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Abstract

Biochemical reaction networks are commonly described by non-linear ODE

systems. Model parameters such as rate and equilibrium constants may be

unknown or inaccessible and have to be identified from time-series measure-

ments of chemical species. However, parameter identification is an ill-posed

inverse problem in the sense that its solution lacks certain stability properties.

In particular, modeling errors and measurement noise can be amplified consid-

erably. These problems can be overcome by the use of so-called regularization

methods. More specifically, parameter identification can be formulated in a

stable way as a minimization problem with a data mismatch and a regulariza-

tion term. On a benchmark problem, we demonstrate the stabilizing effect of

Tikhonov regularization, i.e. we are able to identify the parameters from noisy

measurements in a stable and accurate manner. In the algorithmic realization,

we use the adjoint technique to efficiently compute the gradient of the data

mismatch. Furthermore, we have developed a software package which allows

the identification of parameters in valid SBML models of biochemical reaction

networks.
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1 Introduction

Via the recent progress in the technology of biological data acquisition (in particular

genomics, proteomics, and functional genomics), a wealth of information has become

available at the molecular level. In combination with the flowcharts of biochemical

pathways involved in cellular metabolism that have been revealed by biochemists

over the last few decades, it is now possible to develop comprehensive models of

cellular dynamics. A goal of the discipline Systems Biology is to combine diverse

knowledge from bioinformatics and biochemistry to model the genetic regulation

of cellular dynamics and to understand how function and properties arise from the

network of gene interactions.

In order to construct quantitative and predictive mathematical models of gene regu-

lation, one requires not only the knowledge of network topology but also the reaction

rates (as functions of the chemical species) involved and the values of rate and equi-

librium constants. As opposed to mathematical models in fields such as physics and

engineering where the various constants can often (but not always) be quantified

from direct measurements, in biological systems the in-vivo parameters are usually

inaccessible and need to be inferred from datasets. Thus, the reverse engineering of

gene networks is a crucial step towards the underlying goal of biological discovery

via the systems approach.

There exist many types of mathematical models for biological networks, ranging

from boolean models, ordinary differential equation (ODE) models, stochastic mod-

els to partial differential equation (PDE) models [30]. Our paper is restricted to the

deterministic setting of ODE models, where the inaccessible parameter values are

to be identified from time-course data for the species that can be measured [29, 8].

Driven by the prevalence of such parameter identification problems in the ODE

context, a number of methods and software tools have been developed in the sys-

tems biology community [7, 36, 14, 31, 35, 11]. Amongst the existing methods, the

predominant strategy consists of finding parameter values that minimize the data

mismatch, the discrepancy between the experimental observations and the simu-

lated data. The underlying premise is that the optimal parameter set is one which

gives rise to simulated data that match the experimental observations as much as
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possible. Computationally, the minimization of the objective function may involve

some combination of local and global minimization methods [28, 27].

Although quantitative data is becoming available in biology, due to the difficulty

of in-vivo measurements and the complexity of cellular environments, data error is

inevitable. Faced with the noise present in biological data, one naturally asks the

question: how does the inaccuracy in the measurements propagate back to errors

in the inferred parameters [16, 8, 28, 13]? Parameter identification problems are

typically ill-posed, in particular unstable with respect to the data noise [3]. There-

fore, it is important to consider methods that control the impact of data error on

the identified parameters [19]. For models consisting of a large network of genes,

this issue becomes especially important since the instability of parameter identifica-

tion typically grows with the problem size. Thus, the development of strategies for

identifying parameters in a reliable manner is an important mathematical problem

with significant practical implications.

In this paper, we present mathematical methods from the field of Inverse Problems

to identify unknown parameters in ODE models of cellular processes from noisy

time-series measurements [3]. In particular, we examine a benchmark problem that

has been widely studied in the noise-free case [23, 14, 27, 35]. By adding noise to

the artificial data, we show that such a benchmark parameter identification problem

is in fact highly unstable. Moreover, we demonstrate that Tikhonov regularization

can be effectively used to deal with the presence of data noise.

1.1 Organization of the paper

The paper is intended for systems biologists with mathematical background as well

as for mathematicians who work in systems biology but are not experts in the field

of inverse problems. Therefore, the paper has a partly tutorial character. It is or-

ganized as follows: In Section 2, we define the forward problem of solving an initial

value problem and the inverse problem of identifying parameters from time-series

measurements. As usual, the inverse problem is formulated as a search for minimiz-

ers of the data mismatch. However, the solution of this minimization problem is

unstable, which means that model errors and measurement noise can be amplified
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arbitrarily. On a benchmark problem, we demonstrate the severe effect of measure-

ment noise on the solution of the parameter identification problem. In Section 3, we

suggest the use of regularization methods to overcome the instabilities in parameter

identification. We consider stability and convergence of regularization methods and

discuss strategies for choosing the regularization parameter. On the benchmark

problem, we demonstrate the stabilizing effect of a specific regularization method,

namely Tikhonov regularization. We are able to identify the parameters in a stable

and accurate manner even in the case of noisy measurements. In order to illustrate

the concepts of ill-posedness and regularization, we outline linear inverse problems

in Section 4. In the linear (and finite-dimensional) setting, we can pinpoint the

sources of non-uniqueness and noise amplification and show how Tikhonov regular-

ization can be used to obtain a solution which is unique and stable with respect to

data noise. Moreover, we can estimate the total error consisting of the propagated

data error and the regularization error. After this tutorial section, we return to the

non-linear problem of parameter identification. In Section 5, we briefly discuss local

and global optimization methods and show how the gradient of the data mismatch

(required by local methods) can be computed efficiently. In Section 6, we describe

the implementation of our algorithm; the software package we have developed allows

the identification of parameters (and initial conditions) in valid SBML models of

biochemical reaction networks from noisy measurement data. In the final section,

we draw our conclusions and give an outlook for future work on this subject.
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2 Parameter identification

ODE models are widely used to describe the dynamics of biochemical reaction

networks. In the following, we present mathematical methods from the field of

inverse problems to identify unknown parameters in ODE models from (noisy) time-

series measurements.

