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Abstract

This paper is concerned with the regularization of linear ill-posed problems by a com-
bination of data smoothing and fractional filter methods. For the data smoothing, a
wavelet shrinkage denoising is applied to the noisy data with known error level δ. For the
reconstruction, an approximation to the solution of the operator equation is computed
from the data estimate by fractional filter methods. These fractional methods are based
on the classical Tikhonov and Landweber method but avoid at least partially the well-
known drawback of oversmoothing. Convergence rates as well as numerical examples are
presented.

1 Introduction

In this paper, we aim at solving the linear operator equation

Kf = g

from noisy data gδ with known error level. We assume that K is a compact operator defined
between Hilbert spaces X and Y . Due to compactness, the generalized inverse of K is
unbounded and cannot be applied directly to gδ with ‖gδ − g‖Y ≤ δ. A well-known approach
to deal with such ill-posed problems is given by so-called regularization methods, see the
textbooks [1, 2].
We start from regularization methods which can be interpreted as filtered versions of the
generalized inverse, e.g. the Tikhonov method with L2-penalty or the iterative Landweber
method. In doing so, we have a twofold aim: on the one hand we want to explain and prevent
the well-known effect of oversmoothing when applying the classical Tikhonov or Landweber
method. This is achieved by a modification of the related filter functions. This modification
allows to control the amount of damping and leads to fractional filter methods. On the other
hand we want to combine these fractional filter methods with a data adapted pre-smoothing.
The second aim belongs to the theory of two-step methods by which we understand the
composition R ◦S of a data smoothing operator S and a reconstruction operator R. The use
of data smoothing for the problem of calculating unbounded operators has been examined
e.g. in [3]. More recently the problem of denoising (regularization of the unit operator) has
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been studied in [4, 5, 6, 7, 8]. In [3, 4, 5, 6] the smoothing step yields an estimate which is
in the range of the operator to be inverted/calculated. In [8] and also in the article at hand
the smoothing step yields an estimate in any space in between the space containing the noisy
data and the range of the operator to be inverted.
It is well-known that the Tikhonov and Landweber regularization methods oversmooth the
solution, i.e., sharp or fine features of the reconstructed function are lost which is extremely
troublesome in some medical applications, see [9, 10]. It seems that the effect of oversmoothing
occurs whenever the adjoint operator K∗ : Y → X is part of the reconstruction rule. This
is the case for the classical Tikhonov and Landweber method, see (1) and (2). As a simple
example we consider an operator defined in Sobolev scales. It is a well-known fact that
for the Sobolev embedding operator j : Hs → L2 which smoothes with step size s, the
adjoint operator j∗ smoothes with step size 2s, that means j∗ : L2 → H2s, see e.g. [6].
Hence, whenever the adjoint embedding operator is used, there is an additional amount of
smoothing. Let us now consider an operator which is continuously invertible between Sobolev
scales of stepsize t, i.e., K : L2 ↔ Ht but is compact as operator K : L2 → Hr with r < t.
The compact mapping K̃ : L2 → Hr can be written as K̃ = jK where only the Sobolev
embedding operator j : Ht → Hr introduces the ill-posedness. But as for K̃ = jK the
adjoint of the embedding operator is a part of K̃∗ = K∗j∗, this leads to an oversmoothing
for K∗. Both Tikhonov and Landweber regularization yield a regularized solution freg which
belongs to rg (K∗) (the range of K∗). The Tikhonov method defines a regularized solution
f δ

α with parameter α by
(K∗K + αI)fα = K∗gδ. (1)

Equation (1) can be solved for f δ
α and rewritten as f δ

α = K∗(KK∗ + αI)−1gδ ∈ rg (K∗).
The iterative Landweber method defines a regularized solution f δ

m by

f δ
m = β

m−1∑

j=0

(I − βK∗K)jK∗gδ. (2)

Rewriting equation (2) as fm =
∑m−1

j=0 (I−βK∗K)jK∗gδ =
∑m−1

j=0 K∗(I−βKK∗)jgδ it follows
that also the Landweber method results in a regularized solution in rg (K∗).
In order to introduce fractional filter methods we remind the reader of filter-based regulariza-
tion operators

Rαg :=
∑

σn>0

Fα(σn)σ−1
n 〈g, vn〉un. (3)

with a suitable real-valued filter function Fα and the singular system (σn;un, vn)n of a linear
compact operator K. Conditions on the filter function, see (4) and (5), assure that the
operator Rα defines an (order-optimal) regularization method.
We modify the filter functions of the Tikhonov and the Landweber method in order to control
the amount of damping and to avoid oversmoothing. This is done by applying an exponent
γ ∈ [0, 1] to the filter function Fα which results in the fractional filter function and the
corresponding fractional filter methods F γ

α , see Definition 2.1. We study the fractional version
of both the Tikhonov and the Landweber method and show that the filter function F γ

α assures
order optimality of the induced method as long as γ > 1/2, see Propositions 3.2 and 3.5. In
order to use fractional methods with parameter γ ≤ 1/2, we use wavelet shrinkage as data-
adapted pre-smoothing and prove order optimality of this two-step method.
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One popular method of regularizing an inverse problem where the true solution is known to
be a smooth function with a few jump discontinuities is to use a total variation (TV) penalty.
The total variation regularization was introduced in image processing in [11] and successfully
applied to inverse problems where ‘blocky’ reconstructions are desired [12, 13, 14].
Since the total variation functional is not differentiable, its numerical implementation presents
a few challenges, see e.g. [15]. The approach considered here completely stays within the
Hilbert space framework and avoids the non-differentiability problems encountered by TV
methods.
Another approach to recover solutions which have discontinuities or are spatially inhomo-
geneous is to use suitable bases for the reconstruction. E.g. wavelet bases provide a good
localization in time and space and are thus suitable for the reconstructions of functions with
spatially inhomogeneous smoothness properties. Since Besov spaces and wavelet bases are
closely related via norm equivalences this can be realized by using a Besov penalty term in
Tikhonov regularization. In [16] the regularization of a linear operator with penalty ‖ · ‖Bs

p,p

was considered. The minimization of the related functional requires the solution of a system of
coupled nonlinear equations which is rather hard to tackle. In [16] the original functional was
replaced by a sequence of so-called Surrogate functionals that are much easier to minimize.
The approach considered here only needs the computation of fractional powers of operators
(or matrices once the problem is discretized) which can be done and is done by a simple series
expansion.
The paper is organized as follows. In Section 2 we give a brief overview on standard theory
for filter-based regularization methods and define the fraction methods. In Section 3 we
prove that the fractional Tikhonov and the fractional Landweber method with parameter
γ > 1/2 are order optimal. In Section 4 we consider the combination of wavelet shrinkage
and fractional methods with γ ≤ 1/2 and prove the order optimality of this method. In
Section 5 we present some numerical results for the fractional and the combined methods.

2 Filter methods – standard and fractional

In this section we give a brief overview of standard filter-based regularization methods, see
the textbooks [1, 2] for details. We introduce the concept of fractional filter methods and
present an example to illustrate the effect of regularization methods based on fractional filter
functions.

2.1 Standard regularization results

By a regularization or regularization method for K† (the generalized inverse of K) we under-
stand any family of operators

{Rα}α>0, Rα : Y → X

with the following properties. There exists a mapping α : R+ × Y → R+ such that for all
g ∈ D(K†) and all gδ ∈ Y with ‖g − gδ‖ ≤ δ it is

lim
δ→0,gδ→g

Rα(δ,gδ)g
δ = K†g .

Filter-based regularization methods are defined by (3). The Tikhonov method can be written
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in the form (3) with filter function

Fα(σ) =
σ2

σ2 + α
.

The same is true for the Landweber method with filter function

Fm(σ) = 1 − (1 − βσ2)m

where 0 < β < 2
‖K‖2 . For the Landweber method with index m ∈ N the regularization

parameter is α ∼ 1/m.
The quality of a regularization method is judged by the error asymptotics of ‖K†g−Rαg

δ‖X .
Convergence rates are achieved under the assumption that the exact solution f † fulfills a
smoothness condition of the form

f † ∈ rg ((K∗K)ν/2) with ‖f †‖ν =
(∑

n

σ−2ν
n |〈f †, un〉|2

)1/2 ≤ ρ .

