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Abstract. On March 11, 1944, the famous Eremitani Church in Padua
(Italy) was destroyed in an Allied bombing along with the inestimable
frescoes by Andrea Mantegna et al. contained in the Ovetari Chapel. In
the last 60 years, several attempts have been made to restore the fresco
fragments by traditional methods, but without much success. We have
developed an efficient pattern recognition algorithm to map the original
position and orientation of the fragments, based on comparisons with
an old gray level image of the fresco prior to the damage. This inno-
vative technique allowed for the partial reconstruction of the frescoes.
Unfortunately, the surface covered by the fragments is only 77 m2, while
the original area was of several hundreds. This means that we can re-
construct only a fraction (less than 8%) of this inestimable artwork. In
particular the original color of the blanks is not known. This begs the
question of whether it is possible to estimate mathematically the original
colors of the frescoes by making use of the potential information given
by the available fragments and the gray level of the pictures taken before
the damage. Can one estimate how faithful such restoration is? In this
paper we retrace the development of the recovery of the frescoes as an
inspiring and challenging real-life problem for the development of new
mathematical methods. We introduce two models for the recovery of vec-
tor valued functions from incomplete data, with applications to the fresco
recolorization problem. The models are based on the minimization of a
functional which is formed by the discrepancy with respect to the data
and additional regularization constraints. The latter refer to joint spar-
sity measures with respect to frame expansions for the first functional
and functional total variation for the second. We establish the relations
between these two models. As a byproduct we develop the basis of a the-
ory of fidelity in color recovery, which is a crucial issue in art restoration
and compression.

1 Introduction

Mathematical Imaging in Art Restoration. We address the problem of the
faithful reconstruction of vector valued functions from incomplete data, with spe-
cial emphasis in color image recovery. We are inspired by a real-life problem, i.e.



the rebirth of one of the most important masterpieces of the Italian Renaissance,
by making use of mathematical imaging techniques. We refer to the decorative
cycle in the Ovetari Chapel in the Eremitani Church in Padua. The chapel was
seriously damaged by an air strike in 1944 and a large section of the contained
frescoes were sparsely fragmented. A digital cataloging of pictures of the remain-

Fig. 1. Circular harmonic functions constitute an orthonormal basis of eigenfunctions
of rotations. The comparison of two mutually rotated images amounts to the matching
of the corresponding basis coefficients up to multiplication by suitable unitary eigen-
values.

ing fragments made it possible to count the number (78.561) of those with an
area larger than 1 cm2. The distribution of the areas shows that most of them
are relatively small (5-6 cm2). There is no information on the possible location of
the pieces on the huge original surface and also unknown is the angle of rotation
with respect to the original orientation. These a priori data demonstrated the
lack of contiguous fragments for any given fragment.These difficulties explain
the unsuccessful attempts of recomposition by traditional methods. In simple
words, it is an incomplete puzzle which is too big to be solved by human eyes
only. There exist some fairly good quality black and white photographs of the
frescoes dated from between 1900 and 1920.This heritage gave rise to the hope
that a computer-based comparison between the fresco digital images and those
of the fragments could help to recognize their original location. The request of
a fast algorithm excludes the implementation of comparisons pixel-by-pixel and
suggests that methods based on compressed/sparse representations, i.e., basis
or frame expansions, can be more efficient. We have developed an efficient pat-
tern recognition algorithm based on sparse circular harmonic expansions (Fig.
1) [20, 21]. This method has been implemented for the solution of the fragment
recollocation problem and we illustrate some of the final results in Fig. 2. On
the basis of the map produced by this computer assisted anastylosis, part of the
frescoes has already been physically restored. We refer to the book chapter [8]
for more details.
Even though the collocation of one single fragment is of historical and cultural
importance, the success of the computer assisted anastylosis has been partially



spoiled by the limited surface that the fragments can cover. This begs the ques-
tion of whether it is possible to estimate mathematically the original colors of the
missing parts of the frescoes by making use of the potential information given
by the available fragments and the gray level of the pictures taken before the
damage. Can one estimate how faithful such restoration is?

Fig. 2. Fragmented A. Mantegna’s frescoes (1452) by a bombing in the Second World
War. Computer based reconstruction by using efficient pattern matching techniques
[21].

