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Abstract
In the classical Cramér-Lundberg model in risk theory the problem of maximizing the expected

cumulated discounted dividend payments until ruin is a widely discussed topic. In the most general
case within that framework it is proved (Gerber (1969), Azcue & Muler (2005), Schmidli (2007)) that
the optimal dividend strategy is of band type. In the present paper we discuss this maximization
problem in a generalized setting including a constant force of interest in the risk model. The value
function is identi�ed in the set of viscosity solutions of the associated Hamilton-Jacobi-Bellman
equation and the optimal dividend strategy in this risk model with interest is derived, which in the
general case is again of band type and for exponential claim sizes collapses to a barrier strategy.
Finally, an example is constructed for Erlang(2)-claim sizes, in which the bands for the optimal
strategy are explicitly calculated.

1 Introduction
Let (Ω,F , {Ft}, P ) be a �ltered probability space on which all random processes and variables introduced
in the sequel are de�ned. Consider the following stochastic model for the risk reserve process R = {Rt}t≥0

of an insurance portfolio

Rt = x+ ct−
Nt∑

k=1

Yk + i

∫ t

0

Rsds. (1)

The number of claims N = {Nt}t≥0 is modelled as a homogeneous Poisson process with parameter
λ which has the càdlàg property (Nt+ = Nt). The incoming premiums are assumed to be collected
continuously over time at a constant rate c. The claim amounts {Yk}k∈N are an iid sequence of positive
random variables with continuous distribution function FY . The integral term represents the additional
income resulting from the constant force of interest i > 0 on the free surplus (see for instance Paulsen [9],
where the existence of such a process R is proved). A similar model was dealt with in Albrecher et al.
[2] and Paulsen & Gjessing [10, 11]. In this paper we are interested in identifying the optimal strategy
to pay out dividends from process (1) to shareholders during the period of solvency.
Let Lt denote the accumulated paid dividends up to time t. We call a dividend strategy L = {Lt}t≥0

admissible if it is an adapted càglàd (previsible, Lt− = Lt) and non-decreasing process. Further we
require Lt+ − Lt ≤ RLt such that paying dividends can not cause ruin, where the controlled process is
de�ned via

RLt = x+ ct−
Nt∑

k=1

Yk + i

∫ t

0

RLs ds− Lt.

The càdlàg property of the reserve process and the càglàd property of the dividends process imply that
RLt− 6= RLt is always due to a claim and RLt+ 6= RLt is due to some singular dividend payment. Although
not standard in the literature, this càglàd assumption for the dividends will simplify the analysis (and
the previsibility of the control is then also ensured by the càglàd property).
The performance of an admissible strategy L is measured by the function

VL(x) = E

(∫ τL

0

e−δs dLs
∣∣∣ RL0 = x

)
, (2)
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i.e. the expectation of the discounted dividend payments until the time of ruin τL = inf{t|RLt < 0} of the
controlled process. Here δ > 0 denotes the discount factor, which can also be interpreted as a measure
of the preference of shareholders to receive payments earlier rather than later during the lifetime of the
risk process. The value function of the maximization problem is then given through

V (x) = sup
L∈Π

VL(x), (3)

where the supremum is taken over the set Π of all admissible strategies.

Optimization problems of the form (3) are a classical topic in stochastic control theory (see for instance
Schmidli [13] for a recent survey). Under the assumption that the underlying risk process R is modelled
by a Cramér-Lundberg process (i.e. (1) with i = 0), it was �rst shown in Gerber [7] by a discrete ap-
proximation and then a limiting argument that the optimal dividend strategy according to the criterion
(2) is of so-called band type. This result was recently rederived by means of viscosity theory in Azcue
and Muler [3]. It is a natural question to ask for an analogous result in the presence of an interest
force i > 0 on the free surplus, not the least because, from a practical perspective, the use of a discount
factor δ > 0 for the dividends in the objective function acknowledging the time value of money should be
complemented by such an e�ect for the underlying risk process, too. It is intuitively not surprising that
the dividend maximization problem is only well formulated for i < δ (for exponential claims we will also
demonstrate this fact explicitly in Section 4).

As in the classical Cramér-Lundberg case, one can not expect the value function (3) to be a classical
solution of the associated Hamilton-Jacobi-Bellman (HJB) equation. Like Azcue & Muler [3] in the case
i = 0, we therefore use the methodology of viscosity solutions to identify the optimal strategy for i > 0.

The outline of the paper is as follows. After establishing some basic properties of the value function (3),
the corresponding HJB equation is derived and the value function is identi�ed as a viscosity solution
of this HJB equation (Proposition 2.3). Typically, dividend maximization problems in the Cramér-
Lundberg setting lack an initial condition (cf. Azcue & Muler [3], Gerber [7], Schmidli [13]; Mnif &
Sulem [8] circumvent this problem by considering a slightly di�erent risk model that does provide an
initial value for the maximization problem). Therefore we �rst prove uniqueness of the viscosity solution
of the HJB equation for a given initial condition via a comparison principle (Proposition 2.4) and in a
second step we show that every viscosity supersolution dominates the value function (Proposition 2.6).
In that way we can characterize the value function as the viscosity supersolution with the smallest initial
value ful�lling the same growth conditions.
The construction of the optimal strategy of band type needs some care concerning the behaviour of the
value function at points where di�erentiability may not be ful�lled (Propositions 2.11 and 2.12, which
also indicate already how to construct the optimal solution along the arguments of Schmidli [13]).
In Section 3 the existence and uniqueness of the solution to the integro-di�erential part of the HJB
equation in the respective regions are established and properties of the crucial sets needed for the de�nition
of the optimal strategy are derived. Eventually the approriate band strategy is formulated and its
optimality is proved (Proposition 3.3).
In Section 4.1 the case of exponentially distributed claim sizes is investigated in more detail and it is
shown that in this case the optimal band strategy collapses to a barrier strategy, including a study of
conditions on parameter values under which the optimal barrier is in fact in 0 (this complements results
of Paulsen & Gjessing [10], who investigated optimal barrier values for the risk process (1) within the
class of barrier strategies).
Finally, in Section 4.2 an example for Erlang(2)-distributed claims is identi�ed for which the optimal
band strategy can be explicitly calculated.

2 Value function and viscosity solutions
2.1 Basic properties of the value function
Let us �rst derive some bounds for the value function and its �rst derivative.
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Proposition 2.1. For i < δ we have

x+
c

δ + λ
≤ V (x) ≤ c

δ − i
+ x max{1, i

δ − i
}.

Proof. The controlled process

RLt = x+ ct−
Nt∑

k=1

Yk + i

∫ t

0

RLs ds− Lt

is clearly upper-bounded by

RLt ≤ eit
(
x+ c

∫ t

0

e−isds
)

and the growth rate in t of the right hand side is eit(ix + c). We have the possibility of immediately
paying an amount 0 ≤ a ≤ x and get

V (x) ≤ max
0≤a≤x

(
a+

∫ ∞

0

e−δseis(i(x− a) + c)ds
)

= max
0≤a≤x

(
a
δ − 2i
δ − i

+
ix+ c

δ − i

)
.

The maximum is attained in either a = 0 or a = x. Therefore we get the upper bound

V (x) ≤ max
{
x+

c

δ − i
,
ix+ c

δ − i

}
.

On the other hand, we get a lower bound for V (x) when we pay the initial surplus x and all incoming
premia immediately as dividends and the �rst claim that occurs (after an exponential time τ1) causes
ruin:

V (x) ≥ VL0(x) = x+ c E
(∫ τ1

0

e−δtdt
)

= x+
c

δ + λ
.

Proposition 2.2. For 0 ≤ x < y we have the following inequalities

y − x ≤ V (y)− V (x) ≤ V (x)

((
iy + c

ix+ c

) δ+λ
i

− 1

)

Proof. For ε > 0 let Lε be an ε-optimal strategy for initial capital x (i.e. VLε(x) ≥ V (x)− ε). For y > x
de�ne L such that an amount y − x is paid as dividend immediately followed by using the strategy Lε.
We have

V (y) ≥ y − x+ VLε(x) ≥ y − x+ V (x)− ε.

Because this holds for all ε > 0 we get
V (y)− V (x) ≥ y − x.

For the other direction let 0 ≤ x < y and ε > 0. De�ne L̂ for initial capital x as follows. Nothing is done
as long as the reserve stays below y and then an ε-optimal strategy Lε for initial capital y is applied. The
reserve reaches y not before time t0 = 1

i log
(
iy+c
ix+c

)
and it is further assumed that there is no payment

at all if a claim occurs before t0. Hence
V (x) ≥ VL̂(x) ≥ e−(δ+λ)t0VLε(y) ≥ e−(δ+λ)t0 (V (y)− ε) .

Finally we arrive at

V (y)− V (x) ≤ V (x)

((
iy + c

ix+ c

) δ+λ
i

− 1

)
.

From the above and [15], we get that V (x) is increasing and locally Lipschitz on [0,∞) (apply a Taylor
expansion to the upper bound around x to see this) which by Rademacher's Theorem ensures the existence
of the derivative almost everywhere and then 1 ≤ V ′(x) ≤ δ+λ

ix+cV (x). Furthermore V (x) is Lipschitz on
compact sets which implies that it is absolutely continuous.
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2.2 Representation as a viscosity solution
The value function V (x) ful�lls the dynamic programming principle for any stopping time γ,

V (x) = sup
L∈Π

E
(∫ τ∧γ

0

e−δsdLs + e−δ(τ∧γ)V (RLτ∧γ)
)
, (4)

which can be shown analogously to the proof of Proposition 3.1 of [3] (with xmax replaced by eiγ
(
x+ c

∫ γ
0
e−isds

)
).

Now let us de�ne the operator

Lu(x) = (c+ ix)u′(x)− (δ + λ)u(x) + λ

∫ x

0

u(x− y)dFY (y).

Standard arguments from stochastic control (see [6]) imply the HJB equation

max {1− u′(x),Lu(x)} = 0. (5)

But, as mentioned in the introduction, we can not expect the value function to be a classical solution to
(5). Therefore we need another concept of solutions for this type of equation. We choose the concept of
viscosity solutions which is introduced in the following.
De�nition 2.1. A function u : [0,∞) → R is called a viscosity subsolution of (5) at x ∈ (0,∞) if
any continuously di�erentiable function ψ(x) : (0,∞) → R with ψ(x) = u(x) such that u − ψ reaches a
maximum at x satis�es

max {1− ψ′(x),Lψ(x)} ≥ 0.

We say that a function u : [0,∞) → R is a viscosity supersolution of (5) at x ∈ (0,∞) if any continuously
di�erentiable function φ(x) : (0,∞) → R with φ(x) = u(x) such that u − φ reaches a minimum at x
satis�es

max {1− φ′(x),Lφ(x)} ≤ 0.

A function u(x) : [0,∞) → R is a viscosity solution if it is both a viscosity sub- and supersolution.
Remark 2.1. At some points later on will also make use of a di�erent but equivalent (Sayah [12], Benth
et al. [4]) de�nition of a viscosity sub- and supersolution: De�ne the modi�ed operator

L∗u,v(x) = (c+ ix)v′(x)− (δ + λ)u(x) + λ

∫ x

0

u(x− y)dFY (y).

A function u : [0,∞) → R is a viscosity subsolution of (5) at x ∈ (0,∞) if any continuously di�erentiable
function ψ(x) : (0,∞) → R with ψ(x) = u(x) such that u− ψ reaches a maximum at x satis�es

max
{

1− ψ′(x),L∗u,ψ(x)
}
≥ 0.