A regularization method is called order optimal if there is a constant c such that

‖f † −Rαg
δ‖X ≤ cδ

ν
ν+1 · ρ

1
ν+1 .

Both the Tikhonov and the Landweber method are of optimal order.
Whether a filter-based method is a regularization method at all can be checked by the following
conditions, (4a)-(4c).

sup
n

|Fα(σn)σ−1
n | = c(α) <∞, (4a)

lim
α→0

Fα(σn) = 1 pointwise in σn, (4b)

|Fα(σn)| ≤ c ∀α, σn. (4c)

The order optimality is assured if there are constants β > 0 and c, cν such that

sup
0<σ≤σ1

|Fα(σ)σ−1| ≤ cα−β , (5a)

sup
0<σ≤σ1

|(1 − Fα(σ))σν∗ | ≤ cν∗αβν∗

. (5b)

2.2 Fractional regularization methods

In this section we define the fractional filter function and the fractional filter operator. We
further introduce a variant of condition (5a) necessary for dealing with the fractional methods.
Then we illustrate the effect of regularization methods based on fractional filter functions by
a simple signal processing example.

Definition 2.1. Let γ ∈ [0, 1] and Fα : R+ → R denote a filter function. Then

F γ
α (x) := (Fα(x))γ (6)

is called fractional filter function with parameter γ.
For a given filter function Fα and γ ∈ [0, 1] the mapping Rα,γ : Y → X with

Rα,γg =
∑

σn>0

F γ
α (σn)σ−1

n 〈g, vn〉un (7)

is called fractional filter operator with parameter γ.

4



In the following we assume that Fα is the classical Tikhonov or Landweber filter (with
α ∼ 1/m). Accordingly, for γ = 1 the operator Rα,γ is the classical Tikhonov or Landweber
regularization operator, whereas for γ = 0 the operator Rα,γ is the generalized inverse. In this
sense, Rα,γ interpolates between these operators. The implementation of fractional methods
involves the evaluation of terms like (αI+K∗K)γ . There are already some methods developed
using powers of operators, see [17]. However, these methods start from the standard Tikhonov
method and then more smoothing is applied.
In Section 3 we prove that as long as γ varies within (1/2, 1], the fractional Tikhonov as well
as the fractional Landweber filter define order optimal regularization methods. The main
work has to be done in order to show that condition (5a) is fulfilled where the (fractional)
filter function is weighted against σ−1. So the question whether a fractional filter can be order
optimal is mainly the question whether F γ

α is able to control the growths of σ−1
n as n→ ∞.

To answer this question we introduce a variant of condition (5a): Let µ ∈ [0, 1] and γ ∈ [0, 1],
we will check which pairs (γ, µ) fulfill

sup
0<σ≤σ1

|F γ
α (σ)σ−µ| ≤ cα−βµ . (5a’)

For µ = 1 this coincides with the standard condition (5a). In Section 3 we will show that (5a)
(and thus also (5a’) with µ = 1) is fulfilled as long as γ > 1/2.
For µ < 1 the fractional filter function F γ

α (·) is weighted against σ−µ and we will show in
Section 3 that condition (5a’) is fulfilled for every pair (γ, µ) with γ > µ/2. So for µ < 1 it
is no longer necessary that γ is greater than 1/2 and thus more values of γ are admissible.
To motivate the modification of the singular values from σ−1

n in condition (5a) to σ−µ
n in

condition (5a’), we anticipate the basic idea of Section 4, which is the combination of data
smoothing and regularization. First we apply a data smoothing operator Sλ : Y → Ỹ to gain
a better estimate g̃ = Sλg

δ of the exact data from the noisy data gδ. Second we apply a
regularization operator to g̃ to construct an approximation to the solution of Kf = g. For
the data smoothing or data estimation operator many choices are possible. In Section 4 we
will concentrate on wavelet shrinkage. For the moment we think of a data smoothing operator
as an operator S : Y → Ỹ which corrects the smoothness properties of the noisy data gδ ,
meaning that the image space Ỹ of S should be closer to the range of K than the space
Y of the noisy data. A measure of this closeness depends on the problem setting. For an
operator K which smoothes with respect to Sobolev spaces, i.e., K : Hs → Hs+t, and noisy
data gδ ∈ L2 = H0 the space Ỹ could be any Sobolev space Hτ with 0 < τ < t. This kind
of pre-smoothing of the data also renders the degree of ill-posedness of the problem, since
we face the problem of solving Kf = g from the smoother estimate g̃ instead of gδ . In the
modified condition (5a’) this is reflected by the fact that the filter function F γ

α (σ) is weighted
against σ−µ with µ ∈ [0, 1]. This condition includes the special cases that no pre-smoothing
at all is done (µ = 1) and that the pre-smoothing results in an element of rg (K), (µ = 0).
In the last case no regularization is necessary any more and the generalized inverse can be
applied directly. For these special cases we also refer to [4] and also to [3] where a smoothing
family is used for the stable evaluation of unbounded operators.

The Sobolev embedding operator

We would like to illustrate the effect of regularization methods based on fractional filter func-
tions by a very simple signal processing example. Let us assume that we want to reconstruct

5



a function in Hs from its noisy measurements in L2. A possible way of doing that is to
consider the embedding operator js : Hs → L2. It is well known that the operator is compact
in case of a bounded region Ω, and thus the inversion of js from noisy data is ill-posed. A way
to compute a stable approximation to the solution in Hs is to use Tikhonov regularization,
where the approximation of a solution of jsx = x is computed by solving

(j∗s js + αI)x = j∗sx
δ .

In our example we will consider a periodic setting, i.e. Ω = [0, 2π) and

x(t) =
∑

xke
ikt ,

where xk denote the Fourier coefficients of x. We can form Sobolev spaces Hs by

〈x, y〉s =
∑

(1 + k2)sxkyk ,

and get L2 = H0. For the operator js we have the following decomposition, e.g. [6]:

Lemma 2.2. Let vk = eik·, uk = (1 + k2)−s/2eik·, and σk = (1 + k2)−s/2. Then {σ2
k, uk}

forms the eigensystem of j∗j and {σk, uk, vk} is the singular system of js.

The effect of the fractional Tikhonov filter is given in the following

Proposition 2.3. For data xδ ∈ L2, the approximation to the solution of jsx = x according
to the fractional Tikhonov method with parameter γ belongs to H2sγ .

Proof. Using the definition of the fractional methods, we have

xδ
α =

∑

k

(
σ2

k

σ2
k + α

)γ

σ−1
k 〈xδ, vk〉uk

=
∑

k

(1 + k2)−s(γ−1/2)

((1 + k2)−s + α)γ 〈xδ, vk〉(1 + k2)−s/2eik· .

Thus, the Fourier coefficients of xδ
α are given by

(

xδ
α

)

k
=

(1 + k2)−sγ

((1 + k2)−s + α)γ 〈xδ , vk〉 ,

and the Ht -norm is given by

‖xδ
α‖2

t =
∑

k

(1 + k2)t
(1 + k2)−2sγ

(
(1 + k2)−s/2 + α

)2γ |〈x
δ, vk〉|2

.
∑

k

(1 + k2)t−2sγ |〈xδ , vk〉|2 .