2.1 ODE models for biological systems

Before we deal with the inverse problem of parameter identification, we consider the

forward problem of solving an initial value problem. More specifically, we consider an

autonomous ODE system (containing n ODE variables and m parameters) together

with the initial conditions for the ODE variables:

ẏ(t) = f(y(t), x), (1)

y(0) = y0.

Let the vector field f(y, x) be Cr, r ≥ 1, on some open set Uy × Ux with Uy ⊂ R
n,

Ux ⊂ R
m and let (y0, x) ∈ Uy×Ux. Then there is a time interval [0, T ] and a unique

solution y(t), t ∈ [0, T ], to the initial value problem (1), cf. e.g. [33]. Moreover, the

solution y(t) = y(t, y0, x) is a Cr function of y0 and x.

The forward problem consists in solving an initial value problem for given parame-

ters. We define the forward operator,

F : Ux → Cr([0, T ], Uy), (2a)

x 7→ y(t),

as the “solution operator” or “parameter-to-solution-map”. Given any parameter

vector x ∈ Ux, the operator F yields the solution y(t) of the initial value problem

(1). In practical situations, the values of the ODE variables are observed only at

discrete time points 0 = t0, . . . , ti, . . . , tN = T , and the forward operator is to be
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defined as

F : Ux → (Uy)N+1, (2b)

x 7→ (y(t0), . . . , y(ti), . . . , y(tN )).

2.2 Instability in parameter identification

Now we turn to the inverse problem of interest. Given time-series measurements of

(a subset of) the ODE variables y, we want to identify (a subset of) the parameters

x.

If only some parameters have to be identified, then the vector field f(y, x) =

f̃(y, x, x̃) not only depends on the unknown parameters x, but also on the known

parameters x̃, which for instance might represent experimental settings. However,

for notational simplicity, the dependence of the vector field on the known parameters

is not stated explicitly.

In many cases, only some of the ODE variables (or combinations thereof) are mea-

sured. Then, the relation between the n ODE variables y and the k measured

variables z has to be specified. In other words, one has to utilize an observation

operator O : R
n → R

k, y 7→ z. In our benchmark problem, all ODE variables

can be measured, and hence the following formulation of the inverse problem does

not involve an observation operator. However, our considerations can be easily

generalized.

Using the definition of the forward operator F , we can formulate the inverse prob-

lem of identifying the parameters x from time-series measurements yδ of the ODE

variables as a non-linear operator equation

F (x) = yδ (3)

for the unknown x. However, due to model errors and measurement noise, this

problem may not even have a solution, i.e. no parameters x can be found such that

the simulated data y = F (x) and the measured data yδ match. Hence, the problem
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is redefined as a search for minimizers of the data mismatch,

∥
∥F (x) − yδ

∥
∥

2 → min
x
, (4)

which has a solution on an appropriate set of admissible parameters. For given

parameters x, the least squares term ‖F (x)− yδ‖2 quantifies the difference between

the solution of the forward problem y = F (x) and the time-series measurements yδ.

Depending on whether the data are continuous or discrete, the norm ‖.‖ is chosen

accordingly. For continuous data, we choose the L2-norm,

‖y‖L2
=

√
∫ T

0

y(t)⊤y(t) dt, (5a)

but also other choices may be appropriate. For discrete data we choose the l2-norm

(or Euclidean norm),

‖y‖l2
=

√
√
√
√

N∑

k=0

y(tk)⊤y(tk). (5b)

In order to balance the contributions of the individual ODE variables, also weighted

norms are frequently used (for both continuous and discrete data).

If more than one experimental data set is available, then the data mismatch involves

a sum over all nE experiments. Moreover, the individual experiments may have

different settings, i.e. the vector field f(y, x) = f̃(y, x, x̃) may depend on parameters

x̃, which are known but may have different values in the individual experiments. We

write f(i)(y, x) = f̃(y, x, x̃(i)), 1 ≤ i ≤ nE , for the vector fields, F(i) for the resulting

forward operators, and yδ
(i) for the corresponding time-series measurements. Then,

the data mismatch amounts to

nE∑

i=1

∥
∥
∥F(i)(x) − yδ

(i)

∥
∥
∥

2

. (6)

We denote the experiment index by (i), 1 ≤ i ≤ nE , in order to avoid confusion

with the vector index.

As discussed in the introduction, the problem of parameter identification is typically

ill-posed. According to Hadamard, a mathematical problem is called well-posed if

(i) a solution exists (for all admissible data), (ii) the solution is unique (for all
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admissible data), and (iii) the solution depends continuously on the data. If one of

these requirements is not fulfilled, the problem is called ill-posed. On a benchmark

problem, we demonstrate the instability in the identified parameters with respect

to data noise; for a comprehensive mathematical treatment, see e.g. [3].

Benchmark problem

In Section 3, we study a metabolic pathway model which is described by an ODE

system containing 8 variables, 36 parameters, and 2 experimental settings, cf. Table

1(a). Here, we state the ODE for just the first variable:

dG1

dt
=

V1

1 +
(

P
Ki1

)ni1

+
(

Ka1

S

)na1
− k1 ·G1.

In the abstract notation, this corresponds to dy1

dt
= f1(y, x), where y = (G1, . . .) is

the 8-dimensional vector of ODE variables and x = (V1,Ki1, ni1,Ka1, na1, k1, . . .) is

the 36-dimensional vector of parameters. In order to account for the experimental

settings we use the notation f(y, x) = f̃(y, x, x̃) with x̃ = (S, P ).

The details of the benchmark problem (ODEs, initial values, parameters, experi-

mental settings, data generation, minimization problem) will be given in Section 3.