Mathematical Inpainting and Recolorization. Mathematical inpaint-
ing, an artistic synonym for image interpolation, has been introduced by Sapiro
et al. [3] with the specific purpose of imitating the basic approaches used by
professional restorers when filling blanks in paintings. Their algorithm amounts
to the solution of an evolutionary differential equation whose steady-state is
the prolongation of the incomplete image in the inpainting region to make con-
stant the information along isophotes. See also further recent developments [1].
Closely related to inpainting is the contribution by Masnou and Morel [25–27]
who addressed the so-called disocclusion problem. Essentially it amounts to an
application of the principle of good continuation, i.e., without forming undesired
T-junctions and abrupt direction changes, of the image level curves into the re-
gion where an occlusion occurred in order to restore the essential morphology.
This work can be seen as a development of the theory of Euler’s elastica curves
by Mumford [28]. Chan and Shen contributed to inpainting with other models
similar or related to the ones previously cited, see [9–13]. In simple words, math-
ematical inpainting is the attempt to guess the morphology of the image in a
relatively small missing part from the level curves of the relevant known part.
The recolorization problem, like that of the frescoes, can be viewed as a particu-
lar case of inpainting. Nevertheless, in this case two significant differences occur
with respect to the classical problem: 1) The region of missing color is usually
much larger than the one with known colors 2) the morphology of the image in
the missing part can be determined by the known gray level, see also [7]. Several
approaches to the recovery of colors in gray level images have been recently pro-
posed based on different intuitions. Neighboring pixels with similar intensities



should have similar color. By using non-local fitting term an algorithm based
on optimization has been proposed in [23] to match the colors. Similarly, a fast
algorithm using a weighted distance image blending technique is studied in [31].
From the assumption that the color morphology is essentially determined by the
gradient of the gray level, Sapiro proposed in [29] a recolorization method based
on minimizing the difference between the gradient of gray level and the gradient
of color. The problem reduces to the solution of a (nonlinear) boundary value
problem. Based on similar assumptions two variational approaches are proposed
in [22] where the authors minimize the discrepancy with respect to the color
datum and impose a smoothness constraint on the solution out of the gray level
discontinuity set. All the proposed solutions show that a very limited amount of
color is sufficient information to recover a pleasant result. However none of these
approaches seem to emphasize the problem of the fidelity of the recovered color.

The Fidelity of Restoration. Recolorization can be indeed a controversial
practice, especially if we claim to “estimate” the color of an art masterpiece. It
is therefore crucial to investigate the relations between amount of color data,
model of reconstruction, and fidelity of the solution. Clearly this issue can also
have a relevant role for color image compression.
In this paper we review two different approaches to recolorization previously
proposed by the author et al. in [18, 19]. Since color images are modeled as
multichannel signals, the problem is reformulated as the recovery of vector val-
ued functions from incomplete data. The vector components are assumed to be
coupled. The difference between the proposed methods is the way we couple
the information. For both the approaches, the recovery is realized as the mini-
mization of a functional which is formed by the discrepancy with respect to the
data and additional regularization constraints. The latter refer to joint sparsity
measures with respect to frame expansions for the first functional and functional
total variation for the second. We establish the relations between these two mod-
els. As a byproduct we develop the basis of a corresponding theory of fidelity in
color recovery.

2 Recovery of Vector Valued Data with Joint Sparsity

Constraints

2.1 Sparse Frame Expansions

A sparse representation of an element of a Hilbert space is a series expansion
with respect to an orthonormal basis or a frame that has only a small number of
large coefficients. Several types of signals appearing in nature admit sparse frame
expansions and thus, sparsity is a realistic assumption for a very large class of
problems [24]. The recent observation that it is possible to reconstruct sparse
signals from vastly incomplete information [6, 5, 15] stimulated a new fruitful
line of research which is called sparse recovery or compressed sensing. This sec-
tion is devoted to reveal the relations between faithful sparse recovery, vector
valued functions, and the application to color images. Indeed multi-channel sig-
nals (i.e., vector valued functions) may not only possess sparse frame expansions



for each channel individually, but additionally the different channels can also
exhibit common sparsity patterns. Color images are multi-channel signals, ex-
hibiting a very rich morphology. In particular, discontinuities may appear in all
the channels at the same locations. This will be reflected, e.g., in sparse curvelet
expansions [4, 16] with relevant coefficients appearing at the same labels, or in
turn in sparse gradients with supports at the same locations.

