Constrained Dirichlet Boundary Control in L^{2} for a Class of Evolution Equations

K. Kunisch, B. Vexler

RICAM-Report 2006-29

CONSTRAINED DIRICHLET BOUNDARY CONTROL IN L^{2} FOR A CLASS OF EVOLUTION EQUATIONS

K. KUNISCH ${ }^{\dagger}$ AND B. VEXLER ${ }^{\ddagger}$

Abstract

Optimal Dirichlet boundary control based on the very weak solution of a parabolic state equation is analysed. This approach allows to consider the boundary controls in L^{2} which has advantages over approaches which consider control in Sobolev involving (fractional) derivatives. Point-wise constraints on the boundary are incorporated by the primal-dual active set strategy. Its global and local super-linear convergence are shown. A discretization based on space-time finite elements is proposed and numerical examples are included.

Key words. Dirichlet boundary control, inequality constraints, parabolic equations, very weak solution

1. Introduction. In this work we focus on the Dirichlet boundary optimal control problem with point-wise constraints on the boundary, formally given by

$$
\left\{\begin{array}{l}
\min J(y, u) \tag{1.1}\\
\text { subject to } \\
\partial_{t} y-\kappa \Delta y+b \cdot \nabla y=f \quad \text { in } \quad Q \\
y=u, \quad u \leq \psi \quad \text { on } \quad \Sigma \\
y(0)=y_{0} \quad \text { in } \Omega
\end{array}\right.
$$

where $Q=(0, T] \times \Omega, \Sigma=(0, T] \times \partial \Omega$ and $\kappa, b, f, y_{0}, \psi$ and $T>0$ are fixed. We propose and analyze a function space formulation which is amenable for efficient numerical realizations. To incorporate the constraints numerically the primal-dual active set strategy is used and its convergence is investigated. We also propose a space-time Galerkin approximation and provide numerical examples.

The specific difficulties involved in Dirichlet control problems result from the fact that they are not of variational type. In the literature several treatments of Dirichlet boundary control problems can be found, where the function space for the controls is H^{s} with $s \geq \frac{1}{2}$. As a consequence, the numerical realization by finite elements or finite differences is more involved than if the control space was L^{2}. Our approach will be based on the concept of very weak solutions to the state equation. This allows the use of L^{2} as control space.

Let us briefly describe possible approaches to treat Dirichlet boundary optimal control problems. While in our work we shall treat the time dependent case, it will be convenient for the present purpose to restrict our attention to a tracking type optimal

[^0]control problem with the most simple stationary elliptic equation as constraint:
\[

\left\{$$
\begin{array}{l}
\min \frac{1}{2}|y-z|_{L^{2}(\Omega)}^{2}+\frac{\beta}{2}|u|_{L^{2}(\partial \Omega)}^{2} \tag{1.2}\\
\text { over }(y, u) \in L^{2}(\Omega) \times L^{2}(\partial \Omega) \\
\text { subject to } \\
-(y, \Delta v)_{L^{2}(\Omega)}=-\left(u, \frac{\partial}{\partial n} v\right)_{L^{2}(\partial \Omega)} \text { for all } v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
\text { and } u \leq \psi \text { on } \partial \Omega
\end{array}
$$\right.
\]

where $z \in L^{2}(\Omega)$ and $\partial \Omega$ denotes the boundary of the domain Ω. The variational equation in (1.2) is the very weak form of

$$
\left\{\begin{array}{l}
-\Delta y=0 \text { in } \Omega \\
y=u \text { on } \partial \Omega
\end{array}\right.
$$

see [31]. In our work we shall use the analogue of (1.2). If the state variable y is considered in $H^{1}(\Omega)$ then a proper formulation is given by

$$
\left\{\begin{array}{l}
\min \frac{1}{2}|y-z|_{L^{2}(\Omega)}^{2}+\frac{\beta}{2}|u|_{H^{\frac{1}{2}}(\partial \Omega)}^{2} \tag{1.3}\\
\text { over }(y, u) \in H^{1}(\Omega) \times H^{\frac{1}{2}}(\partial \Omega) \\
\text { subject to } \\
(\nabla y, \nabla v)_{L^{2}(\Omega)}=0 \text { for all } v \in H_{0}^{1}(\Omega), \text { and } y=u \text { on } \partial \Omega \\
\text { and } u \leq \psi \text { on } \partial \Omega
\end{array}\right.
$$

For both formulations (1.2) and (1.3) it is classical to argue existence of a unique solution, see e.g. [31]. Numerically the $H^{1 / 2}$-norm in (1.3) is more involved to realize than the L^{2}-norm in (1.2). To avoid difficulties with implementing the $H^{1 / 2}$-norm it was replaced in several publications by the H^{1}-norm. As a consequence the Laplace Beltrami operator appears in the optimality condition. This formulation, properly modified for the specific application and without control constraints, was used in the context of optimal boundary control of the Navier Stokes equations and the Boussinesq equations, for example, see, e.g. [22] and [30]. For a numerical wavelet based realization of H^{s}-norms in the context of Dirichlet control of elliptic equations we refer to [28].

A third alternative is given by

$$
\left\{\begin{array}{l}
\min \frac{1}{2}|y-z|_{H^{1}(\Omega)}^{2}+\frac{\beta}{2}|u|_{L^{2}(\partial \Omega)}^{2} \tag{1.4}\\
\text { over }(y, u) \in H^{1}(\Omega) \times H^{1 / 2}(\partial \Omega) \\
\text { subject to } \\
(\nabla y, \nabla v)_{(\Omega)}=0 \text { for all } v \in H_{0}^{1}(\Omega) \text { and } y=u \text { on } \partial \Omega \\
\text { and } u \leq \psi \text { on } \partial \Omega
\end{array}\right.
$$

Again existence can be argued by standard arguments, but for (1.4), differently from (1.2) and (1.3), the essential term for obtaining coercivity is the H^{1}-norm of the tracking functional. Just like (1.2) this formulation also avoids having to deal with fractional order Sobolev spaces. It was used in the context of boundary control of
the stationary Navier Stokes equations in [14], for example. In the adjoint equation, however, a Laplacian now appears in the source term acting on the defect $y-z$.

Besides the difficulties already mentioned with (1.3) and (1.4) there is yet another, possibly more essential reason, to favor the formulation in (1.2). For (1.2) the Lagrange multiplier associated to the constraint $u \leq \psi$ is an L^{2}-function, whereas it is only a measure for the formulations in (1.3) and (1.4). As a consequence the complementarity conditions related to the inequality constraint can be expressed in a pointwise a.e. manner by the common point-wise complementarity functions like the max or the Fischer-Burmeister functions only for formulation (1.2). Such a pointwise formulation is a basis for efficient optimization algorithms as primal dual active set strategy or semi-smooth Newton method.

Let us also recall the possibility of approximating Dirichlet boundary control problems by regularization based on Robin boundary controls of the form $\delta \frac{\partial y}{\partial n}+y=u$ for $\delta \rightarrow 0^{+}$. This results in the variational formulation:

$$
\left\{\begin{array}{l}
\min \frac{1}{2}|y-z|_{L^{2}(\Omega)}^{2}+\frac{\beta}{2}|u|_{L^{2}(\partial \Omega)}^{2} \tag{1.5}\\
\text { over }(y, u) \in H^{1}(\Omega) \times L^{2}(\partial \Omega) \\
\text { subject to } \\
(\nabla y, \nabla v)_{L^{2}(\Omega)}=\frac{1}{\delta}(y-u, v)_{L^{2}(\partial \Omega)} \text { for all } v \in H^{1}(\Omega) \\
\text { and } u \leq \psi \text { on } \partial \Omega
\end{array}\right.
$$

The choice of δ remains a delicate matter. This approach was used for stationary and instationary problems in [6] and [2] respectively. In [3] a numerical approach to Dirichlet boundary control based on a discretization using the Nitsche method was proposed.

We next point at some additional features of this paper. As already mentioned, the pointwise inequality constraint $u \leq \psi$ will be treated by the primal-dual active set algorithm. Its global, as well as local super-linear convergence will be analysed. Here it is essential that the Lagrange multiplier is an L^{2} function and that the resulting complementarity condition involving the max-operation is Newton differentiable. This is the case for (1.2), whereas this is not true for the other two formulations. Newton differentiability will be shown for (1.2) for time dependent problems in the present paper. For stationary problems it easily follows as well.

Discretization of the infinite dimensional problems will be carried out by a spacetime finite element method. This approach guarantees that the algorithm is invariant with respect the ordering of discretization of the problem and gradient computations.

In spite of the fact that we use the very week solution concept as our functional analytic setting for Dirichlet boundary control, the numerical discretization is based on standard space-time Galerkin finite dimensional spaces. This will be justified by the fact that the solution of the optimal control problems are more regular than required by (1.2).

In our numerical implementation we use piecewise (bi-) linear elements for spatial discretization of the primal and adjoint states as well as for the controls. This may appear to be incompatible at first, since the optimality condition involves $\frac{\partial p}{\partial n}$ and u in an additive manner, where p denotes the adjoint state. However, we replace $\frac{\partial p}{\partial n}$ by a variational expression in such a way that the resulting discretization is well balanced.

In Section 2 we gather well-posedness results and a-priori estimates for a class of evolution equations with Dirichlet boundary conditions in L^{2}. We include a convection
term, due to future interest of considering similar problems for the Boussinesq systems, with specific nonconvex cost functionals, motivated by fluid mechanics considerations. In this case the convection coefficient is the velocity field of the fluid. Section 3 is devoted to the statements and analysis of the optimal control problems under consideration. In particular, we describe regularity properties of the optimal solutions. These are not only of interest in their own right, but are essential for super-linear convergence of the primal-dual active set strategy, as explained in Section 4. Section 5 contains a description of the finite element discretization and the final Section 6 is devoted to selected numerical examples.
2. On the state equation. In this section we provide the necessary existence and a-priori estimates for very weak solutions to

$$
\left\{\begin{array}{l}
\partial_{t} y-\kappa \Delta y+b \cdot \nabla y=f \quad \text { in } \quad Q \tag{2.1}\\
y=u \quad \text { on } \quad \Sigma \\
y(0)=y_{0} \quad \text { in } \Omega
\end{array}\right.
$$

where $Q=(0, T] \times \Omega, \quad \Sigma=(0, T] \times \partial \Omega$ and Ω a bounded domain in $\mathbb{R}^{n}, n \geq 2$ with C^{2} boundary $\partial \Omega$. This boundary regularity of Ω guarantees that the Laplacian with homogenous Dirichlet boundary conditions, denoted by Δ_{0}, is an isomorphism form $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ to $L^{2}(\Omega)$. We shall denote the adjoint of Δ_{0}, mapping from $L^{2}(\Omega)$ to $H^{-2}(\Omega)=\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)^{*}$ by Δ_{0} as well. Further $\kappa>0, y_{0} \in H^{-1}(\Omega), f \in$ $L^{2}\left(H^{-2}(\Omega)\right), u \in L^{2}(\Sigma)$ and $b \in \mathbb{L}^{\infty}(Q)$, div $b \in L^{\infty}\left(L^{\hat{n}}(\Omega)\right)$ where $\hat{n}=\max (n, 3)$, and $\mathbb{L}^{\infty}(Q)=\bigotimes_{i=1}^{n} L^{\infty}(Q)$. At times we shall simply write $L^{p}(Q)$ for $\mathbb{L}^{p}(Q)$. For any Banach space Y, we use the abbreviations $L^{2}(Y)=L^{2}(0, T ; Y), H^{s}(Y)=$ $H^{s}(0, T ; Y), s \in[0, \infty)$, and $C(Y)=C([0, T] ; Y)$.

The very weak form of (2.1) that we shall utilize, is given by

$$
\left\{\begin{align*}
&\left\langle\partial_{t} y(t), v\right\rangle-\kappa(y(t), \Delta v)-(y(t), \operatorname{div}(b(t)) v)-(y(t), b(t) \nabla v) \tag{2.2}\\
&=\langle f(t), v\rangle-\kappa\left(u(t), \frac{\partial}{\partial n} v\right)_{\partial \Omega} \text { for all } v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
& \quad \text { and a.e. } t \in(0, T)
\end{align*}\right.
$$

where $\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{H^{-2}(\Omega), H^{2}(\Omega) \cap H_{0}^{1}(\Omega)}$ denotes the canonical duality pairing, (\cdot, \cdot) and $(\cdot, \cdot)_{\partial \Omega}$ stand for the inner products in $L^{2}(\Omega)$ and $L^{2}(\partial \Omega)$ respectively.