In Figure 1, we show some typical time-series measurements of two ODE variables

for exact data and 5% data noise, and we display the corresponding relative errors

in the identified parameters. While parameters are essentially identified correctly

if exact data are used, using data with 5% relative noise leads to more than 100%

relative error in some of the parameters. The severe effect of measurement noise

demonstrates the ill-posedness of the parameter identification problem.
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Figure 1: Parameter identification for a metabolic pathway model (see Section 3 for
details). The corresponding ODE system contains 8 variables and 36 parameters.
Upper row: typical time-series measurements of two ODE variables (for exact data
and 5% data noise). Lower row: relative error in the identified parameters (for
exact data and 5% data noise).
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3 Regularization

In the previous section, we have defined the solution of the parameter identifica-

tion problem as a minimizer of the data mismatch, cf. problem (4), and we have

numerically demonstrated the instability of such a minimizer with respect to the

data noise. In order to overcome the instability, regularization theory suggests to

augment the data mismatch by a regularization term. In particular, we replace the

minimization problem (4) by a family of nearby problems,

∥
∥F (x) − yδ

∥
∥

2
+ α ‖x− x∗‖2 → min

x
, (7)

where α is the regularization parameter and x∗ is an a-priori estimate for the so-

lution. This approach is known as Tikhonov regularization. The minimization

problem – and consequently its solutions – depends crucially on the regularization

parameter. For α → 0 we get back the unregularized problem; for α → ∞ the

problem has the solution x = x∗, thereby completely ignoring the measured data

yδ.

For general non-linear operators F , the data mismatch need not be convex and

hence there may be global as well as local minimizers. In the following, we will

consider only global minimizers as regularized solutions.

3.1 Theoretical background

Let us consider a scheme which assigns a regularized solution xδ
α to any noisy data

yδ. In the case of linear inverse problems, there are several ways to construct an

operator Rα : yδ 7→ xδ
α using the singular value decomposition of the forward op-

erator. In the non-linear case, there are two main classes of methods for assigning

solutions to data: variational methods, where the regularized solution is obtained as

a minimizer of a functional (as in the case of Tikhonov regularization above); itera-

tive methods, where the regularized solution is the output of an iterative algorithm

and the iteration number plays the role of the regularization parameter [15].

Additionally, let x† be an x∗-minimum norm solution for exact data y, i.e. F (x†) = y

and ‖x† − x∗‖ ≤ ‖x− x∗‖ for all x with F (x) = y, and let δ be an estimate for the

10



noise level, i.e. ‖y − yδ‖ ≤ δ.

Then, the requirements for a regularization operator/scheme are

(i) stability, i.e. continuous dependence of xδ
α on yδ, and

(ii) convergence, i.e. xδ
α → x† as δ → 0 .1

It can be shown [3] that, for convergence, the regularization parameter α has to

depend on the noise level δ. The choice of the regularization parameter α in depen-

dence on the noise level δ and the noisy data yδ is called a paramenter choice rule.

The rule is a-priori if α = ᾱ(δ) and a-posteriori if α = ᾱ(δ, yδ). For a paramenter

choice rule, we require α→ 0 as δ → 0.

If (i) and (ii) are fulfilled,2 then the pair consisting of the regularization opera-

tor/scheme and the parameter choice rule is called a regularization method.

It can be shown [5] that non-linear Tikhonov regularization has indeed a stabilizing

effect in the sense of requirement (i). Moreover, with a suitable choice of α in depen-

dence on (δ, yδ), Tikhonov regularization is convergent in the sense of requirement

(ii). More specifically, α = ᾱ(δ, yδ) has to be chosen such that α→ 0 and δ2/α→ 0

as δ → 0. As a consequence, Tikhonov regularization together with a parameter

choice rule satisfying the above conditions is a regularization method. A possible

parameter choice rule is Morozov’s discrepancy principle, which is discussed below.

The total error between xδ
α (the regularized solution for noisy data) and x† (the

unregularized solution for exact data) can be estimated by the propagated data

error and the regularization error:

‖xδ
α − x†‖

︸ ︷︷ ︸

total error

≤ ‖xδ
α − x0

α‖
︸ ︷︷ ︸

propagated data error

+ ‖x0
α − x†‖

︸ ︷︷ ︸

regularization error

. (8)

The propagated data error measures the effect of the data noise on the regularized

solution, whereas the regularization error measures the effect of the regularization

on the solution for exact data. For α→ 0, the propagated data error explodes (due

1In general, the convergence rate (of xδ
α → x† as δ → 0) can be arbitrarily slow. Still, one can

estimate convergence rates under additional assumptions on the solution x† (for exact data) and
the a-priori estimate x∗. Typically, x†

− x∗ is required to be in the range of a certain operator.
These assumptions are called source conditions, cf. [3].

2In the non-linear case, there may be several global minimizers of the functional. Hence, one
has to define stability and convergence in an appropriate set-valued sense.
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to the instability of the unregularized problem) and the regularization error tends to

zero. For α→ ∞, on the other hand, the propagated data error tends to zero (due

to the damping effect of regularization) and the regularization error dominates. Cf.

Figure 2.
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Figure 2: Dependence of the error terms on the regularization parameter. (Arbi-
trary units.)

Parameter choice rules aim at minimizing the total error, and there exists a variety

of strategies for choosing the regularization parameter. A widely used (a-posteriori)

rule is Morozov’s discrepancy principle [3, p. 83]. It reflects the idea that one should

not try to solve the inverse problem more accurately than the noise level. This

means that one should avoid to match the noise in the data (“over-fitting“). More

specifically, the discrepancy principle chooses the largest α = ᾱ(δ, yδ) such that

‖F (xδ
α) − yδ‖ ≤ τ δ, where τ ≥ 1 is some fixed parameter.

In Section 4, we outline the basic theory of inverse problems in the simple linear

and finite-dimensional setting. There, we illustrate the stabilizing effect of Tikhonov

regularization, in particular, we give estimates for the propagated data error and

the regularization error.

3.2 Tikhonov regularization for the benchmark problem:

Numerical results

In the following, we study the metabolic pathway model depicted in Figure 3, which

has been used as a benchmark problem in [23, 27]. The model describes the trans-

formation of substrate S into product P via the intermediate metabolites M1, M2.
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The enzymes E1, E2, E3 catalyzing the transformation (and the corresponding

mRNAs G1, G2, G3) are produced by 3 genes, which in turn are regulated by the

metabolites. The regulation involves activation as well as inhibition.