2.2 Inverse Problems with Joint Sparsity Constraints

Let K and Hj , j = 1, . . . , N , be (separable) Hilbert spaces and Aℓ,j : K → Hj ,
j = 1, . . . ,M , ℓ = 1, . . . , N , some bounded linear operators. Assume we are
given data gj ∈ Hj , gj =

∑M
ℓ=1Aℓ,jfℓ, j = 1, . . . , N . Then our basic task

consists in reconstructing the (unknown) elements fℓ ∈ K, ℓ = 1, . . . ,M . In
practice, it happens that the corresponding mapping from the vector (fℓ) to the
vector (gj) is not invertible or ill-conditioned, as for the recolorization problem.
In order to exploit sparsity ideas we assume that we have given a suitable frame
{ψλ : λ ∈ Λ} ⊂ K indexed by a countable set Λ. This means that there exist
constants C1, C2 > 0 such that C1‖f‖2

K ≤ ∑

λ∈Λ |〈f, ψλ〉|2 ≤ C2‖f‖2
K, for all

f ∈ K. Orthonormal bases are particular examples of frames. Frames allow for
a (stable) series expansion of any f ∈ K of the form f = Fu :=

∑

λ∈Λ uλψλ,
where u = (uλ)λ∈Λ ∈ ℓ2(Λ). Introduce the operators Tℓ,j = Aℓ,jF : ℓ2(Λ) → Hℓ

and

T : ℓ2(Λ,R
M ) → H, Tu =

(
M∑

ℓ=1

Tℓ,ju
ℓ

)N

j=1

=

(
M∑

ℓ=1

Aℓ,jFu
ℓ

)N

j=1

,

uℓ := (uℓ
λ)λ∈Λ. We denote also uλ = (uℓ

λ)ℓ=1,...,M , and u = (uℓ
λ)ℓ=1,...,M

λ∈Λ . Our
recovery model [19] is based on the minimization of the functional

J(u, v) = J
(q)
θ,ρ,ω(u, v) := ‖Tu−g|H‖2+

∑

λ∈Λ

vλ‖uλ‖q+
∑

λ∈Λ

ωλ‖uλ‖2
2+
∑

λ∈Λ

θλ(ρλ−vλ)2.

(1)
restricted to vλ ≥ 0. Here, (θλ)λ, (ωλ)λ, and (ρλ)λ are some suitable positive
sequences. The functional depends on two variables. The first belongs to the
space of signal coefficients to be reconstructed, the second belongs to the space
of sparsity indicator weights. We minimize J(u, v) jointly with respect to both
u, v. Analyzing J(u, v) we realize that for the minimizer (u∗, v∗) we will have

v∗λ = 0 (or close to 0) if ‖u∗λ‖q =
(
∑M

ℓ=1 |uℓ
λ|q
)1/q

is large so that v∗λ‖u∗λ‖q gets

small. On the other hand, if ‖u∗λ‖q is small then the term θλ(ρλ − v∗λ) dominates
and forces v∗λ to be close to ρλ. Moreover, for the parameter q > 1, the model
imposes a further coupling of the sparsity pattern through different channels,
see [19, 30]
The recovery algorithm consists in alternating a minimization with respect to
u and a minimization with respect to v. More formally, for some initial choice



v(0), for example v(0) = (ρλ)λ∈Λ, we define

u(n) := argminu∈ℓ2(Λ,RM ) J(u, v(n−1)),

v(n) := argminv∈ℓ
∞,ρ−1(Λ)+ J(u(n), v).

(2)

The minimization of J(u, v(n−1)) with respect to u can be done by means of an
iterative thresholding algorithm [14]. The minimizer v(n) of J(u(n), v) for fixed
u(n) can be computed explicitly. Indeed, it follows from elementary calculus that

v
(n)
λ =

{
ρλ − 1

2θλ
‖u(n)

λ‖q if ‖u(n)
λ‖q < 2θλρλ

0 otherwise .
(3)

We have the following result about the convergence of the above algorithm.