Theorem 2.1. For every $\kappa>0, b \in L^{\infty}(Q)$, with div $b \in L^{\infty}\left(L^{\hat{n}}(\Omega)\right)$, $y_{0} \in H^{-1}(\Omega), f \in L^{2}\left(H^{-2}(\Omega)\right)$ and $u \in L^{2}(\Sigma)$, there exists a unique very weak solution $y \in L^{2}(Q) \cap H^{1}\left(H^{-2}(\Omega)\right) \cap C\left(H^{-1}(\Omega)\right)$ satisfying

$$
\begin{equation*}
|y|_{L^{2}(Q) \cap H^{1}\left(H^{-2}(\Omega)\right) \cap C\left(H^{-1}(\Omega)\right)} \leq C\left(\left|y_{0}\right|_{H^{-1}(\Omega)}+|f|_{L^{2}\left(H^{-2}(\Omega)\right)}+|u|_{L^{2}(\Sigma)}\right), \tag{2.3}
\end{equation*}
$$

where C depends continuously on $\kappa>0,|b|_{L^{\infty}(Q)}$ and \mid div $\left.b\right|_{L^{\infty}\left(L^{\hat{n}}(\Omega)\right)}$, and is independent of $f \in L^{2}\left(H^{-2}(\Omega)\right), u \in L^{2}(\Sigma)$ and $y_{0} \in H^{-1}(\Omega)$.

Proof. Let us first assume existence of y with the claimed regularity and verify the a-priori estimate (2.3). Throughout k will denote a generic embedding constant. Let us introduce the transformed state-variable $\hat{y}(t)=y(t) e^{-c t}, c \geq 0$ and note that if y is a very weak solution of (2.1), then $\hat{y} \in L^{2}(Q) \cap H^{1}\left(H^{-2}(\Omega)\right)$ is a very weak
solution of

$$
\left\{\begin{array}{l}
\partial_{t} \hat{y}+c \hat{y}-\kappa \Delta \hat{y}+b \cdot \nabla \hat{y}=\hat{f} \quad \text { in } Q \\
\hat{y}=\hat{u} \quad \text { on } \Sigma \\
\hat{y}(0)=y_{0} \quad \text { in } \Omega
\end{array}\right.
$$

where $\hat{f}=f e^{-c t}, \hat{u}=u e^{-c t}$. The constant c will be fixed below. We further introduce $\omega=\left(-\Delta_{0}\right)^{-1} \hat{y} \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right)$, and note that ω satisfies for all $v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$

$$
\begin{aligned}
& \left\langle\left(-\Delta_{0}\right) \partial_{t} \omega(t), v\right\rangle+\kappa\left(\Delta_{0} \omega(t), \Delta v\right)+c\left(-\Delta_{0} \omega(t), v\right) \\
& \quad+\left(\Delta_{0} \omega(t), \operatorname{div} b(t) v\right)+\left(\Delta_{0} \omega(t), b(t) \nabla v\right)=\langle\hat{f}(t), v\rangle-\kappa\left(\hat{u}(t), \frac{\partial}{\partial n} v\right)_{\partial \Omega}
\end{aligned}
$$

for all $t \in(0, T)$. Setting $v=\omega(t)$ and integrating over $(0, t)$ we find

$$
\begin{aligned}
\frac{1}{2}|\nabla \omega(t)|^{2}- & \frac{1}{2}|\nabla \omega(0)|^{2}+\kappa \int_{0}^{t}\left|\Delta_{0} \omega(s)\right|^{2} d s+c \int_{0}^{t}|\nabla \omega(s)|^{2} d s \\
& +\int_{0}^{t}\left(\Delta_{0} \omega(s), \operatorname{div} b(s) \omega(s)\right) d s+\int_{0}^{t}\left(\Delta_{0} \omega(s), b(s) \nabla \omega(s)\right) d s \\
& =\int_{0}^{t}\langle\hat{f}(s), \omega(s)\rangle d s-\kappa \int_{0}^{t}\left(\hat{u}(s), \frac{\partial}{\partial n} w(s)\right)_{\partial \Omega}
\end{aligned}
$$

and consequently

$$
\begin{aligned}
& \frac{1}{2}|\nabla \omega(t)|^{2} d s+\kappa \int_{0}^{t}\left|\Delta_{0} \omega(s)\right|^{2} d s+c \int_{0}^{t}|\nabla \omega(s)|^{2} d s \\
& \quad \leq \frac{1}{2}|\nabla \omega(0)|^{2}+\frac{\kappa}{8} \int_{0}^{t}\left|\Delta_{0} \omega(s)\right|^{2} d s+\frac{2 k}{\kappa}|\operatorname{div} b|_{L^{\infty}\left(L^{\hat{n}}(\Omega)\right.}^{2} \int_{0}^{t}|\nabla \omega(s)|^{2} d s \\
& \quad+\frac{\kappa}{8} \int_{0}^{t}\left|\Delta_{0} \omega(s)\right|^{2}+\frac{2|b|_{L^{\infty}(Q)}^{\kappa} \int_{0}^{t}|\nabla \omega(s)|^{2} d s+\frac{2 k^{2}}{\kappa} \int_{0}^{t}|\hat{f}(s)|_{H^{-2}}^{2}+\frac{\kappa}{8} \int_{0}^{t}\left|\Delta_{0} \omega\right|^{2} d s}{} \begin{array}{l}
\quad+2 \kappa^{2} \int_{0}^{t}|\hat{u}(s)|_{L^{2}(\partial \Omega)}^{2} d s+\frac{\kappa}{8} \int_{0}^{t}\left|\Delta_{0} \omega(s)\right|^{2} d s \\
\leq \frac{1}{2}|\nabla \omega(0)|^{2}+\frac{4 \kappa}{8} \int_{0}^{t}\left|\Delta_{0} \omega(s)\right|^{2} d s+\left(\frac{2 k}{\kappa}|\operatorname{div} b|_{L^{\infty}\left(L^{\hat{n}}(\Omega)\right)}^{2}+\frac{2|b|_{L^{\infty}(Q)}^{2}}{\kappa}\right) \int_{0}^{t}|\nabla \omega(s)|^{2} d s \\
+\frac{2 k^{2}}{\kappa} \int_{0}^{t}|\hat{f}(s)|_{H^{-2}(\Omega)}^{2} d s+2 k^{2} \int_{0}^{t}|\hat{u}(s)|_{L^{2}(\partial \Omega)}^{2} d s
\end{array}
\end{aligned}
$$

If we choose c such that

$$
\begin{equation*}
\frac{2 k}{\kappa}|\operatorname{div} b|_{L^{\infty}\left(L^{\hat{n}}(\Omega)\right)}^{2}+\frac{2|b|_{L^{\infty}(Q)}^{2}}{\kappa} \leq \frac{c}{2} \tag{2.4}
\end{equation*}
$$

then

$$
\begin{align*}
\frac{1}{2}|\nabla \omega(t)|^{2}+ & \frac{k}{2} \int_{0}^{t}\left|\Delta_{0} \omega(s)\right|^{2} d s+\frac{c}{2} \int_{0}^{t}|\nabla \omega(s)|^{2} d s \\
& \leq \frac{1}{2}|\nabla \omega(0)|^{2}+\frac{2 k^{2}}{\kappa} \int_{0}^{t}|\hat{f}(s)|_{H^{-2}(\Omega)}^{2} d s+2 k^{2} \int_{0}^{t}|\hat{u}(s)|_{L^{2}(\partial \Omega)}^{2} d s \tag{2.5}
\end{align*}
$$

From (2.5) we deduce the existence of a constant C with the specified properties such that for all $t \in[0, T]$

$$
|\hat{y}(t)|_{H^{-1}(\Omega)}+\int_{0}^{t}|\hat{y}(s)|_{L^{2}(\Omega)}^{2} d s \leq C\left(\left|y_{0}\right|_{H^{-1}(\Omega)}+|f|_{L^{2}\left(H^{-2}(\Omega)\right)}+|u|_{L^{2}(\Sigma)}\right),
$$

and, since $\hat{y}(t)=y(t) e^{-c t}$ we find for a possibly modified C,

$$
\begin{equation*}
|y(t)|_{H^{-1}(\Omega)}+\int_{0}^{t}|y(s)|_{L^{2}(\Omega)}^{2} d s \leq C\left(\left|y_{0}\right|_{H^{-1}(\Omega)}+|f|_{L^{2}\left(H^{-2}(\Omega)\right)}+|u|_{L^{2}(\Sigma)}\right) \tag{2.6}
\end{equation*}
$$

Finally using (2.2) we obtain

$$
\begin{aligned}
\int_{0}^{T}\left|\partial_{t} y(t)\right|_{H^{-2}(\Omega)}^{2} d t & =\int_{0}^{T} \sup _{\substack{v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega),\left|\Delta_{0} v\right| \leq 1}}\left\langle\partial_{t} y(t), v\right\rangle^{2} d t \\
\leq & \kappa^{2} \int_{0}^{T}|y(t)|^{2} d t+\int_{0}^{T}(y(t), \operatorname{div} b v)_{L^{2}(\Omega)}^{2} d t \\
& \quad+|b|_{L^{\infty}(Q)}^{2} \int_{0}^{T}|y(t)|^{2} d t+|f|_{L^{2}\left(H^{-2}(\Omega)\right)}^{2}+k|u|_{L^{2}(\Sigma)}^{2}
\end{aligned}
$$

For the second term on the right hand side we estimate for $n>4$

$$
\begin{aligned}
& \int_{0}^{T}(y(t), \operatorname{div} b v)_{L^{2}(\Omega)}^{2} d t \leq \int_{0}^{T}|y(t)|_{L^{2}(\Omega)}^{2}|\operatorname{div} b|_{L^{2 p}(\Omega)}^{2}|v|_{L^{2 q}(\Omega)}^{2} d t \\
& \leq k \int_{0}^{T}|y(t)|_{L^{2}(\Omega)}^{2}|\operatorname{div} b|_{L^{\hat{n}}(\Omega)}^{2} d t
\end{aligned}
$$

where $q=\frac{n}{n-4}, p=\frac{n}{4}$, and we used that $H^{2}(\Omega) \hookrightarrow L^{\frac{2 n}{n-4}}(\Omega)$ and $\hat{n}>2 p=\frac{n}{2}$. The same estimate for dimensions $n=2,3,4$ follow quite easily.

We obtain

$$
\int_{0}^{T}\left|\partial_{t} y\right|_{H^{-2}(\Omega)}^{2} d t \leq\left(\kappa^{2}+k|\operatorname{div} b|_{L^{\infty}\left(L^{\hat{n}}(\Omega)\right)}+|b|_{L^{\infty}(Q)}\right) \int_{0}^{T}|y(t)|^{2} d t+|f|_{L^{2}\left(H^{-2}(\Omega)\right)}^{2}+k|u|_{L^{2}(\Sigma)}^{2}
$$

Together with (2.6) this gives the desired estimate (2.3), which, in particular also implies the uniqueness of the very weak solution to (2.1). Existence follows, for example, by combining this a-priori estimate with a Galerkin procedure, see e.g. [13], Chapter 18. Alternatively analytic semigroup-theory as in [29] can be used, noting that $-\kappa \Delta-b \cdot \nabla+c I$ generates an analytic semigroup in $L^{2}(\Omega)$.

From the proof it follows that the solution y to (2.2) also satisfies the variational equation in Q given by

$$
\begin{align*}
& \int_{0}^{T}\left(\left\langle\partial_{t} y(t), v(t)\right\rangle-\kappa(y(t), \Delta v(t))-(y(t), \operatorname{div}(b(t)) v(t))-(y(t), b(t) \nabla v(t))\right) d t \\
& \quad=\int_{0}^{T}\langle f(t), v(t)\rangle d t-\kappa \int_{0}^{T}\left(u(t), \frac{\partial}{\partial n} v(t)\right)_{L^{2}(\Omega)} d t, \text { for all } v \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) . \tag{2.7}
\end{align*}
$$

The following result will allow to consider cost-functionals with pointwise in time evaluation of the trajectory.