A function u : [0,∞) → R is a viscosity supersolution of (5) at x ∈ (0,∞) if any continuously di�erentiable
function φ(x) : (0,∞) → R with φ(x) = u(x) such that u− φ reaches a minimum at x satis�es

max
{
1− φ′(x),L∗u,φ(x)

} ≤ 0. (6)

Later on we will need the following two properties of the derivatives of some test functions.
Remark 2.2. A continuously di�erentiable function ψ : (0,∞) → R such that u−ψ reaches a maximum
at x > 0 with ψ′(x) = q exists if and only if

lim inf
x↑y

u(y)− u(x)
y − x

≥ q ≥ lim sup
x↓y

u(y)− u(x)
y − x

.

A continuously di�erentiable function φ : (0,∞) → R such that u− φ reaches a minimum at x > 0 with
φ′(x) = q exists if and only if

lim inf
x↓y

u(y)− u(x)
y − x

≥ q ≥ lim sup
x↑y

u(y)− u(x)
y − x

. (7)
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Remark 2.3. Note that for a continuously di�erentiable test function ψ (as required in the de�nition of
viscosity solutions) the operators Lψ and L∗u,ψ are continuous for x ≥ 0, so that we do not have to work
with the upper semi-continuity as in Mnif and Sulem [8].

The next proposition characterizes the value function as a viscosity solution. The supersolution proof is
in the spirit of [3], whereas the subsolution proof is related to the approach in [8].

Proposition 2.3. The value function V is a viscosity solution of the HJB equation (5).

Proof. We start with showing that V is a viscosity supersolution. Fix l ≥ 0 and let h > 0 be small enough
such that eih

(
x+ (c− l)

∫ h
0
e−isds

)
≥ 0. Let τ1 denote the time of the �rst claim occurrence. From the

dynamic programming principle we derive

V (x) = sup
L∈Π

E

(∫ τ1∧h

0

e−δs dLs + e−δ(τ1∧h) V
(
RLτ1∧h

)
)

≥e−λh
∫ h

0

e−δsl ds+ e−(δ+λ)h V

(
eih

(
x+ (c− l)

∫ h

0

e−is ds

))

+
∫ h

0

λe−λt
[∫ t

0

e−δsl ds+ e−δt
∫ eit(x+(c−l) R t

0 e
−is ds)

0

V

(
eit

(
x+ (c− l)

∫ t

0

e−is ds
)
− y

)
dFY (y)

]
dt.

This further leads to

0 ≥1− e−(δ+λ)h

h(δ + λ)
l +

V
(
eih

(
x+ (c− l)

∫ h
0
e−is ds

))
− V (x)

h
− 1− e−(δ+λ)h

h
V

(
eih

(
x+ (c− l)

∫ h

0

e−is ds

))

+
λ

h

∫ h

0

e−(δ+λ)t

∫ eit(x+(c−l) R t
0 e

−is ds)

0

V

(
eit

(
x+ (c− l)

∫ t

0

e−is ds
)
− y

)
dFY (y) dt.

Now let φ be a continuously di�erentiable test function with V (x) = φ(x) and V −φ attaining a minimum
in x. We get

0 ≥1− e−(δ+λ)h

h(δ + λ)
l +

φ
(
eih

(
x+ (c− l)

∫ h
0
e−is ds

))
− φ(x)

h
− 1− e−(δ+λ)h

h
V

(
eih

(
x+ (c− l)

∫ h

0

e−is ds

))

+
λ

h

∫ h

0

e−(δ+λ)t

∫ eit(x+(c−l) R t
0 e

−is ds)

0

V

(
eit

(
x+ (c− l)

∫ t

0

e−is ds
)
− y

)
dFY (y) dt.

Using Taylor expansion w.r.t. h at h = 0 and neglecting second order terms,

eih

(
x+ (c− l)

∫ h

0

e−is ds

)
≈ x+ h(ix+ (c− l)),

we get for h→ 0 and using continuity of V and di�erentiability of φ

0 ≥ l(1− φ′(x)) + (ix+ c)φ′(x)− (δ + λ)V (x) + λ

∫ x

0

V (x− y)dFY (y). (8)

Inequality (8) holds for an arbitrary l ≥ 0 (using a strategy Lt = tl). This gives 1 − φ′(x) ≤ 0 and for
l = 0 we get L∗V,φ(x) ≤ 0. Therefore we have that V is a viscosity supersolution of (5).
Next we will identify the viscosity subsolution property using De�nition 2.1. For some function ψ ∈
C1(0,∞) ful�lling

0 = V (x0)− ψ(x0) > V (x)− ψ(x) ∀x 6= x0, x ∈ (0,∞),

for some x0 ∈ (0,∞), we have to show

max {1− ψ′(x0),Lψ(x0)} ≥ 0.
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Assume the contrary. Because ψ, ψ′ and V are continuous, the operator Lψ is continuous, too. Therefore
some r > 0 and ξ > 0 exist with

max {1− ψ′(x),Lψ(x)} < −δξ, ∀x ∈ (x0 − r, x0 + r) = B,

and such that for x′ = x0 ± r we have

V (x′) ≤ ψ(x′)− ξ.

Further choose r such that B ⊂ (0,∞). Let {xn}n∈N be a sequence with xn → x0 and without loss of
generality assume xn ∈ B for all n ∈ N. Because of the continuity of ψ and V we have | V (xn)−ψ(xn) | →
0. From now on we look at the reserve with initial capital xn which is controlled by an arbitrary admissible
strategy L ∈ Π, RL,xn = {RL,xn

t }t≥0. De�ne

τn = inf{t > 0 | RL,xn

t 6∈ B}
and denote by τ∗ = τn ∧ T for some T > 0. Look now at the set {τ∗ = τn} �rst, leaving B before
time T . We have, from the construction of the process, that either x0 + r is reached which implies
RL,xn

τ∗− = RL,xn

τ∗ = x0 + r, or a jump happens leading to RL,xn

τ∗− ≥ RL,xn

τ∗ and RL,xn

τ∗ ≤ x0 − r. Since V is
increasing and also ψ is increasing on B, we get from ψ′ > 1,

V (RL,xn

τ∗ ) ≤ V (x′) ≤ ψ(x′)− ξ ≤ ψ(RL,xn

τ∗− )− ξ.

On the set {τ∗ = T}, RL,xn

τ∗ ≤ RL,xn

τ∗− gives

V (RL,xn

τ∗ ) ≤ ψ(RL,xn

τ∗− ).

Altogether

e−δτ
∗
V (RL,xn

τ∗ ) ≤ e−δτ
∗−ψ(RL,xn

τ∗− )− e−δτ
∗
ξI{τn=τ∗}.

Apply the Itô formula to e−δτ∗− ψ
(
RL,xn

τ∗−
)
:

e−δτ
∗− ψ

(
RL,xn

τ∗−
)
− ψ(x) =

∫ τ∗−

0

e−δs(c+ iRL,xn

s− )ψ′(RL,xn

s− )ds− δ

∫ τ∗−

0

ψ(RL,xn

s− )e−δsds

−
∫ τ∗−

0

ψ′(RL,xn

s− )e−δs dLcs +
∑

RL,xn
s− 6=RL,xn

s ∧s≤τ∗−

(
ψ(RL,xn

s )− ψ(RL,xn

s− )
)
e−δs

+
∑

RL,xn
s+ 6=RL,xn

s ∧s≤τ∗−

(
ψ(RL,xn

s+ )− ψ(RL,xn
s )

)
e−δs. (9)

Note thatRL,xn

s+ −RL,xn
s = −(Ls+−Ls) and therefore

∑
RL,xn

s+ 6=RL,xn
s ∧s≤τ∗−

(
ψ(RL,xn

s+ )− ψ(RL,xn
s )

)
e−δs =

−∑
Ls+ 6=Ls∧s≤τ∗− e

−δs
(∫ Ls+−Ls

0
ψ′(RL,xn

s − u)du
)
. Because ψ′(x) > 1 for x ∈ B we get

−



∫ τ∗−

0

ψ′(RL,xn

s− )e−δs dLcs +
∑

Ls+ 6=Ls∧s≤τ∗−
e−δs

(∫ Ls+−Ls

0

ψ′(RL,xn
s − u)du

)
 ≤

−



∫ τ∗−

0

e−δs dLcs +
∑

Ls+ 6=Ls∧s≤τ∗−
e−δs (Ls+ − Ls)


 = −

∫ τ∗

0

e−δsdLs.

The last equality holds because the dividends process is left-continuous. Plugging this into (9) we obtain
the inequality

e−δτ
∗−ψ(RL,xn

τ∗− ) ≤ψ(xn)−
∫ τ∗

0

e−δs dLs +
∫ τ∗−

0

e−δs
(
(c+ iRL,xn

s− )ψ′(RL,xn

s− )− δψ(RL,xn

s− )
)
ds

+
∑

RL,xn
s− 6=RL,xn

s ∧s≤τ∗−

(
ψ(RL,xn

s )− ψ(RL,xn

s− )
)
e−δs.
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Further we know (see e.g. [5]) that

∑

RL,xn
s− 6=RL,xn

s ∧s≤τ∗−

(
ψ(RL,xn

s )− ψ(RL,xn

s− )
)
e−δs −

∫ τ∗−

0

λe−δs
(∫ RL,xn

s−

0

ψ(RL,xn

s− − y)dFY (y)− ψ(RL,xn

s− )

)
ds

is a martingale. Therefore taking expectations on both sides yields

E

(
e−δτ

∗−ψ(RL,xn

τ∗− ) +
∫ τ∗

0

e−δs dLs

)
≤ ψ(xn) + E

(∫ τ∗−

0

e−δsLψ(RL,xn

s− )ds

)
.

Because of RL,xn

s− ∈ B for s ∈ [0, τ∗−] we have Lψ(RL,xn

s− ) < −δξ. We can use this to derive

E

(
e−δτ

∗−V (RL,xn

τ∗ ) +
∫ τ∗

0

e−δs dLs

)
+ E

(∫ τ∗−

0

e−δsδξ ds+ e−δτ
∗
ξI{τn=τ∗}

)
≤ V (xn) + γn,

where γn = ψ(xn) − V (xn) converges to zero. Therefore choose n large enough such that γn ≤
1
2E

(∫ τ∗−
0

e−δsδξ ds+ e−δτ
∗
ξI{τn=τ∗}

)
. For arbitrary L we arrive at

E

(
e−δτ

∗−V (RL,xn

τ∗ ) +
∫ τ∗

0

e−δs dLs

)
+

1
2
E

(∫ τ∗−

0

e−δsδξ ds+ e−δτ
∗
ξI{τn=τ∗}

)
≤ V (xn).

This leads to the following contradiction to the dynamic programming principle:

V (xn) +
1
2
E

(∫ τ∗−

0

e−δsδξ ds+ e−δτ
∗
ξI{τn=τ∗}

)
=

sup
L∈Π

E

(
e−δτ

∗−V (RL,xn

τ∗ ) +
∫ τ∗

0

e−δs dLs

)
+

1
2
E

(∫ τ∗−

0

e−δsδξ ds+ e−δτ
∗
ξI{τn=τ∗}

)
≤ V (xn).

If there is a positive probability for the event τ∗ = 0 which is only possible if τ∗ = τn, then for the
second term above e−δτ∗ξI{τn=τ∗} > 0. Therefore E

(∫ τ∗−
0

e−δsδξ ds+ e−δτ
∗
ξI{τn=τ∗}

)
> 0 holds and

leads indeed to a contradiction.

