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A MUMFORD-SHAH LEVEL-SET APPROACH FOR THE
INVERSION AND SEGMENTATION OF SPECT/CT DATA

ESTHER KLANN∗, RONNY RAMLAU†, AND WOLFGANG RING]

Abstract. This paper presents a level-set based approach for the si-
multaneous reconstruction and segmentation of the activity as well as
the density distribution from tomography data gathered by an inte-
grated SPECT/CT scanner.

Activity and density distributions are modelled as piecewise constant
functions. The segmenting contours and the corresponding function val-
ues of both the activity and the density distribution are found as min-
imizers of a Mumford-Shah like functional over the set of admissible
contours and – for fixed contours – over the spaces of piecewise constant
density and activity distributions which may be discontinuous across
their corresponding contours. For the latter step a Newton method is
used to solve the nonlinear optimality system. Shape sensitivity calculus
is used to find a descent direction for the cost functional with respect
to the geometrical variabla which leads to an update formula for the
contours in the level-set framework. A heuristic approach for the inser-
tion of new components for the activity as well as the density function
is used. The method is tested for synthetic data with different noise
levels.

1. Introduction

Tomography is a widely used technique in medical imaging. SPECT/CT
is a hybrid imaging technique enabling a direct correlation of anatomical in-
formation from CT (Computerized Tomography) and functional information
from SPECT (Single Photon Emission Computerized Tomography) [3, 4, 14].
An integrated SPECT/CT scanner gathers both the CT data set and the
SPECT data set in one procedure with the patient in the same position.
Hence, it allows a precise overlay of the gathered information. In contrast,
for reconstructions from separately obtained CT and SPECT acquisitions
one always has to deal with motion artefacts, which can markedly affect the
overlay of the sought-after functional and anatomical information. We start
with a brief sketch of the underlying physical phenomena and the mathe-
matical modeling of the considered tomographic techniques.

Computerized Tomography (CT) is used to get information on the mor-
phology of a sample, e.g., in medical imaging a human body or in non-
destructive testing a workpiece. For this, the mass density distribution µ
of the sample is determined from measurements of the attenuation of x-ray
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beams sent through the material from different angles and offsets. The mea-
sured data z are connected to the body density µ via the Radon transform,

z(s, ω) ∼ Rµ(s, ω) =
∫

R
µ(sω + tω⊥) dt , (1.1)

(s, ω) ∈ R × S1, see [35]. To compute the density distribution µ, the equa-
tion Rµ = z has to be inverted. Whereas CT provides structural infor-
mation, Single Photon Emission Computerized Tomography (SPECT) is an
imaging method designed to provide information about the functional level
of a part of the body. SPECT involves the injection of a low-level radioactive
chemical, called radiotracer or radiopharmaceutical into the bloodstream.
The radiotracer travels in the bloodstream and accumulates, e.g., in the
heart or it can be attached to certain types of proteins which are known to
bind to tumor cells. The concentration of the radiopharmaceutical within
the body is referred to as activity distribution f . The radioactive material
ejects photons which travel through the body and interact with the tissue,
modelled as density function µ. Finally the photons are measured outside
the body by a SPECT scanner (a γ-camera). The resulting sinogram data y
is modelled by the attenuated Radon transform,

y(s, ω) ∼ A(f, µ)(s, ω) =
∫
t∈R

f(sω + tω⊥) exp
(
−
∫∞
τ=t µ(sω + τω⊥) dτ

)
dt ,

(1.2)
(s, ω) ∈ R× S1.

We discuss some properties of the Radon and the attenuated Radon trans-
form as well as some solution methods for CT and SPECT. The Radon
transform (1.1) is a linear operator which is bounded as operator from the
Sobolev space Hs(Ω) into the Sobolev space Hs+1/2(S1 × R) and for this
case an inversion formula exists [35]. As an operator between L2-spaces the
Radon transform is compact and the problem of solving Rµ = z from mea-
sured data zδ is ill-posed, hence the Radon inversion formula does not yield
accurate results and regularization methods have to be applied. Probably
the most widely used algorithm for the inversion of x-ray tomography data
is the filtered backprojection method [40, 47].

The attenuated Radon transform (1.2) is linear with respect to the first
argument – the activity f – and non-linear with respect to the second ar-
gument, the density µ. There are several approaches to solve (1.2): For
known density distribution µ the problem reduces to the linear operator
equation Aµf = y and only f is to be determined from the measurements y.
This describes one standard way of dealing with the SPECT problem: it
is assumed that the density µ is known, e.g., from an additional CT scan
as solution of the Radon problem. For the linear attenuated Radon trans-
form Aµ exact inversion formulae exist [32, 36, 50]. In [32, 36] the unknown
quantity f is required to be ‘sufficiently smooth’ (e.g. continuously differ-
entiable f with compact support in [32]), in [50] it is assumed that µ is
constant in the support of f . However, in medical applications, neither the
activity f nor the density µ will fulfill these conditions. Furthermore, due
to the measurement process, the given data will be noisy and hence, also
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for the linear attenuated Radon transform regularization methods have to
be used [19, 28].

We want to remark that although today’s SPECT/CT imaging proce-
dure is based on joint measurements, the reconstruction is still split into
two steps. First, the density µ is reconstructed from the CT-data and sec-
ond, the activity is reconstructed by plugging the reconstructed µ into the
operator A and solving the linear equation Aµf = z, the so-called attenua-
tion correction [14]. This has the disadvantage that the information about
the density µ, which is contained in the SPECT-data, is not taken into
account. Also, an inaccurate reconstruction of the density µ leads to the
use of a wrong operator Aµ, which is yet another source for possibly bad
reconstructions of f .

Also the problem of inverting (1.2) with µ unknown is considered in the
literature: In [27, 34, 53] it is assumed that µ is a variation of a known pro-
totype density distribution, e.g., an affine distortion of a known density µ0.
Methods for approximating both functions f and µ from SPECT data alone
without a prototype density µ can be found in [16, 41, 42].

In the approach presented here we assume that we have two sets of data
from an integrated SPECT/CT device available. But instead of first recon-
structing the density µ and then using it to reconstruct the activity f from
the linear attenuated Radon problem we achieve a simultaneous reconstruc-
tion of both f and µ by minimizing the functional

‖A(f, µ)− yδ‖2L2(R×S1) + β‖Rµ− zδ‖2L2(R×S1) + P(f, µ) . (1.3)

The functional consists of the weighted sum of two discrepancy terms, one
for the SPECT data set y (in the case of noise yδ) and one for the CT data
set z (zδ), and a penalty term P(f, µ) which will be specified soon. The
unknown distributions and the given data are connected via the Radon and
the attenuated Radon transform. When minimizing the functional (1.3), the
first two terms assure that the reconstructions of f and µ are ‘close’ (the
meaning of closeness depends on the amount of noise, the penalty P and the
weights β and α) to the solutions of the equations A(f, µ) = y and Rµ = z.

The penalty term P in (1.3) will be chosen to take into account that in
many practical applications one is not only interested in the reconstructions
of the density and/or activity distribution but also in the extraction of some
specific features within the reconstructions. For example, the planning of
surgery might require the determination of boundaries of inner organs like
liver or lung, the separation of cancerous and healthy tissue and exact infor-
mation about the blood flow or disturbances in the blood circulation like in
the presence of coronary artery disease. In computerized tomography, the
procedure for this usually includes first a reconstruction and – as a second
step – a segmentation of the reconstructed images:

data −→ reconstruction −→ segmentation.

A segmentation of an image can be achieved by local criteria which attempt
to classify image pixels according to their membership to certain regions,
e.g., region growing algorithms [30]. Besides that also deformable interfaces
(active contours, snakes, level-set methods) have been used for image seg-
mentation: a collection of curves (or surfaces for higher dimensional data) is
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introduced and updated such that the curves separate approximately homo-
geneous regions. For this, an energy functional is used which penalizes inho-
mogenities within the distinct regions and which is minimized with respect
to the separating contours. Different energy functionals habe been consid-
ered: elastic energy in connection with edge detectors [6, 13, 22, 26], region
based functionals [24, 25, 39] or Mumford-Shah like functionals [8, 10, 21].
Also for the description of the segmenting curves different geometric models
have been used: parametrized snakes [49] or level-set techniques [37, 46].
For more details on this subject we refer to the monographs [1, 45].