The series is bounded for any xδ ∈ L2 as long as t ≤ 2sγ holds.
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In particular, for γ = 1 (standard Tikhonov) we have xδ
α ∈ H2s, i.e., the regularized solution

is much smoother than the true solution. This reflects the typical oversmoothing behaviour
of the classical Tikhonov method. For γ = 1/2 both functions have the same smoothness
properties, which is desirable in many applications. E.g., assume that the solution is in a
Sobolev spaceHs that still contains functions with jumps, but functions inH2s are continuous.
Then a reconstruction with a fractional method will still allow jumps in the reconstruction,
whereas classical methods will always reconstruct continuous approximations. A numerical
example for this is given in Section 5.
On the other hand, it can be seen from Proposition 2.3 that the fractional Tikhonov method
with γ < 1/2 cannot be a regularization method at all, as it constructs approximations which
has less smoothness than the solution, and thus they cannot converge in the Hs-norm for
δ → 0.
In Section 4 we deal with the parameter range γ < 1/2. As mentioned above, the fractional
Tikhonov method with γ < 1/2 cannot be a regularization method on its own. But together
with a pre-smoothing of the data it can work as a proper reconstruction method. With
this combination it is possible to do the necessary amount of regularization (but no more
than this) and to weigh the influence on the data and the reconstruction part. As we will
use noise adapted smoothing methods, also information about the noise structure enters the
solution scheme for the ill-posed problem. And consequently, we stay as close to the problem
as possible. The numerical performance of this combined method is demonstrated by an
example computation in Section 5.
Proposition 2.3 is generalized to

Proposition 2.4. For data xδ ∈ L2, let xδ
α be the approximation to the solution of jsx = x

defined by

xδ
α =

∑

k

Fα(σk)σ
−1
k 〈xδ , vk〉uk ,

where Fα is any filter function defined on the spectrum of the operator js. If

sup
0<σ≤σ1

|σ−t/sFα(σ)| ≤ c = c(α, t, s) (8)

then xδ
α belongs to Ht.

Proof. From Lemma 2.2 we know uk = σke
ik· for the singular system of js. It is

xδ
α =

∑

k

Fα(σk)σ
−1
k 〈xδ, vk〉uk =

∑

k

Fα(σk)〈xδ, vk〉eik· .

Thus, the Fourier coefficients of xδ
α are given by

(
xδ

α

)

k
= Fα(σk)〈xδ , vk〉. It is

‖xδ
α‖2

t =
∑

k

(1 + k2)tF 2
α(σk)|〈xδ , vk〉|2 =

∑

k

σ
−2t/s
k F 2

α(σk)|〈xδ , vk〉|2

≤
(

sup
0<σ≤σ1

|σ−t/sFα(σ)|
)2∑

k

|〈xδ, vk〉|2 .

With (8) it follows
‖xδ

α‖t ≤ c(α, t, s)‖xδ‖Y <∞ .
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For the following corollary we anticipate two results of the next section.

Corollary 2.5. For data xδ ∈ L2, let xδ
α,γ be the approximation to the solution of jsx = x by

either the fractional Tikhonov or the fractional Landweber method (for the iterative Landweber
method the regularization parameter is α ∼ 1/m). Then, xδ

α,γ belongs to Ht as long as t < 2sγ.

Proof. With µ = t/s condition (8) of Proposition 2.4 reads as

sup
0<σ≤σ1

σ−µF γ
α (σ) ≤ c(α, γ, µ) .

According to Lemma 3.1 and Lemma 3.4 the fractional Tikhonov as well as the fractional
Landweber method fulfill this condition as long as γ > µ/2.

We want to remark that this result differs slightly from Proposition 2.3. The approximation
is only in Ht for t < 2sγ but not for t = 2sγ. This is due to the fact that the modified filter
condition (5a’) used in the last proof still allows a rate for the corresponding regularization
method whereas the proof of Proposition 2.3 only requires that the supremum exists.

3 Order optimality of fractional filter methods

This section presents two of the main results of the paper. In Propositions 3.2 and 3.5 we prove
that the fractional Tikhonov and the fractional Landweber methods are order optimal for all
parameters γ in (1/2, 1]. The proofs are by straightforward calculation and are presented
separately for the fractional Tikhonov and the fractional Landweber method.

3.1 The fractional Tikhonov method

Lemma 3.1. Let γ ∈ [0, 1], µ ∈ [0, 1] and F γ
α be the fractional Tikhonov filter. For γ > µ/2

it is
sup

0<σ≤σ1

|F γ
α (σ)σ−µ| ≤ cγ,µα

−µ/2

and the fractional Tikhonov filter fulfills (5a’) with β = 1/2.

Proof. We define

ϕ(σ, γ, µ) := σ−2µF 2γ
α (σ) = σ−2µ

(
σ2

σ2 + α

)2γ

.

The statement follows by maximizing ϕ with respect to σ. It is

ϕ′(σ) = [(2γ − µ)(σ2 + α) − 2σ2γ] · h(σ)

with a function h 6= 0. Hence we get as condition for critical points σ2 = α(2γ − µ)/µ .
Existence is assured by 2γ > µ. For 2γ > µ the function ϕ is continuous. Since ϕ ≥
0, ϕ(0) = 0 and limσ→∞ ϕ(σ) = 0 we get the maximum point σ∗(γ, µ) =

√
α
√

(2γ − µ)/µ.
Inserting σ∗ in ϕ yields the maximum

ϕ(σ) ≤ ϕ(σ∗) = α−µc̃γ,µ

with the constant

c̃γ,µ =

(
2γ − µ

µ

)2γ−µ

·
(
µ

2γ

)2γ

depending on γ and µ.
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The order optimality of the fractional Tikhonov method with parameter γ ∈ (1/2, 1] is given
in the following

Proposition 3.2. Let K : X → Y be a compact operator with singular system (σn, un, vn)n≥0.
Let the exact solution f † of Kf = g fulfill ‖f †‖ν ≤ ρ . Then for γ ∈ (1/2, 1] the fractional
Tikhonov method with the parameter choice

α = κ

(
δ

ρ

)1/2(ν+1)

, κ > 0 constant

is order optimal for all 0 < ν < ν∗ = 2.

Proof. The filter function F γ
α of the fractional Tikhonov method fulfills conditions (4b)

and (4c) with constant c = 1. Setting µ = 1 in Lemma 3.1 we get

sup
0<σ≤σ1

|F γ
α (σ)σ−1| ≤ cα−1/2

which is (5a) with β = 1/2. Hence also (4a) is fulfilled.
It remains to show that the filter F γ

α fulfills condition (5b). For σ > 0 we have 0 < Fα(σ) =
σ2

σ2+α
≤ 1 and thus F γ

α (σ) ≥ Fα(σ) for γ > 0. Hence

(1 − F γ
α (σ))σν∗ ≤ (1 − Fα(σ))σν∗

and (5b) follows from the optimality of the classical Tikhonov filter with ν∗ = 2.

Figure 1 (left) shows σ−1F γ
α (σ) for different values of γ: For γ > 1/2 a maximum exists for

σ 6= 0, for γ = 1/2 the term stays bounded and for γ < 1/2 the influence of σ−1 is too strong
to be controlled by F γ

α (σ).

3.2 The fractional Landweber method

In this section we deal with the fractional Landweber filter,

F γ
m(σ) = (1 − (1 − βLWσ

2)m)γ ,

where the index “LW” is introduced to avoid confusion with the parameter β of the filter
condition (5a). We start with an auxiliary result.

Lemma 3.3. Let µ > 0 and m ∈ N+. For γ > µ/2 the function

φ(τ) = τ−2µ[1 − (1 − τ2)m]2γ

is continuous in [0,∞). For γ > µ/2 and m ≥ 2 the function φ restricted to [0,
√

2] has a
maximum and is bounded by

φ(τ) ≤ mµ. (9)

For m = 1 it is φ(τ) ≤ φ(
√

2) = 22γ−µ.

The proof is straightforward, but long and technical; see the appendix.
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Lemma 3.4. Let γ ∈ [0, 1], µ ∈ [0, 1] and F γ
m be the fractional Landweber filter. For γ > µ/2

it is
sup

0<σ≤σ1

|F γ
m(σ)σ−µ| ≤ β

µ/2
LWmµ/2

and the fractional Landweber filter fulfills condition (5a’) with β = 1/2.

Proof. We define

ϕ(σ, γ, µ) := σ−2µF 2γ
m (σ) = σ−2µ[1 − (1 − βLWσ

2)m]2γ

and
ϕ̃(τ) = τ−2µ[1 − (1 − τ2)m]2γ .

