2‖Bx‖2,

F = − µ(µ− 2)ν2(Bv,Bx)2 − µν(2ν + 1)‖Bv‖2‖Bx‖2

+ µν(ν − 1)r−ν‖Ahv‖2‖Bx‖2.

We write both expressions E and F in the form

E = s1 + s2 + s3, F = s4 + s5 + s6,

use for the first derivative of g2 the formula (4.5) and distinguish four cases.
Case (µ, ν) ∈ H1 = {(µ, ν) ∈ R2 | − ∞ < µ < 0 ∧ 0 < ν ≤ 1 ∧ µν + 1 ≥ 0}:

In this case we have g′2 < 0, s1 < 0, s2 > 0 and s3 ≥ 0. Due to (4.13), s1 can be
estimated by s1 ≥ µν2‖Bv‖2‖Bx‖2. Hence,

s1 + s2 ≥ −µν(ν + 1)‖Bv‖2‖Bx‖2 > 0,

which implies E > 0. Furthermore, s4 < 0, s5 > 0 and s6 ≥ 0. Due to (4.13),
s4 ≥ −µ(µ− 2)ν2‖Bv‖2‖Bx‖2. Hence,

s4 + s5 ≥ −µν(µν + 1)‖Bv‖2‖Bx‖2 ≥ 0, (4.14)

which gives F ≥ 0 and proves part (i) for (µ, ν) ∈ H1.
Case (µ, ν) ∈ H2 = {(µ, ν) ∈ R2 | 0 < µ < ∞ ∧ 0 < ν ≤ 1}: In this case we have

g′2 > 0, s1 > 0, s2 < 0 and s3 ≤ 0. We use (4.13) and obtain s1 ≤ µν2‖Bv‖2‖Bx‖2.
Consequently,

s1 + s2 ≤ −µν(ν + 1)‖Bv‖2‖Bx‖2 < 0,

which yields E < 0. Furthermore, we have s4 < 0 for µ > 2, s4 ≥ 0 for µ ≤ 2,
s5 < 0 and s6 ≤ 0. Hence, in the subcase µ > 2 we have F < 0. In the subcase
µ ≤ 2 we estimate s4 by s4 ≤ −µ(µ− 2)ν2‖Bv‖2‖Bx‖2 and obtain

s4 + s5 ≤ −µν(µν + 1)‖Bv‖2‖Bx‖2 < 0,

which gives F < 0 and proves part (ii) for (µ, ν) ∈ H2.



14 S. LU, S. V. PEREVERZEV, Y. SHAO, AND U. TAUTENHAHN

Case (µ, ν) ∈ H3 = {(µ, ν) ∈ R2 | −∞ < µ < 0 ∧ −1
2
≤ ν < 0}: In this case we

have g′2 > 0, s1 < 0, s2 ≤ 0 and s3 < 0, which gives E < 0. Furthermore, we have
s4 < 0, s5 ≤ 0 and s6 < 0, which gives F < 0 and proves part (ii) for (µ, ν) ∈ H3.

Case (µ, ν) ∈ H4 = {(µ, ν) ∈ R2 | 0 < µ < ∞ ∧ −1
2
≤ ν < 0 ∧ µν + 1 ≥ 0}:

In this case we have g′2 < 0, s1 > 0, s2 ≥ 0 and s3 > 0, which yields E > 0.
Furthermore, s4 > 0 for µ < 2, s4 ≤ 0 for µ ≥ 2, s5 ≥ 0 and s6 > 0. Hence, in the
subcase µ < 2 we have F > 0. In the subcase µ ≥ 2 we use (3.8) and obtain

s4 ≥ −µ(µ− 2)ν2‖Bv‖2‖Bx‖2.

From this estimate we obtain (4.14). This estimate yields F > 0 and proves part
(i) for (µ, ν) ∈ H4. �

Due to formulae (3.6) and (4.5), Newton’s method rk+1 = rk − g(rk)/g
′(rk),

k = 0, 1, 2, . . . , for solving the nonlinear equation (4.1) possesses the form

rk+1 = rk −
‖Ahx− yδ‖µ − (δ + h‖Bx‖)µ

µνrν−1
k (Bv,Bx)

(
rν
k‖Ahx− yδ‖µ−2 + h‖Bx‖−1 (δ + h‖Bx‖)µ−1

)
with x := xδ,h

rν
k

and v := vδ,h
rν
k
. From Propositions 3.3, 3.4 and 4.3 we obtain that

this iteration method converges monotonically from the left for arbitrary starting
values r0 ∈ (0, rD) and arbitrary (µ, ν) ∈ G ∩H, where G is given in Figure 1 and
H is given in Figure 2.