The main drawback of the approach of first reconstructing and then seg-
menting is that the measured data are only used for the reconstruction of
the (density or activity) distribution, but not for the segmentation. As the
quality of the reconstructions is limited due to data noise an image postpro-
cessing [52] might be necessary before segmentation:

data −→ reconstruction −→ image postprocessing −→ segmentation.

Hence, errors in the reconstruction (due to numerical problems, a wrong
choice of regularization parameters or a wrong operator Aµ) will tamper the
image postprocessing and by that also the segmentation.

The main goal of this paper is to achieve a simultaneous reconstruction
and segmentation for the SPECT/CT problem directly from the data. It is a
generalization of the ideas developed in [43] where the authors dealt with the
linear CT problem. We introduce an algorithm that uses both data sets zδ

and yδ, from CT and SPECT, and achieves simultaneously reconstructions
of both f and µ as well as segmentations (Γf ,Γµ) of (f, µ). For this, we
consider the Mumford-Shah like functional

J(f, µ,Γf ,Γµ) = ‖A(f, µ)−yδ‖2L2(R×S1)+β‖Rµ−z
δ‖2L2(R×S1)+α(|Γf |+|Γµ|) ,

(1.4)
i.e., we specify the penalty P in (1.3) to be a multiple of the length of
the segmenting contours Γf and Γµ. The Mumford-Shah functional was
originally designed to identify the set of singularities of a given function
(e.g. a picture) and – simultaneously – to find a smooth approximation
of the function away from the singularities [7, 10, 21, 31]. The classical
Mumford-Shah functional for image segmentation has the form

JMS(y,Γ) = ‖y − yδ‖2 + γ

∫
D\Γ
|∇y|2dx+ β|Γ| .

The MS-like functional (1.4) almost reduces to the classical MS-functional
if we set β = 0 and replace A(f, µ) by the identity operator acting on
the data y, the minimization is then done with respect to (y,Γ) instead
of (f, µ,Γf ,Γµ). The first penalty in the classical Mumford-Shah functional,
namely

∫
D\Γ |∇y|

2dx, assures that the approximation is smooth away from
the singularity set Γ. For medical applications it is reasonable to restrict
the reconstructions to activities f and densities µ which are constant with
respect to a partition of the body, as the tissues of inner organs, bones, mus-
cles have approximately constant density. In (1.4) the minimization is done
over the restricted class of piecewise constant fuctions (and not piecewise
smooth functions as in the case of the classical Mumford-Shah approach).
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For piecewise constant functions, the penalty on the gradient of the recon-
struction vanishes. The piecewise constant variant of the Mumford-Shah
approach is sometimes called Chan-Vese approach [12]. When minimizing
the Mumford-Shah like functional (1.4) the first two terms on the right hand
side assure that the reconstructions fit the given data whereas the penalty
term (|Γf |+ |Γµ|) controls the length of the boundaries of the partitions of
the images.

As discussed in [43], the main difficulty in using a Mumford-Shah like
approach lies in the different structure of the geometric variable (the sin-
gularity set) and the functional variable (the reconstruction) which cannot
be treated easily in a unified way within the framework of nonlinear opti-
mization. To overcome this difficulty we proceed as follows: first, we fix
the geometric variable and minimize the functional with respect to f and µ,
see (2.4a). Second, we fix the functional variable and minimize the func-
tional with respect to the geometry (Γf ,Γµ), see (2.4b), which reduces the
problem to a shape optimization problem [9, 21, 43, 51]. The update of the
geometry is done using the level-set methodology. The combination of level-
set and shape sensitivity techniques was first applied to inverse problems
in [44], other level-set based methods for inverse problems involving shapes
can be found in [2, 5, 11, 17, 18, 20, 23, 29, 38].

2. A piecewise constant Mumford-Shah functional for SPECT

2.1. Problem setting. Suppose we are given noisy data yδ : R × S1 → R
of the attenuated Radon transform of unknown density µ : R2 → R and
activity f : R2 → R functions, i.e.

yδ(s, ω) ∼ A(f, µ) =
∫
t∈R

f(sω + tω⊥) exp
(
−
∫ ∞
τ=t

µ(sω + τω⊥) dτ
)
dt.

Simultaneously we (may) have measured data of the Radon transform of the
density µ:

zδ(s, ω) ∼ Rµ =
∫

R
µ(sω + tω⊥) dt.

Both functions µ and f are supposed to vanish outside a bounded domain
D ⊂ R2. Moreover, we assume that both unknowns are piecewise constant
with respect to (not-identical) partitions of the image domain R2. We ex-
plain what we mean by that for the case of the density function µ. Let us
assume that there exists a finite collection of closed bounded curves Γµ ⊂ R2

which are pairwise disjoint. The function values of µ are supposed to be con-
stant on every connected component of Γµ. The assumption that µ has com-
pact support immediately implies that µ = 0 on the unbounded component
of R2 \Γµ. To represent the bounding curves Γµ we use level-set techniques,
i.e., we assume that Γµ = {x ∈ D : φµ(x) = 0} with a level set function
φµ : D → R. The choice of level-sets for the description of Γµ automat-
ically renders certain topological configurations (triple junctions, crossing
branches) as unfeasible or at least as very singular. The (finitely many)
bounded connected components of R2 \ Γµ are denoted by {Ωµ

i }
n(Γµ)
i=1 with

n(Γµ) ∈ N standing for the number of connected components of R2 \Γµ, not
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counting the unbounded component. We make the same kind of assump-
tions for the activity function f . However, we allow the two functions µ
and f to have different boundary curves Γµ and Γf respectively, and hence
different partitions {Ωµ

i }
n(Γµ)
i=1 and {Ωf

j }
n(Γf )
j=1 of sets with constant function

values.
Let Γ be any finite collection of pairwise disjoint, closed, bounded curves

and let {ΩΓ
i }

n(Γ)
i=1 denote the set of all bounded connected components of

R2 \ Γ. We define the space of piecewise constant functions with respect to
the geometry Γ as

PC(R2 \ Γ) =
{ n(Γ)∑
i=1

αi χΩΓ
i

: αi ∈ R
}

(2.1)

where χΩ denotes the characteristic function of the set Ω. The characteristic
functions {χΩΓ

i
}n(Γ)
i=1 form a basis in PC(R2\Γ). Note that the characteristic

function of the unbounded component of R2\Γ is not an element of the basis.
To simplify notations we define PC(Γ) := PC(R2 \ Γ).

We formulate the objective of the reconstruction problem as to find si-
multaneously the singularity sets Γf , Γµ and the functions f ∈ PC(Γf ), and
µ ∈ PC(Γµ) such that the given data yδ and zδ are fitted best possible in a
least-squares sense. We therefore consider the Mumford-Shah like functional

J(f, µ,Γf ,Γµ) = ‖A(f, µ)−yδ‖2L2(R×S1)+β‖Rµ−z
δ‖2L2(R×S1)+α(|Γf |+|Γµ|),

(2.2)
where |Γf | is the 1-dimensional Hausdorff measure of Γf (and analogously
for |Γµ|). Note that it is not necessary to add a regularization term for f
since — for fixed Γf — the activity f is an element in the finite (usually low)
dimensional space PC(Γf ). It follows that the identification of f from the
data for fixed Γf is well-posed. However, the dependence of the functional
on the geometric variable Γf might be sensitive. For this reason, the length
term α|Γf | is added as a regularization term in the cost functional to guar-
antee well-posedness of the minimization of J with respect to the geometric
variable. The same considerations hold for the density function µ and the
corresponding singularity set Γµ.

2.2. The reduced functional. We introduce the compact notation

Γ = (Γf ,Γµ) and ζ = (f, µ) ∈ PC(Γf )× PC(Γµ) =: PC(Γ) (2.3)

for a pair of feasible geometries and a corresponding pair of activity/density
functions; the Mumford-Shah like functional (2.2) becomes J = J(ζ,Γ).