With τ2 := βLWσ
2 it is ϕ(σ) = βLWϕ̃(τ). Since βLW < 2

‖K‖2 = 2
σ2
1

we maximize ϕ̃ on the

interval [0,
√

2]. For γ > µ/2 Lemma 3.3 yields

ϕ̃(τ) ≤ mµ.

With the factor βµ
LW this results in sup0<σ≤σ1

ϕ(σ, γ, µ) ≤ βµ
LWm

µ .

The order optimality of the fractional Landweber method with parameter γ ∈ (1/2, 1] is given
in the following

Proposition 3.5. Let all conditions of Proposition 3.2 be satisfied. Then for 0 < βLW < 2
‖K‖2

and for γ ∈ (1/2, 1] the fractional Landweber method is a regularization method. It is order
optimal for all ν > 0 if the iteration is stopped for

m =

⌊(
ν2

βLW

)(ν+1)(

2
βLW

ν
e

)−ν/(ν+1) (ρ

δ

)2/(ν+1)
⌋

,

where ⌊x⌋ denotes the largest integer smaller than or equal to x.

Proof. For σ ∈ (0, σ1] the restriction 0 < βLW < 2
‖K‖ yields −1 < 1 − βLWσ

2 < 1 and

conditions (4b) and (4c) follow immediately. Inserting µ = 1 in Lemma 3.4 yields

sup
0<σ≤σ1

|F γ
m(σ)σ−1| ≤ β

1/2
LWm

1/2 .

Since for the iterative Landweber method the regularization parameter is α = 1/m this is
condition (5a) with β = 1/2. From this also (4a) follows. For condition (5b) we have to
estimate

sup
0<σ≤σ1

|(1 − [1 − (1 − βLWσ
2)m]γ)σν∗ |.

With x = 1− βLWσ
2 it is |1− [1− (1− βLWσ

2)m]γ | = |1− (1− xm)γ |. Since 0 < βLW < 2
σ2
1

it

follows that |x| ≤ 1. Since for m > 0, γ ∈ [0, 1] and −1 ≤ x ≤ 1 it is |1 − (1 − xm)γ | ≤ |x|m,
the filter error of the reduced Landweber method is bounded by the filter error of the classical
Landweber method,

sup
0<σ≤σ1

|(1 − [1 − (1 − βLWσ
2)m]γ)σν∗ | ≤ sup

0<σ≤σ1

|(1 − βLWσ
2)m||σν∗ |.

Hence condition (5b) follows from the optimality of the classical Landweber filter for all
ν > 0.
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Figure 1 (right) shows σ−1F γ
α (σ) for different values of γ: For γ > 1/2 a maximum exists for

σ 6= 0, for γ = 1/2 the term stays bounded and for γ < 1/2 the influence of σ−1 is too strong
to be controlled by F γ

α (σ).
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Figure 1: F γ
α (σ)σ−1 for different values of γ; Tikhonov filter (left) and Landweber filter (right).

4 Data smoothing

In this section we consider two-step methods consisting of a data-smoothing step and a re-
construction step, see [5, 8, 7] for some recent work on two-step methods. Given an ill-posed
problem K : X → Y and noisy data gδ ∈ Y , we start with a smoothing operator Sλ : Y → Ỹ
to get a better estimate g̃ ∈ Ỹ of the noise-free data. This data estimate is then used as the
input for a reconstruction operator Rα : Ỹ → X. The second operator does not need to be
a regularization operator by itself, e.g., we will use fractional filter methods with parameter
γ ≤ 1/2.
We summarize the concept of two-step methods as follows

Y
smoothing by Sλ−−−−−−−−−−→ Ỹ

reconstruction by Rα−−−−−−−−−−−−−→ X .

The space Ỹ can be any space between the data space Y and the range of the operator,
rg (K) ⊂ Ỹ ⊂ Y . This is different from other works, in [3, 4, 5, 6] data smoothing steps have
been used which map into the range of the operator.
In order to illustrate the effect of pre-smoothing the data on fractional filter methods we
return to the example of the Sobolev embedding operator .

4.1 The Sobolev embedding operator

For the Sobolev embedding operator, js : Hs → L2, we consider a data-smoothing operator
Sλ with

Sλ : L2 → Hη with 0 ≤ η ≤ s .

The operator Sλ is applied to the noisy data xδ ∈ L2 and gives a data estimate xδ
λ := Sλ(xδ)

in Hη. This data estimate is used as input for a reconstruction method R which we choose
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to be a fractional filter method Rα,γ . Hence, in the general context of two-step methods we
fix the spaces Y and Ỹ to be L2 and Hη with 0 ≤ η ≤ s and get

L2
smoothing by Sλ−−−−−−−−−−→ Hη reconstruction by Rα,γ−−−−−−−−−−−−−−→ X .

For the space X we choose the Sobolev space X = Ht with η ≤ t ≤ s. We are now able
to extend the result of Proposition 2.4 to two-step methods SλRα,γ with fractional filter
reconstruction operator.

Proposition 4.1. For data xδ ∈ L2 and a data estimate xδ
λ ∈ Hη with 0 ≤ η ≤ s let xδ

α,γ,λ

be the minimizer of the Tikhonov or the Landweber method with fractional filter F γ
α (·) and

operator js. Then xδ
α,γ,λ belongs to Ht for every pair (γ, η) with

η > t− 2γs or γ > (t− η)/2s . (10)

Proof. The Fourier coefficients of

xδ
α,γ,λ := Rα,γSλ(xδ) = Rα,γx

δ
λ

are given by (

xδ
α,γ,λ

)

k
= F γ

α (σk)〈xδ
λ, vk〉 .

Since xδ
λ is in Hη we know

‖xδ
λ‖2

η =
∑

k

(1 + k2)η|〈xδ , vk〉|2 =
∑

k

σ−2η/s|〈xδ, vk〉|2 <∞ .

Hence, for the Ht-norm we get

‖xδ
α,γ,λ‖2

t =
∑

k

σ
−2t/s
k

∣
∣
∣

(

xδ
α,γ,λ

)

k

∣
∣
∣

2

=
∑

k

σ
−2t/s
k F 2γ

α (σk)|〈xδ
λ, vk〉|2σ−2η/s

k σ
2η/s
k

≤
(

sup
0<σ≤σ1

σ−µF γ
α (σ)

)2

‖xδ
λ‖2

η (11)

with µ = (t− η)/s. From Lemma 3.1 and Lemma 3.4 we know that the supremum exists as
long as γ > µ/2.

We want to make a few remarks on the proof. The supremum in (11) is in the form of
condition (5a’). The exponent µ depends on η and takes into account a (possible) pre-
smoothing of the data: the problem of computing a regularization from the smoothed data
estimate is less ill-posed since the reconstruction does not have to deal with σ−1 but only with
σ−µ with µ ∈ [0, 1]. For the special case η = 0 (no pre-smoothing), Proposition 4.1 reduces
to Proposition 2.4 and condition (10) becomes t < 2sγ.
For η 6= 0, condition (10) allows to weight the two steps of smoothing and reconstruction: let
us consider the case that the exact solution x is of smoothness s, hence, x ∈ Hs and that
the smoothing operator maps into the space Hη with η = s/2. We further assume that the
reconstructed solution xδ

α,γ,λ should be as smooth as the exact x, i.e., xδ
α,γ,λ ∈ Ht with t = s.