Theorem 4.4. Let αD be the solution of equation (1.3), rD := α
1/ν
D be the solution

of equation (4.3) and (µ, ν) ∈ G ∩H where G and H are the domains of Figure 1
and Figure 2. Then, Newton’s method for solving equation (4.3) converges globally
and monotonically from the left for starting values r0 < rD. In particular,

(1) for (µ, ν) ∈ (G1 ∪G2) ∩ (H1 ∪H2) and α0 < αD, the sequence (αk) := (rν
k)

converges monotonically from the left to αD,
(2) for (µ, ν) ∈ (G3 ∪G4) ∩ (H3 ∪H4) and α0 > αD, the sequence (αk) := (rν

k)
converges monotonically from the right to αD.

Remark 4.5. We made numerical experiments, see Section 5, to check for which
(µ, ν) the Newton iteration for solving equation (4.3) gives fast convergence of the
sequence (αk) := (rν

k). We found that in the domain (µ, ν) ∈ (G1∪G2)∩ (H1∪H2)
fast convergence is guaranteed for (µ, ν) = (2, 0.5) and that in the domain (µ, ν) ∈
(G3 ∪G4)∩ (H3 ∪H4) fast convergence is guaranteed for (µ, ν) = (−2,−0.5). This
observation and the results of Theorem 4.4 lead us, as outlined in Remark 3.6,
to Algorithm 2 for solving equation (1.3) with s = 1. This algorithm converges
globally and monotonically for arbitrary starting values α0 > 0.

Algorithm 2 Global convergent Newton iteration for solving equation (1.3).

Input: ε > 0, yδ, Ah, B, δ, h and α > 0.
1: Solve (A∗

hAh + αB∗B)x = A∗
hyδ and compute d := ‖Ahx− yδ‖, n := ‖Bx‖.

2: if d < δ + hn then µ := 2, ν := 1
2
, r := α1/ν

else µ := −2, ν := −1
2
, r := α1/ν .
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3: Solve (A∗
hAh + αB∗B)v = B∗Bx and compute s := (Bv,Bx), n := ‖Bx‖.

4: Update rnew := r − dµ − (δ + hn)µ

µνrν−1s
(
rνdµ−2 + hn−1(δ + hn)µ−1

) .

5: if |rnew − r| ≥ ε|r| then
r := rnew, α := rν , x := (A∗

hAh + αB∗B)−1A∗
hyδ, d := ‖Ahx− yδ‖

and goto 3 else stop.

5. Numerical experiments

In this section we provide different numerical experiments. In the first two
subsections we provide our test examples and discuss how we choose B. In a
third subsection we perform experiments that confirm the facts mentioned in the
Remark 4.5. In a fourth subsection we illustrate the theoretical results of the order
optimal error bounds of Theorem 2.1 and in a fifth subsection we investigate the
infuence of a second parameter β as discussed in Proposition 2.4.

5.1. Test examples. As test examples we use approximations of the first kind
Fredholm integral equation

[Ax](s) :=
∫ 1

0
K(s, t)x(t) dt = y(s), 0 ≤ s ≤ 1, (5.1)

A : L2(0, 1) → L2(0, 1), leading to ill-conditioned linear systems of equations.
Introducing the nodes tj = sj = jτ , j = 0, . . . , n, with step size τ = 1/n, and
searching for discretized solutions x(t) =

∑n
j=1 xjϕj(t) with zero order spline basis

functions

ϕj(t) =

{
1/
√

τ for t ∈ [tj−1, tj]

0 for t 6∈ [tj−1, tj]

leads to the Galerkin approximation A0x = y for (5.1) with A0 = (aij),

aij = 〈Aϕj, ϕi〉 =
∫ 1

0

∫ 1

0
K(s, t)ϕi(s)ϕj(t) ds dt ≈ τK

(
si −

τ

2
, tj −

τ

2

)
, (5.2)

x = (xj), y = (yi) and yi = 〈y(s), ϕi(s)〉 =
∫ 1

0
y(s)ϕi(s) ds ≈

√
τ y (si − τ/2).