An algorithm for the minimization of the functional J(ζ,Γ) which updates
both variables Γ and ζ independently is difficult to formulate. This is mainly
due to the fact that the geometry Γ defines the domain of definition for the
functional variable ζ and thus does not allow to treat ζ and Γ as independent.
We therefore choose the following reduced formulation: For fixed Γ solve the
variational problem

min
ζ∈PC(Γ)

J(ζ,Γ). (2.4a)
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Denote the solution by ζ(Γ). With that solve the shape optimization problem

min
Γ
Ĵ(Γ) with Ĵ(Γ) = J(ζ(Γ),Γ). (2.4b)

The following section deals with the numerical treatment of the reduced
formulation (2.4).

3. Minimization Algorithm

We now describe first in overview and later in detail the proposed numer-
ical approach for the minimization of the reduced functional (2.4).

Step 1: Choose an initial estimate Γ0 = (Γf0 ,Γ
µ
0 ) for the geometries.

Step 2: For fixed Γ minimize J with respect to the pair ζ = (f, µ) ∈
PC(Γ) by solving the respective optimality system. Denote the so-
lution by ζ(Γ) = (f(Γ), µ(Γ)).

Step 3: Consider the reduced functional

Ĵ(Γ) = J(ζ(Γ),Γ). (3.1)

Find a descent direction for the functional Ĵ with respect to the
geometric variable Γ.

Step 4: Update Γ by moving it in the chosen descent direction accord-
ing to an appropriate line-search rule. Use a level-set formulation
for the update of the geometry.

Step 5: Check for optimality:
• If the shape gradient is large go to step 2.
• If the shape gradient is small determine the derivative of the

cost functional with respect to the functional variable ζ. If
a significant maximum or minimum exists for the functional
gradient introduce a new component of Γ in the vicinity of the
extremum. Go back to step 2.
• If none of the above holds: terminate the algorithm.

We now present a detailed description of the individual steps of the algo-
rithm.

3.1. Step 2: Solution of the optimality system with respect to f
and µ. For fixed geometric variables Γ = (Γf ,Γµ) we solve the variational
problem

min
f∈PC(Γf )
µ∈PC(Γµ)

‖A(f, µ)− yδ‖2L2(R×S1) + β‖Rµ− zδ‖2L2(R×S1). (3.2)

3.1.1. Optimality system. The following proposition characterizes the solu-
tion to problem (3.2).

Proposition 1. Assume that

f(x) =
n(Γf )∑
i=1

fi χΩfi
(x) and µ(x) =

n(Γµ)∑
k=1

µk χΩµk
(x) (3.3)
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is the solution to (3.2). The corresponding vectors of coefficients are denoted
by f = (fi)

n(Γf )
i=1 and µ = (µk)

n(Γµ)
k=1 . Then f and µ solve the system of

nonlinear equations in Rn(Γf ) × Rn(Γµ):

M(µ)f = r(µ) (3.4a)

F(f ,µ) + βM̃ µ = r̃β(f ,µ) (3.4b)

with
M =

(
mi,j

)n(Γf )

i,j=1
, r =

(
ri
)n(Γf )

i=1
, (3.5)

F = (Fk)
n(Γµ)
k=1 , M̃ = (m̃k,l)

n(Γµ)
k,l=1 , r̃β = (r̃k)

n(Γµ)
k=1 . (3.6)

The terms in (3.5) are

mi,j = 〈A(χ
Ωfj
, µ), A(χ

Ωfi
, µ)〉L2(R×S1)

and
ri = 〈yδ, A(χ

Ωfi
, µ)〉L2(R×S1) . (3.7a)

The terms in (3.6) are

Fk =
〈
A(f, µ), A′f (µ)χΩµk

〉
L2(R×S1)

, (3.7b)

m̃k,l =
〈
RχΩµl

, R χΩµk

〉
L2(R×S1)

(3.7c)

and
r̃k =

〈
yδ, A′f (µ)χΩµk

〉
+ β

〈
zδ, R χΩµk

〉
(3.7d)

where A′f (µ) denotes the (partial) Fréchet derivative of the operator A with
respect to the second variable for fixed f , see Lemma 1.

Lemma 1. For fixed f the (partial) Fréchet derivative of the operator A(f, ·)
with respect to the second variable is(

A′f (µ) ν
)
(s, ω) =

−
∫
σ∈R

ν(sω+σω⊥)
∫ σ

t=−∞
f(sω+tω⊥) exp

(
−
∫ ∞
τ=t

µ(sω+τω⊥) dτ
)
dt dσ.

for all ν ∈ L2(R2).

For the proof of Lemma 1 see Proposition 3 from the appendix.

Proof of Proposition1. The Euler-Lagrange equations for (3.2) are

∂J

∂f
· δf = 0,

∂J

∂µ
· δµ = 0 (3.8)

for all admissible variations δf of f and δµ of µ. Since the characteristic
functions

{χ
Ωfi
}n(Γf )
i=1 and {χΩµk

}n(Γµ)
k=1

form bases in PC(Γf ) and PC(Γµ) respectively, it is sufficient to consider
(3.8) for δf = χ

Ωfi
and δµ = χΩµk

. The first Euler-Lagrange equation in
(3.8) then reads as

〈A(f, µ)− yδ, A(χ
Ωfi
, µ)〉L2(R×S1) = 0 (3.9)
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for all i = 1, . . . , n(Γf ). Since the operator A acts linearly on f (and hence
on f), the optimality condition (3.9) can be written as a finite dimensional
linear system

M(µ)f = r (3.10)

for the vector of unknown coefficients f . The matrix M is given as

M =
(
mi,j

)n(Γf )

i,j=1
with mi,j = 〈A(χ

Ωfj
, µ), A(χ

Ωfi
, µ)〉L2(R×S1) (3.11)

and thus (3.7a) holds. The right-hand side of (3.10) is

r =
(
ri
)n(Γf )

i=1
with ri = 〈yδ, A(χ

Ωfi
, µ)〉L2(R×S1) (3.12)

which proves (3.7a).
We continue with the investigation of the second Euler-Lagrange equation

in (3.8). Taking test-functions in the basis {χΩµk
}n(Γµ)
k=1 we obtain〈

A(f, µ)− yδ, A′f (µ)χΩµk

〉
+ β

〈
Rµ− zδ, R χΩµk

〉
= 0 (3.13)

for all k = 1, . . . , n(Γµ). Acting on the coefficient vectors f and µ, the
optimality condition (3.13) has the form of the non-linear equation

F(f ,µ) + βM̃ µ = r̃β(f ,µ). (3.14)

Here F = (Fk)
n(Γµ)
k=1 with

Fk =
〈
A(f, µ), A′f (µ)χΩµk

〉
, (3.15)

and hence, (3.7b) holds. From (3.13) and (3.14) we conclude that M̃ =
(m̃k,l)

n(Γµ)
k,l=1 with

m̃k,l =
〈
RχΩµl

, R χΩµk

〉
(3.16)

and hence (3.7c). The right-hand side of (3.14) is given as r̃β = (r̃k)
n(Γµ)
k=1

with

r̃k =
〈
yδ, A′f (µ)χΩµk

〉
+ β

〈
zδ, R χΩµk

〉
(3.17)

which shows (3.7d) and concludes the proof. �

3.1.2. Solution method for the optimality system (3.4). The nonlinear opti-
mality system (3.4) is solved with the standard Newton method. We consider
the equivalent problem of finding zeros of

g1 := g1(f ,µ) = M(µ)f − r(µ)

g2 := g2(f ,µ) = F(f ,µ) + βM̃ µ− r̃β(f ,µ) .