Then, condition (10) reads as

γ >
t− η

2s
= (s− s/2)/2s = 1/4 .
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4.2 Convergence rates for two-step methods with fractional filter functions

In this section we present convergence rates for the combination of wavelet shrinkage as data
smoothing operation and fractional filter methods as reconstruction operation for general
linear operator equations. We aim at a combination of shrinkage and reconstruction that
stays as close to the problem as possible. I.e., we neither want to apply too much shrinkage
nor oversmooth the solution by using too much of the regularizing filter.
We start with a brief sketch of wavelet shrinkage, for a comprehensive treatment of wavelet
analysis we refer the reader to [18, 19, 20, 21], for approximation results and details on wavelet
shrinkage we refer to [22, 23, 24, 25, 26]. The basic idea of wavelet shrinkage is as follows:
a (noisy) signal gδ is transformed into a series expansion with respect to an (orthogonal)
wavelet basis. Then the wavelet coefficients are filtered and from these filtered coefficients
an approximation g̃ to gδ (and hopefully to the exact g) is obtained by the inverse wavelet
transform. Filtering in the wavelet domain can be done in many different ways. A linear
filtering is done by cutting off the wavelet expansion which is equivalent to a projection on
some wavelet subspace Vj. A nonlinear filtering is done by thresholding the coefficients: The
overall assumption is that a signal has some structure (e.g. smooth parts, patterns in varying
sizes, etc.) whereas noise, especially white noise, has no structure at all. In computing the
wavelet representation of the signal, its structure is recognized and coded as few but very large
wavelet coefficients whereas the noise just remains noise and is coded as many but very small
coefficients. Thus, by keeping the large coefficients and throwing away the small ones, there
is a good chance to keep the signal and to eliminate the noise; this procedure is called hard
shrinkage. Continuing this idea by subtracting also a small amount of the large coefficients
(they also carry noise), directly leads to soft shrinkage.
The combination of wavelet shrinkage and fractional filter methods generalizes [8, Theo-
rem 4.5]. The class of admissible problems used in [8] and also in here is characterized as
follows. We consider a linear compact operator K : L2 → L2 with smoothing property t > 0
with respect to Sobolev and Besov spaces, i.e., K : Hτ → Hτ+t and K : Bτ

pp → Bτ+t
pp for all

τ ≥ 0. Given a solution f ∈ Hs ∩Bs
pp, an approximation from noisy data gδ = g+ δdW with

dW a white noise process, is constructed by a two-step method: first, a smoothing operator
Sλ given by nonlinear wavelet shrinkage and the linear projection operator Pj on a wavelet
subspace with an orthonormal wavelet basis in Hη is applied. Second, a reconstruction op-
erator Rα is applied. Then for properly chosen parameters (threshold λ, projection level j,
regularization parameter α) the following quasi-optimal convergence rate is achieved [8, (4.6)]

E(‖RαSλPjg
δ − f‖L2) = O((δ

√

| log δ|)
2s

2s+2t+d ) . (12)

This result is valid for every order-optimal regularization method, hence also for the fractional
Tikhonov as well as the fractional Landweber method with parameter γ > 1/2. For the
smoothness η of the wavelet basis no other condition than η > 0 is needed. This corresponds
to the fact that every order-optimal regularization method can achieve the convergence result
on its own without the use of a data pre-smoothing. We know from [8] that the use of
wavelet shrinkage results in a smaller regularization parameter α and hence the reconstruction
operator can stay closer to the original operator. In this paper we reduce the amount of
regularization in the reconstruction part even further to fractional methods Rα,γ with γ ≤ 1/2.
We will show that, keeping the convergence rate (12) fixed, the use of data presmoothing is
reflected in the parameter γ: the smoother the wavelet basis is, i.e. the closer η is to t and
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the data estimate to the range of the operator K, the smaller is the necessary fraction of the
reconstruction filter, i.e. the closer is γ to 0.
The following two lemmata are auxiliary results on the reconstruction operator Rα,γ .

Lemma 4.2. Let K : L2 → L2 be a linear compact operator with smoothing property t > 0
and let Rα,γ be a fractional filter operator with parameter β as in (5a’). For γ > (t− η)/2t,
we have

‖Rα,γ‖2
Hη→L2

. α2β η−t
t .

Proof. Using the translation of Sobolev smoothness and source condition as given in [8,
Lemma 5.1] yields g̃ ∈ Hη ⇔ g̃ ∈ Yν = rg ((K∗K)ν/2) with ν = η/t. For Rα,γ : Hη → L2 it is

‖Rα,γ‖2
Hη→L2

= sup
‖h‖Hη=1

∑

σn>0

σ−2
n F 2γ

α (σ)|〈h, vn〉L2 |2σ2η/t
n σ−2η/t

n

≤ sup
‖h‖Hη=1

sup
σ>0

σ−2(1−η/t)
n F 2γ

α (σ)
∑

σn>0

σ−2η/t
n |〈h, vn〉L2 |2

︸ ︷︷ ︸

≃‖h‖2
Hη=1

. sup
σ>0

σ−2(1−η/t)
n F 2γ

α (σ) .

With µ := 1 − η/t and γ > µ/2 = (t − η)/2t the assertion follows from Lemma 3.1 for the
fractional Tikhonov method and from Lemma 3.4 for the fractional Landweber method.

Lemma 4.3. Let K : L2 → L2 be a linear compact operator with smoothing property t > 0
and let Rα,γ be a fractional filter operator with parameter β as in (5b). Let s ≤ t, f ∈ Hs

and g = Kf . The reconstruction error of Rα,γ is then given by

‖Rα,γg − f‖2
L2

. α2βs/t .

Proof. Using the translation of Sobolev smoothness and source condition as given in [8,
Lemma 5.1] yields f ∈ Hs ⇔ f ∈ rg ((K∗K)ν/2) with ν = s/t. Hence,

‖Rα,γg − f‖2
L2

=
∑

σn

(F γ
α (σn) − 1)2|〈f, vn〉|2σ−2s/t

n σ2s/t
n

. sup
σ>0

|F γ
α (σ) − 1|2σ2s/t

n ‖f‖2
Hs

. α2βs/t .

The last line follows from Proposition 3.2 and Proposition 3.5 where it is shown that the
fractional Tikhonov as well as the fractional Landweber filter fulfill condition (5b).

The following theorem extends the rate (12) to fractional methods Rα,γ with γ < 1/2,

Theorem 4.4. Let K : L2(Ω) → L2(Ω) be a linear compact operator with smoothing property
of order t > 0 with respect to any Besov space Bτ

p,p(R
d) and any Sobolev space Hτ (Rd). Let

s ≥ 0 with s+ t > 1/2, s ≤ t and let η with 0 ≤ η ≤ t be given. We assume that f belongs to
Hs(Rd) ∩Bs

p,p(R
d) with 1

p = 1
2 · 2t+d

2η+d + s
2η+d .

i) Let ϕ ∈ Hη define an orthonormal wavelet basis of L2(R
d) of smoothness η ≤ t such

that the degree m of polynomial reproduction in Vj satisfies m + 1 > t. Let Pj be the
L2-projection on Vj.
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ii) Let Sλ denote wavelet shrinkage with hard thresholding. For a given error level δ the
threshold λ is chosen as λ = Cδ

√

| log δ|.

iii) Let Rα,γ denote the fractional Tikhonov (or Landweber) operator with parameter γ ∈
(0, 1], and with parameter β as in (5a), (5b).

If the projection level j fulfills 2−j ≤ (δ
√

| log δ|)1/(η+d/2), the pair of parameters (γ, η) fulfills

γ >
t− η

2t
(13)

and the regularization parameter is chosen according to

α ≃ (δ
√

| log δ|)
1
β

2t
2s+2t+d for η < t (14)

α ≃ (δ
√

| log δ|)2 for η = t ,

then the following estimate holds for f δ
αγλj := Rα,γPjSλ(gδ),

E(‖f δ
αγλj − f‖2

L2
) = O((δ

√

| log δ|)
4s

2s+2t+d ).

For the proof we will use results given in [8], especially [8, Theorem 4.5].

Proof. In order to estimate the error E(‖Rα,γSλPjg
δ − f‖2

L2
) we split it into three parts,

one each for the shrinkage error, the projection error and the error due to the reconstruction
operator,

E(‖Rα,γSλPjg
δ − f‖2

L2
)

. E(‖Rα,γ(Sλg
δ − Pjgδ)‖2

L2
) + ‖Rα,γ(Pjg − g)‖2

L2
+ ‖Rα,γg − f‖2

L2

= ‖Rα,γ‖2
Hη→L2

(

E(‖Sλg
δ − Pjgδ‖2

L2
) + ‖Pjg − g‖2

L2

)

+ ‖Rα,γg − f‖2
L2
.