2.3 Uniqueness
The following comparison principle allows us to decide whether a viscosity supersolution dominates anon-
ther viscosity subsolution by looking at their initial value. Since every viscosity solution is both a sub-
and supersolution, this will imply uniqueness for a given initial value. Actually in our situation we have
to modify the proof presented by Azcue and Muler [3]. Although quite technical, the arguments are based
on an appropriate combination of standard arguments from viscosity theory.

Proposition 2.4. Let for all x > 0 the functions u1(x) and u2(x) be a viscosity sub- and supersolution,
respectively, that satis�es the conditions ful�lled by the value function (locally Lipschitz, u(y)−u(x) ≥ y−x
and some linear growth u(x) ≤ k1x+ k2). If u1(0) ≤ u2(0), then u1(x) ≤ u2(x) for all x ∈ [0,∞).

Proof. The result will be shown by contradiction. Assume there exists some x0 > 0 such that u1(x0) −
u2(x0) > 0. Let γ > 0 be a constant and de�ne ũ1(x) = e−γxu1(x) and ũ2(x) = e−γxu2(x). Because u1

and u2 ful�ll a linear growth condition, these functions are positive and bounded. If we choose γ small
enough we get by continuity that ũ1(x0)− ũ2(x0) > 0. Therefore

0 < max
x≥0

(
ũ1(x)− ũ2(x)

)
= M <∞,

with a maximizing argument x∗. Further we have

ũ1(y)− ũ1(x)
y − x

≤ m,
ũ2(y)− ũ2(x)

y − x
≤ m, (10)
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for some m > 0. De�ne the set A by

A = {(x, y) | 0 ≤ x ≤ y}.
In the following we need the function

φν(x, y) := ũ1(x)− ũ2(y)− ν

2
(x− y)2 − 2m

ν2(y − x) + ν
,

and

Mν := max
x,y∈A

φν(x, y),

with the maximizer (xν , yν). We have

Mν ≥ φν(x∗, x∗) = M − 2m
ν
,

which is positive for ν large enough, leading to

lim inf
ν→∞

Mν ≥M > 0.

To ensure di�erentiability at the points xν and yν one needs to establish that (xν , yν) is not an element
of the boundary of A (the proof of which is postponed to Lemma 2.5 after the end of this proof).
In the next step we de�ne two test functions, such that we can use that ũ1 and ũ2 are viscosity sub- and
supersolutions to a slightly modi�ed problem

ψ(x) = ũ2(yν) +
ν

2
(x− yν)2 +

2m
ν2(yν − x) + ν

+ φν(xν , yν),

ϕ(y) = ũ1(xν)− ν

2
(xν − y)2 − 2m

ν2(y − xν) + ν
− φν(xν , yν).

ψ and ϕ are continuously di�erentiable functions. Further ũ1(x)− ψ(x) = φν(x, yν)− φν(xν , yν) reaches
a maximum equal to zero in xν . On the other hand ũ2(y) − ϕ(y) = −φν(xν , y) + φν(xν , yν) reaches a
minimum equal to zero in yν . Because u1 and u2 are viscosity sub- and supersolutions of the original
HJB equation, ũ1 and ũ2 are viscosity sub- and supersolutions of the equation

max
{

1− eγx(γu(x) + u′(x)), (c+ ix)(γu(x) + u′(x))− (δ + λ)u(x) + λ

∫ x

0

u(x− y)e−γydFY (y)
}

= 0.

In the points xν and yν we get

max
{

1− eγxν (γũ1(xν) + ψ′(xν)), (c+ ixν)(γũ1(xν) + ψ′(xν))− (δ + λ)ũ1(xν) + λ

∫ xν

0

ũ1(xν − y)e−γydFY (y)
}
≥ 0,

max
{

1− eγyν (γũ2(yν) + ϕ′(yν)), (c+ iyν)(γũ2(yν) + ϕ′(yν))− (δ + λ)ũ2(yν) + λ

∫ yν

0

ũ2(yν − y)e−γydFY (y)
}
≤ 0.

In addition we have that ϕ′(yλ) = ψ′(xν) = ν(xν − yν). Notice that max{A,B} ≤ max{C,D} implies
A ≤ C ∨B ≤ D. We start with looking at B ≤ D,

(c+ iyν)(γũ2(yν) + ν(xν − yν))− (c+ ixν)(γũ1(xν) + ν(xν − yν)) + (δ + λ)(ũ1(xν)− ũ2(yν))

≤ λ

(∫ xν

0

ũ1(xν − y)e−γydFY (y)−
∫ yν

0

ũ2(yν − y)e−γydFY (y)
)
. (11)

From

φν(xν , xν) + φν(yν , yν) ≤ 2φν(xν , yν)

we immediately get

ũ1(xν)− ũ2(xν) + ũ1(yν)− ũ2(yν)− 4m
ν
≤ 2

(
ũ1(xν)− ũ2(yν)− ν

2
(xν − yν)2 − 2m

ν2(yν − xν) + ν

)
.
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This yields, together with (10),

ν(xν − yν)2 ≤ ũ1(xν)− ũ1(yν) + ũ2(xν)− ũ2(yν) + 4m
yν − xν

ν(yν − xν) + 1
≤ 6m|yν − xν |

and in particular

|yν − xν | ≤ 6m
ν
. (12)

Now let (νn)n∈N be such that (xν , yν) converges to (x, y) as νn → ∞. From (12) we get that x = y.
Using (11) we get

(c+ ix)γ(ũ2(x)− ũ1(x)) + (δ + λ)(ũ1(x)− ũ2(x)) ≤ λ

(∫ x

0

e−γy(ũ1(x− y)− ũ2(x− y))dFY (y)

)
.

(13)

The right-hand side of (13) is smaller than λM . If we choose γ small enough we derive

M ≤ lim inf
ν→∞

Mν ≤ lim
n→∞

Mνn
= ũ1(x)− ũ2(x) ≤ λ

δ + λ
M,

which is a contradiction.
Now we concentrate on A ≤ C and observe that

eγxν (γũ1(xν) + ψ′(xν)) ≤ eγyν (γũ2(yν) + ϕ′(yν)).

This implies

ν(xν − yν)(eγxν − eγyν ) ≤ γ(eγyν ũ2(yν)− eγxν ũ1(xν)).

For γ small enough we have eγyν ũ2(yν)− eγxν ũ1(xν) ≈ ũ2(yν)− ũ1(xν) so that

0 < M ≤Mν = φν(xν , yν) ≤ ũ1(xν)− ũ2(yν) ≤ (yν − xν)
ν

γ
(eγxν − eγyν ) ≤ 0.

From the comments above, Proposition 2.4 implies the uniqueness of the viscosity solution for a given
initial condition v(0) = v0.
Lemma 2.5. (xν , yν) is not an element of the boundary of A.
Proof. First look at

φν(0, 0) = ũ1(0)− ũ2(0)− 2m
ν

< 0,

lim
b→∞

φν(x, b) = ũ1(x)− ũ2(b)− ν

2
(x− b)2 − 2m

ν2(b− x) + ν
= −∞.

The next step is to examine the left-hand derivative at the boundary of A along the diagonal. For all
x > 0,

lim sup
h→0+

φν(x, x)− φν(x, x− h)
h

= lim sup
h→0+

1
h

(
ũ1(x)− ũ1(x− h)− 2m

ν
+
ν

2
h2 +

2m
ν2h+ ν

)

≤ lim sup
h→0+

(
m+

ν

2
h− 2m

νh+ 1

)
= −m < 0.

By continuity it follows from φν(0, 0) < 0 that φν(0, y) < 0 for y ∈ [0, ρ] and some ρ > 0. Now for y > ρ
we observe

lim sup
h→0+

φν(0, y)− φν(h, y)
h

= lim sup
h→0+

1
h

(
ũ1(0)− ũ1(h) +

ν

2
h2 − νhy +

2mh
(ν(y − h) + 1)(νy + 1)

)

≤ lim sup
h→0+

(
γũ1(0)− e−γh + o(h) +

ν

2
h− νy+

2m
(ν(y − h) + 1)(νy + 1)

)
= γũ1(0)− 1− νy+

2m
(νy + 1)2

,

(14)
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which is negative for ν large enough. Here the inequality in (14) holds because the lower and upper linear
growth conditions imply −h ≥ u1(0)− u1(h) and consequently

− h ≥ ũ1(0)− eγhũ1(h) ⇒ −he−γh ≥ ũ1(0)− ũ1(h) + (e−γh − 1)ũ1(0) ⇒
γũ1(0)h− he−γh + o(h2) ≥ ũ1(0)− ũ1(h).

Hence we have proved that (xν , yν) does not belong to the boundary of A (negative value in (0, 0) and
in every direction towards the boundary of A negative derivatives and a negative limit for the argument
(x, b) if b→∞).

2.4 Characterization of the value function
In contrast to some optimization problems in a di�usion framework the dividend maximization problem
in our setup lacks an initial condition. In Proposition 2.6 we will prove that every viscosity supersolution
to (5) which fu�lls a linear growth condition dominates the value function. This together with Proposition
2.4 allows us to de�ne

V (0) = inf{u(0) | u is a viscosity solution to the HJB equation and ful�lls a linear growth condition}.

Because of the comparison principle any other choice of an initial value will lead to a contradicition to
Proposition 2.6, since for any suitable viscosity solution u with u(0) < V (0) we would have u(x) < V (x)
for at least x ∈ [0, ε) and u(x) ≤ V (x) for all x > 0.
For a viscosity supersolution u1 we have almost everywhere

u′1(x) ≤
1

c+ ix

(
(δ + λ)u1(x)− λ

∫ x

0

u1(x− y)dFY (y)
)
≤ δ + λ

c+ ix
u1(x).

Throughout this section we need a sequence of non-negative functions {vn(x)}n∈N with the following
properties:

• vn is continuously di�erentiable with

1 ≤ v′n(x) ≤
δ + λ

c+ ix
vn(x) (15)

• vn(x) ≤ k1x+ k2 for some positive constants k1, k2

• vn converges uniformly to the absolutely continuous supersolution u1 of (5) on compact sets and
v′n converges to u′1 almost everywhere. Further vn(x) = 0 for x < 0.

Such a sequence exists due to [15] and [3].

Proposition 2.6. An absolutely continuous supersolution u1 of the HJB equation (5) ful�lling a linear
growth condition dominates the value function, u1(x) ≥ V (x).

Proof. Let L = (Lt)t≥0 be an admissible strategy. The controlled process is RL = (RLt )t≥0, R
L
0 = x with

ruin time τ . Let vn(x) be a continuosly di�erentiable element from the sequence de�ned above. We have

vn(RL(t∧τ))e
−δ(t∧τ) = vn(x) +

∫ (t∧τ)

0

v′n(R
L
s ) e−δs dRLs − δ

∫ (t∧τ)

0

vn(RLs ) e−δs ds.

having in mind that claim occurrences lead to Rs− 6= Rs and singular dividend payments (lump sums)
lead to Rs+ 6= Rs, we get from the construction of the reserve process
∫ (t∧τ)

0

v′n(R
L
s ) e−δs dRLs =

∫ (t∧τ)

0

e−δs (c+ iRLs )v′n(R
L
s ) ds−

∫ (t∧τ)

0

v′n(R
L
s ) dLcs

+
∑

RL
s− 6=RL

s , s<(t∧τ)
(vn(RLs )− vn(RLs−) e−δs +

∑

RL
s+ 6=RL

s , s<(t∧τ)
(vn(RLs+)− vn(RLs ) e−δs.
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Using the continuity of v′n and RLs+ −RLs = −(Ls+ − Ls) we can write

vn(RLs+)− vn(RLs ) = −
∫ Ls+−Ls

0

v′n(R
L
s − γ) dγ.