Sequences of approximating solutions (fn+1,µn+1) are defined iteratively as
(fn+1,µn+1) := (fn,µn) + (4f ,4µ). We use the shortcut g∗n = g∗(fn,µn).
The correction (4f ,4µ) is found as solution to the linearized system(

A B
C D

)
·
(
4f
4µ

)
=
(
∂fng1

n ∂µng1
n

∂fng2
n ∂µng2

n

)
·
(
4f
4µ

)
= −

(
g1
n

g2
n

)
. (3.18)



10 ESTHER KLANN∗, RONNY RAMLAU†, AND WOLFGANG RING]

To simplify notation, the upper index is supressed in the following. The
entries of the right hand side of (3.18) are

g1i = (M(µ)f − r(µ))i =
n(Γf )∑
j=1

mijfj − ri

(3.7a),(3.7a)
= 〈A(f, µ)− yδ, A(χ

Ωfi
, µ)〉 i = 1, . . . , n(Γf ) ,

g2i =
(
F(f ,µ) + βM̃ µ− r̃β(f ,µ)

)
i

= (F(f ,µ)− r̃β(f ,µ))i + (βM̃ µ)i

(3.15),(3.17)
= 〈A(f, µ)− yδ, A′f (µ)χΩµi

〉 − β〈zδ, RχΩµi
〉+ β

n(Γµ)∑
j=1

m̃ijµj

(3.16)
= 〈A(f, µ)− yδ, A′f (µ)χΩµi

〉+ β〈Rµ− zδ, RχΩµi
〉 i = 1, . . . , n(Γµ) .

The entries of the four-block Newton matrix of (3.18) are

Aij = (∂fg1)ij = (∂fM(µ)f)ij = (M(µ))ij = mij

(3.7a)
= 〈A(χ

Ωfj
, µ), A(χ

Ωfi
, µ)〉 i, j = 1, . . . , n(Γf ) ,

Bij = (∂µg1)ij = (∂µ(M(µ)f − r(µ)))ij = ∂µjg1i

= 〈A′f (µ)χΩµj
, A(χ

Ωfi
, µ)〉+ 〈A(f, µ)− yδ, A′χ

Ω
f
i

(µ)χΩµj
〉

i = 1, . . . , n(Γf ), j = 1, . . . , n(Γµ) ,

Cij = (∂fg2)ij = ∂fjg2i = ∂fj 〈A(f, µ)− yδ, A′f (µ)χΩµi
〉

= 〈A(χ
Ωfj
, µ), A′f (µ)χΩµi

〉+ 〈A(f, µ)− yδ, A′χ
Ω
f
i

(µ)χΩµi
〉 = Bji .

For the last part of the Newton matrix in (3.18) we need to compute a second
derivative of A(f, µ) with respect to the second variable, see Lemma 2. It is

Dij = (∂µg2)ij = ∂µjg2i

= ∂µj

[
〈A(f, µ)− yδ, A′f (µ)χΩµi

〉+ β〈Rµ− zδ, RχΩµi
〉
]

= 〈A′f (µ)χΩµj
, A′f (µ)χΩµi

〉+ β〈RχΩµj
, RχΩµi

〉

+ 〈A(f, µ)− yδ, A′′f (µ)(χΩµi
, χΩµj

)〉 i, j = 1, . . . , n(Γµ) .

Lemma 2. The linearization of A′f (µ)ν with respect to µ is given as

A′′f (µ)(ν, h) =
∫
t∈R

f(sω + tω⊥) exp
(
−
∫∞
τ=t µ(sω + τω⊥)dτ

)
·
(∫∞
τ=t h(sω + τω⊥)dτ

) (∫∞
τ=t ν(sω + τω⊥)dτ

)
dt .

Proof. It is (compare (A.4) from the appendix)

A′f (µ+ h)ν = −
∫
t∈R

f(sω + tω⊥) exp
(
−
∫∞
τ=t(µ+ h)(sω + τω⊥)dτ

)
·
(∫∞
τ=t ν(sω + τω⊥)dτ

)
dt .
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With exp(A(µ+ h)) = exp(Aµ) +Ah exp(Aµ) +O(‖h‖2) it is

A′f (µ+ h)ν = −
∫
t∈R

f(sω + tω⊥) exp
(
−
∫∞
τ=t µ(sω + τω⊥)dτ

)
·
(∫∞
τ=t ν(sω + τω⊥)dτ

)
dt

+
∫
t∈R

f(sω + tω⊥) exp
(
−
∫∞
τ=t µ(sω + τω⊥)dτ

)
·
(∫∞
τ=t h(sω + τω⊥)dτ

) (∫∞
τ=t ν(sω + τω⊥)dτ

)
dt

+O(‖h‖2) .

It follows

A′f (µ+ h)ν −A′f (µ)ν

=
∫
t∈R

f(sω + tω⊥) exp
(
−
∫∞
τ=t µ(sω + τω⊥)dτ

)
·
(∫∞
τ=t h(sω + τω⊥)dτ

) (∫∞
τ=t ν(sω + τω⊥)dτ

)
dt

+O(‖h‖2) .

�

3.2. Step 3: Shape sensitivity analysis of the reduced functional
and choice of the descent direction. We make some assumptions on
the nature of the perturbations of the shape variables Ωf and Ωµ. Using
the level-set representation φµ for the geometry Γµ we define the update of
a geometry Γµ0 in the level-set context as

Γµ(t) = {x ∈ R2 : φµ(x, t) = 0}
where φµ(x, t) is the solution to

φµt + F |∇φµ| = 0 and φµ(x, 0) = φµ0

with Γµ0 = {φµ0 = 0}. The scalar speed function F acts as the direction of
perturbation for the update of the geometry. The connection of the scalar
speed function with a speed vector field v which defines an (up to first order)
equivalent perturbation of the geometry is given by

F (x) = 〈v(x),∇bΓµ(x)〉, (3.19)

for x ∈ Γµ, where bΓµ denotes the signed distance function of the interface
Γµ. In shape sensitivity analysis, expressions of the form 〈v,nΩµi

〉 frequently
occur. Here nΩµi

is the exterior unit normal vector field to the set Ωµ
i . We

set sµi = −sign(φµ(z)) for some z ∈ Ωµ
i for the sign of the component Ωµ

i .
With this, we have

〈v,nΩµi
〉 = sµi F (3.20)

and we can express the directional derivative of a functional at the shape Γµ

in terms of the level-set type speed function F . The analogous specifications
shall hold for the shape variable Γf .

In the following we use some well-known results from shape sensitivity
analysis. The differentiation rules for domain and boundary functionals of
the form

Jd(Ω) =
∫

Ω
gdx and Jb(Γ) =

∫
Γ
hdS
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are given by

dJd(Ω;F ) = sΩ

∫
∂Ω
g F dS and

dJb(Ω;F ) =
∫

Γ
(〈∇h,∇bΓµ〉+ f4bΓµ)F dS .

(3.21)

Here 4bΓ = sΩ ·κ where κ is the mean curvature of Γ, see [15, 22, 48] for
more details. In the following, we apply these rules to the reduced functional
of the SPECT/CT problem, Ĵ(Γ) = Ĵ

(
(Γf ,Γµ)

)
, given as

Ĵ
(
(Γf ,Γµ)

)
=
∫
s∈R

∫
ω∈S1

[ ∫
t∈R

n(Γf )∑
i=1

fi χΩfi
(sω + tω⊥) (3.22)

· exp
(
−
∫∞
τ=t

∑n(Γµ)
k=1 µk χΩµk

(sω + τω⊥) dτ
)
dt− yδ(s, ω)

]2

dω ds

+ β

∫
s∈R

∫
ω∈S1

[ ∫
t∈R

n(Γµ)∑
k=1

µk χΩµk
(sω + tω⊥) dt− zδ(s, ω)

]2

dω ds

+ α(|Γf |+ |Γµ|).

The obvious geometry dependent terms which have to be considered in the
shape derivative are, in the first three rows, the domains of the character-
istic functions, i.e., Ωf

i , Ωµ
k , Ωµ

k , and in the last row, the boundaries of the
domains, i.e., Γf , Γµ (all marked in red in the online version). Also the
vectors f = (fi)

n(Γf )
i=1 and µ =

(
µk
)n(Γµ)

k=1
are geometry dependent as they

are found as solutions to the optimality system described in Proposition 1.
Hence, this dependence must be dealt with in the subsequent shape sensi-
tivity analysis. We shall see, however, that the contribution from the shape
derivatives f ′(Γf ;F ) and µ′(Γµ;G) vanish. The derivative of the reduced
functional Ĵ(Γ) = J(ζ(Γ),Γ) with respect to Γ formally reads as

dĴ(Γ;F ) = ∂ζJ(ζ(Γ),Γ)ζ ′(Γ;F ) + dΓJ(ζ(Γ),Γ;F )

where ∂ζJ denotes the derivative with respect to ζ for fixed Γ, ζ ′(Γ;F ) is the
shape derivative of ζ with respect to Γ in direction F and dΓJ(ζ(Γ),Γ;F )
denotes the Eulerian derivative of J in direction F for fixed ζ.