Figure 3: The three step biochemical pathway (reproduced from [23]). Solid arrows
represent mass flow, and dashed arrows represent regulation, where → denotes
activation and ⊣ denotes inhibition. Three genes are producing mRNAs G1, G2,
G3 and enzymes E1, E2, E3 to regulate the transformation of substrate S into
product P via the intermediate metabolites M1, M2.

The ODE system describing the dynamics of the model contains 8 variables, 36

parameters, and 2 experimental settings. It is given in Table 1(a). The 8 ODE

variables are the concentrations of the mRNAs, enzymes, and metabolites. Using

the notation of Section 2, we write y = (G1, G2, G3, E1, E2, E3,M1,M2). The 36

parameters can be divided into the following classes: transcription/translation rates

V , equilibrium constants K, Hill coefficients n, degradation rates k, and catalytic

constants kcat. We write x = (V1,Ki1, ni1,Ka1, na1, k1, . . . , kcat3,Km5,Km6). The

concentrations of substrate and product are constant in time, but they are used as

experimental settings. In the notation of Section 2, we write x̃ = (S, P ).
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(a) ODE system

dG1

dt
=

V1

1 +
(

P
Ki1

)ni1

+
(

Ka1

S

)na1
− k1 ·G1

dG2

dt
=

V2

1 +
(

P
Ki2

)ni2

+
(

Ka2

M1

)na2
− k2 ·G2

dG3

dt
=

V3

1 +
(

P
Ki3

)ni3

+
(

Ka3

M2

)na3
− k3 ·G3

dE1

dt
=

V4 ·G1

K4 +G1
− k4 · E1

dE2

dt
=

V5 ·G2

K5 +G2
− k5 · E2

dE3

dt
=

V6 ·G3

K6 +G3
− k6 · E3

dM1

dt
=
kcat1 ·E1 · 1

Km1

· (S −M1)

1 + S
Km1

+ M1

Km2

−
kcat2 · E2 · 1

Km3
· (M1 −M2)

1 + M1

Km3
+ M2

Km4

dM2

dt
=
kcat2 ·E2 · 1

Km3
· (M1 −M2)

1 + M1

Km3

+ M2

Km4

−
kcat3 · E3 · 1

Km5
· (M2 − P )

1 + M2

Km5
+ P

Km6

(b) Initial values

G1 0.66667
G2 0.57254
G3 0.41758
E1 0.4
E2 0.36409
E3 0.29457
M1 1.419
M2 0.93464

(c) Parameters
# name tv lb ub

1 V1 1 10−1 10+1

2 Ki1 1 10−1 10+1

3 ni1 2 10−1 10+1

4 Ka1 1 10−1 10+1

5 na1 2 10−1 10+1

6 k1 1 10−1 10+1

7 V2 1 10−1 10+1

8 Ki2 1 10−1 10+1

9 ni2 2 10−1 10+1

10 Ka2 1 10−1 10+1

11 na2 2 10−1 10+1

12 k2 1 10−1 10+1

13 V3 1 10−1 10+1

14 Ki3 1 10−1 10+1

15 ni3 2 10−1 10+1

16 Ka3 1 10−1 10+1

17 na3 2 10−1 10+1

18 k3 1 10−1 10+1

19 V4 0.1 10−2 10+0

20 K4 1 10−1 10+1

21 k4 0.1 10−2 10+0

22 V5 0.1 10−2 10+0

23 K5 1 10−1 10+1

24 k5 0.1 10−2 10+0

25 V6 0.1 10−2 10+0

26 K6 1 10−1 10+1

27 k6 0.1 10−2 10+0

28 kcat1 1 10−1 10+1

29 Km1 1 10−1 10+1

30 Km2 1 10−1 10+1

31 kcat2 1 10−1 10+1

32 Km3 1 10−1 10+1

33 Km4 1 10−1 10+1

34 kcat3 1 10−1 10+1

35 Km5 1 10−1 10+1

36 Km6 1 10−1 10+1

(d) Experimental settings

S 0.1 0.46416 2.1544 10
P 0.05 0.13572 0.3684 1

Table 1: Three step biochemical pathway. (a) ODE system for the concentrations
of mRNAs G1, G2, G3, enzymes E1, E2, E3, and metabolites M1, M2. (b) Initial
values of the ODE variables. (c) List of parameters: true values, tv, for generating
the experimental data; lower and upper bounds, lb and ub, for generating a random
initial guess. (d) Experimental settings: 4 concentrations of substrate and product,
S and P respectively, for generating 4 × 4 = 16 experiments.
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Data generation

The ”experimental“ data are generated by numerical integration of the ODE system

using the initial values given in Table 1(b), the ”true“ parameter values given in

Table 1(c), and the experimental settings given in Table 1(d). As already mentioned,

the concentrations of substrate and product serve as experimental settings. More

specifically, we choose 4 values of S and P , respectively, and combine them to

generate a total of 16 experimental data sets. Each time integration runs from 0

to 120 s with measurements every 6 s, which means that we obtain 20 data points

for each ODE variable. The time-series are denoted by y(i), 1 ≤ i ≤ 16. In order

to generate noisy data yδ
(i), we add Gaussian noise nδ

(i) to the exact data y(i). We

choose a relative noise level of 5%, i.e. ‖nδ
(i)‖/‖y(i)‖ = 5%. In Figure 4, we show

exact and noisy data for a particular choice of the experimental settings.
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Figure 4: Experimental data generated by forward integration of the ODE system
given in Table 1(a) using initial values given in Table 1(b), ”true“ parameter values
given in Table 1(c), and experimental settings S = 0.1 and P = 1. Left: exact data.
Right: data after adding 5% noise.

Minimization problem

The inverse problem consists of identifying all m = 36 parameters from time-series

measurements of all n = 8 ODE variables. In the following, we use the first 8 of the

16 generated time-series as experimental data sets, i.e. yδ
(i) with 1 ≤ i ≤ 8 = nE .