Further we use the martingale (Mt)t≥0

Mt =
∑

RL
s− 6=RL

s , s<t

(vn(RLs )− vn(RLs−) e−δs − λ

∫ t

0

e−δs
(∫ RL

s−

0

vn(RLs− − y) dFY (y)− vn(RLs−)

)
ds,

which is the compensated process, see [5]. We arrive at

vn(RL(t∧τ))e
−δ(t∧τ) = vn(x) +

∫ (t∧τ)

0

e−δs
[
(c+ iRLs )v′n(R

L
s )− (δ + λ)Vn(RLs ) + λ

∫ RL
s−

0

vn(RLs− − y) dFY (y)

]
ds

−
∫ (t∧τ)

0

v′n(R
L
s ) dLcs −

∑

Ls+ 6=Ls, s<(t∧τ)
e−δs

∫ Ls+−Ls

0

v′n(R
L
s − γ) dγ +M(t∧τ).

Now we use v′n ≥ 1 and can estimate

−
∫ (t∧τ)

0

v′n(R
L
s ) dLcs −

∑

Ls+ 6=Ls, s<(t∧τ)
e−δs

∫ Ls+−Ls

0

v′n(R
L
s − γ) dγ

≤ −
∫ (t∧τ)

0

dLcs −
∑

Ls+ 6=Ls, s<(t∧τ)
e−δs

∫ Ls+−Ls

0

dγ = −
∫ (t∧τ)

0

e−δsdLs,

which leads to

vn(RL(t∧τ))e
−δ(t∧τ) ≤ vn(x) +

∫ (t∧τ)

0

e−δsLvn(RLs ) ds−
∫ (t∧τ)

0

e−δsdLs +M(t∧τ).

The next steps are taking expectations, examining the validity of taking the limit t → ∞ and letting
n→∞. This will give the desired result.
Starting with

E
(
vn(RL(t∧τ))e

−δ(t∧τ)
)
≤ vn(x) + E

(∫ (t∧τ)

0

e−δsLvn(RLs ) ds

)
− E

(∫ (t∧τ)

0

e−δsdLs

)
, (16)

we have to �nd integrable bounds for every summand to justify the interchange of limit and integration.
Because Ls is increasing, we get by monotone convergence

lim
t→∞

E

(∫ (t∧τ)

0

e−δsdLs

)
= E

(∫ τ

0

e−δsdLs

)
= VL(x).

Next we look at the second summand on the right hand side, use the estimates for the �rst derivative
(15), the linear growth and the reserve from above to get the integrable upper bound

(c+ ix)v′n(x)− (λ+ δ)vn(x) + λ

∫ y

0

vn(x− y) dFY (y) ≤ λ

∫ y

0

vn(x− y) dFY (y) ≤ λ vn(x),

which gives
∫ (t∧τ)

0

e−δsLvn(RLs ) ds ≤
∫ (t∧τ)

0

e−δsλvn(RLs ) ds ≤
∫ (t∧τ)

0

e−δsλ
(
k1 e

is

(
x+ c

∫ s

0

e−ih dh
)

+ k2

)
ds

<

∫ ∞

0

e−δsλ
(
k1 e

is

(
x+ c

∫ s

0

e−ih dh
)

+ k2

)
ds <∞
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(recall that we have i < δ), so that by dominated convergence

lim
t→∞

E

(∫ (t∧τ)

0

e−δsLvn
(RLs ) ds

)
= E

(∫ τ

0

e−δsLvn
(RLs ) ds

)
.

The left hand side of (16 converges to zero by

0 ≤ E
(
vn(RL(t∧τ))e

−δ(t∧τ)
)

= E
(
vn(RL(t∧τ))e

−δ(t∧τ) I{t<τ}
)

≤ E (
vn(RLt )e−δt

) ≤ E
(
e−δt

(
k1 e

is

(
x+ c

∫ s

0

e−ih dh
)

+ k2

))
→ 0

(recall vn(x) = 0 for x < 0). Further v′n → u′1 almost everywhere (at points where u1 is di�erentiable)
and limn→∞ Lvn

(x) = Lu1(x) holds.
We need again an integrable upper bound for | Lvn

(RLs ) − Lu1(R
L
s ) |. This can be obtained from (15)

and the linear growth conditions on vn and u1:

| Lvn(RLs )− Lu1(R
L
s ) | e−δs

≤
(

(c+ iRLs )v′n(R
L
s ) + (δ + λ)vn(RLs ) + λ

∫ RL
s

0

vn(RLs − y) dFY (y)

+(c+ iRLs )u′1(R
L
s ) + (δ + λ)u1(RLs ) + λ

∫ RL
s

0

u1(RLs − y) dFY (y)

)
e−δs

≤ 2(δ + λ)vn(RLs ) + λ

∫ RL
s

0

vn(RLs − y) dFY (y) + 2(δ + λ)u1(RLs ) + λ

∫ RL
s

0

u1(RLs − y) dFY (y)

≤ K (u1(RLs ) + vn(RLs )) e−δs ≤ K

(
k1 e

is

(
x+ c

∫ s

0

e−ih dh
)

+ k2

)
e−δs.

Altogether we arrive at

lim
n→∞

E
(∫ τ

0

e−δs Lvn(RLs ) ds
)

= E
(∫ τ

0

e−δs Lu1(R
L
s ) ds

)
≤ 0.

Finally we arrive at

VL(x) ≤ u1(x) + E
(∫ τ

0

e−δs Lu1(R
L
s ) ds

)
≤ u1(x),

which holds for every admissible strategy L resulting in V (x) ≤ u1(x).

The next proposition follows immediately.
Proposition 2.7. An admissible strategy L with associated return function VL which is an absolutely
continuous supersolution of the HJB equation ful�lls V = VL. Consequently, L is an optimal dividend
strategy.
Now we state several auxiliary results which characterize the value function at points of potentially
problematic di�erentiability behaviour. The proofs are in the spirit of Azcue and Muler in [3].
If it is optimal to pay out an amount a immediately, then V (x) = a + V (x − a) so that V ′(x−) = 1.
If it is optimal to keep the surplus at a level x until the next claim occurrence at time τ1 and pay out
everything exceeding this level we have

V (x) = E
(∫ τ1

0

(c+ ix) e−δs ds+ e−δτ1V (x− Y1)
)

=
1

δ + λ

(
c+ ix+ λ

∫ x

0

V (x− y) dFY (y)
)
.

The following assertions are needed to prove certain properties of the optimal strategy.
For some z > 0, the set Πz will denote the set of admissible strategies L ∈ Π for which the controlled
reserve stays below z, i.e. RLt ≤ z for L ∈ Πz and t ≥ 0.
De�ne the operator

Λ(x) = c+ ix− (δ + λ)V (x) + λ

∫ x

0

V (x− y) dFY (y).
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Lemma 2.8. If there is an x > 0 such that Λ(x) = 0, then V (x) = supL∈Πx
VL(x) for x ∈ [0, x).

Proof. The proof is done by induction. Let Π(n) be the set of admissible strategies such that for initial
reserve x < x the claim process stays below x till the occurrence of the nth claim. The idea of the proof
is to construct an ε-optimal strategy L̂ ∈ Πx̄ from a certain ε/2-optimal strategy Ln ∈ Π(n) for some n
large enough. Because of discounting and δ > i we get that |VLn

(x) − VL̂(x)| will be small enough to
derive the desired result.
First we want to show

V (x) = sup
L∈Π(n)

VL(x) (17)

for all n ≥ 0. This will be done by induction. Clearly Π(0) = Π and we have that V (x) = supL∈Π(0)
Vl(x).

Let n > 1, ε > 0 and (17) be ful�lled for n − 1. By the induction hypothesis, Ln−1 ∈ Π(n−1) such that
V (x) − VLn−1(x) <

ε
2 . Now we look for a strategy Ln ∈ Π(n) such that 0 ≤ VLn−1(x) − VLn

(x) ≤ ε
2 . In

view of Λ(x) = 0, Ln is de�ned as follows. Starting at x < x apply Ln−1 as long as the reserve stays
below x. When reaching x pay out c + ix until a claim occurs and use again Ln−1 with initial capital
x− Y , where Y denotes the random claim size.
As �rst step we show VLn

(x) ≥ VLn−1(x)− ε
2 . The initial capital is RLn

0 = x; Y1, τ1 denote amount and
occurrence time of the �rst claim. For 0 ≤ t < τ1 we have RLn

t = x, Ln,t = (c+ ix)t and RLn
τ1 = x− Y1.

We get

VLn(x) = E
(∫ τ1

0

e−δs(c+ ix) ds+ e−δτ1VLn−1(x− Y1)
)

=
1

δ + λ

(
c+ ix+ λ

∫ x

0

VLn−1(x− y) dFY (y)

)

≥ 1
δ + λ

(
c+ ix+ λ

∫ x

0

(V (x− y)− ε

2
dFY (y)

)

=
1

δ + λ

(
Λ(x) + (δ + λ)V (x)

λε

2
F (x)

)

≥ V (x)− ε

2
.

From the following two inequalities we get the required result,

V (x) ≥ VLn−1(x) ≥ V (x)− ε

2
,

V (x) ≥ VLn(x) ≥ V (x)− ε

2
,

which gives

VLn(x)− VLn−1(x) ≥ V (x)− ε

2
− V (x) = − ε

2
.

Now we deal with the case 0 ≤ x < x. We have to distiguish between paths of the process controlled by
Ln which reach x in �nite time (the set of these paths is denoted by P1) and those which do not. Let τ
be the �rst time a path from P1 reaches x. We can split the value of the strategy Ln as follows

VLn(x) = E

(
IP1

∫ τLn

0

e−δsdLn,s

)
+ E

(
IPc

1

∫ τLn

0

e−δsdLn,s

)

= E

(
IP1

∫ τ

0

e−δsdLn,s

)
+ E

(
e−δτ

)
VLn(x) + E

(
IPc

1

∫ τLn

0

e−δsdLn,s

)
.

Because of the de�nition of the strategy Ln we have that in Pc1 and in P1 for t < τ the paths RLn
t and

R
Ln−1
t are identical. Therefore we arrive at

VLn−1(x)− VLn(x) = E
(
IP1e

−δτ) (
VLn−1(x)− VLn(x)

)

≤ E (
IP1e

−δτ) ε
2
≤ ε

2
.
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In the end we have to show that for every ε > 0 there exists a strategy L̂ ∈ Πx sucht that V (x)−VL̂(x) < ε
for x ∈ [0, x]. First de�ne t1 such that

e−δt1 <
ε

8V (x)
,

and n ≥ 1 large enough such that

P (Nt1 ≥ n) =
∑

k≥n

e−λt1(λt1)k

k!
≤ ε

8V (x)
.

Let Ln ∈ Π(n) be an ε/2-optimal strategy for all x ∈ [0, x]. Let τ̂ the �rst time a path of (RLn
t )t≥0 exceeds

x. The set P2 consists of all paths such that τ̂ <∞. For t < τ̂ we de�ne L̂ = Ln, if t = τ̂ the strategy L̂
pays out immediately x and the incoming premiums till the next claim occurrence which leads to ruin.
As before the value of the strategy Ln as well as for L̂ can be written in the following form,

VLn(x) = E

(
IPc

2

∫ τLn

0

e−δs dLn,s

)
+ E

(
IP2

∫ τLn

0

e−δs dLn,s

)

= E

(
IPc

2

∫ τLn

0

e−δs dLn,s

)
+ E

(
IP2

∫ τ̂

0

e−δs dLn,s

)
+ E

(
IP2e

−δτ̂)VLn
(x)

≤ E
(
IPc

2

∫ τLn

0

e−δs dLn,s

)
+ E

(
IP2

∫ τ̂

0

e−δs dLn,s

)
+ E

(
IP2e

−δτ̂)V (x).