Recall that f was found as the solution to the optimality system (3.8).
Written as a function of the coefficient vector f the first equation in (3.8)
has the form 〈

∇fJ
(
f ,µ,Γf ,Γµ

)
, f̃
〉

Rn(Γf ) = 0 (3.23)

for all vectors f̃ ∈ Rn(Γf ). The shape derivative of f occurs in the shape
derivative of the reduced cost functional (3.1) as an inner derivative in the
expression 〈

∇fJ
(
f ,µ,Γf ,Γµ

)
, f ′(Γf ;F )

〉
Rn(Γf ) .

This inner product, however, vanishes due to (3.23). The same argument
can be used to show that the shape derivative of the vector µ does not occur
in the shape derivative of the reduced functional.
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For the penalty on the length of the perimeter, the rule (3.21) immediately
applies. The shape derivatives dΓfJ and dΓµJ with respect to Γf and Γµ

are computed in the following.

Lemma 3. Let A∗µ denote the adjoint of the attenuated Radon transform
w.r.t. the first argument. The shape derivative dΓfJA(Γf ;F ) in direction F
of the functional

ĴA(Γf ) = ‖A(f, µ)− yδ‖2L2(R×S1) with f = f(Γf )

is given by

dΓf ĴA(Γf ;F ) = 2
n(Γf )∑
i=1

sfi fi

∫
∂Ωfi

A∗µ
(
A(f, µ)− yδ

)
(x)F (x)dS(x) . (3.24)

Proof. It is

1
2
dΓf ĴA(Γf ;F ) =

〈
A(f, µ)− yδ, dΓf

(
A(f, µ);F

)〉
L2(R×S1)

.

We introduce the shortcut g = A(f, µ)− yδ. Since A(f, µ) is linear in f and
f ∈ PCm it follows

1
2
dΓf ĴA(Γf ;F ) =

n(Γf )∑
i=1

fi
〈
g, dΓf

(
A(χ

Ωfi
, µ);F

)〉
L2(R×S1)

=
n(Γf )∑
i=1

fi

∫
s∈R

∫
ω∈S1

g(s, w)

dΓf

[∫
t∈R

χ
Ωfi

(sω + tω⊥) exp
(
−
∫∞
τ=−t µ(sω + τω⊥)dτ

)
;F
]
dωds .

We want to exchange the order of differentiation (i.e., the shape derivative
dΓf ) and integration for the integration variable s. Doing so, we must ignore
the shape dependence of the term g = A(f, µ) − yδ in the differentiation
even though the term formally appears inside the action of the differential
operator. With the transformation x = sω + tω⊥, i.e., s = 〈x, ω〉 and
t = 〈x, ω⊥〉 respectively, it is

1
2
dΓf ĴA(Γf ;F ) =

n(Γf )∑
i=1

fi

∫
ω∈S1

dΓf

[ ∫
x∈Ωfi

g(〈x, ω〉, ω)

· exp
(
−
∫∞
τ=〈x,ω⊥〉 µ

(
〈x, ω〉ω + τω⊥

)
dτ
)
dx;F

]
dω .
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We now deal with the differentiation of a domain integral over Ωf
i . Applying

the corresponding rule (3.21), we get

1
2
dΓf ĴA(Γf ;F ) =

n(Γf )∑
i=1

sfi fi

∫
x∈∂Ωfi

∫
ω∈S1

g(〈x, ω〉, ω)

· exp
(
−
∫∞
τ=0 µ(x + τω⊥) dτ

)
dω F dS(x)

=
n(Γf )∑
i=1

sfi fi

∫
x∈∂Ωfi

A∗µg (x)F (x)dS(x) .

�

For the Radon transform an equivalent result holds.

Corollary 1. Let R∗ denote the adjoint of the Radon transform. The shape
derivative dΓµ ĴR(Γµ;G) in direction G of the functional

ĴR(Γµ) = ‖Rµ− zδ‖2L2(R×S1) with µ = µ(Γµ)

is given by

dΓµ ĴR(Γµ;G) = 2
n(Γµ)∑
k=1

sµk µk

∫
∂Ωµk

R∗
(
Rµ− zδ

)
(x)G(x)dS(x) . (3.25)

The proof proceeds along similar lines as the proof of Lemma 3 and can
be found in [43].

In Lemma 3 the attenuated Radon transform A(f, µ) was considered with
respect to the linear variable f . The following result is on the (nonlinear)
dependence on the variable µ.

Lemma 4. Let (A′f (µ))∗ denote the adjoint of the Frechet derivative of
the attenuated Radon transform w.r.t. the second argument (the concrete
expression is given in the appendix A.3). The shape derivative dΓµ ĴA(Γµ;G)
in direction G of the functional

ĴA(Γµ) = ‖A(f, µ)− yδ‖2L2(R×S1) with µ = µ(Γµ)

is given by

dΓµ ĴA(Γµ;G) = −2
n(Γµ)∑
k=1

sµk µk

∫
∂Ωµk

(
(A′f (µ))∗(A(f, µ)−yδ)

)
(x)G(x)dS(x) .

(3.26)
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Proof. It is

1
2
dΓµJ(Γµ;G) =

〈
A(f, µ)− yδ︸ ︷︷ ︸

=:g

, dΓµ
(
A(f, µ);G

)〉
L2(R×S1)

=
∫
s∈R

∫
ω∈S1

g(s, ω)

dΓµ

[∫
t∈R

f(sω + tω⊥) exp
(
−
∫∞
τ=t µ(sω + τω⊥)dτ

)
dt; G

]
dωds

=
∫
s∈R

∫
ω∈S1

g(s, ω)∫
t∈R

f(sω + tω⊥) exp
(
−
∫∞
σ=t µ(sω + σω⊥)dσ

)
dΓµ

−∫ ∞
τ=t

n(Γµ)∑
k=1

µkχΩµk
(sω + τω⊥)dτ ; G

 dt dω ds
where we have used the chain rule twice. Keeping in mind that the differ-
entiation w.r.t. the shape variable Γµ is only to be carried out for the Γµ-
dependent terms in the last line, we exchange the order or differentiation
and integration,

1
2
dΓµ ĴA(Γµ;G) = −dΓµ

[ n(Γµ)∑
k=1

µk

∫
s∈R

∫
ω∈S1

g(s, ω)∫
t∈R

f(sω + tω⊥) exp
(
−
∫∞
σ=t µ(sω + σω⊥)dσ

)
∫ ∞
τ=t

χΩµk
(sω + τω⊥)dτ dt dω ds; G

]
.

Exchanging the order of integration for τ and t yields further

1
2
dΓµ ĴA(Γµ;G) = −dΓµ

[ n(Γµ)∑
k=1

µk

∫
s∈R

∫
ω∈S1

g(s, ω)∫ ∞
τ=−∞

∫ τ

t=−∞
f(sω + tω⊥) exp

(
−
∫∞
σ=t µ(sω + σω⊥)dσ

)
χΩµk

(sω + τω⊥)dt dτ dω ds; G
]
.

Substituting x = sω + τω⊥, i.e., s = 〈x, ω〉 and τ = 〈x, ω⊥〉 transforms
the two integrals over s and ω into one integral over R2. As χΩµk

is part
of the integrand it is a domain integral over Ωµ

k and application of the
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differentiation rule (3.21) completes the proof:

1
2
dΓµJ(Γµ;G) = −dΓµ

[ n(Γµ)∑
k=1

µk

∫
x∈R2

χΩµk
(x)
∫
ω∈S1

g(〈x, ω〉, ω)

∫ 0

t=−∞
f(x + tω⊥) exp

(
−
∫∞
σ=t µ(x + σω⊥)dσ

)
dt dω dx;G

]
= −dΓµ

[ n(Γµ)∑
k=1

µk

∫
x∈Ωµk

(
(A′f (µ))∗g

)
(x)dx ;G

]

= −
n(Γµ)∑
k=1

sµk µk

∫
x∈∂Ωµk

(
(A′f (µ))∗g

)
(x)G(x) dS(x) .