We want to remark that the proof differs from the one of [8, Theorem 4.5] only in the operator
Rα,γ . So from Lemma 4.2 we know

‖Rα,γ‖2
Hη→L2

. α2β η−t
t

for any pair (γ, η) with condition (13). Exactly as in [8] we get for the first two terms

‖Rα,γ‖2
Hη→L2

(
E(‖Sλg

δ − Pjgδ‖2
L2

) + ‖Pjg − g‖2
L2

)
. α2β η−t

t (δ
√

| log δ|)
4(s+t−η)
2s+2t+d

For the third term we use Lemma 4.3 and get

‖Rα,γg − f‖2
L2

. α2βs/t .

For η < t we insert the parameter choice rule (14) for α. Assembling all three error bounds
yields

E(‖Rα,γSλPjg
δ − f‖2

L2
) . (δ

√

| log δ|)
4s

2s+2t+d

For η = t we refer again to the proof of [8, Theorem 4.5] and remark that in this case we have
‖Rα,γ‖Ht→L2

. 1.

15



We want to discuss condition (13) for fixed η and fixed γ respectively.

1. Let η be fix. Then (13) is a condition on γ according to

γ >
t− η

2t
=

1

2
− η

2t
.

If η = 0 no shrinkage is done and the regularization operator has to deal with data in
L2. In this case we get γ > 1/2 which is the well-known condition for order-optimal
(fractional) regularization methods. If η increases then γ decreases. The more shrinkage
is done the less regularization is necessary. For the case η = t we get γ > 0. In that case
the shrinkage estimate is in the range of the operator and the generalized inverse could
be applied directly. The condition γ > 0 (instead of γ = 0) assures that the convergence
rate is achieved.

2. Let γ be fix. Then (13) is a condition on η according to

η > t(1 − 2γ) .

Here, the same considerations as in (i) apply. For γ = 0, i.e. no regularization at all, we
get η > t. I.e. the smoothing operator has to assure g̃ in rg (K) and even a little more
(η > t not η ≥ t) in order to keep the convergence result valid. For γ > 1/2 we know
that η must be greater than t(1 − 2γ) which is less than 0. Hence for γ > 1/2, which
means order-optimal regularization methods, no shrinkage (η = 0) has to be applied.
For γ ≤ 1/2 the filter function is no longer optimal and the shrinkage estimate has to
stand in for the order-optimality.

5 Computation of fractional methods

The use of the fractional methods is of particular interest for problems where classical methods
generally oversmooth the solutions. In this case sharp or fine features of the solution are lost
which is particularly troublesome in imaging or tomographic applications, where it is of high
priority to recover e.g. jumps or discontinuities of the solutions [9, 10]. At the end of this
section we show that this effect is reduced by the use of the combined method of wavelet
shrinkage and fractional Tikhonov reconstruction.
If the singular value decomposition of an operator is not known explicitly, the numerical
implementation of the fractional methods is not as straightforward as for the classical ones.
The next proposition presents a formulation of the fractional Tikhonov method using the
operator and its adjoint only. For an operator T with eigensystem (λn, wn), a new operator
ψ(T ) can be defined via a real-valued function ψ on the spectrum σ(T ) of T , see e.g. [2],

ψ(T )x :=
∑

n

ψ(λn)〈x,wn〉wn . (15)

In that sense we define fractional powers of K∗K and K∗K +αI; the numerical computation
of these operator roots is presented in the next section.

Proposition 5.1. The solution fα,γ of the fractional Tikhonov method as given in Defini-
ton 2.1 can be computed according to

(K∗K + αI)γ(K∗K)1−γfα,γ = K∗g. (16)
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Proof. The proof is by straightforward calculation. The fractional Tikhonov method with
parameter γ defines a regularized solution fα,γ as

fα,γ =
∑

n>0

σ−1
n

(
σ2

n

σ2
n + α

)γ

〈g, vn〉un.

With σ(K∗K) = (σ2
n)n and σ(K∗K+αI) = (σ2

n +α)n the Fourier coefficient 〈fα,γ , un〉 of fα,γ

given by equation (16) is

〈fα,γ , un〉 = 〈(K∗K)γ−1(K∗K + αI)−γK∗g, un〉
= 〈g,K(K∗K + αI)−γ(K∗K)γ−1un〉
= 〈g, (σ2

n + α)−γσ2(γ−1)
n Kun〉

= σ−1
n

(
σ2

n

σ2
n + α

)γ

〈g, vn〉.

The assertion follows with fα,γ =
∑

n〈fα,γ , un〉un.

For the fractional Landweber method we start from the operator representation of the stan-
dard method. Let fm denote the regularized Landweber solution defined as

fm =
∑

σn>0

Fm(σn)σ−1
n 〈g, vn〉un =

∑

σn>0

(1 − (1 − βσ2)m)σ−1
n 〈g, vn〉un .

It is well-known, see e.g. [2], that for m ≥ 1

fm =
∑

σn>0

Fm(σn)σ−1
n 〈g, vn〉un = β

m−1∑

j=0

(I − βK∗K)jK∗g . (17)

Lemma 5.2. Let K : X → Y be a linear compact operator with singular system (σn;un, vn)
and let 0 < β < 2/‖K‖2. Then the operator Am : X → X with

Am := β

m−1∑

j=0

(I − βK∗K)j (18)

has the eigensystem (Fm(σk)σ
−2
k , uk)k with Fm(σ) = 1 − (1 − βσ2)m.

Proof. From (17) we know AmK
∗g =

∑

σn>0 Fm(σn)σ−1
n 〈g, vn〉un. With K∗vk = σkuk it

follows

σkAmuk = Am(K∗vk) =
∑

σn>0

Fm(σn)σ−1
n 〈vk, vn〉un = Fm(σk)σ

−1
k uk

and hence Amuk = Fm(σk)σ
−2
k uk.

For the fractional Landweber method we have the following operator representation.

Proposition 5.3. The solution fm,γ of the fractional Landweber method as given in Defini-
ton 2.1 can be computed as the solution of

(K∗K)1−γf = βγ
[m−1∑

j=0

(I − βK∗K)j
]γ
K∗g . (19)
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We remark that for γ = 1 equation (19) coincides with the classical Landweber method (2)
whereas for γ = 0 equation (19) is identical with the normal equations for Kf = g.

Proof. Solving equation (19) for f and using the operator Am from (18) it is

f̃ := (K∗K)γ−1βγ
[m−1∑

j=0

(I − βK∗K)j
]γ
K∗g = (K∗K)γ−1Aγ

mK
∗g .

The operator K∗K has the eigensystem (σ2
k, uk)k. Hence, for h ∈ X it is with (15)

(K∗K)γ−1h =
∑

k

σ
2(γ−1)
k 〈h, uk〉uk .

Computing h := Aγ
m(K∗g) yields with the help of Lemma 5.2 and (15)

Aγ
m(K∗g) =

∑

n

(Fm(σn)σ−2
n )γ〈K∗g, un〉un =

∑

n

F γ
m(σn)σ−2γ

n σn〈g, vn〉un .

Hence, it is

(K∗K)γ−1Aγ
m(K∗g) =

∑

k

σ
2(γ−1)
k 〈Aγ

m(K∗g), uk〉uk

=
∑

k

σ
2(γ−1)
k

∑

n

F γ
m(σn)σ−2γ+1

n 〈g, vn〉〈un, uk〉uk

=
∑

k

σ−1
k F γ

m(σk)〈g, vk〉uk .

With Definition 2.1 of the fractional filter operator it is

f̃ = (K∗K)γ−1Aγ
m(K∗g) =

∑

k

σ−1
k F γ

m(σk)〈g, vk〉uk = fm,γ .