Since RLn
t and RL̂t are identical on Pc2 and for t < τ̂ we get

|VLn(x)− VL̂(x)| ≤ 2 E
(
IP2e

−δτ̂)V (x).

Because Ln ∈ Π(n) we have {τ̂ < t1} ⊂ {Nt1 ≥ n}, furthermore we have P2 = {τ̂ < ∞} ⊂ {τ̂ ≥
t1} ∪ {Nt1 ≥ n}. We get

E
(
IP2e

−δτ̂) ≤ E (
I{τ̂≥t1}e

−δτ̂) + E
(
I{Nt1≥n}e

−δτ̂
)

≤ e−δt1 + P ({Nt1 ≥ n}) < ε

4V (x)
,

which gives

|VLn(x)− VL̂(x)| <
ε

2
.

The required result follows from

V (x)− VL̂(x) ≤ V (x)− VLn(x) + |VLn(x)− VL̂(x)| < ε.

Lemma 2.9. If there is an x > 0 such that V ′(x) = 1, then V (x) = supL∈Πx
VL(x) for all x ∈ [0, x].

Proof. We have to show that for every ε > 0 we are able to �nd a strategy L̂ ∈ Πx such that 0 ≤
V (x)− VL̂(x) < ε for all x ∈ [0, x]. Let

D =
c+ ix

δ
ln

(
2V (x)
ε

)

and de�ne a sequence {xn}n∈N with

xn = x− D

n
.
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Further we need a sequence {hn}n∈N de�ned by

hn =
V (xn)− V (x)

xn − x
− 1.

Because of V ′(x) = 1 we have that hn → 0 for n → ∞. Choose n0 such that hn0 <
ε

8D . A further
speci�cation of the size of n0 will be needed in the end of the proof.
The proof needs two steps: �rst one �xes a sequence of strategies such that on a certain level we get an
ε
2 -optimal strategy and the di�erences of the values of these strategies form a decreasing sequence. In a
second step these ingredients are used to de�ne an ε-optimal strategy within the set Πx.
Step 1:
Take a strategy L ∈ Π such that V (x)− VL(x) < ε

8n0
. Now de�ne in a recursive way the following set of

strategies (Ln)n≥0. For n = 0 set L0 = L. For n > 0 and initial capital x ≤ xn0 follow the strategy L as
long as RLt < x and as RLt reaches x, pay out immediately the di�erence x − xn0 and follow Ln−1 with
initial capital xn0 . If x ∈ (xn0 , x], pay out x− xn0 and follow Ln−1.
The idea behind this procedure is to �nd an estimate for the time the process stays below x before
crossing x. Under the strategy Ln the intervall [xn0 , x] has to be passed more than n times.
The �rst thing to show is V (x)− VLn0

(x) < ε
2 for all x ∈ [0, x].

We start with showing that V (x)− VL1(x) <
ε

2n0
for all x ∈ [0, x].

For x = x we have

V (x)− VL1(x) ≤ V (xn0) + (1 + hn0)(x− xn0)− ((x− xn0) + VL0(xn0))

= V (xn0)− VL(xn0) + hn0(x− xn0) ≤
ε

4n0
,

because of x− xn0 = D
n0

, hn0 ≤ ε
8D , (1 + hn0)(x− xn0) = V (x)− V (xn0) and V (x) ≥ x− x+ V (x).

If x ∈ [xn0 , x] we get with V (x) = (1 + hn0)(x− xn0) + V (xn0),

V (x)− VL1(x) ≤ V (x)− (x− x)− (x− xn0 + VL(xn0))
= V (xn0) + hn0(x− xn0) + x− xn0 − x+ x− x+ xn0 − VL(xn0)

= V (xn0)− VL(xn0) + hn0(x− xn0) ≤
ε

4n0
,

with the same arguments as above.
In the end we look at x ∈ [0, xn0). Let P3 be the set of paths of RL with initial capital x such that xn0

is reached in �nite time, let τx be the �rst time such that this is done by a path from P3. We derive

VL1(x) = E

(
IP3

∫ τL1

0

e−δs dL1,s

)
+ E

(
IPc

3

∫ τL1

0

e−δs dL1,s

)

= E
(
IP3

∫ τx

0

e−δs dL1,s

)
+ E

(
IP3e

−δτx
)
VL1(xn0) + E

(
IPc

3

∫ τL1

0

e−δs dL1,s

)
.

Because the paths of RL and RL1 coincide in Pc3 and in P3 for t < τx we get

| VL1(x)− VL(x) | = E (
IP3e

−δτx
) | VL1(xn0)− VL(xn0) |.

This together with the above estimates, E
(
IP3e

−δτx
) ≤ 1, yields

| V (x)− VL1(x) | ≤ | V (x)− VL(x) |+ | VL(x)− VL1(x) |
≤ | V (x)− VL(x) |+ | VL(xn0)− VL1(xn0) |
≤ | V (x)− VL(x) |+ | V (xn0)− VL(xn0) |+ | V (xn0)− VL1(xn0) | ≤

ε

2n0
.

Now we want for n ≥ 2 and x ∈ [0, x] that | VLn(x) − VLn−1(x) | ≤ | VLn−1(xn0) − VLn−2(xn0) | holds.
For x ∈ [xn0 , x] and n ≥ 1 we get the result immediately from VLn(x) = x− xn0 + VLn−1(xn0).

15



Let x ∈ [0, xn0) and denote by P4 the set of paths of RL such that x is reached in �nite time, τx denoting
the �rst time of such an event. We obtain

VLn
(x) = E

(
IP4

∫ τLn

0

e−δs dLn,s

)
+ E

(
IPc

4

∫ τLn

0

e−δs dLn,s

)

= E

(
IP4

∫ τx

0

e−δs dLn,s

)
+ E

(
IP4e

−δτx
)
(VLn−1(xn0) + x− xn0) + E

(
IDc

∫ τLn

0

e−δs dLn,s

)
.

As before the paths of RLn and RLn−1 coincide on Pc4 and on P4 for t < τx. Therefore

| VLn
(x)− VLn−1(x) | = E

(
e−δτx

) | VLn−1(xn0)− VLn−2(xn0) | ≤ | VLn−1(xn0)− VLn−2(xn0) |.
We arrive at

V (x)− VLn0
(x) = V (x)− VL1(x) +

n0∑
n=2

(
VLn−1(x)− VLn

(x)
)

≤ V (x)− VL1(x) + (n0 − 1)| VL1(xn0)− VL(xn0) |
≤ ε

2n0
+ (n0 − 1)(| VL1(xn0)− V (xn0) |+ | V (xn0)− VL(xn0) |)

≤ ε

2n0
+ (n0 − 1)(

ε

4n0
+

ε

8n0
) ≤ ε

2
.

Step 2:
Now we identify a strategy L ∈ Πx such that VLn0

(x)− VL(x) < ε
2 for all x ∈ [0, x]. In order to reach x

from xn0 it takes at least 1
i ln

(
ix+c
ixn0+c

)
time units. For x ∈ [0, x] let τ = inf{t > 0 | RLn0

t > x}. From
the de�nition of the strategy Ln0 we get that the process has to go through the interval [xn0 , x] at least
n0 times. We get

δτ ≥ n0δ

i
ln

(
ix+ c

ixn0 + c

)
,

and subsequently

E
(
e−δτ

) ≤
(

ix+ c

i(x− D
n0

) + c

)−δn0
i

=

(
1 +

iD

n0(i(x− D
n0

) + c)

)−δn0
i

≈ e−
Dδ

c+ix ≤ ε

2V (x)
,

for n0 large enough. Let P5 be the set of paths of RLn0 with �nite τ . Now we de�ne the strategy L ∈ Πx,
with L = Ln0 as long as t < τ , and at t = τ pay out x immediately and distribute the incoming premiums
as dividends till the next claim occurrence causes ruin. Again we can write

VLn0
(x) = E

(
IPc

5

∫ τLn0

0

e−δsdLn0,s

)
+ E

(
IP5

∫ τLn0

0

e−δsdLn0,s

)

≤ E
(
IPc

5

∫ τLn0

0

e−δsdLn0,s

)
+ E

(
IP5e

−δτ)V (x) + E

(
IP5

∫ τ

0

e−δsdLn0,s

)
.

Similarly we get

VL(x) = E

(
IPc

5

∫ τL

0

e−δsdLs

)
+ E

(
IP5

∫ τL

0

e−δsdLs

)

≥ E
(
IPc

5

∫ τL

0

e−δsdLs

)
+ E

(
IP5

∫ τ

0

e−δsdLs

)
+ E

(
e−δτ

)
x.

Because on the sets Pc5 and P the paths of RLn0 and RL coincide for t < τ̄ , we arrive at

VLn0
(x)− VL(x) ≤ E (

e−δτ
)
(V (x)− x) ≤ E (

e−δτ
)
V (x) ≤ ε

2
.
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This �nishes the proof since
0 ≤ V (x)− VL(x) = V (x)− VLn0

(x) + VLn0
(x)− VL(x) ≤ ε.

Finally, the following is a consequence of the proof of Proposition 2.6:
Lemma 2.10. Let x > 0 and u1(x) be an absolutely continuous supersolution of the HJB equation for
all x ∈ [0, x). If L is an admissible strategy such that RLt ≤ x for all t ≥ 0 then u1(x) ≥ VL(x) for all
x ∈ [0, x).
These three lemmas imply the following two propositions. The results remind on a similar local charac-
terization of the value function by Shreve et al. [14]. There they also use in an intermediate step the set
of constrained controls Πx for solving a dividend maximization problem in a general di�usion setup.
Proposition 2.11. If either Λ(x) = 0 or V ′(x) = 1 for some x > 0 and u1(x) is an absolutely continuous
supersolution of the HJB equation for all x ∈ [0, x) then u1(x) ≥ V (x) in [0, x]. Hence, if L ∈ Πx such
that VL is an absolutely continuous supersolution to the HJB equation for all x ∈ [0, x) then V (x) = VL(x)
for all x ∈ [0, x].
De�ne for any y > 0

Uy(x) =
{
V (x) x ≤ y,
V (y) + x− y x > y.

The following proposition will be the key in the numerical construction of a solution and we will see how
it matches some properties of the optimal strategy.
Proposition 2.12. (i) If Uy is a supersolution to the HJB equation in (y,∞), then Uy = V in [0,∞).
(ii) If either Λ(x) = 0 or V ′(x) = 1 for some x > 0 and there exists y < x such that Uy is a supersolution

of the HJB equation in (y, x], then Uy = V in [0, x].
Proof. (i) If we prove that Uy is a supersolution in y > 0 we immediately have that Uy ≥ V in [0,∞).
From the de�nition we have Uy(y) = V (y) and therefore the supersolution property of V implies that
L∗Uy,φ

(y) ≤ 0 for an appropriate function φ. The right-hand derivative in y is given through

lim
x↓y

Uy(x)− Uy(y)
x− y

= 1.

Remark 2.2 shows that there exists a test function φ with the supersolution property if and only if

lim
x↑y

V (x)− V (y)
x− y

= lim
x↑y

Uy(x)− Uy(y)
x− y

= 1.