Example 5.1. In our first test example we use for A0 the matrix with elements
(5.2), for x† the vector with coordinates xj :=

√
τx(tj − τ/2) and for y0 the vector

y0 := A0x
†. For the functions in (5.1) we use

K(s, t) =

{
s(1− t) for s ≤ t

t(1− s) for s ≥ t,
x(t) = 4t(1− t), y(s) =

s

3
(s3 − 2s2 + 1).

The matrix −A0 can be generated by the Matlab function deriv2 from [13].

Example 5.2. Our second test example is analogous to Example 5.1, however,
instead of x(t) and y(s) we use

x(t) = t and y(s) =
s

6
(s2 − 1).

We note that by the finite dimensional approximations in Examples 5.1 and 5.2
it is guaranteed that
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(i) ‖A0‖F ≈ ‖A‖HS =
√∫ 1

0

∫ 1
0 K2(s, t) ds dt holds and that

(ii) ‖x0‖2 ≈ ‖x(t)‖L2(0,1) and ‖y0‖2 ≈ ‖y(s)‖L2(0,1) holds.
For modeling noise in the right hand side y0 and in the matrix A0, for given

nonnegative σy and σA we compute

yδ = y0 + σy
‖y0‖2

‖e‖2

e, and Ah = A0 + σA
‖A0‖F

‖E‖F

E,

where e = (ei) is a random vector with ei ∼ N (0, 1) and E = (eij) is a random
matrix with eij ∼ N (0, 1). In this way of modeling noise we guarantee that for
the relative errors we have ‖y0 − yδ‖2/‖y0‖2 = σy and ‖A0 − Ah‖F /‖A0‖F = σA.
The noise levels δ and h are then given by

δ = σy ‖y0‖2 and h = σA ‖A0‖F .

For σy = 0.03 the vectors
√

n · y0 and
√

n · yδ are displayed in Figure 3 and for
σA = 0.03 the matrices n · A0 and n · Ah are displayed in Figure 4.

Figure 3: Exact and noisy right hand side for Example 5.1, σy = 0.03, n = 100

Figure 4: Exact and noisy matrix (left/right) for Example 5.1, σA = 0.03, n = 100

In Figure 5 we display the exact solution
√

n · x† and different regularized
solutions

√
n · xδ,h

α for Example 5.1 with σy = 0.03, σA = 0.03, B = I and n = 100.
In this example we have δ ≈ 0.00222 and h ≈ 0.00316. It is easy to see that x†
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can well be approximated by xδ,h
α with properly chosen α, and that xδ,h

α is highly
oscillating for small α, while for large α the regularized solution is close to zero.

Figure 5: Exact solution x† and regularized solutions xδ,h
α for Example 5.1 with B = I,

σy = 0.03, σA = 0.03 and n = 100. Left: x† and xδ,h
α with α = 0.000003.

Right: x† and xδ,h
α with α = 0.0003 and α = 0.03

5.2. Choosing the operator B. For B : D ⊂ L2(0, 1) → L2(0, 1) we choose

Bx =
∞∑

k=1

k(x, ek)ek with ek(t) =
√

2 sin(kπt). (5.3)

Checking Asumptions A1 and A2 we have

Proposition 5.3. Let B : D ⊂ L2(0, 1) → L2(0, 1) be defined by (5.3), then:
(i) The operator A defined by (5.1) with the kernel function of Example 5.1

obeys Assumption A1 with m = π−2 and a = 2.
(ii) The function x(t) = 4t(1− t) of Example 5.1 obeys A2 for all p ∈ [0, 5

2
).

(iii) The function x(t) = t of Example 5.2 obeys Assumption A2 for all p ∈ [0, 1
2
).

We note that the operator B2 : D ⊂ L2(0, 1) → L2(0, 1) is the second order
differential operator

[B2x](t) := −π−2x′′(t), D(B) =
{
x ∈ H2(0, 1) : x(0) = 0, x(1) = 0

}
.

The discrete approximations for B2 and B are given by the matrices B2 and B1,
respectively, where

B2 =


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 and B1 = B
1/2
2 .

For the smallest eigenvalue λmin of B2 there holds λmin = 2
(
1− cos π

n+1

)
≈ π2

(n+1)2
.