Corollary 2.2. If, in addition to the assumptions of Theorem 2.1, $y_{0} \in$ $L^{2}(\Omega), f \in L^{2}(Q)$ and $u \in L^{\infty}\left(L^{2}(\partial \Omega)\right)$, then the very weak solution satisfies $y \in$ $L^{\infty}\left(L^{2}(\Omega)\right)$ and $y(\bar{t})$ is a well defined element in $L^{2}(\Omega)$ for every fixed $\bar{t} \in(0, T]$. Moreover, there exists a constant C independent of y_{0}, f and u, such that for the corresponding solution $y=y(u)$ we have

$$
\begin{equation*}
|y(\bar{t})|_{L^{2}(\Omega)} \leq C\left(\left|y_{0}\right|_{L^{2}(\Omega)}+|f|_{L^{2}(Q)}+|u|_{L^{\infty}\left(L^{2}(\partial \Omega)\right)}\right) \tag{2.8}
\end{equation*}
$$

Proof. Fix $\kappa>0$ and $b \in L^{\infty}(Q)$ with $\operatorname{div} b \in L^{\infty}\left(L^{\hat{n}}(\Omega)\right)$. Without loss of generality we can assume that $A=-\kappa \Delta-b \cdot \nabla$ is uniformly elliptic. If not, we add a multiple c of the identity operator and accordingly multiply the constant C by the factor $e^{c T}$. Then A generates an analytic semigroup in $L^{2}(\Omega)$. For the equation with $u=0$ estimate (2.8) follows by standard semigroup arguments. Using the superposition principle for (2.1) it therefore suffices to consider the case $y_{0}=0, f=0$, and $u \in L^{\infty}\left(L^{2}(\partial \Omega)\right)$. From [29], see also [2], we have the existence of $C>0$ such that

$$
\begin{equation*}
|y|_{L^{\infty}\left(L^{2}(\Omega)\right)} \leq C|u|_{L^{\infty}\left(L^{2}(\partial \Omega)\right)} . \tag{2.9}
\end{equation*}
$$

From Theorem 2.1 we deduce $y \in C\left(H^{-1}(\Omega)\right)$ and therefore

$$
\begin{equation*}
y(\bar{t})=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{-\varepsilon}^{0} y(\bar{t}+\tau) d \tau \tag{2.10}
\end{equation*}
$$

where the integral and the equality are interpreted in $H^{-1}(\Omega)$. By (2.9) the right hand side of (2.10) is also welldefined in $L^{2}(\Omega)$ and

$$
|y(\bar{t})|_{L^{2}(\Omega)}=\left|\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{-\varepsilon}^{0} y(\bar{t}+\tau) d \tau\right|_{L^{2}(\Omega)} \leq C|u|_{L^{\infty}\left(L^{2}(\partial \Omega)\right)}
$$

The desired conclusion follows.
3. The optimal control problems and regularity of optimal controls. We consider the following two optimal control problems:

$$
\left\{\begin{array}{l}
\min J(y, u)=G(y)+\frac{\beta}{2}|u|_{L^{2}(\Sigma)}^{2} \tag{P1}\\
\text { over }(y, u) \in L^{2}(Q) \times L^{2}(\Sigma) \\
\text { subject to }(2.1) \text { and } u \leq \psi \text { on } \Sigma
\end{array}\right.
$$

where $\beta>0, \psi \in L^{2}(\Sigma)$ and $G: L^{2}(Q) \rightarrow \mathbb{R}$ is bounded below, C^{1} and weakly lower semicontinuous. The second problem under consideration is

$$
\left\{\begin{array}{l}
\min J(y, u)=G(y(T))+\frac{\beta}{2}|u|_{L^{2}(\Sigma)}^{2} \tag{P2}\\
\text { over }(y, u) \in L^{2}(Q) \times L_{T_{1}}^{2}(\Sigma) \\
\text { subject to }(2.1), \quad \varphi \leq u \leq \psi \text { on } \Sigma
\end{array}\right.
$$

where $\beta>0, \varphi, \psi \in L^{\infty}(\Sigma), \varphi(x)<\psi(x)$ a.e. on Σ, and $G: L^{2}(\Omega) \rightarrow \mathbb{R}$ is bounded below, weakly lower semicontinuous and C^{1}. Here

$$
L_{T_{1}}^{2}(\Sigma)=\left\{u \in L^{2}(\Sigma): u(t, x)=0, \quad \text { for } t \in\left(T_{1}, T\right)\right\}
$$

with $T_{1} \in[0, T]$. For (P2) we require that $\varphi \leq 0 \leq \psi$ a.e. on $\left(T_{1}, T\right)$. In Section 3.2 we shall require that $T_{1}<T$. The practical interpretation of setting $u=0$ in a neighborhood of T is that the controller and the observer are not acting simultaneously. We refer to (y, u) as a solution of (2.1) if that equation is satisfied in the very weak sense (2.2). Throughout this section the regularity assumptions of Theorem 2.1 for b are supposed to hold, and

$$
f \in L^{2}(Q), \quad y_{0} \in L^{2}(\Omega)
$$

Then we have the following result.
Proposition 3.1. There exist solutions $\left(y^{*}, u^{*}\right)=\left(y\left(u^{*}\right), u^{*}\right)$ to (P1) as well as (P2), which are unique if G is convex.

This follows from weak sequential limit arguments, see e.g. [31], utilizing Theorem 2.1, respectively Corollary 2.2. - For (P1) a lower bound $\varphi \leq u$ can be added and treated as we do for (P2). In (P2) the simultaneous use of upper and lower bound for the control is essential to guarantee the $L^{\infty}\left(L^{2}(\partial \Omega)\right)$ bound for the controls which is required by Corollary 2.2.
3.1. Problem (P1). To argue the existence of Lagrange multipliers for the inequalities in (2.1), we introduce

$$
\begin{aligned}
e=\left(e_{1}, e_{2}\right) & :\left(L^{2}(Q) \cap H^{1}\left(H^{-2}\right)\right) \times L^{2}(\Sigma) \rightarrow L^{2}\left(H^{-2}(\Omega)\right) \times H^{-1}(\Omega), \\
g & : L^{2}(\Sigma) \rightarrow L^{2}(\Sigma)
\end{aligned}
$$

by

$$
\begin{aligned}
\left\langle e_{1}(y, u), v\right\rangle & =\int_{0}^{T}\left(\left\langle\partial_{t} y-f, v\right\rangle-(y \operatorname{div} b, v)-\kappa(y, \Delta v)-(y, b \cdot \nabla v)+\kappa\left(u, \frac{\partial}{\partial n} v\right)_{\partial \Omega}\right) d t, \\
e_{2}(y, u) & =y(0)-y_{0}, \\
g(u) & =u-\psi,
\end{aligned}
$$

for arbitrary $v \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$. Recall that $L^{2}(Q) \cap H^{1}\left(H^{-2}\right) \subset C\left(H^{-1}(\Omega)\right)$, so that e_{2} is well defined. The linearizations e^{\prime} of e and g^{\prime} of g are obtained from e and g by deleting the affine terms y_{0}, f and ψ respectively. We introduce the Lagrangian

$$
\mathcal{L}\left(y, u, p, p_{0}, \lambda\right)=G(y)+\frac{\beta}{2}|u|_{L^{2}(\Sigma)}^{2}+\left\langle\left(p, p_{0}\right), e(y, u)\right\rangle+(\lambda, g(u)) .
$$

From Theorem 2.1 it follows that $\left(e^{\prime}, g^{\prime}\right)$ is surjective and hence there exists a Lagrange multiplier $\left(p, p_{0}, \lambda\right) \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega) \times L^{2}(\Sigma)$ associated to the constraints (e, g), see e.g. [34]. It follows that the optimality system satisfied by an optimal pair $\left(y^{*}, u^{*}\right)$ is obtained by setting $\nabla_{y, u, p, p_{0}} \mathcal{L}\left(y, u, p, p_{0}, \lambda\right)=0$, and $\lambda \geq 0, g(u) \leq 0, \lambda g(u)=0$. Consequently the optimality system for (P1) is given by

$$
\left\{\begin{array}{l}
\partial_{t} y-\kappa \Delta y+b \cdot \nabla y=f \text { in } Q, \tag{3.1}\\
y=u \text { on } \Sigma, y(0)=y_{0} \text { in } \Omega, \\
-\partial_{t} p-\kappa \Delta p-\operatorname{div} b p-b \cdot \nabla p=-G^{\prime}(y) \text { in } Q, \\
p=0 \text { on } \Sigma, \quad p(T)=0 \text { in } \Omega, \\
\kappa \frac{\partial p}{\partial n}+\beta u+\lambda=0 \text { on } \Sigma, \\
\lambda=\max (0, \lambda+c(u-\psi)) \text { on } \Sigma,
\end{array}\right.
$$

for any $c>0$. Moreover, $p(0)=p_{0}$. Note that the last equation in (3.1) is equivalent to $\lambda \geq 0, u \leq \psi$ and $\lambda(u-\psi)=0$. The equations in the last two lines of (3.1) are equivalent to

$$
u=\min \left(\psi,-\frac{\kappa}{\beta} \frac{\partial p}{\partial n}\right) .
$$

The equations in the first two lines of (3.1) are understood in the sense of very weak solutions. The time-derivative in $\partial_{t} p$ must first be interpreted in variational form, but from the third equation in (3.1) it immediately follows that $p \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap$ $H^{1}\left(L^{2}(\Omega)\right)$. This is consistent with the regularity results for parabolic equations, since $G^{\prime}(y) \in L^{2}(Q)$, see e.g. [36], pg. 342. If G is convex, then (3.1) is a necessary and sufficient optimal condition for (P1).

We now turn to regularity properties of the optimal solution on Σ. This result is essential for superlinear convergence of the primal dual active set method, see Section 4. Henceforth let (y, u, p, λ) denote a solution to (3.1). The active and inactive sets at a solution are denoted by

$$
\mathcal{A}=\{x \in \Sigma: u(x)=\psi\}, \quad \mathcal{I}=\{x \in \Sigma: u(x)<\psi\} .
$$

Theorem 3.2. On the inactive set \mathcal{I} we have for the optimal solution $u \mid \mathcal{I} \in$ $L^{q_{n}}(\mathcal{I})$ with

$$
q_{n}= \begin{cases}\frac{2(n+1)}{n}, & \text { if } n \geq 3 \tag{3.2}\\ 3-\varepsilon, & \text { if } n=2\end{cases}
$$

On the active set the regularity of u is determined by ψ. Moreover,

$$
\frac{\partial p}{\partial n} \in L^{q_{n}}(\Sigma) \quad \text { and } \quad\left\|\frac{\partial p}{\partial n}\right\|_{L^{q_{n}}(\Sigma)} \leq C\|p\|_{L^{2}\left(H^{2}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right)}
$$

with an embedding constant C.
Proof. As already noted, $p \in L^{2}\left(H^{2}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right)$. This implies that

$$
\frac{\partial p}{\partial n} \in L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right)
$$

see [20], or [36], chapter II and page 342. Since $H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right) \hookrightarrow L^{4}\left(L^{2}(\partial \Omega)\right)$, see [1], we find

$$
\begin{equation*}
\frac{\partial p}{\partial n} \in L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap L^{4}\left(L^{2}(\partial \Omega)\right) \tag{3.3}
\end{equation*}
$$

and hence interpolation [40], chapter 1 , implies that

$$
\frac{\partial p}{\partial n} \in L^{p_{s}}\left(\left[H^{\frac{1}{2}}(\partial \Omega), L^{2}(\partial \Omega)\right]_{s}\right), \text { where } \frac{1}{p_{s}}=\frac{1-s}{2}+\frac{s}{4}
$$

For $n \geq 3$ we use the fact that for $H^{\frac{1}{2}}(\partial \Omega) \hookrightarrow L^{\frac{2 n-2}{n-2}}(\partial \Omega)$, and obtain

$$
\left[H^{\frac{1}{2}}(\partial \Omega), L^{2}(\partial \Omega)\right]_{s} \hookrightarrow L^{q_{s}}(\partial \Omega), \text { where } \frac{1}{q_{s}}=\frac{(1-s)(n-2)}{2 n-2}+\frac{s}{2}
$$

Next we choose s such that $p_{s}=q_{s}$, i.e.

$$
p_{s}=\frac{8}{4-2 s}=\frac{2 n-2}{n+s-2}=q_{s}
$$

This implies that $s=\frac{2}{n+1}$ and hence $q_{s}=\frac{2(n+1)}{n}$. Consequently for $n \geq 3$ we obtain $\frac{\partial p}{\partial n} \in L^{\frac{2(n+1)}{n}}(\Sigma)$.