But in this case we get φ′(y) = 1 showing in addition to V also Uy has the supersolution property. To
derive Uy ≤ V for all x > y, let ε > 0 and let L be an ε-optimal strategy for initial capital y. For x ≥ y
de�ne a strategy Lx as paying out immediately x− y and subsequently following strategy L. We get

Uy(x)− ε = x− y + V (y)− ε ≤ x− y + VL(y) = VLx(x) ≤ V (x).

For (ii) use Proposition 2.11 instead of the general supersolution property. Then the same arguments as
above give the desired result.

The following settles the question of di�erentiability at points switching from the non-pay- to the pay-
regime.
Remark 2.4. From the proof of Proposition 2.12 (i) and equation (7) of Remark 2.2, we obtain that
at points y > 0 where a barrier strategy with height y is applied, we have di�erentiability of the value
function: Below y we use V , in some interval above y we have V described by Uy. From Proposition 2.2
and the monotonicity of Uy we get (for x < y < x′ such |x− y| ≥ |x′ − y|),

1 ≤ V (x)− V (y)
x− y

=
Uy(x)− Uy(y)

x− y
≤ Uy(x′)− Uy(y)

x′ − y
→ 1,

for x′ → y. This shows that in such change points the left-hand derivative is (by the viscosity solution
property) bounded by the right-hand derivative, giving 1 as an upper and lower bound and therefore
proving di�erentiability in these points.
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3 Construction of the optimal strategy
3.1 The IDE part of the HJB equation
In intervals where V ′ exists and is greater than 1 we have to ful�ll the second part of the HJB equation
(5). Recall that in intervals where it is optimal to do nothing the generator A of the controlled process
applied to V gives

AV (x) = (c+ ix)V ′(x)− (δ + λ)V (x) + λ

∫ x

0

V (x− y) dFY (y).

Let us therefore look for a solution of the following integro-di�erential equation with a given initial
condition,

0 = (c+ ix)f ′(x) + λ

∫ x

0

f(x− y)dFY (y)− (λ+ δ)f(x), (18)

1 = f(0).

As for each solution f(x) of (18), C f(x) is again a solution for arbitrary constant C, any boundary
condition can be ful�lled.
Let f(x) be a solution to (18) and de�ne for some b ≥ 0

Vb(x) =
{
f(x)/f ′(b) x ≤ b,
x− b+ Vb(b) x > b.

(19)

An analogue of [13, Lemma 2.49] shows that Vb is equal to the value of the expected discounted dividends
when a constant barrier strategy with barrier height b is applied. Hence maximizing Vb(x) over all b ≥ 0
is equivalent to �nding a minimum of f ′(x).

We will now prove the existence of a solution of a generalized version of (18). If it is optimal to pay out
dividends following a barrier strategy only in a bounded interval (V ′ = 1) and for higher surplus x > x0

it is optimal to pay nothing in some area (V ′ > 1), then we would need a solution to the equation

0 = (c+ ix)u′(x)− (δ + λ)u(x) + λ

∫ x−x0

0

u(x− y) dFY (y) + λ

∫ x

x−x0

f(x− y) dFY (y) (20)

f(x0) = u(x0),

where f : [0, x0] → [0,∞) is a given continuous and increasing function. Note that choosing x0 = 0 and
taking u(0) = 1 as initial condition leads to the existence proof of a solution to (18).
Lemma 3.1. Let x0 ≥ 0. For a continuous and increasing function f : [0, x0] → [0,∞) there exists
a unique, in (x0,∞) di�erentiable and strictly increasing solution u : [x0,∞) → [0,∞) to (20) with
u(x0) = f(x0).
Proof. For ε = c

2(δ+2λ) , we will show that there exists a solution with the required properties on [x0, x0+ε)
and since ε does not depend on x0 this will establish the existence on [x0,∞).
The set of all continuous and increasing functions u : [x0, x0 + ε) → [0,∞) is denoted by CI[x0, x0 + ε),
further let for a u ∈ CI[x0, x0 + ε),

u(x) =
(δ + λ)u(x)− λ

∫ x−x0

0
u(x− y) dFY (y)− λ

∫ x
x−x0

f(x− y) dFY (y)

c+ ix
.

As u and f are continuous, u is continuous for x ≥ 0. Now we de�ne for u ∈ CI[x0, x0 + ε)

Tu(x) =
∫ x

x0

u(s) ds+ f(x0).

Because of the monotonicity of u and f and f(x0) = u(x0) we get

λ

∫ x−x0

0

u(x− y) dFY (y) + λ

∫ x

x−x0

f(x− y) dFY (y)

≤ λu(x) FY (x− x0) + λf(x0)(FY (x)− FY (x− x0)) ≤ λ u(x).
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This argument gives the following lower bound for u

0 <
δ

c+ ix
u(x) ≤ u(x) ≤ δ + λ

c+ ix
u(x).

Here the upper bound follows from the fact that u and f are positive. This implies that Tu is increasing,
positive and continuous for x ∈ [x0, x0 + ε). Now for u1, u2 ∈ CI[x0, x0 + ε), we get

u1(x)− u2(x) =
(δ + λ)(u1(x)− u2(x))− λ

∫ x−x0

0
(u1(x− y)− u2(x− y)) dFY (y)

c+ ix

≤ 1
c

((δ + λ)‖u1 − u2‖+ λ‖u1 − u2‖FY (x− x0)) ≤ δ + 2λ
c

‖u1 − u2‖,

where ‖ · ‖ denotes the supremum norm. This implies

Tu1(x)− Tu2(x) ≤ ε
δ + 2λ
c

‖u1 − u2‖ ≤ 1
2
‖u1 − u2‖.

Interchanging u1 and u2 results in ‖Tu1 − Tu2‖ ≤ 1
2‖u1 − u2‖, proving that T is a contraction on

CI[x0, x0 + ε). Therefore there exists a u ∈ CI[x0, x0 + ε) such that

u(x) =
∫ x

x0

(δ + λ)u(s)− λ
∫ s−x0

0
u(s− y) dFY (y)− λ

∫ s
s−x0

f(s− y) dFY (y)

c+ is
ds+ f(x0).

Further we have from above that u′(x) = u(x) holds everywhere in [x0, x0 + ε). This gives the existence
of a unique solution to (20) with the required properties on [x0, x0 + ε).

Remark 3.1. From the HJB (5) equation we get that at points of di�erentiablity we have that either
V ′(x) = 1 or LV (x) = 0 holds. Lemma 3.1 reveals that di�erentiability can only be violated at some
switching points. Each equation part of (5) has a di�erentiable solution.

3.2 Crucial sets and the optimal strategy
This subsection deals with the construction of a candidate strategy L∗ for the optimal one. Although it is
not possible to directly show that V L∗ is a supersolution of (5) and verify its optimality with Proposition
2.6, it is possible to prove that V L∗ = V via a �xed point argument, proving the optimality of the strategy
L∗. Actually a full characterization of the value function is needed to obtain the correct solution with the
construction of L∗ (another solution of (5) with an arbitrary initial value for the de�nition of L∗ would
not lead to the solution of the maximization problem).
The following three sets will play a crucial role in the de�nition of the optimal strategy.

• A = {x ∈ [0,∞) | Λ(x) = 0},
• B = {x ∈ (0,∞) | V ′(x) = 1 and Λ(x) < 0},
• C = (A ∪ B)c.

Let us identify some properties of these sets.

Proposition 3.2. 1. B is a left-open set, i.e. for each x ∈ B ∃ δ > 0 such that (x− δ, x] ⊂ B.
2. A is a closed set.

3. If (x0, x] ⊂ B and x0 6∈ B then x0 ∈ A.
4. ∃ x̂ such that (x̂,∞) ⊂ B.
5. C is a right-open set, i.e. for each x ∈ C ∃ δ > 0 such that [x, x+ δ) ⊂ C.
6. A,B 6= ∅.
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Proof. 1. The idea is as follows: if for su�ciently small h > 0 we are able to show that Ux−h is a
supersolution in (x−h, x], then we get from Proposition 2.12 (ii) that Ux−h = V in [0, x], and hence
V ′ = 1 in (x− h, x] implying (x− h, x] ⊂ B.
Let y ∈ (x− h, x) and recall from the de�nition of B that LV (x) < 0,

LUx−h
(y) = (c+ iy)− (δ + λ)(y − x+ h+ V (x− h)) + λ

∫ y

0

Ux−h(y − z) dFY (z)

≤ (c+ ix)V ′(x)− (δ + λ)V (x) + (δ + λ)(V (x)− (y − x+ h+ V (x− h)) + λ

∫ y

0

Ux−h(y − z) dFY (z)

≤ (c+ ix)V ′(x)− (δ + λ)V (x) + (δ + λ)(V (x)− V (x− h)) + λ

∫ y

0

Ux−h(y − z) dFY (z)

≤ LV (x) + (δ + λ)(V (x)− V (x− h)) < 0.

The last step holds for h small enough because of the continuity of V , y < x and the following
estimates,

V (y − z) ≥ y − z − x+ h+ V (x− h), for y − z ≥ x− h,
∫ y

0

Ux−h(y − z) dFY (z) =
∫ y−x+h

0

(y − z − x+ h+ V (x− h))dFY (z) +
∫ y

y−x+h
V (y − z) dFY (z)

≤
∫ x

0

V (x− z) dFY (z).

We proved that Ux−h is indeed a supersolution in (x− h, x] and therefore the statement holds.

2. Because Λ is continuous in x and Λ(x) ≤ 0 for all x ∈ [0,∞), the region where it equals 0 is closed.
Assume that there is some x0 such that Λ(x0) > 0 then because of the continuity there is a x1 > x0

such that Λ > 0 in [x0, x1). Let y ∈ (x0, x1) such that V ′(y) exists. Because V ′ ≥ 1 we get

LV (y) = (c+ iy)V ′(y)− (δ + λ)V (y) + λ

∫ y

0

V (y − z) dFY (z)

≥ (c+ iy)− (δ + λ)V (y) + λ

∫ y

0

V (y − z) dFY (z) = Λ(y) > 0,

which is a contradiction to the fact that V is a viscosity supersolution to the HJB equation (5).

3. First we deal with the case x0 = 0. We know that V (0) ≥ c
δ+λ . This will also be an upper bound,

implying that Λ(0) = 0 (x0 ∈ A). Because (0, x] ⊂ B we have that V (x) = x + V (0) in [0, x]. For
x ∈ (0, x) we have from Lemma 2.9 that V (0) = supL∈Πx

VL(0).
Let L ∈ Πx, the time of the �rst claim occurrence be τ1 and its size Y1. For all t < τ1 we have
Lt ≤

∫ t
0
(c+ ix)ds, Lt ≤ ct+ i

∫ t
0
RLs ds ≤ (c+ ix)t due to L ∈ Πx and the de�nition of an admissible

strategy. We get the obvious upper bound

VL(0) = E

(∫ T1

0

e−δs dLs + e−δT1V

(∫ T1

0

(cT1 + i

∫ T1

0

RLs ds− LT1 − Y1

))

≤ E
(∫ T1

0

e−δs(c+ ix)ds

)
+ E

(
e−δT1V (x− Y1)

)

=
∫ ∞

0

λe−λt
∫ t

0

e−δs(c+ ix)ds dt+
∫ ∞

0

λe−(δ+λ)t

∫ x

0

V (x− y) dFY (y) dt

=
∫ ∞

0

e−(δ+λ)t

(
(c+ ix) + λ

∫ x

0

V (x− y) dFY (y)
)
dt.