Hence, in order to guarantee the assumption ‖B−1‖ ≤ 1 in Theorem 2.1, we will
work in our experiments with B := n+1

π
B1.
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5.3. Number of iterations. In this subsection we perform experiments that
confirm the facts mentioned in the Remark 4.5. All experiments have been done
with s = 1. From Theorem 4.4 we know that Newton’s method for solving equation
(4.1) converges globally for any (µ, ν) ∈ G∩H, where for ν > 0 we have monotone
convergence from the left, while for ν < 0 we have monotone convergence from the
right with respect to α. We made different experiments and collect two of them in
Table 1 and Table 2. From our experiments we found the pair (µ, ν) = (2, 1

2
) in the

range ν > 0 and the pair (µ, ν) = (−2,−1
2
) in the range ν < 0, which provide the

smallest number of iterations compared with other pairs. Due to these numerical
results, we have used these two pairs in Algorithm 2.

ν µ = −4.5 µ = −4 µ = −3.5 µ = −3 µ = −2.5 µ = −2
−1/µ 24 22 20 17 15 13
−0.5/µ 32 29 26 22 19 16

ν µ = −2 µ = −1.2 µ = −0.4 µ = 0.4 µ = 1.2 µ = 2
0.50 13 11 9 7 6 5
0.35 14 12 10 9 7 6
0.20 18 16 13 11 10 9
0.05 37 33 30 27 24 22
ν µ = 2 µ = 2.5 µ = 3 µ = 3.5 µ = 4 µ = 4.5

1/µ 5 5 6 6 6 7
0.5/µ 8 8 9 10 10 11

Table 1: Iteration numbers in the range G ∩ H with ν > 0 for Example 5.1 with
B := n+1

π B1, σy = 0, σA = 0.03, n = 200, ε = 0.001 and α0 = αD/100

ν µ = −4.5 µ = −4 µ = −3.5 µ = −3 µ = −2.5 µ = −2
0.5/µ 18 16 15 13 12 10
1/µ 12 11 10 9 8 7
ν µ = −2 µ = −1.2 µ = −0.4 µ = 0.4 µ = 1.2 µ = 2

−0.05 27 27 29 32 36 39
−0.20 12 12 13 14 17 19
−0.35 9 9 10 11 13 16
−0.50 7 7 8 10 12 14

ν µ = 2 µ = 2.5 µ = 3 µ = 3.5 µ = 4 µ = 4.5
−0.5/µ 18 21 24 28 31 34
−1/µ 14 17 19 22 24 27

Table 2: Iteration numbers in the range G ∩ H with ν < 0 for Example 5.1 with
B := n+1

π B1, σy = 0, σA = 0.03, n = 200, ε = 0.001 and α0 = 100αD
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5.4. Accuracy of the regularized solutions. In this subsection we illustrate
the order optimal error bounds mentioned in the Theorem 2.1. From worst case
analysis, Proposition 5.3 and Theorem 2.1 we conlude

(i) For B chosen by (5.3), the best possible error bound for identifying the
function x(t) = 4t(1− t) of Example 5.1 from noisy data (yδ, Ah) is of order
O((δ + h)q) for any q < 5

9
. Choosing s = 1, this rate can be obtained by

method (1.2) with the parameter choice (1.3).
(ii) For B chosen by (5.3), the best possible error bound for identifying the

function x(t) = t of Example 5.2 from noisy data (yδ, Ah) is of the order
O((δ + h)q) for any q < 1

5
. Choosing s = 1, the assumption p ∈ [1, 2 + a]

in Theorem 2.1 is violated and we cannot conclude that method (1.2) with
the parameter choice (1.3) provides the best possible order. Therefore, we
will check this by numerical experiments.

In our numerical experiments the regularization parameter αD has been computed
by Algorithm 2 with ε = 0.001. In order to keep the discretization error small we
have used the dimension number n = 400 in all computations. We note that for
both Examples 5.1 and 5.2 we performed computations with σy = 0 and different
σA. In all examples, the matrix A0 has been randomly perturbed 20 times. For
every perturbed matrix Ah the regularization parameters αD and the regularized
solutions have been computed, and the error values in Tables 3 and 4 represent
corresponding mean values. In Table 3 we added the theoretically error bound
‖x0,h

αD
− x†‖L2(0,1) ≤ 8

(
2

π
√

3

)1/2
·
√

h ≈ 1.58σ
1/2
A := etheor that follows from the error

bound of Theorem 2.1 with p = 2.