�

Proposition 2. For fixed µ let A∗µ denote the adjoint of the attenuated
Radon transform w.r.t. the argument f (see (A.1)). For fixed f let (A′f (µ))∗

denote the adjoint of the Frechet derivative of the attenuated Radon trans-
form A w.r.t. the argument µ (see (A.3)).

With g = A(f, µ) − yδ and h = Rµ − zδ, the shape derivatives w.r.t. Γf

and Γµ of the reduced funtional Ĵ(Γ) = Ĵ
(
(Γf ,Γµ)

)
, see (3.22), are given as

dΓf Ĵ(Γf ;F ) = 2
n(Γf )∑
i=1

sfi fi

∫
x∈∂Ωfi

A∗µg(x)F dS

+ α

∫
Γf
4bΓf F dS ,

(3.27)

dΓµ Ĵ(Γµ;G) = −2
n(Γµ)∑
k=1

sµk µk

∫
x∈∂Ωµk

[
((A′f (µ))∗g)(x)− β R∗h(x)

]
GdS

+ α

∫
Γµ
4bΓµ GdS .

(3.28)

Proof. For the shape derivative w.r.t. Γf we have to compute

dΓf

[
‖A(f(Γf ), µ)− yδ‖2L2(R×S1) + α|Γf | ; F

]
.

Assertion (3.27) follows with Lemma 3 and the differentiation rules (3.21).
For the shape derivative w.r.t. Γµ we have to compute

dΓµ

[
‖A(f, µ(Γµ))− yδ‖2L2(R×S1) + β‖Rµ(Γµ)− zδ‖2L2(R×S1) + α|Γµ| ; G

]
.

Assertion (3.28) follows with Lemma 4, Corollary 1 and the differentiation
rules (3.21). �

4. Numerical Results

In this section the introduced algorithm is applied to numerically gener-
ated SPECT/CT data. The exact activity and density functions are shown
in Figure 1. The piecewise constant activity function f is constructed from
a section through a simplified model of a human heart. Figure 1(left) shows
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Figure 1. Original activity function f and density func-
tion µ. Upper row: true proportion; lower row: zoom into
image section and numbering of the domains.

the blood supply of the myocardal muscle (no.2) and the two ventricles
(no.1 and no.3). The blood supply is interrupted at one point, namely in
the outer left area of the myocardal muscle. This point is not reached by
the radiopharmaceuticum, hence the left ventricle seems to be ‘open’. For
that reason, the outer area (no.1) and the upper cardic ventricle have the
same number and are modeled as one connected domain in the PCm-model.
For the constrcution of the piecewise constant density function µ a section
through a simplified model of a human torso is used: Figure 1(right) shows
spine (no.4), spinal canal no.(5), the lungs (no.3 and no.6), the surrounding
tissue (no.2) and the exterior (no.1). The tomography data is generated
by a Matlab implementation of the Radon operator (1.1) and the attenu-
ated Radon operator (1.2) where 160 samples and 159 directions are used.
The generated data is contaminated by noise (additive for CT, multiplica-
tive for SPECT). Simultaneous reconstructions of the functions f and µ
together with their singularity sets Γf and Γµ are achieved by minimizing
the Mumford-Shah like functional, cf. (1.4),

J(f, µ,Γf ,Γµ) = ‖A(f, µ)−yδ‖2L2(R×S1)+β‖Rµ−z
δ‖2L2(R×S1)+α(|Γf |+|Γµ|)

with respect to the space of piecewise constant functions, cf. (2.1). Results
of the method described in this paper are presented in Figures 2-6 and
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Tables 1-6. The regularization parameter β and α as well as the number of
outer iterations are chosen experimentally to produce visionally best looking
results. Parameter choice rules, stopping criteria and convergence results are
going to be studied in a forthcoming paper. The parameter β is chosen such
that there is an approximate equilibrium between the two discrepancy terms.
The penalty on the length of the boundary is realized by the parameter α. It
might be necessary to adjust the length penalty to quantitatively different
lengths of the boundaries Γµ and Γf . Otherwise it can happen that the
parameter is too large for one entity and too small for the other, meaning
that especially for high noise level one boundary can get out of hand while
the other shrinks more and more and finally vanishes. For that reason, we
modify the penalty term from

α(|Γf |+ |Γµ|) to αf |Γf |+ αµ|Γµ|,
i.e., we weight each singularity set separately.

As the Mumford-Shah like approach achieves a simultaneous reconstruc-
tion of the functions f and µ together with their singularity sets Γf and Γµ

this should be taken into account when assessing the quality of the re-
constructions. In a forthcoming theoretical analysis of the regularization
properties of this method we are going to use a concept of distance that
validates the geometrical difference between the segmented sets as well as
the difference in the set-associated function values. For two measurable sets
Ω1,Ω2 ⊂ D we define the distance

dL1(Ω1,Ω2) = ‖χΩ1 − χΩ2‖L1(D) . (4.1)

As the minimizers of the functional (1.4) are found within the space of
piecewise constant functions we define a distance measure as follows.

Definition 1. For f =
∑m

i=1 αiχΩfi
∈ PCm and g =

∑m
i=1 βiχΩgi

∈ PCm we
define the distance function

dPCm(f, g) = min
σ∈Sm

{
m∑
i=1

(
dL1(Ωf

i ,Ω
g
σ(i)) + |αi − βσ(i)|

)}
where Sm denotes the group of all permutations of the index set {1, . . . ,m}.

As the PCm-distance depends on a normalization in order to balance
the influence of both the geometric error as well as the errors of the func-
tion values, we do not use it here. In Tables 1-6 reconstruction errors are
given for different error levels (δrel = 0, 5, 10, 15, 20%). We present the dL1-
distance (4.1) for each set and the absolute difference in each coefficient
value for both f and µ. Furthermore the relative distances for the sets and
the coefficient values are given.

In Table 1 and Figure 2 we supply the results for exact data (δ = 0)
without penalty on the length (αf = αµ = 0), i.e., we minimize

‖A(f, µ)− y‖2L2(R×S1 + β‖Rµ− z‖ β = 0.01

with respect to the space PCm. This is our reference reconstruction: the
contours of the reconstructed density almost coincide with the original one.
The largest relative error occurs for j = 5 which is the spinal canal and by
far the smallest of the sets.
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Figure 2. ‘Best’ reconstructions for exact data; upper row:
reconstructed activity f and density µ; lower row: contour
plot: exact (light grey) and reconstructed (black dashed) con-
tours. Parameter: δ = 0, β = 0.01, αf = αµ = 0, 80 itera-
tions.

j dL1(Ωf
j ,Ω

freco

j ) dL1(Ωf
j ,Ω

freco

j )/|Ωf
j | fj frecoj |fj − (freco)j |

1 7.8125e-6 0.13% 0 4.6922e-11 4.6922e-11
2 1.1230e-5 11.86% 1e-06 0.9504e-06 4.9580e-08
3 3.4180e-6 7.95% 0 -4.5392e-09 4.5392e-09

j dL1(Ωµ
j ,Ω

µreco

j ) dL1(Ωµ
j ,Ω

µreco

j )/|Ωµ
j | µj µrecoj |µj − (µreco)j |

1 9.0332e-6 0.18% 0 5.4450e-6 5.4450e-6
2 2.1240e-5 2.11% 0.0600 0.0599 6.8860e-4
3 3.6621e-6 1.83% 0.0100 0.0104 4.0080e-4
4 2.1973e-6 8.65% 0.1200 0.1170 3.0431e-3
5 9.7656e-7 16.67% 0.0600 0.0562 3.7557e-3
6 7.3242e-6 10.14% 0.0100 0.0115 1.5071e-3