Using V (x) = x+ V (0) in the speci�c area, we arrive at

V (0) ≤ lim inf
x→0

1
δ + λ

(
(c+ ix) + λV (0)FY (x) + λxFY (x)− λ

∫ x

0

y FY (y)
)

=
c

δ + λ
,
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which proves the statement for x0 = 0.
Now we deal with the case x0 > 0 following [3]. If V ′(x0) = 1 and x0 6∈ B we get that Λ(x0) = 0 and
therefore by de�nition x0 ∈ A. We have limx↓x0

V (x)−V (x0)
x−x0

= 1. Suppose lim infx↑x0
V (x)−V (x0)

x−x0
=

q > 1. Then we have from Remark 2.2 for all 1 < p ≤ q

max{1− p, (c+ ix0)p− (δ + λ)V (x0) + λ

∫ x0

0

V (x0 − y) dFY (y)} ≥ 0,

which implies

(c+ ix0)p− (δ + λ)V (x0) + λ

∫ x0

0

V (x0 − y) dFY (y) ≥ 0.

The limit p→ 1 gives Λ(x0) ≥ 0 which implies Λ(x0) = 0.
Now we assume lim infx↑x0

V (x)−V (x0)
x−x0

= 1. There is a sequence {xn}n∈N with xn → x0 such that
limn→∞ V ′(xn) = 1. Choose a sequence {hn}n∈N with hn ↓ 0 such that limn→∞

V (x0)−V (x0−hn)
hn

= 1.
Take an = V (x0)−V (x0−hn)

hn
− 1 and let An denote the set of all x ∈ [0, hn] such that V ′ exists and

V ′(x) ≥ 1 + 2an. Because of the inequalities for the �rst derivative, see Proposition 2.2, we can
assume an ≥ 0. If for some n we would have an = 0 we get V (x0)−V (x) = x0−x for x ∈ [x0−hn, x0]
and therefore V ′(x0) = 1. Therefore assume an > 0, and we can write by the absolute continuity,
|An| ≤ hn and Acn = [0, hn]\An,

an + 1 =

∫
An

V ′(z) dz +
∫
Ac

n
V ′(z) dz

hn
≥ |An|(1 + 2an) + (hn − |An|)

hn
.

This gives the estimates |An| ≤ hn

2 → 0. So we can choose a sequence xn ↗ x0 with 1 ≤ V ′(xn) ≤
1 + 2an such that V ′(xn) exists. In the end we get limn→∞ V ′(xn) = 1.
If there is a subsequence xnj → x0 with V ′(xnj ) > 1 implying Λ(xnj ) = 0 we would have Λ(x0) = 0
because A is a closed set. Suppose V ′(xn) = 1 for all n ∈ N and Λ(x0) < 0. Then we can �nd
an xn close enough to x0 (Λ is continuous) such that Uxn is a supersolution for x ∈ [xn, x0] but
Proposition 2.12 yields that Uxn = V in [0, x]. This gives a contradiction because V would be
di�erentiable at x0,

LUxn
(x) = (c+ ix)− (δ + λ)Uxn(x) + λ

∫ x

0

Uxn(x− y) dFY (y)

≤ (c+ ix0)− (δ + λ)Uxn(x) + λ

∫ x0

0

(V (x0 − y) dFY (y)

= Λ(x0) + (δ + λ)(V (x0)− (x− xn + V (xn)))
≤ Λ(x0) + (δ + λ)(V (x0)− V (xn)) < 0.

The last inequality holds due to the continuity of V for n large enough. This proves the third point.

4. We want to show that for y > 0 large enough Uy is a supersolution for all x ∈ (y,∞). We already
have U ′y = 1 in this interval, it is left to show that LUy (x) < 0. We have

LUy (x) = (c+ ix)− (δ + λ)(x− y + V (y)) + λ

∫ x

0

Uy(x− z) dFY (z)

≤ (c+ ix)− (δ + λ)(x− y + V (y)) + λUy(x)
= (c+ ix)− (δ + λ)(x− y + V (y)) + λ(x− y + V (y))

= c+ (i− δ)x+ δ(y − V (y)) ≤ c+ (i− δ)x− c

δ + λ
< 0.

This holds for every x ∈ (y,∞) if y is large enough, because Uy is an increasing function and
∫ x

0

Uy(x− z) dFY (z) ≤ Uy(x),

y +
c

δ + λ
≤ V (y).
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5. For some x ∈ C we have Λ(x) < 0. Because of continuity we get the existence of a δ > 0 such that
[x, x + δ) ⊂ Ac. If there would be some x1 ∈ B within this interval we would derive the existence
of an x0 ∈ A smaller than x1 such that (x0, x1] ⊂ B, but because x 6∈ B this x0 also has to be in
the interval (x, x+ δ). Therefore we have [x, x+ δ) ⊂ Bc and [x, x+ δ) ⊂ C.

6. The statement follows from the third and fourth point.

At this stage we are able to de�ne the optimal strategy.

De�nition 3.1. The optimal strategy L∗ is stationary, i.e. it depends only on x = RL
∗

t− ≥ 0, and is given
as follows:

• If x ∈ A, everything exceeding x is paid out immediately as dividend (with rate c+ ix).

• For x ∈ B, we know from Proposition 3.2 that there is a x1 ∈ A such that (x1, x] ⊂ B, and dividends
are paid with the amount x− x1.

• For x ∈ C no dividends are paid.

From [3] one knows that the strategy as de�ned above is admissible.
The following proposition shows that this band strategy is indeed optimal.

Proposition 3.3. The strategy L∗ de�ned in De�nition 3.1 is optimal, i.e. V (x) = VL∗(x) for all x ≥ 0.

Proof. From Proposition 3.2 we know that there exists some x̂ = inf{x | (x,∞) ⊂ B}. We want to de�ne a
contraction map on the set of all functions f : R→ [0,∞) with f(x) = 0 for x < 0 and f(x) = x−x̂+f(x̂)
for x > x̂ which are continuous on R+. The used distance measure is d(f1, f2) = maxx≥0 |f1(x)− f2(x)|.
The operator T is de�ned as follows,

Tf (x) = E
(∫ τ1

0

e−δsdL∗s + e−δτ1f
(
eiτ1(x+

∫ τ1

0

(c− l∗s)e
−is ds)−∆L∗ − Y1

))
,

where τ1 denotes the time of the �rst claim occurrence and Y1 its size.
Notice the similarity to the dynamic programming principle (4) with RL∗t = eit(x+

∫ t
0
(c− l∗s) ds)−∆L∗

where l∗ denotes the density of the absolutely continuous part of L∗. From De�nition 3.1 we have that
l∗ = 0 for x ∈ B ∪ C and l∗ = c+ ix for x ∈ A.
One gets

|Tf1 − Tf2 | = E
(
e−δτ1

(
f1

(
eiτ1(x+

∫ τ1

0

(c− l∗s)e
−is ds)−∆L∗ − Y1

)

−f2
(
eiτ1(x+

∫ τ1

0

(c− l∗s)e
−is ds)−∆L∗ − Y1

)))

≤ λ

δ + λ
max
x≥0

|f1(x)− f2(x)|,

therefore T is a contraction and has a unique �xed point. The de�nition of L∗ ensures that Tf is in the
same space as f . Clearly VL∗ is a �xed point because of the dynamic programming principle and the
de�nition of L∗. Now we are going to show that V is also a �xed point which gives V = VL∗.
We start with x ∈ A, then

TV (x) = E
(∫ τ1

0

(c+ ix)e−δsds+ e−δT1V (x− Y1)
)

=
1

δ + λ

(
(c+ ix) + λ

∫ x

0

V (x− y) dFY (y)
)

= V (x),

because Λ(x) = 0 for x ∈ A.
Next, we look at x ∈ B. Let x1 such that (x1, x] ⊂ B and x1 ∈ A. We get from the de�nitions of L∗ and
B,

TV (x) = x− x1 + TV (x1) = x− x1 + V (x1) = V (x).
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Finally, we know that C is a right-open set. Therefore some x1 exists such that [x, x1) ⊂ C and x1 6∈ C.
Denote

xt = eit
(
x+ c

∫ t

0

e−isds
)
,

and let t1 such that xt1 = x1.
Because V is a di�erentiable solution to (c + iz)V ′(z) − (δ + λ)V (z) + λ

∫ z
0
V (z − y) dFY (y) = 0 for

z ∈ (x, x1), d
dtxt = c+ ixt and

d

dt
e−(δ+λ)tV (xt) = −(δ + λ)e−(δ+λ)tV (xt) + e−(δ+λ)t(c+ ixt)V ′(xt).

So we get

T (V )(x) = E
(
I{τ1≥t1}

)
e−δt1V (x1) + E

(
I{τ1<t1} e

−δτ1V (xτ1 − Y1)
)

= e−(δ+λ)t1V (x1) +
∫ t1

0

e−(δ+λ)t λ

∫ xt

0

V (xt − y) dFY (y) dt

= e−(δ+λ)t1V (x1) +
∫ t1

0

e−(δ+λ)t ((δ + λ)V (xt)− (c+ ixt)V ′(xt)) dt

= e−(δ+λ)t1V (x1) + V (x)− e−(δ+λ)t1V (x1) = V (x).

From Remark 2.4 we know that V ′ can not have any downward jumps and further that (20) has a
di�erentiable solution. Therefore the only possibility of not being di�erentiable is at points where the
optimal strategy changes from paying a lump sum to paying no dividends.
The similarity to the optimal strategy for the case i = 0 as it is dealt with in [3] and [13] allows us to
use an algorithm from [13] to determine the value function piecewise. As mentioned in Section 3.1 and
because of the construction of the band strategy there is a close relation to barrier strategies. For small
initial capital the �rst thing to do is to �nd a local optimal barrier, i.e �nd the smallest point in the set
A denoted by x0. Notice that it is possible that 0 ∈ A. Let f0 be the solution of (18) and choose the
smallest point in A as x0 = sup{x ≥ 0 | f ′0(x) = infy≥0 f

′
0(y)}. Then de�ne

v0(x) =
{
f0(x)/f ′0(x0) x ≤ x0,
x− x0 + f0(x0)/f ′0(x0) x > x0.

If v0 ful�lls the HJB equation (5) we are done, if not the solution is constructed recursively: In the nth
step (n ≥ 1), �nd some interval belonging to B of the form (xn, a) (cf. Proposition 3.2). Then it is
possible that some adjoining interval [a, xn+1) belongs to the set C; then it is necessary to calculate a
solution to (20). The points a and xn+1 are determined in the following way. For given vn(x) and xn,
let fn+1(x; y) be a solution of (20) for x ≥ y and equal to vn(x) for x < y. We have to �nd the smallest
y > xn such that f ′n+1(x̄; y) = 1 for some x̄ > y,

a = inf{y ≥ xn | inf
z>y

f ′n+1(z, y) = 1}.

If a is chosen too small or too large then the derivative of f ′n+1(x; ·) will either take a minimum greater
than 1 or smaller than 1. Due to Proposition 2.2 and the fact that V ′ can not have downward jumps a
wrong choice would not lead to a solution of the maximization problem.
Then we obtain xn+1 := sup{x ≥ a | f ′(x, a) = 1} and

vn+1(x) :=
{
fn+1(x, a), x ≤ xn+1,
x− xn+1 + fn+1(xn+1, a), x > xn+1.