As discussed in the theoretical part of this section, we identify the parameters x by

minimizing the sum of the data mismatch and the regularization term,

nE∑

i=1

∥
∥
∥F(i)(x) − yδ

(i)

∥
∥
∥

2

+ α ‖x− x∗‖2 → min
x
. (9)
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Here, the data mismatch involves a sum over the experiments. The use of the for-

ward operators F(i), 1 ≤ i ≤ 8 = nE , reflects the different experimental settings

being considered. The minimization is carried out for fixed choices of the regular-

ization parameter α and the a-priori estimate x∗. In the following, we choose x∗ = 0

thereby seeking solutions with minimal l2-norm.

The minimization process starts by generating a random initial guess for the 36-

dimensional parameter vector x, where each component of x has to be between

the lower and upper bound specified in Table 1(c). This means that xi ∈ [lbi, ubi]

for i = 0, . . . ,m. To be specific, we use the interval [10−2, 10+0] for the parameters

V4, k4, V5, k5, V6, k6 and [10−1, 10+1] for all other parameters. Thus, each component

of the initial guess for x may vary over 2 orders of magnitude.

As an illustration of our numerical results, we show the minimization history of

the objective function and the average parameter error. In order to balance the

contributions of the individual ODE variables (for each of the experiments), we

modify the data mismatch term in (9). We use a weighted norm and define the

objective function as

nE∑

i=1

n∑

j=1

‖F(i)j(x) − yδ
(i)j‖2

‖yδ
(i)j‖2

+ α ‖x‖2 (10)

where F(i)j and yδ
(i)j refer to the jth ODE variable (for the ith experiment). The

average parameter error between the current values x and the true values xtv is

defined as

1

m

m∑

i=1

|xi − xtv
i |

|xtv
i | . (11)

More precisely, this is the average over the absolute values of the relative param-

eter errors. In addition, we display the individual relative errors in the identified

parameters.

Noise amplification

The following numerical results demonstrate the severe effect of measurement noise

on the problem of parameter identification. The objective function to be minimized

consists of the data mismatch only, i.e. we do not use any regularization (α = 0).
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In Figure 5, we show the minimization history of the data mismatch and the av-

erage parameter error for exact data and 5% data noise. Furthermore, we display

the individual relative errors in the identified parameters. (The bar charts have al-

ready been displayed in Figure 1.) For exact data, the average relative error in the

identified parameters is less then 1%, whereas for only 5% data noise, the relative

error in some of the parameters is larger than 100%. These results motivate the use

of regularization.
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Figure 5: Parameter identification (without regularization) for exact and noisy

data. Upper row: minimization history of the objective function and the average

parameter error (for exact data and 5% data noise). Lower row: relative error in

the identified parameters (for exact data and 5% data noise).

The stabilizing effect of regularization

Below, we present numerical results demonstrating the stabilizing effect of Tikhonov

regularization on the problem of parameter identification. The objective function

to be minimized consists of the data mismatch and the regularization term, cf. (10).

17



In Figure 6, we show the minimization history of the objective function and the

parameter error for 5% data noise. On the left, we once again display the results

using no regularization (α = 0), but for the purpose of comparison, we use a dif-

ferent scale. As is typically observed, a decrease in the objective function need not

be accompanied by a decrease in the parameter error. On the right, we display

the results using Tikhonov regularization with α = 10−5. (For the choice of the

regularization parameter, see below.) In the bar chart, we compare the individual

relative errors in the identified parameters which have been obtained by using either

no regularization or Tikhonov regularization. The noise amplification in individual

parameters is damped considerably by using regularization.

0 100 200 300
Iteration

1e-02

1e-01

1e+00

1e+01

O
bj

ec
tiv

e 
fu

nc
tio

n,
 A

ve
ra

ge
 p

ar
am

et
er

 e
rr

or

Obj. fun.
Avg. par. err.

Without regularization
( α = 0 )

0 50 100 150 200
Iteration

1e-02

1e-01

1e+00

1e+01

O
bj

ec
tiv

e 
fu

nc
tio

n,
 A

ve
ra

ge
 p

ar
am

et
er

 e
rr

or

Obj. fun.
Avg. par. err.

With regularization
( α = 1e-05 )

0 5 10 15 20 25 30 35
Parameter #

-100

-50

0

50

100

150

200

R
el

at
iv

e 
er

ro
r 

(i
n 

%
)

w/o reg.
with reg.

Figure 6: Parameter identification for 5% data noise. Upper row: minimization

history of the objective function and the parameter error. Left: no regularization

(α = 0). Right: Tikhonov regularization with α = 10−5. Lower row: relative error

in the identified parameters (without and with regularization).
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The choice of the parameter α is a crucial issue for Tikhonov regularization. As

we have seen in the theoretical part of this section, there exists a minimum of the

total error as a function of the regularization parameter. In Figure 7, we show the

corresponding numerical results, i.e. the average parameter error for several values

of α. This figure numerically confirms Figure 2.
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Figure 7: Parameter identification for 5% data noise using Tikhonov regularization.

Average parameter error for several values of the regularization parameter.

In order to illustrate the effect of near optimal regularization, we have picked a

parameter close to the best choice (as suggested by Figure 7). In practical problems

(where the solution for exact data is not known), a plot as in Figure 7 is not available.

Hence, parameter choice rules (such as Morozov’s discrepancy principle [3, p. 83])

have to be used in order to determine the regularization parameter which minimizes

the total error.
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4 Illustration in the linear setting

Linear inverse problems can be analyzed more easily than general non-linear prob-

lems since one can use the singular value decomposition of the forward operator. In

the finite-dimensional case, even simple methods from linear algebra suffice to pin-

point the sources of non-uniqueness and noise amplification and to illustrate the ef-

fect of Tikhonov regularization. Ill-posedness (in the sense of violating Hadamard’s

third criterion) is an infinite-dimensional effect, which can, however, cause numeri-

cal instabilities in finite-dimensional approximations.