Table 1. Reconstruction errors for f and µ (cp. Figure 2).
The errors are given separately for functional and geometrical
variables. Parameter values: δ = 0, β = 0.01, αf = αµ = 0,
80 iterations.
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Figure 3. Upper row: Reconstructed f and µ from data
with 5% relative noise; lower row: contour plot: exact (light
grey) and reconstructed (black dashed) contours; parameter
β = 1 · 10−3, αf = 1 · 10−15 and αµ = 1 · 10−14; 70 iterations.

j dL1(Ωf
j ,Ω

freco

j ) dL1(Ωf
j ,Ω

freco

j )/|Ωf
j | fj frecoj |fj − (freco)j |

1 8.3010e-6 0.14% 0 -1.7364e-10 1.7364e-10
2 1.1475e-5 12.11% 1e-06 0.9406e-06 5.9361e-08
3 3.1738e-6 7.39% 0 3.3640e-08 3.3640e-08

j dL1(Ωµ
j ,Ω

µreco

j ) dL1(Ωµ
j ,Ω

µreco

j )/|Ωµ
j | µj µrecoj |µj − (µreco)j |

1 1.1719e-5 0.24% 0 -5.4804e-5 5.4804e-5
2 2.8809e-5 2.86% 0.0600 0.0596 3.4061e-4
3 6.5918e-6 3.29% 0.0100 0.0100 2.2707e-5
4 4.6387e-6 18.27% 0.1200 0.1113 7.0893e-3
5 2.1973e-6 37.50% 0.0600 0.0588 1.2027e-3
6 8.0566e-6 11.15% 0.0100 0.0104 3.8009e-4

Table 2. Reconstruction errors for f and µ from data with
5% relative noise (cp. Figure 3). The errors are given sep-
arately for functional and geometrical variables. parameter
values β = 1 · 10−3, αf = 1 · 10−15 and αµ = 1 · 10−14; 70
iterations.
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Figure 4. Upper row: Reconstructed f and µ from data
with 10% relative noise; lower row: contour plot: exact (light
grey) and reconstructed (black dashed) contours; parameter
β = 1 · 10−3, αf = 1 · 10−15 and αµ = 1 · 10−13; 90 iterations.

The spine and the spinal canal are created by an heuristic insert strat-
egy as introduced in [43]. After a certain number of outer iterations the
functional derivative of f and µ respectively is checked for local maxima. If
there is a significant maximum a new component is inserted at the according
position. For low noise levels this works quite fine. However, the decision
when to call a maximum of the functional derivative ‘significant’ asks for
proper bounds.

With growing data error (δrel = 5, 10, 15, 20%) the reconstructions (Fig-
ures 3-6) change. We discuss this separately for f and µ. The parameter
sets are chosen with emphasis on the reconstruction of the blood supply
of the myocardal muscle, i.e., the activity function f . The reconstructed
heart contours meet the exact contours well for all the given error levels.
Especially the disturbance (interruption) of the blood flow is always recon-
structed. The tables show that the (geometrical) errors of the reconstructed
domains do not change significantly. The errors for the domains Ωf

i are
largest for δ = 10%, Table 3. The chosen parameter set is not optimal yet.

The change in the reconstruction of the density µ with the error level
δrel = 5, 10, 15, 20% is more visible. The boundaries of the sets oscillate
more and more, starting with δ = 15%. For an error level of 20% the
oscillations sometimes split from the original boundary and start to be a
set of their own, see Figure 6. In the reconstruction of µ (upper right), the
additional set is marked with a magnifier glass. The choice of the parameter
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j dL1(Ωf
j ,Ω

freco

j ) dL1(Ωf
j ,Ω

freco

j )/|Ωf
j | fj frecoj |fj − (freco)j |

1 1.0010e-5 0.16% 0 1.2403e-10 1.2403e-10
2 1.3916e-5 14.69% 1e-06 0.9733e-06 0.2667e-07
3 3.9063e-6 9.09% 0 8.0764e-09 8.0764e-09

j dL1(Ωµ
j ,Ω

µreco

j ) dL1(Ωµ
j ,Ω

µreco

j )/|Ωµ
j | µj µrecoj |µj − (µreco)j |

1 1.4160e-5 0.29% 0 3.1e-5 3.0603e-5
2 3.0518e-5 3.03% 0.0600 0.0604 4.2627e-4
3 5.3711e-6 2.68% 0.0100 0.0100 3.6575e-5
4 5.6152e-6 22.12% 0.1200 0.1113 8.6552e-3
5 2.6855e-6 45.83% 0.0600 0.0439 1.6442e-2
6 8.0566e-6 11.15% 0.0100 0.0108 7.7576e-4

Table 3. Reconstruction errors for f and µ from data with
10% relative noise (cp. Figure 4). The errors are given sep-
arately for functional and geometrical variables. parameter
values β = 1 · 10−3, αf = 1 · 10−15 and αµ = 1 · 10−13; 90
iterations.

αµ for the penalty on the length Γµ must be done carefully. On the one
hand we want to prevent the oscillation but on the other hand we want the
small sets Ωµ

4 , the spine, and Ωµ
4 , the spinal canal, to appear and stay (with

αµ too large the small sets do not show up at all or vanish again). The
parameter as chosen in Figures 4-6 already results in a reduced size of the
spinal canal, compare also the large relative errors of the according domain
in Tables 2-6.

Summary: We presented and tested the Mumford-Shah level-set approach
for the simultaneous inversion and segmentation of SPECT/CT data. Ac-
tivity and density function were modelled as piecewise constant functions.
A Mumford-Shah like functional was minimized in turn with respect to the
geometry and the functional values. The algorithm was applied to synthetic
data with different noise levels and produced good results. So far no reg-
ularization results (convergence rate) or parameter choice rules has been
presented. This is the subject of a forthcoming paper.
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Figure 5. Reconstructions from data with 15% relative
noise; Upper row: f and µ; lower row: contour plot: exact
(light grey) and reconstructed (black dashed) contours. Pa-
rameter values β = 1 ·10−3, αf = 1 ·10−15 and αµ = 1 ·10−12;
80 iterations.

j dL1(Ωf
j ,Ω

freco

j ) dL1(Ωf
j ,Ω

freco

j )/|Ωf
j | fj frecoj |fj − (freco)j |

1 8.5449e-6 0.14% 0 2.1510e-10 2.1510e-10
2 1.0742e-5 11.34% 1e-06 1.0098e-06 9.7727e-09
3 2.1973e-6 5.11% 0 2.9699e-08 2.9699e-08

j dL1(Ωµ
j ,Ω

µreco

j ) dL1(Ωµ
j ,Ω

µreco

j )/|Ωµ
j | µj µrecoj |µj − (µreco)j |

1 1.6602e-5 0.34% 0 9.6181e-5 9.6181e-5
2 4.4922e-5 4.45% 0.0600 0.0605 4.8296e-4
3 1.0010e-6 5.00% 0.0100 0.0105 4.8390e-4
4 6.8359e-6 26.92% 0.1200 0.1195 5.3782e-4
5 1.9531e-6 33.33% 0.0600 0.0526 7.3647e-3
6 1.3428e-5 18.58% 0.0100 0.0128 2.7757e-3

Table 4. Reconstruction errors for f and µ from data with
15% relative noise (cp. Figure 5). The errors are given sep-
arately for functional and geometrical variables. Parameter
values: β = 1 · 10−3, αf = 1 · 10−15 and αµ = 1 · 10−12, 80
iterations.
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j dL1(Ωf
j ,Ω

freco

j ) dL1(Ωf
j ,Ω

freco

j )/|Ωf
j | fj frecoj |fj − (freco)j |

1 9.2773e-06 0.15% 0 2.6146e-11 2.6146e-11
2 1.1963e-05 12.63% 1e-06 9.6282e-07 3.7176e-08
3 2.6855e-06 6.25% 0 2.0609e-08 2.0609e-08

j dL1(Ωµ
j ,Ω

µreco

j ) dL1(Ωµ
j ,Ω

µreco

j )/|Ωµ
j | µj µrecoj |µj − (µreco)j |

1 2.4414e-5 0.49% 0 9.6179e-5 9.6179e-5
2 5.6396e-5 5.59% 0.0600 0.0608 7.9090e-4
3 1.1475e-5 5.73% 0.0100 0.0111 1.1123e-4
4 7.5684e-6 29.81% 0.1200 0.1104 9.6088e-3
5 1.9531e-6 33.33% 0.0600 0.0354 2.4582e-2
6 1.4648e-5 20.27% 0.0100 0.0117 1.7443e-3
/ 2.4414e-7 ∞ 0 -0.0783 0.0783