5.1 Series expansion and numerical realization

We restrict ourselves to the fractional Tikhonov method. To compute an approximation for
the fractional powers of the operator in (16) we use the binomial series

(1 + x)γ = 1 + γx+
γ(γ − 1)

2!
x2 +

γ(γ − 1)(γ − 2)

3!
x3 + . . . , x ∈ R, |x| < 1. (20)

For the numerical realization of the fractional Tikhonov method we have to deal with dis-
cretized operators, i.e., matrices. The series expansion is valid for matrices A with ‖A‖ < 1.
For the matrix representation of the fractional Tikhonov method, see (16), we have to compute

(αI +K∗K)γ and (K∗K)1−γ .

Since K is linear we can assume ‖K∗K‖ < 1. For the expansion of the first term in (16),
(αI +K∗K)γ , we consider two cases:

18



1. For α ≥ 1 it holds

(αI +K∗K)γ = αγ(I +
1

α
K∗K)γ

and the series expansion is used with argument x = K∗K/α.

2. For α < 1 we use
(αI +K∗K)γ = (I + (K∗K − (1 − α)I))γ .

With the help of the singular value decomposition of K and the assumption ‖K∗K‖ < 1
we know that ‖K∗K − (1 − α)I‖ ≤ max{1 − α, ‖K∗K‖ − (1 − α)} < 1. Hence, we use
the series expansion (20) with x = K∗K − (1 − α)I.

The second term in (16) is (K∗K)1−γ which is independent of α. It is

(K∗K)1−γ = (I + (K∗K − I))1−γ

and we would like to apply the series expansion (20) with x = K∗K − I. Since ‖K∗K − I‖ ≤
max{‖K∗K‖, 1} = 1 the series expansion might be applied with argument x = K∗K − I but
convergence in this case is likely to be slow. The same problem occurs for the first term when
α < 1 is very small.
For these cases we adapt an idea of [27] where the authors considered fractional powers
of matrices. As has been seen, for a matrix A the fractional power Aγ with γ < 1 can
be computed by using A = I + B with a suitable matrix B and application of the series
expansion (20). If however, ‖B‖ = 1 − ε ≈ 1, convergence is likely to be slow. To accelerate
convergence a weight factor k can be used. We consider A = k(I + C) with C = C(k) =
(1/k)A − I and choose k∗ = argmink ‖C(k)‖, see [27]. If we specify the norm to be the
Frobenius (or Schur) norm the factor k can be computed explicitly according to

k =
∑

i

∑

j

a2
ij/aii .

With this renormalization the implementation of the fractional Tikhonov method works fine
which is demonstrated by the following test computations.

5.2 Test computations

We test the proposed variations of the standard Tikhonov method with two examples. As a
first example we consider the integration operator K : L2(0, 1) → L2(0, 1) with

Kf(x) :=

∫ x

0
f(t)dt .

The integration operator smoothes one step in the scale of Sobolev spaces, i.e., K : Hs → Hs+t

with t = 1. Since the classical Tikhonov method recovers smooth functions very well, but fails
if the solution to the inverse problem Kf = g has discontinuities, we choose as test function
f † the step function

f †(x) =

{

−1 if x ≤ 1/2

1 if x > 1/2
.

Hence, we have f † ∈ L2(0, 1) with the additional smoothness properties

f † ∈ H1/2−ε or f † ∈ B1−ε
11 .

19



A similar problem, namely the detection of irregular points by the regularization of numerical
differentiation, is studied in [28]. The results of our test computations are documented in the
following tables and figures. Computations for the fractional method are always accompanied
by computations for the classical method from the same data. Thereby we can check for which
fraction of the filter function the reconstruction still achieves the same error bound. So far,
no special treatment for the endpoints of the interval has been considered. The regularization
parameter α was chosen manually in order to achieve the best possible result.
The combination of wavelet shrinkage and the fractional Tikhonov method yields very good
results for low error levels of the data. Figure 2 demonstrates the performance of this combi-
nation with parameter γ = 0.1, 0.2 for 1% relative data noise. One can see that the approxi-
mation of the discontinuity is better than with the classical Tikhonov method.
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(a) γ = 0.1, ‖fTS − f‖2 = 11.48%
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(b) γ = 0.2, ‖fTS − f‖2 = 13.27%

Figure 2: Reconstruction of the step function (blue, dash-dotted) from noisy data with 1%
relative error level: (black, dashed) classical Tikhonov method and (red, solid) fractional
Tikhonov method with wavelet shrinkage.

Figure 3 demonstrates the importance of the smoothing step. In the first row no shrinkage has
been applied and the fractional Tikhonov method with non-optimal parameter γ = 0.1, 0.2, 0.3
has been used. On the one hand, one can still see that the less of the filter is used, i.e. the
smaller γ is, the better is the approximation of the discontinuity. On the other hand, the
influence of the error in the smooth part of the solution is not controlled satisfactorily and
causes heavy oscillations of the solution. These oscillations are either controlled by increasing
the parameter γ or by applying a smoothing step first, see also Table 1 and Figure 3.
The following tables demonstrate that the fractional Tikhonov method is order optimal for
γ > 1/2. The reconstruction errors are within the same sizes as for the standard Tikhonov
method. For γ < 0.4 the reconstruction error is growing, the fractional Tikhonov method
cannot control the influence of the data error. If shrinkage is applied the combined method
reaches the optimal result for all parameter γ and 5% relative data noise. However, for 10%
data noise the results for the combined method are no longer satisfactorily. Maybe a finer
tuning of the involved parameter constants is necessary.
As a second numerical example, we consider a convolution operator

(Kf)(y) =

∫

R

k(y − x)f(x) dx
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Figure 3: Comparison of reconstructions from noisy data with 2% data noise. Upper row:
fractional Tikhonov method with parameter γ and classical Tikhonov method, both without
shrinkage. Lower row: fractional Tikhonov method with parameter γ and classical Tikhonov
method, both combined with shrinkage.

with known convolution kernel k. If the operator is considered in an L2- setting, it is easy
to see that the adjoint operator K∗ is defined via the kernel k̃(x) = k(−x). Let us first show
that convolution operators with suitable kernel k fit into our setting.

Proposition 5.4. Let f ∈ Hs ∩ L1 and k ∈ Ht ∩ Cu+t, 0 ≤ s ≤ u, t > 0, with derivative
k(u+t) ∈ L1. Then

K : Hs ∩ L1 → Hs+t

is a continuous operator.

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

‖f − f δ
α,γ‖ 0.52 0.39 0.26 0.23 0.24 0.21 0.22 0.25 0.27 0.24

‖f − f δ
α,γ,λ‖ 0.27 0.25 0.26 0.25 0.25 0.26 0.25 0.23 0.26 0.25

‖f − f δ
α‖ 0.25

Table 1: Reconstructions from noisy data with relative error level δ = 5%. First row: frac-
tional Tikhonov method without shrinkage. Second row: fractional Tikhonov method with
shrinkage (db2-wavelet). Last row: standard Tikhonov method.
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γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

‖f − f δ
α,γ‖ 0.97 0.56 0.37 0.31 0.33 0.31 0.30 0.28 0.32 0.26

‖f − f δ
α,γ,λ‖ 0.47 0.46 0.33 0.28 0.28 0.27 0.25 0.28 0.31 0.32

‖f − f δ
α‖ 0.29

Table 2: Reconstructions from noisy data with 10% relative noise level. First row: fractional
Tikhonov method without shrinkage. Second row: fractional Tikhonov method with shrinkage
(db2-wavelet). Last row: standard Tikhonov method.

Proof. By the Fourier convolution theorem it follows

‖k ∗ f‖2
Hs+t =

∫

R

(1 + |ω|2)s+t|k̂(ω)|2|f̂(ω)|2 dω .

As f ∈ L1 we have |f̂(ω)| ≤ C, and from k ∈ Cu+t it follows

|ωu+t| · |k̂(ω)| ≤M .

Therefore, we get

‖k ∗ f‖2
Hs+t ≤ CM

∫

R

(1 + |ω|2)s+(t−u)/2|k̂(ω)||f̂(ω)| dω

≤ CM

∫

R

(1 + |ω|2)t/2|k̂(ω)| dω
∫

R

(1 + |ω|2)2s−u|f̂(ω)| dω

= CM‖k‖2
Ht‖f‖2

H2s−u <∞

as long as s ≤ u.