For $n=2$ we have that $H^{\frac{1}{2}}(\partial \Omega) \hookrightarrow L^{r}(\partial \Omega)$ for all $r<\infty$. Using similar arguments as before, we deduce that $\frac{\partial p}{\partial n} \in L^{3-\frac{1}{r-1}}(\Sigma)$.

From (3.1) we have that $\frac{\partial p}{\partial n}=-\beta u$ on \mathcal{I} and the asserted regularity of u follows. The desired estimate for $\left\|\frac{\partial p}{\partial n}\right\|_{L^{q_{n}}(\Sigma)}$ holds due to the continuity of all embeddings involved.

Our next objective is to show that for the optimal solution u the corresponding very weak solution y to the state equation is in fact a variational solution in the sense that $y \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right), y=u$ a.e. on Σ, and

$$
\int_{Q} \partial_{t} y v d x d t=\int_{Q}(-\kappa \nabla y \nabla v-b \cdot \nabla y v+f v) d x d t
$$

for all $v \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$. This is important for numerical realizations which are conveniently based on this formulation. We shall require the following lemma, which uses the notion of uniform 1-smooth regularity property of the boundary, for which we refer to [1].

Lemma 3.3. Let D be a domain in \mathbb{R}^{n}, having the uniform 1 -smooth regularity property and a bounded boundary, and $s \in[0,1]$.
(a) If $v \in H^{s}(D)$, then $\max (0, v) \in H^{s}(D)$ and

$$
|\max (0, v)|_{H^{s}(D)} \leq|v|_{H^{s}(D)}
$$

(b) If $v \in H^{s}\left(0, T ; L^{2}(D)\right)$, then $\max (0, v) \in H^{s}\left(0, T ; L^{2}(D)\right)$ and

$$
|\max (0, v)|_{H^{s}\left(0, T ; L^{2}(D)\right)} \leq|v|_{H^{s}\left(0, T ; L^{2}(D)\right)}
$$

Proof. (a) For $s=0$ the claim is trivial and for $s=1$ it is well known, see [40]. Thus let us consider the case $0<s<1$. Under the stated regularity properties for ∂D, the interpolation norm on $H^{s}(D)$ is equivalent to the intrinsic $H^{s}(D)$-norm on D given by

$$
\begin{equation*}
|v|_{L^{2}(D)}^{2}+\int_{D} \int_{D} \frac{|v(x)-v(y)|^{2}}{|x-y|^{n+2 s}} d x d y \tag{3.4}
\end{equation*}
$$

see [1]. Let $S_{i} \subset D \times D$ be given by

$$
\begin{aligned}
& S_{1}=\{(x, y): v(x) \geq 0, v(y) \geq 0\}, S_{2}=\{(x, y): v(x) \geq 0, v(y)<0\} \\
& S_{3}=\{(x, y): v(x)<0, v(y) \geq 0\}, S_{4}=\{(x, y): v(x)<0, v(y)<0\}
\end{aligned}
$$

Then with $v^{+}=\max (0, v)$

$$
\begin{array}{r}
\int_{D} \int_{D} \frac{\left|v^{+}(x)-v^{+}(y)\right|^{2}}{|x-y|^{n+2 s}} d x d y \leq \int_{s_{1} \cup s_{2} \cup s_{3}} \int_{s_{1} \cup s_{2} \cup s_{3}} \frac{|v(x)-v(y)|^{2}}{|x-y|^{n+2 s}} d x d y \\
\quad \leq \int_{D} \int_{D} \frac{|v(x)-v(y)|^{2}}{|x-y|^{n+2 s}} d x d y
\end{array}
$$

and (a) follows. Turning to (b), from [27] Theorem 1.7 it is known that for $s \in(0,1)$ up to equivalence of norms we have

$$
|v|_{H^{s}\left(L^{2}(D)\right)}^{2}=|v|_{L^{2}\left(L^{2}(D)\right)}^{2}+2 \int_{0}^{T} \int_{0}^{T-t} t^{-1-2 s}|v(\tau)-v(t+\tau)|_{L^{2}(D)}^{2} d \tau d t
$$

Setting $t+\tau=r$ the last term can equivalently be expressed as

$$
\int_{0}^{T} \int_{\tau}^{T}|s-\tau|^{-1-2 s}|v(\tau)-v(r)|^{2} d r d \tau
$$

and using the symmetry of this expression with respect to s and τ we find

$$
|v|_{H^{s}\left(L^{2}(D)\right)}^{2}=|v|_{L^{2}\left(L^{2}(D)\right)}^{2}+\int_{0}^{T} \int_{0}^{T} \frac{|v(\tau)-v(r)|_{L^{2}(D)}^{2}}{|\tau-r|^{1+2 s}} d r d \tau
$$

which is analogous to (3.4). The integral term can be expressed as

$$
\int_{0}^{T} \int_{0}^{T} \int_{\Omega} \frac{|v(\tau, x)-v(r, x)|^{2}}{|\tau-r|^{1+2 s}} d x d r d \tau
$$

and hence the proof can be completed as in (a).
THEOREM 3.4. Let (y, u) denote a solution to $(P 1)$ and assume that $\psi \in$ $L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right)$. Then y is a variational solution of the state equation with

$$
u \in L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right) \quad \text { and } y \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right)
$$

If, moreover, $G^{\prime}(y) \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$ and $\psi \in L^{2}\left(H^{1}(\partial \Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\partial \Omega)\right)$, then

$$
u \in L^{2}\left(H^{1}(\partial \Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\partial \Omega)\right) \text { and } y \in L^{2}\left(H^{\frac{3}{2}-\epsilon}(\Omega)\right) \cap H^{\frac{3-2 \epsilon}{4}}\left(L^{2}(\Omega)\right)
$$

for every $\epsilon>0$. In addition $u=0$ on $\mathcal{I} \cap(\{T\} \times \partial \Omega)$.
Proof. From the proof of Theorem 3.2 we have that

$$
\frac{\partial p}{\partial n} \in L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right)
$$

From (3.1) with $\beta=c$ we deduce that $u=\min \left(0,-\frac{1}{\beta} \frac{\partial p}{\partial n}-\psi\right)+\psi$ and hence Lemma 3.3 implies that $u \in L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right)$. By regularity results for parabolic equations based on interpolation theory, see [32], Vol II, pg. 78 (with $s=-\frac{1}{2}$) we obtain that $y \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$. Therefore

$$
\int_{Q} \partial_{t} y v d x d t=\int_{Q}(-\kappa \nabla y \nabla v-b \cdot \nabla y v+f v) d x d t
$$

for all $v \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$. Since the right hand side can uniquely be extended to a continuous functional on $L^{2}\left(H_{0}^{1}(\Omega)\right)$, it follows that $\partial_{t} y \in L^{2}\left(H^{-1}(\Omega)\right)$. From (2.7) moreover $y=u$ in $L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right)$. We conclude that y is a variational solution to (2.2).

If $G^{\prime}(y) \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$, then $p \in L^{2}\left(H^{3}(\Omega)\right) \cap H^{\frac{3}{2}}\left(L^{2}(\Omega)\right)$, see [32], Vol II, pg. 32, (with $k=1$). It follows that $\frac{\partial p}{\partial n} \in L^{2}\left(H^{\frac{3}{2}}(\partial \Omega)\right) \cap H^{\frac{3}{4}}\left(L^{2}(\partial \Omega)\right)$, see e.g. [19], pg. 9. Due to the regularity assumption on ψ and Lemma 3.3 we find that $u \in L^{2}\left(H^{1}(\partial \Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\partial \Omega)\right)$. This implies that $y \in L^{2}\left(H^{\frac{3}{2}-\epsilon}(\Omega)\right) \cap H^{\frac{3}{4}-\frac{\epsilon}{2}}\left(L^{2}(\Omega)\right)$, for every $\epsilon>0$, see [32], Vol II, pg. 78, (with $s=-\frac{1}{4}-\frac{\epsilon}{2}$). Regularity of p implies that $p(T) \in H^{2-\epsilon}(\Omega)$ and hence $\frac{\partial p}{\partial n}(T) \in H^{\frac{1}{2}-\epsilon}(\partial \Omega)$. Since $p(T)=0$ on Ω we find that $\frac{\partial p}{\partial n}(T)=0$ on $\partial \Omega$. Hence from the fifth equation in (3.1) we deduce that $u=0$ on $\mathcal{I} \cap(\{T\} \times \partial \Omega)$.

REMARK 3.1. For $G(y)=\frac{1}{2}\left|y-y_{d}\right|^{2}$ the condition $G^{\prime}(y) \in L^{2}\left(H^{1}(\Omega)\right) \cap$ $H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$ is satisfied if $y_{d} \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$ and $\psi \in L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap$ $H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right)$.

Corollary 3.5. (extra L^{p} regularity). By interpolation one can show that if $u \in L^{2}\left(H^{1}(\partial \Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\partial \Omega)\right)$ then $u \in L^{q_{\epsilon}}(\Sigma)$, where $q_{\epsilon}=\frac{2(n+1)}{n-1}-\epsilon$, for every $\epsilon>0$.
3.2. Problem (P2). We first derive the optimality system for (P2). This requires more care than for (P1) since G in this case is not defined on the space of trajectories $L^{2}(Q)$.

Let (y, u) denote an optimal solution to (P2). We shall require that $G^{\prime}(y(T)) \in$ $H_{0}^{1}(\Omega)$. This will guarantee the required regularity of the adjoint state. In case $G(y(T))=\frac{1}{2}|y(T)-z|^{2}$, this is the case if $y(T)-z \in H_{0}^{1}(\Omega)$, i.e. we require regularity of $y(T)$ (and z) beyond that which is guaranteed by Corollary 2.2 as well as boundary conditions for $y(T)-z$. The required regularity of y at T can be achieved by restricting u to be a function of t only, in a neighborhood of T. To take into consideration the additional boundary condition, we require that $u=0$ in a neighborhood of $T=0$. Then by semi-group theory $y(T) \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and, if $z \in H_{0}^{1}(\Omega)$, we have $y(T)-z \in H_{0}^{1}(\Omega)$. Thus for tracking type functionals the requirement that $G^{\prime}(y(T)) \in$ $H_{0}^{1}(\Omega)$ holds if $u \in L_{T_{1}}^{2}(\Sigma)$ and $z \in H_{0}^{1}(\Omega)$. This motivates the use of $L_{T_{1}}^{2}(\Sigma)$ in (P2).

Theorem 3.6. Let (y, u) denote a solution to (P2) with $T_{1}<T$ and assume that $G^{\prime}(y(T)) \in H_{0}^{1}(\Omega)$. Then there exist $p \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right)$ and $\lambda \in L^{2}\left(\Sigma_{T_{1}}\right)$ such that for all $c>0$

$$
\left\{\begin{array}{l}
\partial_{t} y-\kappa \Delta y+b \cdot \nabla y=f \quad \text { in } \quad Q, \tag{3.5}\\
y=u \quad \text { on } \quad \Sigma, \quad y=y_{0} \quad \text { in } \quad \Omega, \\
-\partial_{t} p-\kappa \Delta p-\operatorname{div} b p-b \cdot \nabla p=0 \quad \text { in } \quad Q, \\
p=0 \quad \text { on } \quad \Sigma, \quad p(T)=-G^{\prime}(y(T)) \quad \text { in } \quad \Omega, \\
\kappa \frac{\partial p}{\partial n}+\beta u+\lambda=0 \quad \text { on } \quad \Sigma_{T_{1}} \\
\lambda=\max (0, \lambda+c(u-\psi))+\min (0, \lambda+c(u-\varphi)) \quad \text { on } \quad \Sigma_{T_{1}}
\end{array}\right.
$$

holds, where $\Sigma_{T_{1}}=\left(0, T_{1}\right) \times \partial \Omega$.
Proof. From Theorem 2.1 the affine mapping $u \rightarrow y(u)$ is continuous from $L^{2}(\Sigma)$ to $L^{2}(Q) \cap H^{1}\left(H^{-2}(\Omega)\right)$. The linearization \dot{y} at u in direction h satisfies

$$
\begin{align*}
\left\langle\partial_{t} \dot{y}(t), v\right\rangle & -\kappa(\dot{y}(t), \Delta v)-(\dot{y}(t), \operatorname{div}(b(t)) v)-(\dot{y}(t), b(t) \nabla v) \\
& =\kappa\left(h(t), \frac{\partial}{\partial n} v\right)_{\partial \Omega} \text { for all } v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \text { and a.e. } t \in(0, T) \tag{3.6}
\end{align*}
$$