If vn+1(x) ful�lls (5) we have constructed the value function, otherwise we restart the procedure. Because
of Proposition 3.2 this algorithm terminates.
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4 Examples
4.1 Exp(α) distributed claim amounts
In the �rst example consider exponential claim amounts with FY = 1 − e−αy. We will see that in the
case 0 < i < δ a barrier strategy is optimal, an analogous result for i = 0 was �rst shown in [7]. To �nd
an element of A we need to solve Λ(x) = 0, because of the properties of the set B some of these elements
are lower boundaries of subsets of B. Looking for a solution to Λ(x) = 0 we observe that we have to solve

V (x) =
c+ ix

δ + λ
− λ

δ + λ
e−αx

∫ x

0

V (y)αeαy dy. (21)

If a point a ∈ A is a boundary point of a connection component of B we have V ′(a+) = 1. From V ′ ≥ 1
and the fact that V ′ can not have downward jumps (see Remark 2.4) we get V ′(a) = 1. Therefore, by
B 6= ∅ we can additionally use the condition V ′(x) = 1 for at least one element of A. From (21) and
V ′ = 1 we get,

1 = V ′(x) =
i

δ + λ
− α2λ

δ + λ
e−αx

∫ x

0

V (y)eαy dy +
αλ

δ + λ
V (x).

Using (21) again to eliminate the integral we derive,

δ + λ

α
− i

α
= c+ ix− δV (x).

Since i < δ and V (x) ≥ x+ c
δ+λ (Proposition 2.1) we further have that ix− δV (x) is decreasing. There

exists at most one positive point on the real axis which ful�lls these conditions. This is equivalent to the
statement that a barrier strategy b∗ is the optimal one in the case of Exp(α) distributed claim amounts.
In the following we identify the case b∗ > 0. The case of an optimal barrier equal to zero is then treated
in Section 4.1.2.

4.1.1 The case b∗ > 0

For the determination of the optimal barrier we can use some results from [10]. a by-product we can show
why only the case i < δ makes sense mathematically. The structure of a constant barrier strategy is as
follows. Given a barrier at level b, all surplus above this level will be immediately paid out as dividend.
We denote the expected discounted dividends for a barrier b with Vb(x). Assuming di�erentiability of
Vb(x) we get the following well-known IDE (see [10]), for x < b

0 = (c+ ix)V ′(x) + λ

∫ x

0

V (x− y)dFY (y)− (λ+ δ)V (x), (22)

1 = V ′b (b). (23)

From the nature of a barrier strategy we have for x > b

Vb(x) = x− b+ Vb(b).

Because (22) is homogenous and linear in V we can look for a solution f of it with a modi�ed initial
condition f(0) = 1. By scaling we get that Vb = f(x)/f ′(b) for 0 ≤ x ≤ b. Following [10] we have to solve

0 = (c+ ix)f ′′(x) + (α(c+ ix) + i− (δ + λ))f ′(x)− αδf(x) = 0,
1 = f(0),
0 = cf ′(0)− (δ + λ)f(0).

The general solution is of the form

f(x) = e−αx
(
x+

c

i

)(λ+δ)/i
(
B1 F

(
1 +

δ

i
, 1 +

λ+ δ

i
, α(u+

c

i
)
)

+B2 U

(
1 +

δ

i
, 1 +

λ+ δ

i
, α(u+

c

i
)
))

,
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where B1 and B2 are constants determined by the boundary conditions and F and U are con�uent
hypergeometric functions of the �rst and second kind, respectively. Because maximizing Vb is equivalent
to minimizing f ′ we take a look on the asymptotics of f and f ′. From [1] we have

F (a, b, z) ∼ Γ(b)
Γ(a)

ezza−b
(
1 +O(|z|−1

)
,

U(a, b, z) ∼ z−a
(
1 +O(|z|−1

)
.

So we get

f(x) ∼ Γ(1 + δ+λ
i )

Γ(1 + δ
i )

B1 e
α c

i (x+
c

i
)

δ
i (1 +O((α(x+

c

i
))−1)).

We can use the same asymptotics to obtain the behaviour of f ′(x) for large x and it su�ces to consider
the terms in connection to F (a, b, z). Therefore we get

f ′(x) ∼ B1
δ + λ

i

Γ(1 + δ+λ
i )

Γ(1 + δ
i )

eα
c
i α−

λ
i (x+

c

i
)

δ
i−1 K +O((α(x+

c

i
))

δ
i−2),

with some constant K. Furthermore

lim
x→∞

f ′(x) =





0, δ < i,
∞, δ > i,
const, δ = i.

and as a consequence for a �xed argument x

lim
b→∞

Vb(x) = lim
b→∞

f(x)
f ′(b)

=




∞, δ < i,
0 δ > i,
f(x)
const , δ = i.

Since Vb(x) ≤ V (x) the value function is unbounded for i > δ and does not ful�ll limb→∞ Vb(x) = 0 for
δ = i. Therefore only the case δ > i is interesting and leads to a well-formulated dividend maximization
problem. If b∗ > 0, then calculate f and determine b∗ = argmax{f ′(b) | b > 0} numerically. Then

V (x) = Vb∗(x) =
{
f(x)/f ′(b∗) 0 ≤ x ≤ b∗,
x− b∗ + f(b∗)/f ′(b∗) x > b∗.

As an illustration Figure 1 shows the value function when the optimal barrier strategy with height
b∗ = 4.41 is applied together with the two linear bounds from Proposition 2.1 (which are obviously not
tight). The chosen parameters are α = 2, λ = 2, i = 0.05, δ = 0.1 and c = 2.5.

4.1.2 The case b∗ = 0

We need to determine parameter settings for which b∗ = 0 is optimal. For b∗ = 0, V (x) = V0(x) = x+ c
δ+λ .

Because in this case V ′0 = 1 for x ≥ 0, we only have to check when

(c+ ix)− (δ + λ)V0(x) + λ

∫ x

0

V0(x− y)αe−αy dy ≤ 0

holds. Evaluating this equation, it turns out that for

Z(x) :=
(δ + λ− αc)λe−αx + x(i− δ)α(δ + λ)− λ(δ + λ− αc)

α(δ + λ)
, (24)

we have to check when Z(x) ≤ 0 for all x ≥ 0. Further

Z ′(x) = (i− δ)− λ

δ + λ
e−αx (δ + λ− αc) .
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Figure 1: Value function for α = 2, λ = 2, i = 0.05, δ = 0.1 and c = 2.5.

If δ + λ ≥ αc we have Z ′ ≤ 0 for all x ≥ 0 and Z(0) = 0 is a maximum of Z. Therefore V0 ful�lls the
HJB equation and V0 = V .
Because Z is continuously di�erentiable we can discuss the behaviour of this function in the usual way.
If at the maximum of Z attained in a point x̂ the value Z(x̂) ≤ 0, V0 is the value function (if Z(x̂) > 0
we have to look for a positive optimal barrier described as in Section 4.1.1).
We get that Z ′ has a root in x̂ = 1

α log
(
λ(αc−(δ+λ))
(δ−i)(δ+λ)

)
∈ R. Additionally we have Z ′′(x̂) = α(i − δ) < 0,

such that

Z(x̂) =
λ(αc− (δ + λ))− (δ − i)(δ + λ) + (i− δ)(δ + λ) log

(
λ(αc−(δ+λ))
(δ−i)(δ+λ)

)

α(δ + λ)

is a global maximum. Note x̂ > 0 ⇐⇒ λ(αc−(δ+λ)) > (δ−i)(δ+λ). Because Z ′′(x) = − e−αxαλ(αc−(δ+λ))
δ+λ <

0 we have that Z ′(x) < 0 for x > x̂ and Z ′(x) > 0 for x < x̂. This has the consequence that if x̂ ≤ 0,
Z(0) = 0 is again a maximum for positive arguments such that V0 = V . In the case x̂ > 0 Z(x̂) < 0 has
to be checked. Summarizing, V0(x) = V (x) for x ≥ 0 if one of the following cases holds for the set of
parameters:

1. αc ≤ (δ + λ),

2. αc > (δ + λ) ∧ αc− (δ + λ) ≤ (δ−i)(δ+λ)
λ ,

3. αc > (δ + λ) ∧ αc− (δ + λ) > (δ−i)(δ+λ)
λ and

λ(αc− (δ + λ))− (δ − i)(δ + λ) ≤ (δ − i)(δ + λ) log
(
λ(αc− (δ + λ))
(δ − i)(δ + λ)

)
.

If none of these cases holds, calculate V = Vb∗ as described in Section 4.1.1.

4.2 Gamma(2, γ) distributed claim amounts
In this section we will identify an explicit example where a band strategy is optimal. In contrast to the
case i = 0 (of [3] and [13]) an explicit solution to

(c+ ix)f ′(x)− (δ + λ)f(x) + λ

∫ x

0

f(x− y) dγ(y)dy = 0

is not available, where dγ(y) = yγ2 eγy denotes the Gamma(2, γ) density function. Therefore we need
numerical solutions to (18) and (20) for applying the algorithm presented in [13]. A natural approach is
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to use the contraction argument from Lemma 3.1 for determining a numerical solution but that turns out
to be too time consuming and inaccurate. So here we implement another approach to obtain a reasonably
accurate solution of (20).
Assume that the value function is determined up to a point xn. Following the algorithm from [13] (see
Section 3.2) we have to calculate fn+1(x; y) as a solution to (20) with x0 replaced by y. In terms of the
algorithm the initial condition is given by vn(y) = fn+1(y; y). First we �x a step width h > 0 and choose
a set of points {xy}0≤k≤K with yk = y + kh. Then we de�ne piecewise linear functions {ωk(x)}0≤k≤K
such that ωk(yk−1) = 0, ωk(yk) = 1, ωk(yk+1) = 0 and ωy(x) = 0 for x /∈ [yk−1, yk + 1]. Let the sequence
{uk}0≤k≤K denote the unknown values of a solution to (20) at the points yk. The numerical solution we
are looking for is of the form

u(x) =
K∑

k=0

ukωk(x).

Plugging u(x) into (20) and evaluating this expression at every yk leads to a linear system of equations
for the unknowns uk.
Finally we give a concrete example for a situation where a band strategy is optimal. Choose the parameters
by λ = 10, δ = 0.1, γ = 1, c = 21.4 (cf. [3]) but now with a positive interest rate i = 0.02. First observe
that if we look at a solution to (18), the derivative is minimized in zero. On the other hand x+ c

δ+λ does
not ful�ll (5) on R+. Therefore we have to choose x0 = 0 and apply the numerical method presented
above. We get that the sets A, B and C are given by

A = {0, 12.96},
B = (0, 0.96) ∪ (12.96,∞)
C = [0.96, 12.96).

A sample path of the reserve process controlled by the optimal strategy L∗ is illustrated in Figure 2.
Starting with initial capital x ∈ B the amount x − x1, x1 = 12.96, is immediately paid out as dividend,
this lump sum payment is marked as the bold dashed line with an arrow at its end. Then up to the �rst
claim occurence which takes the process to C, dividends are paid continuosly at a rate c + ix1. In the
set C there are no actions on the reserve process such that it increases again to x1 and stays there till
the second claim happens, there again dividends are paid with intensity c+ ix1. Jumping into set B the
reserve is immediately reduced to the next point in the set A which is x0 = 0. The process stays at this
level, i.e. dividends are paid with intensity c, till ruin caused by the third claim occurs. Figure 3 shows
the value function for i = 0.02 in comparison to the value function with i = 0 (dashed line, as calculated
in [3]). It can be observed that for low initial capital both follow the same strategy, but from 0.96 on the
case with positive interest rate dominates the other one.

Acknowledgement. We would like to thank Hanspeter Schmidli for stimulating discussions on the
topic.
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