Theorem 1. Assume q ∈ {1, 2,∞} and θλωλ ≥ σ > φq/4 for all λ ∈ Λ, where

φ1 = M , φ2 = 1, φ∞ =
√
M . Moreover, we assume that ωλ ≥ γ > 0 for all

λ ∈ Λ. Then the sequence (u(n), v(n))n∈N converges to the unique minimizer
(u∗, v∗) ∈ ℓ2(Λ,R

M )× ℓ∞,ρ−1(Λ)+ of J . The convergence of u(n) to u∗ is strong

in ℓ2(Λ,R
M ) and v(n) − v∗ converges to 0 strongly in ℓ2,θ(Λ).
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Fig. 3. In ordinate we illustrate the probability of exact support recovery from a fixed
number of random linear measurements. In abscissa we illustrate the size of the support
to be reconstructed. The different curves represent the probability of reconstruction
for increasing number M = 2, 4, 8, 16 of channels under joint sparsity constraints, from
the most dashed to the solid one. The fidelity of the reconstruction increases with the
number of channels.

2.3 Fidelity in Joint Sparse Recovery

We want to discuss the effect of the coupling due to joint sparsity for the fidelity
of the reconstruction. Let us assume that M = N , the matrices Tℓ,j = 0 for
j 6= ℓ, and Tℓ,ℓ are generic matrices, i.e., random matrices with zero mean i.i.d.
Gaussian entries. This means that we do not consider at the moment either a
specific color model or a particular color datum. We only assume that the color



channels are coupled in terms of sparsity. This situation appears previously in
the literature under the name of distributed compressed sensing, see [2]. Since
random matrices have, “with overwhelming probability”, the so-called Restricted
Isometry Property (see [5, 6] for details), it is essentially sufficient to recover
the location of the non-zero coefficients uℓ

λ in order to recover their value too.
Applications of our joint sparsity algorithm (2) show that the probability of
perfect reconstruction of the support of u increases with the number of channels
M , see Fig. 3, see also [2]. The moral is that it is more probable the faithful
reconstruction of a color image encoded into multiple channels as soon as we
couple the channels in terms of their sparsity, which, in turn, means coupling
derivatives. This further explains the positive results obtained in the papers [22,
29].

3 Restoration of Vector Valued BV Functions from

Projections

The gray level can be also interpreted as a combination of the color (e.g., RGB)
intensities to impose, besides derivatives, an additional constraint to fidelity. In
this section we want to recall the model proposed by the author in [17, 18] and to
discuss its fidelity. In this recolorization model, the color image is encoded into
RGB channels and no coupling of derivatives is explicitly imposed. This situation
is opposite to the one previously discussed, where no coupling was claimed with
respect to data instead.
A digital image can be modeled as a function u : Ω ⊂ R

2 → R
3
+, so that, to each

“point” x of the image, one associates the vector u(x) = (r(x), g(x), b(x)) ∈ R
3
+

of the color represented by the different channels red, green, and blue. The gray
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Fig. 4. Estimate of the nonlinear curve L from a distribution of points with coordinates
given by the linear combination αr + βg + γb of the (r, g, b) color fragments (abscissa)
and by the corresponding underlying gray level of the original photographs dated to
1920 (ordinate). The sensitivity parameters α, β, γ to the different frequencies of red,
green, and blue are chosen in order to minimize the total variance of the ordinates.
However, it is always possible to re-equalize the gray level to make L(r, g, b) = 1

3
(r, g, b).

level of an image can be described as L(r, g, b) := L(αr+βg+γb), (r, g, b) ∈ R
3
+,



where α, β, γ > 0, α + β + γ = 1, L : R → R is a non-negative increasing
function, see Fig. 4. The recolorization is modeled as the minimum solution of
the functional

F (u) = µ

∫

Ω\D

|u(x) − ū(x)|pdx
︸ ︷︷ ︸

=G1(u)

+λ

∫

D

|L(u(x)) − v̄(x)|pdx
︸ ︷︷ ︸

=G2(u)