In the following, we study inverse problems in the linear and finite-dimensional

setting. In this case, the application of the forward operator F (x) is just a matrix

multiplication Ax. As in the non-linear setting, one looks for a minimizer of the

least squares error:

‖Ax− y‖2 → min
x
, (12)

where x ∈ R
m, y ∈ R

n, and A ∈ R
n×m. A necessary condition for a minimizer is a

zero gradient. Taking the derivative of ‖Ax− y‖2
with respect to x and setting it

to zero yields the so-called normal equation

A⊤Ax = A⊤y. (13)

Since ‖Ax− y‖2 is convex as a function of x, this condition is also sufficient.

4.1 Non-uniqueness and noise amplification

If the matrix A⊤A is invertible, then the normal equation (13) – and equivalently

the minimization problem (12) – has the unique solution x = (A⊤A)−1A⊤y. If

the matrix A⊤A is not invertible, then there are infinitely many solutions of the

normal equation. Among these one usually chooses the minimal norm solution x†,

i.e. ‖x†‖ ≤ ‖x‖ for all solutions x of the normal equation.

But even if there is a unique solution, we may face the problem of noise amplification,

since usually we have noisy data yδ instead of exact data y. Let A⊤A be invertible,

xδ be the unique solution for noisy data, and x be the unique solution for exact
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data. Then, we can estimate

‖xδ − x‖ ≤ 1

σmin
‖yδ − y‖, (14)

where σmin = σmin(A) is the smallest singular value of the matrix A.

This and the following estimates can be easily derived using the normal equation

(for exact or noisy data) and the Cauchy-Schwarz inequality. We note that the

singular values σi of a matrix A are the square-roots of the positive eigenvalues λi

of the matrix A⊤A, i.e. σi(A) =
√

λi(A⊤A) > 0.

The estimate (14) is sharp; the inequality becomes an equality if the noise occurs

in a certain direction (more specifically, in the direction of the right singular vector

belonging to the smallest singular value). This illustrates the problem of noise

amplification in the presence of small singular values. For σmin ≪ 1, even a small

error yδ − y in the data may lead to a significant error xδ − x in the solution; the

noise can be amplified by as much as 1/σmin.

Clearly, non-uniqueness is a violation of Hadamard’s second criterion for well-

posedness. The observed noise amplification, on the other hand, is not a violation

of Hadamard’s third criterion in the strict sense. A finite dimensional linear inverse

problem is never ill-posed in the sense that the solution does not depend contin-

uously on the data, but for very small singular values this situation is certainly

approached.

4.2 Tikhonov regularization and error estimates

In our linear inverse problem, non-uniqueness is caused by a non-invertible ma-

trix A⊤A and noise amplification is caused by small singular values. The crucial

idea behind regularization is to approximate the original (ill-posed) problem by a

family of (well-posed) neighboring problems. Using Tikhonov regularization, the

minimization problem is reformulated as

‖Ax− y‖2
+ α ‖x‖2 → min

x
, (15)
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where α > 0 is the regularization parameter. Solving the minimization problem

(15) is equivalent to solving the regularized normal equation

(A⊤A+ α I)xα = A⊤y, (16)

where we use the notation xα to indicate the dependence of the solution on the

regularization parameter.

The matrix A⊤A+α I has only positive eigenvalues and hence is invertible. (Since

λi(A
⊤A+α I) = λi(A

⊤A)+α > 0.) Consequently, the regularized normal equation

has the unique solution xα = (A⊤A + α I)−1A⊤y. At the same time, noise ampli-

fication is damped, which can be seen from the following estimates. We first deal

with the propagated data error between the regularized solutions xδ
α (for noisy data

yδ) and xα (for exact data y):

‖xδ
α − xα‖ ≤ 1

2
√
α
‖yδ − y‖. (17)

Next, we estimate the regularization error between the regularized solution xα and

an unregularized solution x (both for exact data y):

‖xα − x‖ ≤ α

(σ2
min + α)σmin

‖y‖. (18)

Now, we assume that the data noise is bounded by

‖yδ − y‖ ≤ δ, (19)

and conclude that ‖y‖ ≤ ‖yδ‖ + δ. Then, by the triangle inequality, the total error

can be estimated by

‖xδ
α − x‖ ≤ ‖xδ

α − xα‖ + ‖xα − x‖ (20)

≤ 1

2
√
α
δ +

α

(σ2
min + α)σmin

(
‖yδ‖ + δ

)
.

For fixed noise level δ, the two error terms exhibit different qualitative behavior

with respect to the regularization parameter α, cf. Figure 2. For increasing α, the

propagated data error is decreasing, while the regularization error is increasing.
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Hence, there exists an α = ᾱ(δ, yδ), which minimizes the total error. As discussed

in the theoretical part of Section 3, the choice of regularization parameter α in

dependence on the noise level δ and the noisy data yδ is called parameter choice

rule. An a-priori choice, α = ᾱ(δ), will not depend on the specific data, but on

the noise level only. An a-posteriori choice, α = ᾱ(δ, yδ), changes the regularization

parameter for each specific data.

4.3 A numerical example

To give an illustration of the instability of linear inverse problems, we consider a

3-dimensional linear ODE system. The example is motivated by a biological system

called the repressilator [2, 24]. The repressilator is a regulatory cycle of 3 genes

where each gene represses its successor in the cycle. The model involves basal gene

expression (b), repression (r), and degradation (d). The corresponding linear ODE

system (a simplified and linearized version of the general non-linear system) is given

by

ẏ(t) = Jy(t) + k, (21)

y(0) = y0,

where

J =









−d 0 −r

−r −d 0

0 −r −d









, k =









b

b

b









.

If we choose d = 1 and r = 2, then the eigenvalues of the Jacobian J can be

computed to be {−3,−
√

3 i,+
√

3 i}. Thus, there are two imaginary eigenvalues

leading to oscillations and one negative eigenvalue leading to exponential decay.

We complete the problem specification by choosing b = 3 and y0 = (2, 1, 1)⊤ and

obtain the time-series depicted in Figure 8.

The initial value problem (21) can be solved analytically (using the matrix expo-

nential of Jt):

y(t) = eJt

︸︷︷︸

B

y0 + (eJt − I)J−1 k
︸ ︷︷ ︸

c

. (22)
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That is, the (affine) operator mapping the initial condition y0 to the solution y(t)

involves the matrix B = eJt and the constant vector c (arising from a non-zero

vector k).