Moreover, by Corollary 2.2, the affine mapping $u \rightarrow y(T ; u)$ is continuous from $L^{\infty}(\Sigma)$ to $L^{2}(\Omega)$, and hence it is differentiable at u in directions $h \in L^{\infty}(\Sigma)$. By assumption $\left.G^{\prime}(y(T)) \in H_{0}^{1}(\Omega)\right)$ and hence the solution to the adjoint equation satisfies $p \in L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap H^{1}\left(L^{2}(\Omega)\right),[36]$. Let $j(u)=J(y(u), u)$ denote the reduced cost functional corresponding to (P2). For the derivative at $u \in L^{\infty}(\Sigma)$ in direction $h \in L^{2}(\Sigma)$ we obtain by (3.6)

$$
\begin{aligned}
& \left(j^{\prime}(u), h\right)_{L^{2}(\Sigma)}=\left(G^{\prime}(y(T)), \dot{y}(T)\right)_{L^{2}(\Omega)}+\beta(u, h)_{L^{2}(\Sigma)} \\
& \quad=-(p(T), \dot{y}(T))_{L^{2}(\Omega)}+\beta(u, h)_{L^{2}(\Sigma)}=-\int_{0}^{T} \frac{d}{d t}(p(t), \dot{y}(t))_{L^{2}(\Omega)} d t+\beta(u, h)_{L^{2}(\Sigma)} \\
& =\left(\kappa \frac{\partial p}{\partial n}+\beta u, h\right)_{L^{2}(\Sigma)}
\end{aligned}
$$

At the solution we therefore have

$$
\begin{equation*}
\left(j^{\prime}(u), h-u\right) \geq 0 \quad \text { for all } h \in L_{T_{1}}^{2}(\Sigma) \text {, with } \varphi \leq h \leq \psi . \tag{3.7}
\end{equation*}
$$

Note that the directions h in (3.7) are in $L_{T_{1}}^{\infty}(\Sigma)$ as well. Define

$$
\mathcal{A}_{\varphi}=\left\{(t, x) \in \Sigma_{T_{1}}: u=\varphi\right\}, \mathcal{A}_{\psi}=\left\{(t, x) \in \Sigma_{T_{1}}: u=\psi\right\}, \mathcal{I}=\Sigma_{T_{1}} \backslash\left(\mathcal{A}_{\varphi} \cup \mathcal{A}_{\psi}\right),
$$

where $\Sigma_{1}=\left(0, T_{1}\right) \times \partial \Omega$. Set $\mathcal{S}=\left\{(t, x) \in \mathcal{I}: j^{\prime}(u) \geq 0\right\}$ and define $\bar{h}=\varphi \chi_{\mathcal{S}}+u \chi_{\Sigma \backslash \mathcal{S}}$, which satisfies $\varphi \leq \bar{h} \leq \psi$ on $\Sigma_{T_{1}}$. By (3.7)

$$
0 \leq\left(j^{\prime}(u), \bar{h}-u\right)_{L^{2}\left(\Sigma_{T_{1}}\right)}=\left(j^{\prime}(u), \varphi-u\right)_{L^{2}(\mathcal{S})} \leq 0
$$

and hence $j^{\prime}(u)=0$ on \mathcal{S}, since $\varphi<u<\psi$ on \mathcal{S}. Analogously one shows that $j^{\prime}(u)=0$ on $\left\{(t, x) \in \mathcal{I}: j^{\prime}(u) \leq 0\right\}$ and hence $j^{\prime}(u)=0$ on \mathcal{I}. Next set $\mathcal{S}_{\psi}=$ $\left\{(t, x) \in \mathcal{A}_{\psi}: j^{\prime}(u) \geq 0\right\}$, and define $\bar{h}=\varphi \chi_{\mathcal{S}_{\psi}}+u \chi_{\Sigma} \backslash \mathcal{S}_{\psi}$. Then by (3.7)

$$
0 \leq\left(j^{\prime}(u), \bar{h}-u\right)_{L^{2}\left(\Sigma_{T_{1}}\right)}=\left(j^{\prime}(u), \varphi-\psi\right)_{L^{2}\left(\Sigma_{T_{1}}\right)} \leq 0 .
$$

Since $\varphi<\psi$ a.e. on $\Sigma_{T_{1}}$ this implies that $j^{\prime}(u)=0$ on \mathcal{S}_{ψ} and hence $j^{\prime}(u) \leq 0$ on \mathcal{A}_{ψ}. Analogously one shows that $j^{\prime}(u) \geq 0$ on \mathcal{A}_{φ}.
Setting

$$
\lambda=\left\{\begin{array}{l}
-\kappa \frac{\partial p}{\partial n}-\beta u \text { on } \Sigma_{T_{1}} \backslash \mathcal{I} \\
0 \text { on } \mathcal{I}
\end{array}\right.
$$

the last two equations of (3.5) follow and the optimality system is verified.
Corollary 3.7. Under the assumptions of Theorem 3.4 we have $\frac{\partial p}{\partial n} \in L^{q_{n}}(\Sigma)$ and $u \mid \mathcal{I} \in L^{q_{n}}(\mathcal{I})$ with q_{n} defined in (3.2).

This is a direct consequence of Theorem 3.6, which asserts that $p \in L^{2}\left(H^{2}(\Omega)\right) \cap$ $H^{1}\left(L^{2}(\Omega)\right)$, and the proof of Theorem 3.2.

Corollary 3.8. Under the assumptions of Theorem 3.6 and if $\varphi, \psi \in L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap$ $H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right)$, then y is a variational solution of the state equation with $u \in L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right)$ and $y \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right) \cap H^{1}\left(H^{-1}(\Omega)\right)$.

If moreover $G^{\prime}(y(T)) \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ and $\varphi, \psi \in L^{2}\left(H^{1}(\partial \Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\partial \Omega)\right)$, then

$$
u \in L^{2}\left(H^{1}(\partial \Omega)\right) \cap H^{\frac{1-\varepsilon}{2}}\left(L^{2}(\partial \Omega)\right) \text { and } y \in L^{2}\left(H^{\frac{3}{2}-\epsilon}(\Omega)\right) \cap H^{\frac{3-2 \epsilon}{4}}\left(L^{2}(\Omega)\right) \text {, }
$$

for every $\epsilon>0$.
Proof. The proof of the first part is similar to that of Theorem 3.4. By the last two equations of (3.5) we find

$$
\begin{equation*}
u=\max \left(\varphi, \min \left(\psi,-\frac{\kappa}{\beta} \frac{\partial p}{\partial n}\right)\right) \quad \text { a.e. on } \Sigma_{T_{1}}, \tag{3.8}
\end{equation*}
$$

which is equivalent to $u=\max \left(0, \min \left(0,-\frac{\kappa}{\beta} \frac{\partial p}{\partial n}-\psi\right)+\psi-\varphi\right)+\varphi$. Since $\frac{\partial p}{\partial n} \in$ $L^{2}\left(H^{\frac{1}{2}}(\partial \Omega)\right) \cap H^{\frac{1}{4}}\left(L^{2}(\partial \Omega)\right)$ this implies by Lemma 3.3 that

$$
u \left\lvert\,\left(0, T_{1}\right) \in L^{2}\left(0, T_{1} ; H^{\frac{1}{2}}(\partial \Omega)\right) \cap H^{\frac{1}{4}}\left(0, T_{1} ; L^{2}(\partial \Omega)\right)\right.
$$

and by concatenation of functions in $H^{\frac{1}{4}}$ this implies that

$$
u \in L^{2}\left(0, T ; H^{\frac{1}{2}}(\partial \Omega)\right) \cap H^{\frac{1}{4}}\left(0, T ; L^{2}(\partial \Omega)\right)
$$

see [27], Proposition 1.13, and hence $y \in L^{2}\left(H^{1}(\Omega)\right) \cap H^{\frac{1}{2}}\left(L^{2}(\Omega)\right)$. Turning to the second part of the proof we assume that $G^{\prime}(y(T)) \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Then $p \in$ $L^{2}\left(H^{3}(\Omega)\right) \cap H^{\frac{3}{2}}\left(L^{2}(\Omega)\right)$, see [32], Vol. II, pg. 32, and $\frac{\partial p}{\partial n} \in L^{2}\left(H^{\frac{3}{2}}(\partial \Omega)\right) \cap H^{\frac{3}{4}}\left(L^{2}(\partial \Omega)\right)$. By (3.8) and concatenation of H^{s}-functions with $s \in\left[0, \frac{1}{2}\right)$ we find that $u \in L^{2}\left(H^{1}(\partial \Omega)\right) \cap$ $H^{\frac{1-\varepsilon}{2}}\left(L^{2}(\partial \Omega)\right)$, for every $\varepsilon \in(0,1)$. This implies that $y \in L^{2}\left(H^{\frac{3}{2}-\varepsilon}(\Omega)\right) \cap H^{\frac{3-2 \varepsilon}{4}}\left(L^{2}(\Omega)\right)$.

4. The primal-dual active set strategy and its convergence properties.

 The primal-dual active set strategy has proved to be very efficient for solving constrained optimal control problems [8]. We describe it here for $(P 1)$ and defer the necessary modifications for $(P 2)$ to Remark 4.2.In addition to the assumptions on $G: L^{2}(Q) \rightarrow \mathbb{R}$ made in Section 3 we assume that G is convex so that all auxiliary optimal control problems that arise in this section have unique solutions.

The primal-dual active set strategy is an iterative algorithm which, based on the current iterate $\left(u_{k}, \lambda_{k}\right)$, defines the active set

$$
\mathcal{A}_{k}=\left\{x \in \Omega: \lambda_{k}(x)+c\left(u_{k}-\psi\right)(x)>0\right\},
$$

and the inactive set

$$
\mathcal{I}_{k}=\Omega \backslash \mathcal{A}_{k}
$$

The subsequent step consists in solving the optimal control problem with equality constraints only:

$$
\left\{\begin{array}{l}
\min J(y, u)=G(y)+\frac{\beta}{2}|u|_{L^{2}(\Sigma)}^{2} \tag{k}\\
\operatorname{over}(y, u) \in L^{2}(Q) \times L^{2}(\Sigma) \\
\text { subject to }(2.1) \quad \text { and } u=\psi \text { on } \mathcal{A}_{k}
\end{array}\right.
$$

This leads to the following iterative algorithm, in which step (iii) is the necessary and sufficient optimality condition for $\left(P_{k}\right)$.

Primal dual active set algorithm

(i) Choose $\left(u_{1}, \lambda_{1}\right) \in L^{2}(\Sigma) \times L^{2}(\Sigma), c>0$.
(ii) Define $\mathcal{A}_{k}=\left\{x \in \Omega: \lambda_{k}(x)+c\left(u_{k}-\psi\right)(x)>0\right\}, \mathcal{I}_{k}=\Omega \backslash \mathcal{A}_{k}$.
(iii) Solve for $\left(y_{k+1}, u_{k+1}, p_{k+1}\right) \in L^{2}(Q) \cap H^{1}\left(H^{-2}(\Omega)\right) \cap C\left(H^{-1}(\Omega)\right) \times L^{2}(\Sigma) \times$ $L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right):$

$$
\left\{\begin{array}{l}
\partial_{t} y-\kappa \Delta y+b \cdot \nabla y=f \quad \text { in } Q \tag{4.1}\\
y=u \quad \text { on } \quad \Sigma, \quad y(0)=y_{0} \quad \text { in } \Omega \\
-\partial_{t} p-\kappa \Delta p-\operatorname{div} b p-b \cdot \nabla p=-G^{\prime}(y) \quad \text { in } Q \\
p=0 \quad \text { on } \quad \Sigma, \quad p(T)=0 \quad \text { in } \Omega \\
u=\psi \text { on } \mathcal{A}_{k}, \quad \kappa \frac{\partial p}{\partial n}+\beta u=0 \text { on } \mathcal{I}_{k}
\end{array}\right.
$$

(iv) Set

$$
\lambda_{k+1}= \begin{cases}0 & \text { on } \mathcal{I}_{k}, \\ -\kappa \frac{\partial p_{k+1}}{\partial n}-\beta \psi & \text { on } \mathcal{A}_{k} .\end{cases}
$$

(v) Stop or return to (ii).

For practical features of this algorithm we refer to [8] and [33], for example. Suffice is to say here that for $k \geq 2$ the iterates of the algorithm are independent of the choice of c, and that the algorithm finds two successive active sets, for which $\mathcal{A}_{k}=\mathcal{A}_{k+1}$, then $\left(y\left(u_{k}\right), u_{k}\right)$ is the solution of the problem.