σA αD αD/h4/3 eD eD/h5/9 etheor

5.0 E−2 5.33 E−4 0.581 .0442 0.814 .3515
1.0 E−2 1.01 E−4 0.938 .0243 1.096 .1572
5.0 E−3 4.37 E−5 1.026 .0205 1.355 .1112
1.0 E−3 4.32 E−6 0.868 .0077 1.242 .0497
5.0 E−4 1.81 E−6 0.913 .0050 1.191 .0352
1.0 E−4 2.34 E−7 1.013 .0019 1.132 .0157
5.0 E−5 9.92 E−8 1.081 .0013 1.117 .0111
1.0 E−5 1.46 E−8 1.358 .0007 1.449 .0050

Table 3: Regularization parameters αD and errors eD := ‖x0,h
αD

− x†‖2 for Example 5.1
with B = n+1

π B1 and n = 400

Both Tables 3 and 4 show following:
(i) For the Example 5.1 with αD chosen by the generalized discrepancy principle

(1.3), the error ‖x0,h
αD
−x†‖ obeys the predicted rate O(hp/(p+a)) = O(h5/9) of

Theorem 2.1, and αD tends to zero with the rate O(h2(a+1)/(a+p)) = O(h4/3).
(ii) For the Example 5.2 with αD chosen by the generalized discrepancy princi-

ple (1.3), the error ‖x0,h
αD
−x†‖ obeys the expected rate O(hp/(p+a)) = O(h1/5)
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σA αD αD/h2 eD eD/h1/5

5.0 E−2 9.87 E−05 3.554 .2840 0.811
1.0 E−2 4.71 E−06 4.240 .2198 0.866
5.0 E−3 1.23 E−06 4.429 .1960 0.887
1.0 E−3 5.24 E−08 4.717 .1495 0.933
5.0 E−4 1.34 E−08 4.825 .1327 0.952
1.0 E−4 5.59 E−10 5.032 .1000 0.989
5.0 E−5 1.42 E−10 5.113 .0882 1.002
1.0 E−5 5.90 E−12 5.311 .0649 1.017

Table 4: Regularization parameters αD and errors eD := ‖x0,h
αD

− x†‖2 for Example 5.2
with B = n+1

π B1 and n = 400

of Theorem 2.1, and αD tends to zero not with the rate O(h2(a+1)/(a+p)) =
O(h12/5), but with the rate O(h2). However, for this example, the assump-
tion p ∈ [1, 2 + a] of Theorem 2.1 is violated.

5.5. Proper scaling of B. In this subsection we show by experiment the influence
of replacing B1 by βB1 as discussed at the end of Section 2. In different experiments
we observed following:

n αD e(β = 2 + n
50

) αD e(β = n+1
π

)

20 7.27 E−4 .0198 2.96 E−4 .0272
50 9.94 E−4 .0145 2.96 E−4 .0275
100 1.03 E−3 .0124 2.97 E−4 .0299
200 1.20 E−3 .0115 2.97 E−4 .0316
400 1.58 E−3 .0117 2.97 E−4 .0326

Table 5: Errors e(β) := ‖xδ,h
α,β − x†‖2 and regularization parameters αD for β = 2 + n

50

(left) and β = n+1
π (right) for Example 5.1 with B := βB1, σy = 0 and

σA = 0.03 (mean values in case of 20 random experiments)

(i) There exists an optimal parameter βopt for which e(β) := ‖xδ,h
α,β − x†‖2 as a

function of β becomes minimal.
(ii) Due to the limit relations (i) and (ii) of Proposition 2.4, the error e(β)

is growing for growing β-values β > βopt and also growing for decreasing
β-values β < βopt.

(iii) We observed that for growing dimension numbers n the optimal parameter
βopt is growing.

(iv) We do not know how to determine βopt. In Table 5, a statistical experiment
with 20 random examples shows that for Example 5.1 the a priori parameter
choice β := 2 + n

50
provides better results than the a priori parameter
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choice β := n+1
π
≈ 1/‖B−1

1 ‖ which obeys the assumption ‖(βB1)
−1‖ ≤ 1 of

Theorem 2.1.

Acknowledgments. This joint work has been conducted during the Mini Special
Semester on Inverse Problems, May 18th – July 15th, 2009, organized by Johann
Radon Institute for Computational and Applied Mathematics (RICAM), Austrian
Academy of Sciences. U. Tautenhahn as a long-term guest thanks RICAM, and
in particular Prof. Dr. Heinz W. Engl, for kind invitation and hospitality during
the visit. The first and second authors are supported by the Austrian Fonds Zur
Förderung der Wissenschaftlichen Forschung (FWF), Grant P20235-N18.