While the forward problem of solving the ODE system for given initial conditions is

stable, the inverse problem of inferring the initial conditions y0 from measurements

at some later time, y(t̄ ), is highly unstable. At time t̄ = 4, the singular values of

matrix eJt̄ are {6 · 10−6, 1, 1}. Due to the smallness of σmin = 6 · 10−6, we expect

a tremendous amount of noise amplification.

Suppose we add measurement noise nδ to the exact data y(t̄ ) in order to obtain

noisy data yδ(t̄ ) = y(t̄ ) + nδ. The solution of the inverse problem can again be

expressed analytically, which yields the following error between the solution yδ
0 for

noisy data yδ(t̄ ) and the solution y0 for exact data y(t̄ ):

yδ
0 − y0 = e−Jt̄

(
yδ(t̄ ) − y(t̄ )

)

Let us assume a measurement noise of nδ = δ · (1, 0, 0)⊤ with a noise level of

δ = 10−2. Now, we can plot the norm of the error as a function of the measurement

time. In the left plot of Figure 8, we see an exponential growth in the error with

respect to the measurement time.

As discussed in the previous section, the instability of this linear inverse problem

can be treated with Tikhonov regularization (or other regularization methods, see

e.g. [3]). We choose a regularization parameter of α = 10−2, and plot the norm of

the error again. In the right plot of Figure 8, we see that the exponential growth in

the error has been removed by the use of regularization. (Also note the difference

in scales.) Since the noise amplification is damped, the initial conditions can be

recovered in a stable manner.
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Figure 8: Identification of initial conditions from measurements at a later time for
the repressilator (see text for details). The dynamics is modeled by a 3-dimensional
linear ODE system. Upper row: typical time-series for the 3 ODE variables. Lower
row: error in the identified initial conditions (for 1% measurement noise) as a
function of the measurement time. Left: without regularization (α = 0). Right:
with regularization (α = 10−1).
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5 Back to the non-linear problem: Algorithm

As we have seen in Section 3, the inverse problem of parameter identification from

noisy measurements can be formulated in a stable way as a minimization problem

with a data mismatch and a regularization term, cf. (7). In the following, we briefly

discuss local and global optimization methods and show how the gradient of the

data mismatch (required by local methods) can be computed efficiently.

5.1 Local and global optimization

In general, there are two main classes of methods to solve an optimization problem:

local and global methods. Local search techniques [25] are often gradient-based, i.e.,

they use in some way the direction of steepest descent of the functional. For many

local optimization algorithms convergence results are known; in particular, it can

be proved that, provided certain conditions are satisfied, from a sufficiently close

starting point the search converges to a local minimum. Global search techniques

[12], on the other hand, strive for a global optimum. They comb through the

search space following deterministic, stochastic, or combined strategies. Clearly,

the size and dimension of the search space limit the efficiency of global optimization

algorithms.

In order to obtain an algorithm which is efficient and converges to the global opti-

mum, one often combines local and global methods [28, 27]. In this way, one joins

the rapid convergence of local search techniques with the comprehensive nature of

global search techniques. In an outer loop, the global algorithm locates a solution

in the vicinity of the global optimum, whereas in the inner loop, the local algorithm

refines a given solution up to a certain precision.

In this study, we focus on the instability of the unregularized problem of parameter

identification and the stabilizing effect of Tikhonov regularization. In particular,

we attempt to avoid the issue of non-uniqueness. For this purpose, we ensure that

the random initial guess of the minimization problem is in the vicinity of the global

minimum. In particular, we specify appropriate intervals for all parameters to be

identified. Under these conditions, local optimization methods are sufficient to find

the global minimum.
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5.2 Efficient gradient computation

Local optimization algorithms require the gradient of the objective function. The

gradient of the regularization term is obvious, hence below we consider the gradient

of the data mismatch only. As an approximation, the gradient of

J(x) = ‖F (x) − yδ‖2 (23)

could be easily computed by the finite difference method,

(∇J(x))i ≈
J(x+ ǫei) − J(x)

ǫ
, i = 1, . . . ,m, (24)

with ǫ ≪ 1 and ei denoting the i-th unit vector in R
m. This computation involves

m + 1 evaluations of J(x) and hence as many evaluations of the forward operator

F (x) thereby requiring the solution of m + 1 initial value problems. This effort

would be necessary in each step of the optimization process thereby making this

approach quite inefficient.

The computational disadvantage of finite difference and related methods can be

avoided if the gradient ∇J(x) is provided by means of the adjoint technique. We

start by introducing the notation δx for small variations in the parameters. The

resulting linearized variations in the solution y = F (x) of the initial value problem

(1) amount to

δy = F ′(x) δx, (25)

where F ′(x) is the derivative of the forward operator. More specifically, the def-

inition of F ′(x) involves the differentiation of the initial value problem (1) with

respect to the parameters x and thus requires the solution of m linear initial value

problems. However, as we will see below, we need not evaluate the derivative of the

forward operator.

In the following we assume continuous data and use the L2-norm, i.e.

J(x) =

∫ T

0

(F (x) − yδ)2 dt. (26)
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Introducing a Lagrange multiplier ψ for the ODE constraint, we form the functional

L(y, x) =

∫ T

0

(y − yδ)2 dt+

∫ T

0

ψ⊤(ẏ − f(y, x)) dt. (27)

For the solution y = F (x) of the initial value problem (1), the second term vanishes

and we have L(F (x), x) = J(x). We use integration by parts

∫ T

0

ψ⊤ẏ dt = ψ⊤y
∣
∣
∣

T

0
−

∫ T

0

ψ̇⊤y dt

and obtain

L(y, x) =

∫ T

0

(y − yδ)2 dt+ ψ(T )⊤y(T ) − ψ(0)⊤y0 −
∫ T

0

ψ̇⊤y dt

−
∫ T

0

ψ⊤f(y, x) dt.

The variation δL due to variations δy, δx amounts to

δL =

∫ T

0

2 (y − yδ)⊤ δy dt+ ψ(T )⊤δy(T )−
∫ T

0

ψ̇⊤δy dt

−
∫ T

0

ψ⊤(fy(y, x) δy + fx(y, x) δx) dt.