Table 5. Reconstruction errors for f and µ from data with
20% relative noise (cp. Figure 6). The errors are given sep-
arately for functional and geometrical variables. Parameter
values: δ = 0.2, 80 iterations, β = 1 · 10−3, αf = 5 · 10−15

and αµ = 5 · 10−11. For µ one extra set grew in the course of
iteration.

j dL1(Ωf
j ,Ω

freco

j ) dL1(Ωf
j ,Ω

freco

j )/|Ωf
j | fj frecoj |fj − (freco)j |

1 8.5449e-6 0.14% 0 3.1546e-10 3.1546e-10
2 1.1719e-5 12.37% 1e-06 9.9744e-07 2.5622e-09
3 3.1738e-6 7.39% 0 1.7069e-08 1.7069e-08

j dL1(Ωµ
j ,Ω

µreco

j ) dL1(Ωµ
j ,Ω

µreco

j )/|Ωµ
j | µj µrecoj |µj − (µreco)j |

1 2.5879e-5 0.5% 0 9.6181e-5 9.6181e-5
2 6.1768e-5 6.12% 0.0600 0.0605 4.8296e-4
3 1.0742e-5 5.37% 0.0100 0.0105 4.8390e-4
4 7.8125e-6 30.77% 0.1200 0.1195 5.3782e-4
5 1.9531e-6 33.33% 0.0600 0.0526 7.3647e-3
6 1.5137e-5 20.95% 0.0100 0.0103 2.7506e-4
/ 5.1270e-6 ∞ 0 0.0627 0.0627
/ 2.4414e-7 ∞ 0 -0.0863 0.0863

Table 6. Reconstruction errors for f and µ from data with
20% relative noise (no corresponding figure). The errors
are given separately for functional and geometrical variables.
Parameter values: δ = 0.2, 110 iterations, β = 1 · 10−3,
αf = 5 · 10−15 and αµ = 5 · 10−11. For µ two extra sets grew
in the course of iteration.
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Figure 6. Reconstructed f and µ from data with 20% rel-
ative noise; parameter β = 1 · 10−3, αf = 5 · 10−15 and
αµ = 5 · 10−11; 80 iterations. The magnifier glass in the up-
per right picture indicates an additional set which split from
the oscillations of the outer boundary during the course of
the iteration.

Appendix A

Proposition 3. Adjoint operators and Fréchet derivative for the attenuated
Radon transform A : L2(R2)× L2(R2)→ L2(R× S1).

(1) Let µ be arbitrary but fixed. In this case, the attenuated Radon
transform is a linear operator w.r.t. the variable f and is denoted
by Aµ. The adjoint operator A∗µ applied to a function g and evalu-
ated at x ∈ R2 is given as

A∗µg(x) =
∫
ω∈S1

g(〈x, ω〉, ω) exp
(
−
∫ ∞
τ=0

µ(x + τω⊥) dτ
)
dω. (A.1)

(2) Let f be arbitrary but fixed. In this case, the attenuated Radon trans-
form is a nonlinear operator w.r.t. the variable µ and is denoted
by Af . The Fréchet derivative of Af at the point µ is denoted by
A′f (µ), see [16] for more details. The Fréchet derivative applied to a
function ν ∈ L2(R2) and evaluated at (s, ω) ∈ (R× S1) is given as(

A′f (µ) ν
)
(s, ω) =

−
∫
σ∈R

ν(sω+σω⊥)
∫ σ

t=−∞
f(sω+tω⊥) exp

(
−
∫ ∞
τ=t

µ(sω+τω⊥) dτ
)
dt dσ.

(A.2)
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(3) Let f be arbitrary but fixed. The adjoint operator of the Fréchet
derivative A′f (µ) is denoted by (A′f (µ))∗ : L2(R×S1)→ L2(R). The
adjoint operator (A′f (µ))∗ applied to a function g ∈ L2(R× S1) and
evaluated at x ∈ R2 is given as

(
(A′f (µ))∗ g

)
(x) =

∫
ω∈S1

g
(
〈x, ω〉, ω

)
·
(∫ 0

t=−∞
f
(
x + tω⊥

)
exp

(
−
∫ ∞
τ=t

µ
(
x + τω⊥

)
dτ
)
dt

)
dω (A.3)

Proof. The result for the adjoint of the operator Aµ as a linear operator
acting on f ∈ L2(R2) taking values in L2(R× S1) can be found in [33, Sec.
II.6, p. 46ff]. For completeness we present the arguments leading to (A.1).

Using the orthogonal coordinate transformation (s, t) 7→ x(s, t) = sω +
tω⊥ and the corresponding inverse transformation s = 〈x, ω〉, t = 〈x, ω〉⊥
we obtain

〈Aµf, g〉L2(R)×S1

=
∫
ω∈S1

∫
s∈R

∫
t∈R

f(sω + tω⊥) exp
(
−
∫ ∞
τ=t

µ(sω + τω⊥) dτ
)
g(s, ω) ds dω

=
∫
x∈R2

f(x)
∫
ω∈S1

g(〈x, ω〉, ω) exp
(
−
∫ ∞
τ=〈x,ω⊥〉

µ
(
〈x, ω〉ω + τω⊥

)
dτ
)
dω dx

=
∫
x∈R2

f(x)
∫
ω∈S1

g(〈x, ω〉, ω) exp
(
−
∫ ∞
τ=0

µ(x + τω⊥) dτ
)
dω dx

for all f ∈ L2(R2) and g ∈ L2(R, S1). For the last equation we used the
transformation σ = τ + 〈x, ω⊥〉 for the integral in the exponential and sub-
sequently changed the notation from σ back to τ . Thus, (A.1) follows.

Differentiating Af with respect to µ gives

(
A′f (µ) ν

)
(s, ω)

= −
∫
t∈R

f(sω + tω⊥) exp
(
−
∫ ∞
τ=t

µ(sω + τω⊥) dτ
)∫ ∞

σ=t
ν(sω + σω⊥) dσ dt

(A.4)

= −
∫
σ∈R

ν(sω + σω⊥)
∫ σ

t=−∞
f(sω + tω⊥) exp

(
−
∫ ∞
τ=t

µ(sω + τω⊥) dτ
)
dt dσ.

(A.5)
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For the derivation of (A.3) we use (A.5). We find〈
g,A′f (µ) ν

〉
L2(R×S1)

= −
∫
s∈R

∫
ω∈S1

g(s, ω)
∫
σ∈R

ν(sω + σω⊥)

·
(∫ σ

t=−∞
f(sω + tω⊥) exp

(
−
∫ ∞
τ=t

µ(sω + τω⊥) dτ
)
dt

)
dσ dω ds

=
∫
x∈R2

ν(x)
∫
ω∈S1

g
(
〈x, ω〉, ω

)
·

(∫ 〈x,ω⊥〉
t=−∞

f
(
〈x, ω〉ω + tω⊥

)
exp

(
−
∫ ∞
τ=t

µ
(
〈x, ω〉ω + τω⊥

)
dτ
)
dt

)
dω dx

=
∫
x∈R2

ν(x)
∫
ω∈S1

g
(
〈x, ω〉, ω

)
·
(∫ 0

t=−∞
f
(
x + tω⊥

)
exp

(
−
∫ ∞
τ=t

µ
(
x + τω⊥

)
dτ
)
dt

)
dω dx.

Here we used the orthogonal coordinate transformation (s, σ) 7→ x(s, σ) =
sω + σω⊥ with the inverse transformation given by s = 〈x, ω〉, σ = 〈x, ω⊥〉
and we transformed the half-line integrals to the domain (−∞, 0) and (t,∞)
respectively. From this, (A.3) follows.

�
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