References

1. L. Cavalier and N. Hengartner, Adaptive estimation for inverse problems with noisy operators,
Inverse Problems 21 (2005), 1345–1361.

2. D. Colton, M. Piana, and R. Potthast, A simple method using Morozov’s discrepancy principle
for solving inverse scattering problems, Inverse Problems 13 (1997), 1477–1493.

3. A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, SIAM, Philadelphia,
2000.

4. S. Efromovich and V. Koltchinskii, On inverse problems with unknown operators, IEEE
Trans. Inform. Theory 47 (2001), 2876–2894.

5. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer,
Dordrecht, 1996.

6. G. H. Golub, P. C. Hansen, and D. P. O’Leary, Tikhonov regularization and total least
squares, SIAM J. Matrix Anal. Appl. 21 (1999), 185–194.

7. A. V. Goncharsky, A. S. Leonov, and A. G. Yagola, A regularizing algorithm for incorrectly
formulated problems with an approximately specified operator, Zh. Vychisl. Mat. Mat. Fiz. 12
(1972), 1592–1594.

8. , Generalized discrepancy principle, Zh. Vychisl. Mat. Mat. Fiz. 13 (1973), 294–302.
9. V. I. Gordonova, , and V. A. Morozov, Numerical parameter selection algorithms in the

regularization methods, Zh. Vychisl. Mat. Mat. Fiz. 13 (1974), 1–9.
10. C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Integral Equations of

the First Kind, Pitman, Boston, 1984.
11. , Inverse Problems in the Mathematical Sciences, Vieweg, Braunschweig, 1993.
12. , Stable Approximate Evaluation of Unbounded Operators, Springer, Berlin, 2007.
13. P. C. Hansen, Regularization tools: a Matlab package for analysis and solution of discrete

ill-posed problems, Numerical Algorithms 6 (1994), 1–35.
14. M. Hegland, Variable Hilbert scales and their interpolation inequalities with application to

Tikhonov regularization, Appl. Anal. 59 (1995), 207–223.
15. M. Hoffmann and M. Reiss, Nonlinear estimation for linear inverse problems with error in

the operator, Ann. Stat. 36 (2008), 310–336.
16. B. Hofmann, Optimization aspects of the generalized discrepancy principle in regularization,

Optimization 17 (1986), 305–316.
17. T. Hohage and M. Pricop, Nonlinear Tikhonov regularization in Hilbert scales for inverse

boundary value problems with random noise, Inverse Problems and Imaging 2 (2008), 271–290.
18. E. Koptelova, E. Shimanovskaya, A. Artamonov, A. Sazhin, V. Yagola, A. Bruevich, and

O. Burkhonov, Image reconstruction technique and optical monitoring of the QSO2237+0305
from Maidanak Observatory in 2002–2003, Mon. Not. R. Astron. Soc. 356 (2005), 323–330.

19. S. Krein and Y. I. Petunin, Scales of Banach spaces, Russian Math. Surveys 21 (1966),
85–159.

20. A. S. Leonov, Numerical piecewise-uniform regularization for two-dimensional ill-posed
problems, Inverse Problems 15 (1999), 1165–1176.



22 S. LU, S. V. PEREVERZEV, Y. SHAO, AND U. TAUTENHAHN

21. F. Liu and M. Z. Nashed, Tikhonov regularization of nonlinear ill-posed poblems with closed
operators in Hilbert scales, J. Inv. Ill-Posed Problems 5 (1997), 363–376.

22. S. Lu, S. V. Pereverzev, and U. Tautenhahn, Dual regularized total least squares and multi-
parameter regularization, Comput. Meth. Appl. Math. 8 (2008), 253–262.

23. , A model function method in total least squares, Tech. Report 2008-18, Johann Radon
Institute for Computational and Applied Mathematics, 2008.

24. , Regularized total least squares: computational aspects and error bounds, SIAM J.
Matrix Anal. 31 (2009), 918–941.

25. B. A. Mair, Tikhonov regularization for finitely and infinitely smoothing operators, SIAM J.
Math. Anal. 25 (1994), 135–147.

26. C. Marteau, Regularization of inverse problems with unknown operator, Math. Methods Stat.
15 (2006), 415–443.

27. P. Mathé and U. Tautenhahn, Interpolation in variable Hilbert scales with application to
inverse problems, Inverse Problems 22 (2006), 2271–2297.