Remark 4.1. The equality-constrained optimization problem $\left(P_{k}\right)$ is solved using the Newton method for the reduced cost functional $j(u)=G(y(u))+\frac{\beta}{2}|u|_{L^{2}(\Sigma)}^{2}$. The required first and second derivatives of j are computed using solutions of the adjoint problems, see e.g. [4]. In Section 5 we describe the computation of these derivatives on the discrete level.

For the following result it will be convenient to choose a specific initialization for λ, given by

$$
\left\{\begin{array}{l}
\text { Choose } u_{1} \in L^{2}(\Sigma), \tag{4.2}\\
\text { set } \lambda_{1}=-\kappa \frac{\partial p\left(u_{1}\right)}{\partial n}-\beta u_{1}, \\
\text { and set } c=\beta \text { for the first iteration. }
\end{array}\right.
$$

Theorem 4.1. If the primal-dual active set algorithm is initialized by (4.2), if further $\psi \in L^{\frac{2(n+1)}{n}}(\Sigma), G^{\prime}: L^{2}(Q) \rightarrow L^{2}(Q)$ is locally Lipschitz, and $\left|u_{1}-u^{*}\right|_{L^{2}(\Sigma)}$ is sufficiently small, then the iterates $\left(y_{k}, u_{k}, p_{k}, \lambda_{k}\right)$ converge super-linearly in $L^{2}(Q) \cap$ $H^{1}\left(H^{-2}(\Omega)\right) \cap C\left(H^{-1}(\Omega)\right) \times L^{2}(\Sigma) \times L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times L^{2}(\Sigma)$ to $\left(y^{*}, u^{*}, p^{*}, \lambda^{*}\right)$.

Proof. Let us consider λ in the last equation of (3.1) as a function of u. Then (3.1) can equivalently be expressed as

$$
\begin{equation*}
F(u)=\lambda(u)-\max (0, \lambda(u)+\beta(u-\psi))=0, \text { where } F: L^{2}(\Sigma) \rightarrow L^{2}(\Sigma) . \tag{4.3}
\end{equation*}
$$

Note that (4.3) is equivalent to

$$
\begin{equation*}
F(u)=\beta u-\beta \psi+\max \left(0, \kappa \frac{\partial p}{\partial n}+\beta \psi\right)=0, \tag{4.4}
\end{equation*}
$$

due to the fifth equation in (3.1). By Theorem 3.1 and the assumption that $\psi \in$ $L^{\frac{2(n+1)}{n}}(\Sigma)$ we have that $\kappa \frac{\partial p}{\partial n}+\beta \psi \in L^{q_{n}}(\Sigma)$ with q_{n} defined in (3.2). Due to the fact that $q_{n}>2$ we obtain that

$$
u \rightarrow F(u)
$$

is Newton differentiable as introduced in Definition 1 of [23], see Proposition 4.1. of [23], with generalized derivate of F at u in direction $h \in L^{2}(\Sigma)$ given by

$$
G_{F}(u) h=\beta h+G_{\max }\left(\kappa \frac{\partial p}{\partial n}+\beta \psi\right) \frac{\partial p(h)}{\partial n},
$$

where

$$
G_{\max }(u)(x)= \begin{cases}1, & \text { if } u(x)>0 \\ 0, & \text { if } u(x) \leq 0\end{cases}
$$

It was proved in general terms in [23], Theorem 4.1, that $G_{F}(u)$ has a bounded inverse from $L^{2}(\Sigma)$ to itself for every $u \in L^{2}(\Sigma)$. Hence it follows that the semismooth Newton algorithm applied to $F(u)=0$ is locally super-linearly convergent. The semi-smooth Newton iteration consists of the iteration

$$
\left\{\begin{array}{l}
G_{F}\left(u_{\kappa}\right) \delta u=-F\left(u_{\kappa}\right) \tag{4.5}\\
u_{k+1}=u_{k}+\delta u .
\end{array}\right.
$$

In the following arguments we show that the semi-smooth Newton iteration and the primal-dual active set strategy coincide. In principle this argument can be extracted from [23], but we believe that it is instructive to carry it out for the present case. A short consideration shows that a semi-smooth Newton step (4.5) is equivalent to

$$
\left\{\begin{array}{l}
\partial_{t} y_{k+1}-\kappa \Delta y_{k+1}+b \cdot \nabla y_{k+1}=f \text { in } Q \tag{4.6}\\
y_{k+1}=u_{k+1} \text { on } \Sigma, y(0)=y_{0} \text { in } \Omega \\
-\partial_{t} p_{k+1}-\kappa \Delta p_{k+1}-\operatorname{divb} p_{k+1}-b \cdot \nabla p_{k+1}=-G^{\prime}\left(y_{k+1}\right) \text { in } Q \\
p_{k+1}=0 \text { on } \Sigma, \quad p_{k+1}(T)=0 \text { in } \Omega \\
u_{k+1}=\psi \text { on } \mathcal{A}_{k}^{S N}, \kappa \frac{\partial p_{k+1}}{\partial n}+\beta u_{k+1}=0 \text { on } \mathcal{I}_{k}^{S N}
\end{array}\right.
$$

where

$$
\mathcal{A}_{k}^{S N}=\left\{x:\left(-\kappa \frac{\partial p_{k}}{\partial n}-\beta \psi\right)(x)>0\right\}, \mathcal{I}_{k}^{S N}=\Omega \backslash \mathcal{A}_{k}^{S N}
$$

We further set

$$
\lambda_{k+1}= \begin{cases}0, & \text { on } \mathcal{I}_{k}^{S N} \tag{4.7}\\ -\kappa \frac{\partial p_{k+1}}{\partial n}-\beta \psi, & \text { on } \mathcal{A}_{k}^{S N}\end{cases}
$$

and observe that

$$
\begin{equation*}
\lambda_{k}+\beta\left(u_{k}-\psi\right)=-\kappa \frac{\partial p_{k+1}}{\partial n}-\beta \psi, \text { for } k=2,3, \ldots \tag{4.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\lambda_{k}\left(u_{k}-\psi\right)=0 \text { for } k=2,3, \ldots \tag{4.9}
\end{equation*}
$$

Hence $\lambda_{k}+\beta\left(u_{k}-\psi\right)>0$ if and only if $\lambda_{k}+c\left(u_{k}-\psi\right)>0$ for any $c>0$. From (4.8) we have that

$$
\mathcal{A}_{k}=\mathcal{A}_{k}^{S N} \text { and } \mathcal{I}_{k}=\mathcal{I}_{k}^{S N}, \text { for } k=2,3, \ldots
$$

Therefore the primal-dual active set strategy and the semi-smooth Newton iteration coincide, provided that their initialization phases coincide. For that it suffices to check that $\mathcal{A}_{1}=\mathcal{A}_{1}^{S N}$. This is the case since for λ_{1} as in (4.2) we have

$$
\lambda_{1}+\beta\left(u_{1}-\psi\right)=-\kappa \frac{\partial p\left(u_{1}\right)}{\partial n}-\beta \psi_{1}
$$

Super-linear convergence of y_{k} to y^{*} in $L^{2}(Q) \cap H^{1}\left(H^{-2}(\Omega)\right) \cap C\left(H^{-1}(\Omega)\right)$ follows from Theorem 2.1. Moreover, super-linear convergence of $\left(p_{k}, \lambda_{k}\right)$ to $\left(p^{*}, \lambda^{*}\right)$ in $L^{2}\left(H^{2}(\Omega) \cap\right.$ $\left.H_{0}^{1}(\Omega)\right) \times L^{2}(\Sigma)$ is a consequence of (3.1) and (4.1),

$$
\lambda^{*}-\lambda_{k}=-\beta\left(u^{*}-u_{k}\right)-\kappa\left(\frac{\partial p^{*}}{\partial n}-\frac{\partial p_{k}}{\partial n}\right)
$$

and Theorem 3.1.
In Theorem 4.1 we addressed local convergence of the primal-dual active set algorithm. We now turn to global convergence, i.e. to convergence from arbitrary initializations $\left(u_{1}, \lambda_{1}\right) \in L^{2}(\Sigma) \times L^{2}(\Sigma)$.

THEOREM 4.2. If β is sufficiently large then the iterates $\left(y_{k}, u_{k}, p_{k}, \lambda_{k}\right) \rightarrow$ $\left(y^{*}, u^{*}, p^{*}, \lambda^{*}\right)$ in $L^{2}(Q) \cap H^{1}\left(H^{-2}(\Omega)\right) \cap C\left(H^{-1}(\Omega)\right) \times L^{2}(\Sigma) \times L^{2}\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times$ $L^{2}(\Sigma)$.

Proof. Convergence of $\left(u_{k}, \lambda_{k}\right) \rightarrow\left(u^{*}, \lambda^{*}\right)$ in $L^{2}(\Sigma) \times L^{2}(\Sigma)$ follows from a general result in [25], Theorem 4.1. It requires that $\beta>\|T\|_{\mathcal{L}\left(L^{2}(\Sigma), L^{2}(Q)\right)}$ where $T u=$ $y(u)$. Convergence of $\left(y_{k}, u_{k}\right)$ in the specified norms is a consequence of the governing equations for y_{k} and p_{k}, \square

Remark 4.2. For (P2), under the assumptions of Theorem 3.6, identical assertions to Theorem 4.1 and Theorem 4.2 hold. ($P 2$) differs from ($P 1$) in that it involves a terminal observation and bilateral constraints. Provided by Corollary 3.7 we again have the necessary additional regularity $\frac{\partial p}{\partial n} \in L^{q_{n}}(\Sigma)$. Global convergence and local superlinear convergence for bilaterally constrained problems was treated in [25], Theorem 4.1 and Theorem 6.1. The assumption that $\left|u^{0}-u^{*}\right|$ is sufficiently small and that the initialization phases of the primal-dual active set algorithm and the semi-smooth Newton methods coincide, if λ_{1} is chosen as in (4.2).
5. Finite element discretization. In this section we discuss the space-time finite element discretization of the optimization problem under consideration. The space discretization of the state equation is based on the usual H^{1}-conforming finite elements, whereas the time discretization is done by a discontinuous Galerkin method as proposed in $[15,17]$. We refer to $[4,35]$ for a detailed description of the space-time finite element methods for parabolic optimization problems including adaptivity. We emphasize, that space-time Galerkin discretizations of optimal control problems allow a natural translation of the optimality system and the optimization algorithms from the continuous to the discrete level: in fact, the approaches "discretize-then-optimize" and "optimize-then-discretize" coincide. We return to this aspect in Remark 6.2 below.

Since the state equation (2.2) is considered in the very weak sense, it may appear at first that its approximation by finite elements based on the standard variational formulation may be not appropriate. However, such an approach is justified since the optimal state and control which need to be approximated, possess the common regularity of a variational solution, see Theorem 3.4. - For an interesting discussion of finite element discretizations of equations with rough boundary data we refer to [7] in the elliptic and to [18] in the parabolic case. Finite element approximation of Dirichlet optimal control problems governed by elliptic equations are discussed in [10, 41].