+

∫

Ω

M∑

ℓ=1

|∇uℓ(x)|dx,

(4)
where we want to reconstruct the vector valued function u := (u1, . . . , uM ) : Ω ⊂
R

d → R
M (M = 3 for RGB images) from a given observed couple of color/gray

level functions (ū, v̄). Without loss of generality let us assume λ = µ = 1. For the
computation of minimizers, we use a similar approach as in (2). For simplicity
we assume d = p = 2. Let us introduce a new functional given by

Eh(u, v) := 2 (G1(u) +G2(u)) +

∫

Ω

M∑

ℓ=1

(

vℓ|∇uℓ(x)|2 +
1

vℓ

)

dx, (5)

where u ∈ W 1,2(Ω; RM ), and v ∈ L2(Ω; RM ) is such that εh ≤ vℓ ≤ 1
εh

, ℓ =
1, . . . ,M , εh → 0 for h → ∞. While the variable u is again the function to be
reconstructed, we call the variable v the gradient weight. For any given v(0) ∈
L2(Ω; RM ) (for example v(0) := 1), we define the following iterative double-
minimization algorithm:







u(n+1) = arg min
u∈W 1,2(Ω;RM )

Eh(u, v(n))

v(n+1) = argminεh≤v≤ 1
εh

Eh(u(n+1), v).
(6)

We have the following convergence result.

Theorem 2. The sequence {u(n)}n∈N has subsequences that converge strongly

in L2(Ω; RM ) and weakly in W 1,2(Ω; RM ) to a point u
(∞)
h . We have that (u

(∞)
h )h

converges for h→ ∞ in BV (Ω; RM ) to a stationary point of the Euler-Lagrange
equations of F .

3.1 Fidelity in Linear Projection Method

We want to highlight the relations between the models (4) and (1), with par-
ticular emphasis on the fidelity of reconstruction. For the sake of simplicity we
consider 1D discrete signals, i.e. d = 1, and a linear projection L(x1, . . . , xM ) =
1
M (x1, . . . , xm). The set Ω = {0, 1, . . . , ω − 1}, for ω := |Ω| > 0. For a discrete
signal of length ω, we define the total variation as follows. Let us denote with D
the (ω − 1) × ω derivative matrix

D :=







−1 1 0 . . . 0 0
0 −1 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −1 1






. (7)



Fig. 5. The first column illustrates two different data for the recolorization problem.

The second column illustrates the corresponding 10th iteration algorithm (6). In the
bottom-left position we illustrate a datum with only the 3% of original color informa-
tion, randomly distributed.

The discrete total variation of v = (v0, . . . , vω−1)
T is given by

TV (v) := ‖Dv‖1 =

ω−1∑

m=1

|(Dv)m|.

The discrete version of (4) reads

Fd(u) = µ
∑

n∈Ω\D

|un − ūn|2 + λ
∑

n∈D

|L(un) − v̄n|2 +
M∑

ℓ=1

ω−1∑

m=1

|(Duℓ)m|
︸ ︷︷ ︸

TV-constraint

. (8)

Observe that the total variation constraint is now re-formulated as a sparsity
constraint on the derivative. Let us first analyze the model with no noise, i.e.,
for λ, µ → ∞, the minimization problem becomes

min

M∑

ℓ=1

ω−1∑

m=1

|(Duℓ)m| subject to Gu = (ū v̄)T , (9)



where

G :=









IΩ\D 0 0 . . . 0 0
0 IΩ\D 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 IΩ\D

1
M ID

1
M ID · · · · · · · · · 1

M ID









.

Let us denote f := (ū v̄)T . We have the following result.

Lemma 1. We assume that the signal u to be reconstructed is consistent, i.e.
Gu = f , and with joint sparse derivative,

supp(Duℓ) ⊂ supp(DL(u)), ℓ = 1, . . . ,M, where |supp(DL(u))| = K ≤ ω − 1.

Then the solution u∗ to (9) necessarily has the property

supp(D(u∗)ℓ) ⊂ supp(DL(u)), ℓ = 1, . . . ,M.

Proof. Let us consider the derivative of the solution u∗, we have

1

M

M∑

ℓ=1

D(u∗)ℓ
m = 0, m ∈ {1, . . . , ω − 1} \ supp(DL(u)).