28. , Error bounds for regularization methods in Hilbert scales by using operator mono-
tonicity, Far East J. Math. Sci. 24 (2007), 1–21.

29. F. Mazzone, J. Coyle, A. M. Massone, and M. Piana, FIST: A fast visualizer for fixed-
frequency acoustic and electromagnetic inverse scattering problems, Simulation Modelling
Practice and Theory 14 (2006), 177–187.

30. J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Stat. Comput. 4
(1983), 553–572.

31. V. A. Morozov, Regularization Methods for Ill-Posed Problems, CRC Press, Florida, 1993.
32. M. T. Nair, S. V. Pereverzev, and U. Tautenhahn, Regularization in Hilbert scales under

general smoothing conditions, Inverse Problems 21 (2005), 1851–1869.
33. F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Appl. Anal. 18

(1984), 29–37.
34. A. Neubauer, An a-posteriori parameter choice for Tikhonov-regularization in Hilbert scales

leading to optimal convergence rates, SIAM J. Numer. Anal. 25 (1988), 1313–1326.
35. , Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales, Appl. Anal.

46 (1992), 59–72.
36. P. P. Mojabi and J. LoVetri, Adapting the normalized cumulative periodogram parameter-

choice method to the Tikhonov regularization of 2-D/TM electromagnetic inverse scattering
using Born iterative method , Progress In Electromagnetics Research M 1 (2008), 111–138.

37. R. A. Renaut and H. Guo, Efficient algorithms for solution of regularized total least squares,
SIAM J. Matrix Anal. Appl. 26 (2005), 457–476.

38. T. Schröter and U. Tautenhahn, Error estimates for Tikhonov regularization in Hilbert scales,
Num. Funct. Anal. and Optimiz. 15 (1994), 155–168.

39. D. Sima, S. V. Huffel, and G. H. Golub, Regularized total least squares based on quadratic
eigenvalue problem solvers, BIT Numerical Mathematics 44 (2004), 793–812.

40. U. Tautenhahn, Optimal parameter choice for Tikhonov regularization in Hilbert scales,
Inverse Problems in Mathematical Physics, Lecture Notes in Phys. 422 (Berlin) (L. Päivärinta
and E. Somersalo, eds.), Springer, 1993, pp. 242–250.

41. , Error estimates for regularization methods in Hilbert scales, SIAM J. Numer. Anal.
33 (1996), 2120–2130.

42. , On a general regularization scheme for nonlinear ill-posed problems: II. Regulariza-
tion in Hilbert scales, Inverse Problems 14 (1998), 1607–1616.

43. , Regularization of linear ill-posed problems with noisy right hand side and noisy
operator, J. Inv. Ill-Posed Problems 16 (2008), 507–523.

44. A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems, Wiley, New York, 1977.
45. A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems vol. 1 & 2,

Chapman & Hall, London, 1998.
46. G. M. Vainikko, The discrepancy principle for a class of regularization methods, USSR

Comput. Math. Math. Phys. 22 (1982), 1–19.



ON THE GENERALIZED DISCREPANCY PRINCIPLE 23

47. , The critical level of discrepancy in regularization methods, USSR Comput. Math.
Math. Phys. 23 (1983), 1–9.

48. G. M. Vainikko and A. Y. Veretennikov, Iteration Procedures in Ill-Posed Problems, Nauka,
Moscow, 1986, In Russian.

49. V. V. Vasin, Some tendencies in the Tikhonov regularization of ill-posed problems, J. Inv.
Ill-Posed Problems 14 (2006), 813–840.

S. Lu, Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Altenbergstrasse 69, 4040 Linz, Austria

E-mail address: shuai.lu@oeaw.ac.at

S. Pereverzev, Johann Radon Institute for Computational and Applied Mathe-
matics, Austrian Academy of Sciences, Altenbergstrasse 69, 4040 Linz, Austria

E-mail address: sergei.pereverzyev@oeaw.ac.at

Y. Shao, Department of Mathematics, Chemnitz University of Technology,
09107 Chemnitz, Germany

E-mail address: yuanyuan.shao@s2009.tu-chemnitz.de

U. Tautenhahn, Department of Mathematics, University of Applied Sciences
Zittau/Görlitz, P.O.Box 1455, 02755 Zittau, Germany

E-mail address: u.tautenhahn@hs-zigr.de