For this section it is convenient to introduce the following notation: $V=H^{1}(\Omega)$, $V_{0}=H_{0}^{1}(\Omega), H=L^{2}(\Omega)$ and $X=L^{2}(0, T ; V) \cap H^{1}\left(0, T ; V^{*}\right)$. We introduce a bilinear form $a: X \times X \rightarrow \mathbb{R}$ corresponding to the standard variational formulation of the state equation:

$$
a(y, v)=\int_{0}^{T}\left\{\left(\partial_{t} y, v\right)+\kappa(\nabla y, \nabla v)+(b \cdot \nabla y, v)\right\} d t
$$

To define the discretization in time, let us partition the time interval $\bar{I}=[0, T]$
as

$$
\bar{I}=\{0\} \cup I_{1} \cup I_{2} \cup \cdots \cup I_{M}
$$

with subintervals $I_{m}=\left(t_{m-1}, t_{m}\right]$ of size k_{m} and time points

$$
0=t_{0}<t_{1}<\cdots<t_{M-1}<t_{M}=T
$$

We define the discretization parameter k as a piecewise constant function by setting $\left.k\right|_{I_{m}}=k_{m}$ for $m=1, \ldots, M$.
${ }^{m}$ By means of the subintervals I_{m}, we define for $r \in \mathbb{N}_{0}$ a semi-discrete space X_{k}^{r} consisting of discontinuous in time piecewise polynomial functions:

$$
X_{k}^{r}=\left\{v_{k} \in L^{2}\left(I, V_{0}\right):\left.v_{k}\right|_{I_{m}} \in \mathcal{P}^{r}\left(I_{m}, V_{0}\right) \text { and } v_{k}(0) \in H\right\}
$$

Here, $\mathcal{P}^{r}\left(I_{m}, V_{0}\right)$ denotes the space of polynomials up to order r defined on I_{m} with values in V_{0}. For the definition of the discontinuous Galerkin method we introduce the following notation for a function $v_{k} \in X_{k}^{r}$:
$v_{k, m}^{+}:=\lim _{t \rightarrow 0^{+}} v_{k}\left(t_{m}+t\right), \quad v_{k, m}^{-}:=\lim _{t \rightarrow 0^{+}} v_{k}\left(t_{m}-t\right)=v_{k}\left(t_{m}\right), \quad\left[v_{k}\right]_{m}:=v_{k, m}^{+}-v_{k, m}^{-}$.
Using this notation we define a discretized version of the bilinear form a :

$$
\begin{aligned}
a_{k}\left(y_{k}, v_{k}\right)=\sum_{m=1}^{M} \int_{I_{m}} & \left\{\left(\partial_{t} y_{k}, v_{k}\right)+\kappa\left(\nabla y_{k}, \nabla v_{k}\right)+\left(b \cdot \nabla y_{k}, v_{k}\right)\right\} d t \\
& +\sum_{m=0}^{M-1}\left(\left[y_{k}\right]_{m-1}, v_{k, m-1}^{+}\right)+\left(y_{k, 0}^{-}, v_{k, 0}^{-}\right)
\end{aligned}
$$

For the space discretization, we consider two or three dimensional shape-regular meshes, see e.g. [11]. A mesh consists of quadrilateral or hexahedral cells K, which constitute a non-overlapping cover of the computational domain Ω. The corresponding mesh is denoted by $\mathcal{T}_{h}=\{K\}$, where we define the discretization parameter h as a cellwise constant function by setting $\left.h\right|_{K}=h_{K}$ with the diameter h_{K} of the cell K.

On the mesh \mathcal{T}_{h} we construct a conforming finite element space $V_{h} \subset V$ in a standard way:

$$
V_{h}^{s}=\left\{v \in V:\left.v\right|_{K} \in \mathcal{Q}^{s}(K) \text { for } K \in \mathcal{T}_{h}\right\}
$$

Here, $\mathcal{Q}^{s}(K)$ consists of shape functions obtained via bi- or tri-linear transformations of polynomials in $\widehat{\mathcal{Q}^{s}}(\widehat{K})$ defined on the reference cell $\widehat{K}=(0,1)^{n}$, where

$$
\widehat{\mathcal{Q}^{s}}(\widehat{K})=\operatorname{span}\left\{\prod_{j=1}^{n} x_{j}^{k_{j}}: k_{j} \in \mathbb{N}_{0}, k_{j} \leq s\right\}
$$

REMARK 5.1. The definition of V_{h}^{s} can be extended to the case of triangular meshes in the obvious way.

The discrete space with homogeneous Dirichlet boundary conditions is denoted by $V_{h, 0}^{s}=V_{h}^{s} \cap H_{0}^{1}(\Omega)$. Moreover, we introduce the space of traces of function in V_{h}^{s} :

$$
W_{h}^{s}=\left\{w_{h} \in H^{1 / 2}(\partial \Omega): w_{h}=\gamma\left(v_{h}\right), v_{h} \in V_{h}^{s}\right\}
$$

where $\gamma: H^{1}(\Omega) \rightarrow H^{1 / 2}(\partial \Omega)$ is the trace operator.
With these preliminaries, we define the discrete spaces for the control and state variable:

$$
\begin{gathered}
X_{k, h}^{r, s}=\left\{v_{k h} \in L^{2}\left(I, V_{h, 0}^{s}\right):\left.v_{k h}\right|_{I_{m}} \in \mathcal{P}^{r}\left(I_{m}, V_{h, 0}^{s}\right) \text { and } v_{k h}(0) \in V_{h}^{s}\right\} \subset X_{k}^{r} \\
U_{k, h}^{r, s}=\left\{u_{k h} \in L^{2}\left(I, W_{h}^{s}\right):\left.u_{k h}\right|_{I_{m}} \in \mathcal{P}^{r}\left(I_{m}, W_{h}^{s}\right)\right\}
\end{gathered}
$$

REMARK 5.2. In the above definition of the discrete spaces $X_{k, h}^{r, s}$ and $U_{k, h}^{r, s}$, we assumed that the spatial discretization is fixed for all time intervals. However, in many situations the use of different meshes \mathcal{T}_{h}^{m} for each of the subintervals I_{m} is required for efficient adaptive discretizations. The consideration of such dynamically changing meshes can be included in the above definitions in a natural way, [39].

For a function $u_{k h} \in U_{k, h}^{r, s}$ we define an extension $\widehat{u}_{k h} \in X_{k, h}^{r, s}$ such that

$$
\begin{equation*}
\gamma\left(\widehat{u}_{k h}(t, \cdot)\right)=u_{k h}(t, \cdot) \text { and } \widehat{u}_{k h}\left(t, x_{i}\right)=0 \text { on all interior nodes } x_{i} \text { of } \mathcal{T}_{h} . \tag{5.1}
\end{equation*}
$$

The optimization problem on the discrete level is then formulated as follows:

$$
\begin{equation*}
\min J\left(y_{k h}, u_{k h}\right), \quad u_{k h} \in U_{k, h}^{r, s} \cap U_{a d} \tag{5.2}
\end{equation*}
$$

subject to

$$
\begin{equation*}
y_{k h} \in \widehat{u}_{k h}+X_{k, h}^{r, s}, \quad a_{k}\left(y_{k h}, v_{k h}\right)=\int_{0}^{T}\left(f, v_{k h}\right) d t+\left(y_{0}, v_{k h, 0}^{-}\right) \quad \text { for all } v_{k h} \in X_{k, h}^{r, s} \tag{5.3}
\end{equation*}
$$

The discrete state equation (5.3) defines a discrete solution operator $S_{k h}$ which maps a given discrete control $u_{k h}$ to the (unique) solution of (5.3). As on the continuous level we introduce a discrete reduced cost functional

$$
\begin{equation*}
j_{k h}\left(u_{k h}\right)=J\left(S_{k h}\left(u_{k h}\right), u_{k h}\right) \tag{5.4}
\end{equation*}
$$

The discrete optimization problem (5.2)-(5.3) is solved by the primal dual active set strategy described in the previous section. In each step an equality constrained optimization problem is solved by the Newton method for the discrete reduced cost functional $j_{k h}$, see Remark 4.1. For the realization of the Newton method, we need representations of the first and second directional derivatives of $j_{k h}$.

Proposition 5.1. Let the discrete reduced cost functional $j_{k h}$ be defined as in (5.4), then there holds:
(a) The first directional derivative in direction $\delta u_{k h} \in U_{k, h}^{r, s}$ can be expressed as follows:

$$
\begin{equation*}
j_{k h}^{\prime}\left(u_{k h}\right)\left(\delta u_{k h}\right)=J_{y}^{\prime}\left(y_{k h}, u_{k h}\right)\left(\widehat{\delta u}_{k h}\right)-a_{k}\left(\widehat{\delta u}_{k h}, p_{k h}\right)+J_{u}^{\prime}\left(y_{k h}, u_{k h}\right)\left(\delta u_{k h}\right), \tag{5.5}
\end{equation*}
$$

where $y_{k h}=S_{k h}\left(u_{k h}\right)$, the extension $\widehat{\delta u}_{k h}$ is defined in (5.1), and $p_{k h} \in X_{k, h}^{r, s}$ is the solution of discrete adjoint equation:

$$
\begin{equation*}
a_{k}\left(v_{k h}, p_{k h}\right)=J_{y}^{\prime}\left(y_{k h}, u_{k h}\right)\left(v_{k h}\right) \quad \text { for all } v_{k h} \in X_{k, h}^{r, s} \tag{5.6}
\end{equation*}
$$

(b) The second derivatives of $j_{k h}$ in directions $\delta u_{k h}, \tau u_{k h} \in U_{k, h}^{r, s}$ can be expressed as follows:

$$
\begin{align*}
j_{k h}^{\prime \prime}\left(u_{k h}\right)\left(\delta u_{k h}, \tau u_{k h}\right)=J_{y y}^{\prime \prime}\left(y_{k h}, u_{k h}\right)\left(\delta y_{k h}, \widehat{\tau u}_{k h}\right) & -a_{k}\left(\widehat{\tau u}_{k h}, \delta p_{k h}\right) \\
& +J_{u u}^{\prime \prime}\left(y_{k h}, u_{k h}\right)\left(\delta u_{k h}, \tau u_{k h}\right) \tag{5.7}
\end{align*}
$$

where $\delta y_{k h}$ is the solution of the discrete tangent equation:

$$
\begin{equation*}
\delta y_{k h} \in \widehat{\delta u}_{k h}+X_{k, h}^{r, s}: a_{k}\left(\delta y_{k h}, v_{k h}\right)=0 \quad \text { for all } v_{k h} \in X_{k, h}^{r, s} \tag{5.8}
\end{equation*}
$$

$\delta p_{k h} \in X_{k, h}^{r, s}$ is given by:

$$
\begin{equation*}
a_{k}\left(v_{k h}, \delta p_{k h}\right)=J_{y y}^{\prime \prime}\left(y_{k h}, u_{k h}\right)\left(\delta y_{k h}, v_{k h}\right) \quad \text { for all } v_{k h} \in X_{k, h}^{r, s} \tag{5.9}
\end{equation*}
$$

and $\widehat{\delta u}_{k h}, \widehat{\tau u}_{k h}$ are the extensions of $\delta u_{k h}, \tau u_{k h}$ defined as in (5.1).
Proof. Using the solution $\delta y_{k h}=S_{k h}^{\prime}\left(u_{k h}\right)\left(\delta u_{k h}\right)$ of the discretized tangent equation (5.8) we obtain:

$$
j_{k h}^{\prime}\left(u_{k h}\right)\left(\delta u_{k h}\right)=J_{y}^{\prime}\left(y_{k h}, u_{k h}\right)\left(\delta y_{k h}\right)+J_{u}^{\prime}\left(y_{k h}, u_{k h}\right)\left(\delta u_{k h}\right)
$$

We rewrite the first term using (5.8) and (5.6):

$$
\begin{aligned}
& J_{y}^{\prime}\left(y_{k h}, u_{k h}\right)\left(\delta y_{k h}\right)=J_{y}^{\prime}\left(y_{k h}, u_{k h}\right)\left(\delta y_{k h}-\widehat{\delta u}_{k h}\right)+J_{y}^{\prime}\left(y_{k h}, u_{k h}\right)\left(\widehat{\delta u}_{k h}\right) \\
= & a_{k}\left(\delta y_{k h}-\widehat{\delta u}_{k h}, p_{k h}\right)+J_{y}^{\prime}\left(y_{k h}, u_{k h}\right)\left(\widehat{\delta u}_{k h}\right)=-a_{k}\left(\widehat{\delta u}_{k h}, p_{k h}\right)+J_{y}^{\prime}\left(y_{k h}, u_{k h}\right)\left(\widehat{\delta u}_{k h}\right)
\end{aligned}
$$

This gives the desired representation (5.5). The representation of the second derivatives is obtained in a similar way.

REmARK 5.3. On the continuous level, similar representations of the derivatives hold. They can be equivalently expressed using the normal derivatives of the adjoint state on the boundary, see (3.1). A direct discretization of the representation involving normal fluxes is in general not equivalent to (5.5) and would not lead to the exact representation of the derivatives of $j_{k h}$ due to the lack of the appropriate formulas for integration by parts of the discretized solutions.

REmARK 5.4. In the convection dominated case, i.e. if $|b| \gg \kappa$, the finite element discretization may lead to strongly oscillatory solutions. Several stabilization methods are known to improve the approximation properties of the pure Galerkin discretization and to reduce the oscillatory behavior, see e.g. [9, 21, 26, 37, 38]. For the stabilized finite elements in the context of stationary optimal control problems we refer to $[12,5]$.
6. Numerical examples. In this section we discuss numerical examples illustrating our results and give some details on the numerical realization.