If we assumed D(u∗)ℓ
m 6= 0 then we would increase

∑

ℓ TV ((u∗)ℓ). Since we
minimize the total variation and the choice D(u∗)ℓ

m = 0 does not spoil the
consistency with the data, necessarily D(u∗)ℓ

m = 0.

Remark 1. This lemma applied to this simplified model essentially tells that, by
coupling the color channels to match the gray level (here reproduced as a linear
combination of the colors) and by minimizing at the same time the sum of the
total variations of each individual channel, we necessarily obtain a coupling of
the derivatives of the solution. Therefore, although it is not explicitly required
by the formulation of the constraints, this second model produces the same effect
of coupling derivatives as the first one. This explains why also this model is very
effective in recolorization, see examples in [18].

We want now to address more specifically the problem of fidelity. In Fig.
5 we show two examples of applications of algorithm (6) depending on two
different initial configurations of the color datum. It is clear that few uniformly
distributed samples of color are more representative than lots of samples only
locally distributed. We formalize this observation in the following proposition.

Proposition 1. We assume that the signal u to be reconstructed is consistent,
i.e. Gu = f , and with joint sparse derivative,

supp(Duℓ) ⊂ supp(DL(u)), ℓ = 1, . . . ,M, where |supp(DL(u))| = K ≤ ω − 1.

This means that the signal u is piecewise constant. For

J := {I ⊂ Ω : I is an interval and u|I is constant },
we also assume that (Ω \D)∩I 6= ∅ for all I ∈ J and, without loss of generality,
0 ∈ (Ω \D). Then the solution u∗ to (9) necessarily coincides with u.



Proof. We sketch the proof of the proposition. Let us consider the ω × (ω − 1)
integration matrix

I :=









0 0 0 . . . 0 0
1 0 0 · · · 0 0
1 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
1 1 1 · · · 1 1









.

We have DI = I(ω−1)×(ω−1) and v = IDv + Cv for all v ∈ R
ω, where Cv =

(cv, . . . , cv) is a constant. Then for z = (Duℓ)M
ℓ=1, (9) can be equivalently refor-

mulated as

min

M∑

ℓ=1

ω−1∑

m=1

|zℓ
m| subject to G̃z = f − f̃z, (10)

where f̃z := (IΩ\DCz1 , . . . , IΩ\DCzM , 1
M

∑M
ℓ=1 IDCzℓ , . . . , 1

M

∑M
ℓ=1 IDCzℓ)T . The

constants czℓ = uℓ
0 for all ℓ = 1, . . . ,M . Moreover, by Lemma 1 we know already

that supp(zℓ) ⊂ supp(DL(u)) := T, ℓ = 1, . . . ,M . It is sufficient now to ob-
serve that (IΩ\DI)|T is necessarily a full rank matrix and G̃z = f − f̃z has a
unique solution z∗. Therefore, we have u∗ = Iz∗ + Cz∗ = u.

Of course, to model images as piecewise constant functions is quite unrealistic.
We may better model u as belonging to the class of signals with (K, ε)-sparse
derivatives defined by Sε,K := {u ∈ R

ω×M : #{m : |Duℓ
m| > ε} ≤ K}, for

ε > 0 and K ≤ ω − 1. If an oracle could tell us that {m : |Duℓ
m| > ε} ⊂ T ,

for a fixed T ⊂ Ω, for all ℓ = 1, . . . ,M and (Ω \ D) ∩ I 6= ∅ for each interval
I = [a, b] ⊂ Ω such that ∂I = {a, b} ⊂ T , but (I \ ∂I) ∩ T = ∅, then again
(IΩ\DI)|T would be a full rank matrix and we could easily compute u∗ε such
that ‖u∗ε − u‖2 ≤ Cε, for a constant C = C(ω;K) independent of u and ε. One
may argue that this oracle can be furnished directly by the gray level, e.g., by
segmentation. Nevertheless, although the matrices G̃ do not have the Restricted
Isometry Property, numerical experiments indicate that such an oracle is indeed
directly provided by the support of the derivative of the minimizer u∗ε of (8), for
suitable constants λ(ε), µ(ε) > 0. Moreover, such minimizers do already satisfy
the property ‖u∗ε − u‖2 ≤ Cε.
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