After collecting terms containing δy or δx, we have

δL =

∫ T

0

(

2 (y − yδ)⊤ − ψ̇⊤ − ψ⊤fy(y, x)
)

δy dt+ ψ(T )⊤δy(T ) (28)

−
∫ T

0

ψ⊤fx(y, x) dt δx.

Now, let the Lagrange multiplier ψ satisfy the so-called adjoint equations:

ψ̇(t) = − fy(y(t), x)
⊤ψ(t) + 2 (y(t) − yδ(t)), (29)

ψ(T ) = 0.

This is a linear ODE system with a terminal condition, i.e., a linear terminal value

problem. Then, using (29) in (28), the variation δL does not depend on δy, i.e.

δL = Lx δx. Additionally, we have δL = δJ (for y = F (x)) and δJ = ∇J δx (by
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definition). Hence, we can directly read off the gradient ∇J = Lx from (28):

∇J(x) = −
∫ T

0

ψ(t)⊤fx(y(t), x) dt. (30)

This means that after solving the non-linear initial value problem (1) and the linear

terminal value problem (29), we can calculate the gradient by a simple integration

over time. As a consequence, gradient calculations become essentially independent

of the number of parameters. From (24) we know that, using the finite differ-

ence method, one has to solve as many non-linear initial value problems as there

are parameters to be identified. Using the adjoint technique, one can avoid this

computational effort.

We conclude this section by summarizing our algorithm: (i) we formulate the prob-

lem of parameter identification as a minimization problem for the sum of the data

mismatch and a regularization term (Tikhonov regularization); (ii) provided that

the initial guess is in the vicinity of the global minimum, we apply local (gradient-

based) optimization methods to find the global minimum; otherwise, we combine

local and global optimization methods; (iii) in order to compute the gradient of the

data mismatch efficiently, we use the adjoint technique. This algorithm has been

applied to obtain the results presented in Section 3. In the next section, we describe

the implementation of the algorithm.

6 Software

We have developed a software package, which allows the identification of parameters

and initial conditions in ODE models of biochemical reaction networks. The mod-

els can be given either as explicit ODE systems or as reaction networks specified

in the Systems Biology Markup Language (SBML) [6] in which case the resulting

ODE systems are constructed automatically. Additionally, the problem specification

includes a list of unknown parameters and initial conditions (with corresponding

lower and upper bounds) and the measured data. The data can be measured either

continuously or at discrete time points.

The problem of parameter identification is formulated as a minimization problem for
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the sum of the data mismatch and a regularization term (Tikhonov regularization).

In order to solve the minimization problem, we combine local and global optimiza-

tion methods. In an outer loop, we have implemented a global method called Scatter

Search [27] to locate a solution in the vicinity of the global optimum, whereas in

the inner loop, our software uses the package Interior Point Optimizer (Ipopt) [32]

to refine the solution by employing gradient-based methods. Any gradient-based

optimizer requires the evaluation of the functional and the computation of its gra-

dient. In our package, the values of the functional and its gradient are provided by

the forward and adjoint solvers of the SBML ODE Solver library (SOSlib) [22, 20].

SOSlib is a C/C++ programming library for the symbolic and numerical analysis

of ODE systems derived from biochemical reaction networks encoded in SBML.

It is written in ANSI/ISO C and distributed under the terms of the GNU Lesser

General Public License (LGPL). The package employs libSBML’s abstract syntax

tree representation of mathematical formulas to construct the vector field of the

ODE system from the reaction network. It also permits the symbolic differentiation

of the vector field in order to obtain expressions for the Jacobian matrix and other

derivatives. The numerical integration of the resulting ODE systems is performed

by the CVODES solver from the SUNDIALS suite [10].

Recent efforts in the development of SOSlib have been focused on extensions that

allow to address not only forward problems but also inverse problems associated

with biochemical reaction networks [20]. In particular, we have extended SOSlib

with capabilities to solve adjoint equations. This allows the efficient computation of

the gradient of the functional, which in turn facilitates the computationally efficient

identification of model parameters and initial conditions from experimental data.
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7 Conclusions and outlook

The identification of parameters from noisy data is a challenging problem, due to

its ill-posedness. Via numerical examples and linear theory, we have illustrated the

nature of instability in such an inverse problem; a small error in the data can result

in a significant error in the parameters.

On a benchmark problem, we have shown that Tikhonov regularization allows one

to remedy the ill-posedness of parameter identification. In particular, by choosing

the regularization parameter appropriately based on the knowledge of a bound for

the data noise, parameters can be identified in a stable and accurate manner.

There remain several topics for further research. In particular, we have so far only

looked at identifying scalars in ODE systems; but in some situations, one would like

to identify functions of ODE variables. For instance, in some biochemical applica-

tions one would like to determine the functional dependence of the reaction rates on

the species concentrations instead of using finite-dimensional parameterizations such

as Michaelis-Menten kinetics or Hill-functions. This leads to infinite-dimensional,

possibly severely ill-posed inverse problems where choosing an appropriate regular-

ization method is especially important [17, 18].

In this paper, we have only used the Euclidean norm of the parameters in the

regularization term; but there are other regularization terms that may be more ap-

propriate in other applications. For instance, one may want to identify the topology

of a gene regulatory network. Starting from a completely connected network, one

looks for the smallest network that is consistent with the data. Alternatively, one

may have a-priori knowledge about the parameters values (from literature) and be-

lieves that only a few of them are actually inaccurate. In these situations, the use

of sparsity-promoting regularization can be used to identify parameter sets of small

cardinality [1, 26, 21, 34].

Aside from the class of variational regularization methods, iterative regularization

methods could also be applied. In iterative methods, the regularized solution is the

output of an iterative algorithm and the iteration number plays the role of the reg-

ularization parameter. One advantage of iterative methods is that the discrepancy

principle (an a-posteriori rule for choosing the regularization parameter [3, p. 83])
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can be implemented easily [9, 4, 15].
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