Thus, the operator K is smoothing of order t as long as s ≤ u. By the same techniques, this
result can be extended to all s by assuming some more smoothness on f itself:

Proposition 5.5. Let f ∈ Hs∩Cs and k ∈ Ht∩Ct, 0 < s, t, with derivatives f (s), k(t) ∈ L1.
Then

K : Hs ∩ (Cs, ‖ · ‖Hs) → Hs+t

is a continuous operator.

The proof is as above, by using the estimate |ωu+t| · |k̂(ω)| ≤M for functions k ∈ Ct.
On the Fourier side, the inverse operator is given by

K̂−1g(ω) =
ĝ(ω)

k̂(ω)
,

which can be always carried out if e.g. k̂(ω) 6= 0 for all ω.
Due to the Fourier convolution theorem, the implementation of the Tikhonov fractional filter
method is relatively simple. For the standard Tikhonov method, we see immediately that the
evaluation of the operator (αI +K∗K) is equivalent on the Fourier side to a multiplication

with the function k̂ˆ̃k + α. A similar result holds for the fractional power:
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Proposition 5.6. It is

(αI +K∗K)γ ∼ (k̂ˆ̃k + α)γ .

Proof. To prove the assertion, we use the series

(1 + x)γ =
∞∑

n=0

cn(γ)xn ,

which converges for |x| ≤ 1. Using αI +K∗K = I + (K∗K − (1 − αI) and

F{(K∗K − (1 − αI)nf} = (k̂ˆ̃k − (1 − α))nf̂

we obtain

F{(αI +K∗K)γf} =

∞∑

n=0

cn(γ)F{(K∗K − (1 − αI)f}n

=

( ∞∑

n=0

cn(γ)(k̂(ω)
ˆ̃
k(ω) − (1 − α))n

)

f̂(ω)

= (1 + (k̂(ω)
ˆ̃
k(ω) − (1 − α)))γ f̂(ω)

= (k̂(ω)ˆ̃k(ω) + α)γ f̂(ω)

where the series converges. As pointed out above, this can always be achieved by proper
normalization.

With similar arguments we conclude

Proposition 5.7. It is

F{(αI +K∗K)γ(K∗K)1−γf}(ω) =
(

k̂(ω)ˆ̃k(ω) + α
)γ (

k̂(ω)ˆ̃k(ω)
)1−γ

f̂(ω) . (21)

We define a specific kernel k by k̂(ω) = (1+|ω|2)−t. It is easily seen that k ∈ Hτ for all τ < 2t.
We choose t = 1 and by that have an operator K which smoothes (almost) two steps in the
scale of Sobolev spaces. As test function we choose the characteristic function of an interval,
f = χ[a,b] with Sobolev smoothness 1/2 − ε. The fractional as well as the standard Tikhonov
method are realized in the Fourier domain as given by (21). The restriction to a finite interval
when computing the convolution yields an additional truncation error. Reconstructions are
done by the combination of fractional Tikhonov with parameter γ = 0.3, 0.4 and wavelet
shrinkage as well as, for comparison, by the standard Tikhonov method. The reconstructions
can be seen in Figure 4 whereas Table 3 provides the reconstruction errors. Wavelet shrinkage
is done with the sym4-wavelet. The regularization parameter is determined by the Morozov
discrepancy principle.
Figure 4 demonstrates that also in this example the standard Tikhonov method results in
regularized solutions which are too smooth whereas the fractional Tikhonov method in com-
bination with wavelet shrinkage yields regularized solutions which are closer to the properties
of the true solution.
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Figure 4: Reconstructions from data with different noise levels. Upper row: fractional
Tikhonov method with parameter γ = 0.3 and wavelet shrinkage compared to standard
Tikhonov method. Lower row: fractional Tikhonov method with parameter γ = 0.4 and
wavelet shrinkage compared to standard Tikhonov method.

δ = ‖gδ − g‖/‖g‖ 0.03 0.04 0.05 0.06

γ = 0.3 ‖f − f δ
α,γ,λ‖/‖f‖ 0.5339 0.5663 0.5877 0.6182

γ = 0.4 ‖f − f δ
α,γ,λ‖/‖f‖ 0.5402 0.5628 0.5838 0.6586

γ = 1 ‖f − f δ
α‖/‖f‖ 0.5954 0.6081 0.6626 0.7124

Table 3: Reconstruction errors corresponding to the results given in Figure 4.
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Appendix

Proof of Lemma 3.3. With the expansion (1 − τ2)m =
∑m

k=0(−1)kτ2k
(
m
k

)
we get

φ(τ) = τ−2µ

(
m∑

k=1

(−1)k−1τ2k

(
m

k

))2γ

.

Thus for γ > µ/2 there is no singularity and the function φ is continuous. Hence the function
restricted to the interval [0,

√
2] has a maximum. For m = 1 we have φ(τ) = τ2(2γ−µ) and φ
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is bounded by φ(
√

2) = 22γ−µ.
For m > 1 the proof of assertion (9) is outlined as follows. We maximize not φ itself but φ
restricted to all its critical points. The description of the critical points is gained by seeking
zeros of the derivative of φ. Differentiating φ with respect to τ yields

φ′(τ) = φ(τ)(−2µτ−1 + 4γmτ [1 − (1 − τ2)m]−1(1 − τ2)m−1

︸ ︷︷ ︸

=:h(τ)

) .

Hence, seeking zeros of φ′ amounts to seeking zeros of φ and h. Since φ is nonnegative and,
e.g. φ(1) = 1 > 0, the zeros of φ are no candidates for maxima of φ. For the zeros of h we
assume without loss of generality τ 6= 0 and 1 − (1 − τ2)m 6= 0 (all τ with 1 − (1 − τ2)m = 0
and τ = 0 are zeros of φ). Then h(τ) = 0 is equivalent to

(1 − τ2)m =
µ(1 − τ2)

µ(1 − τ2) + 2γmτ2
. (22)

With this description of the critical points of φ we define φcritical := φ|critical points
. We insert (22)

in φ(τ) = τ−2µ(1 − (1 − τ2)m)2γ and get

φcritical(τ) = τ−2µ

(
2γmτ2

µ(1 − τ2) + 2γmτ2

)2γ

.

If φcritical has a maximum in [0,
√

2] we have φ ≤ max[0,
√

2] φcritical(τ). Differentiating φcritical

with respect to τ yields

φ′critical(τ) = 2µτ−1φcritical(τ)
[ 2γ

µ(1 − τ2) + 2γmτ2
− 1

︸ ︷︷ ︸

=:f(τ)

]

.

Because of φcritical > 0, seeking zeros of φcritical results in solving f(τ) = 0 which is equivalent
to 2γ − µ = τ2(2γm− µ). Thus for 2γ > µ critical points exist and are given by

τ2
∗ =

2γ − µ

2γm− µ
.

For m > 1 we have τ2
∗ < 1 and the positive root is in the interval (0, 1) ⊂ [0,

√
2]. In order

to check whether τ∗ = +
√

2γ−µ
2γm−µ is a maximum of φcritical we compute the second derivative.

Applying the product rule to φ′critical(τ) = 2µτ−1φcritical(τ)f(τ) and inserting φ′critical(τ∗) = 0
and f(τ∗) = 0 we get

φ′′critical(τ∗) = 2µτ−1
∗ φcritical(τ∗)f

′(τ∗) = −8γµ2 · 2γm− µ

(µ(1 − τ2∗ ) + 2γmτ2∗ )2
.

With µ > 0 and γ > µ/2 it follows φcritical(τ∗) < 0. Hence we get the maximum

φcritical(τ∗) =

(
2γ − µ

2γm− µ

)2γ−µ

m2γ .

It remains to show that (
2γ − µ

2γm− µ

)2γ−µ

m2γ ≤ mµ.

Since γ > µ/2 > 0 and m > 1 this is equivalent to (2γ − µ)2γ−µm2γ−µ ≤ (2γm − µ)2γ−µ.
With the monotony of the power function assertion (9) is proved.
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