Due to the fact that the trial and the test space in the formulation of the discrete state equation (5.3) are discontinuous in time, this formulation results in a time stepping scheme. In our numerical realization we use bilinear finite elements for the space discretization and piecewise constant functions in time resulting in spaces $X_{k, h}^{0,1}$ and $U_{k, h}^{0,1}$. In the following we describe the state equation (5.3), the adjoint equation (5.6), equations (5.8) and (5.9), and the evaluation of the derivatives of the discrete reduced cost functional for this choice of discretization. We define

$$
U_{m}=\left.u_{k h}\right|_{I_{m}}, Y_{m}=\left.y_{k h}\right|_{I_{m}}, P_{m}=\left.p_{k h}\right|_{I_{m}}, \quad i=1, \ldots M
$$

$$
Y_{0}=y_{k h, 0}^{-}, P_{0}=p_{k h, 0}^{-}
$$

The discrete state equation reads for $Y_{0} \in V_{h}$ and $Y_{m} \in U_{m}+V_{h, 0}$:

$$
\begin{gathered}
\left(Y_{0}, \phi\right)=\left(y_{0}, \phi\right) \quad \text { for all } \phi \in V_{h}, \\
\left(Y_{m}, \phi\right)+k_{m}\left(\nabla Y_{m}, \nabla \phi\right)+k_{m}\left(\int_{I_{m}} b(s) d s \cdot \nabla Y_{m}, \phi\right)=\left(Y_{m-1}, \phi\right)+ \\
k_{m}\left(\int_{I_{m}} f(s) d s, \phi\right) \quad \text { for all } \phi \in V_{h, 0}, m=1, \ldots M .
\end{gathered}
$$

REMARK 6.1. If the time integrals are approximated by the box rule, then the resulting scheme is equivalent to the implicit Euler method. However, a better approximation of these time integrals leads to a scheme which allows for better error estimates with respect to the required smoothness of the solution and to long time integration $(T \gg 1)$, see e.g. [16]. For the numerical examples which follow the trapezoidal rule is used, which guarantees this improved convergence behavior.

In order to cover both problem (P1) with a time distributed cost functional, and the problem (P2) with a terminal time functional, we write the cost functional in the form:

$$
J(y, u)=\int_{0}^{T} I(y(s)) d s+K(y(T))+\frac{\beta}{2}|u|_{L^{2}(\Sigma)}^{2}
$$

The discrete adjoint equation reads for $P_{0} \in V_{h}$ and $P_{m} \in V_{h, 0}$:

$$
\begin{gathered}
\left(\phi, P_{M}\right)+k_{M}\left(\nabla \phi, \nabla P_{M}\right)+k_{M}\left(\int_{I_{M}} b(s) d s \cdot \nabla \phi, P_{M}\right)=K^{\prime}\left(Y_{M}\right)(\phi) \\
\quad+k_{M} I^{\prime}\left(Y_{M}\right)(\phi) \quad \text { for all } \phi \in V_{h, 0} \\
\left(\phi, P_{m}\right)+k_{m}\left(\nabla \phi, \nabla P_{m}\right)+k_{m}\left(\int_{I_{m}} b(s) d s \cdot \nabla \phi, P_{m}\right)=\left(\phi, P_{m+1}\right) \\
+k_{m} I^{\prime}\left(Y_{m}\right)(\phi) \text { for all } \phi \in V_{h, 0}, m=M-1, \ldots 1
\end{gathered}
$$

REMARK 6.2. The are two possibilities to obtain the above equations for P_{m}, $m=0 \ldots M$:

- discretization of the continuous adjoint equation with $\mathrm{dG}(0)$ in time and with H^{1}-conforming finite elements in space (optimize-then-discretize approach)
- application of the Lagrange formalism on the discrete level for the optimization problem with the state equation discretized by $\mathrm{dG}(0)$ in time and H^{1} conforming finite elements in space (discretize-then-optimize approach)

The resulting schemes for P_{m} coincide independent of the temporal grid. This fact relies on the space-time Galerkin discretization.

For a standard formulation of the implicit Euler scheme, i.e.
$\frac{1}{k_{m}}\left(Y_{m}-Y_{m-1}, \phi\right)+\left(\nabla Y_{m}, \nabla \phi\right)+\left(b\left(t_{m}\right) \nabla Y_{m}, \phi\right)=\left(f\left(t_{m}\right), \phi\right) \quad$ for all $\phi \in V_{h, 0}$,
the optimize-then-discretize approach leads to the following discrete adjoint:
$\frac{1}{k_{m}}\left(\phi, P_{m}-P_{m+1}\right)+\left(\nabla \phi, \nabla P_{m}\right)+\left(b\left(t_{m}\right) \nabla \phi, P_{m}\right)=\left(I^{\prime}\left(Y_{m}\right), \phi\right) \quad$ for all $\phi \in V_{h, 0}$,
whereas the discretize-then-optimize approach produces:
$\frac{1}{k_{m}}\left(\phi, P_{m}\right)-\frac{1}{k_{m+1}}\left(\phi, P_{m+1}\right)+\left(\nabla \phi, \nabla P_{m}\right)+\left(b\left(t_{m}\right) \nabla \phi, P_{m}\right)=\left(I^{\prime}\left(Y_{m}\right), \phi\right) \quad$ for all $\phi \in V_{h, 0}$.
These schemes are different for non-constant time steps k_{m}.
For the optimization algorithm we need the evaluation of the derivatives of $j_{k h}$ for basis functions in $U_{k, h}^{0,1}$. We consider the following basis of $U_{k, h}^{0,1}$:

$$
w_{i, m}(t, x)= \begin{cases}\phi_{i}(x), & t \in I_{m} \tag{6.1}\\ 0, & \text { otherwise }\end{cases}
$$

where $\phi_{i}=\gamma\left(\widehat{\phi}_{i}\right)$ and $\widehat{\phi}_{i} \in V_{h}$ is a finite element nodal basis function for a boundary node i. We obtain the following corollary from Proposition 5.1:

Corollary 6.1. The following representation holds:

$$
\begin{aligned}
& j_{k h}^{\prime}\left(u_{k h}\right)\left(w_{i, M}\right)=\beta\left(U_{M}, \phi_{i}\right)_{\partial \Omega}+K^{\prime}\left(Y_{M}\right)\left(\widehat{\phi}_{i}\right)+k_{M} I^{\prime}\left(Y_{M}\right)\left(\widehat{\phi}_{i}\right) \\
&-\left(\widehat{\phi}_{i}, P_{M}\right)-k_{M}\left(\nabla \widehat{\phi}_{i}, \nabla P_{M}\right)-k_{M}\left(\int_{I_{M}} b(s) d s \cdot \nabla \widehat{\phi}_{i}, P_{M}\right) \\
& j_{k h}^{\prime}\left(u_{k h}\right)\left(w_{i, m}\right)=\beta\left(U_{m}, \phi_{i}\right)_{\partial \Omega}+k_{m} I^{\prime}\left(Y_{m}\right)\left(\widehat{\phi}_{i}\right)+\left(\widehat{\phi}_{i}, P_{m+1}\right) \\
&-\left(\widehat{\phi}_{i}, P_{m}\right)-k_{m}\left(\nabla \widehat{\phi}_{i}, \nabla P_{m}\right)-k_{m}\left(\int_{I_{m}} b(s) d s \cdot \nabla \widehat{\phi}_{i}, P_{m}\right) \\
& m=M-1, \ldots 1
\end{aligned}
$$

REMARK 6.3. Due to the fact that $\widehat{\phi}_{i}$ has local support, the spatial integration in the representations above is done only over cells adjacent to the boundary.

Next, we describe the equations (5.8) and (5.9), and evaluation of the second derivatives. We define

$$
\begin{gathered}
\delta U_{m}=\left.\delta u_{k h}\right|_{I_{m}}, \delta Y_{m}=\left.\delta y_{k h}\right|_{I_{m}}, \delta P_{m}=\left.\delta p_{k h}\right|_{I_{m}}, \quad i=1, \ldots M \\
\delta Y_{0}=\delta y_{k h, 0}^{-}, \delta P_{0}=\delta p_{k h, 0}^{-}
\end{gathered}
$$

The discrete tangent equation reads for $\delta Y_{0} \in V_{h}$ and $\delta Y_{m} \in \delta U_{m}+V_{h, 0}$:

$$
\delta Y_{0}=0
$$

$$
\begin{gathered}
\left(\delta Y_{m}, \phi\right)+k_{m}\left(\nabla \delta Y_{m}, \nabla \phi\right)+k_{m}\left(\int_{I_{m}} b(s) d s \cdot \nabla \delta Y_{m}, \phi\right)=\left(\delta Y_{m-1}, \phi\right) \\
\text { for all } \phi \in V_{h}, m=1, \ldots M
\end{gathered}
$$

The discrete equation (5.9) reads for $\delta P_{0} \in V_{h}$ and $\delta P_{m} \in V_{h, 0}$:

$$
\begin{gathered}
\left(\phi, \delta P_{M}\right)+k_{M}\left(\nabla \phi, \nabla \delta P_{M}\right)+k_{M}\left(\int_{I_{M}} b(s) d s \cdot \nabla \phi, \delta P_{M}\right)=K^{\prime \prime}\left(Y_{M}\right)\left(\delta Y_{M}, \phi\right) \\
+k_{M} I^{\prime \prime}\left(Y_{M}\right)\left(\delta Y_{M}, \phi\right) \quad \text { for all } \phi \in V_{h} \\
\left(\phi, \delta P_{m}\right)+k_{m}\left(\nabla \phi, \nabla \delta P_{m}\right)+k_{m}\left(\int_{I_{m}} b(s) d s \cdot \nabla \phi, \delta P_{m}\right)=\left(\phi, \delta P_{m+1}\right) \\
+k_{m} I^{\prime \prime}\left(Y_{m}\right)\left(\delta Y_{m}, \phi\right) \quad \text { for all } \phi \in V_{h}, m=M-1, \ldots 1
\end{gathered}
$$

Using the basis (6.1) we obtain the following representation of $j_{k h}^{\prime \prime}\left(u_{k h}\right)\left(\delta u_{k h}, w_{i, m}\right)$ as corollary from Proposition 5.1.

Corollary 6.2. The following representation holds:

$$
\begin{gathered}
j_{k h}^{\prime \prime}\left(u_{k h}\right)\left(\delta u_{k h}, w_{i, M}\right)=\beta\left(\delta U_{M}, \phi_{i}\right)_{\partial \Omega}+K^{\prime \prime}\left(Y_{M}\right)\left(\delta Y_{M}, \widehat{\phi}_{i}\right)+k_{M} I^{\prime \prime}\left(Y_{M}\right)\left(\delta Y_{M}, \widehat{\phi}_{i}\right) \\
-\left(\widehat{\phi}_{i}, \delta P_{M}\right)-k_{M}\left(\nabla \widehat{\phi}_{i}, \nabla \delta P_{M}\right)-k_{M}\left(\int_{I_{M}} b(s) d s \cdot \nabla \widehat{\phi}_{i}, \delta P_{M}\right) \\
j_{k h}^{\prime \prime}\left(u_{k h}\right)\left(\delta u_{k h}, w_{i, m}\right)=\beta\left(\delta U_{m}, \phi_{i}\right)_{\partial \Omega}+k_{m} I^{\prime \prime}\left(Y_{m}\right)\left(\delta Y_{M}, \widehat{\phi}_{i}\right)+\left(\widehat{\phi}_{i}, \delta P_{m+1}\right) \\
-\left(\widehat{\phi}_{i}, \delta P_{m}\right)-k_{m}\left(\nabla \widehat{\phi}_{i}, \nabla \delta P_{m}\right)-k_{m}\left(\int_{I_{m}} b(s) d s \cdot \nabla \widehat{\phi}_{i}, \delta P_{m}\right) \\
m=M-1, \ldots 1
\end{gathered}
$$

We close the paper with two numerical model problems corresponding to $(P 1)$ and (P2).
6.1. Example 1: Time distributed functional. We consider the following Dirichlet optimal control problem on $\Omega \times(0, T)$ with $\Omega=(0,1)^{2} \subset \mathbb{R}^{2}$ and $T=1$:

$$
\min \quad J(u, y)=\frac{1}{2}\left\|y-y_{d}\right\|_{L^{2}(Q)}^{2}+\frac{\beta}{2}\|u\|_{L^{2}(\Sigma)}^{2}
$$

subject to

$$
\begin{array}{rrr}
y_{t}-\kappa \Delta y+b \cdot \nabla u & =f & \text { in } \Omega \times(0, T), \\
y & =u & \text { on } \partial \Omega \times(0, T), \\
y(0) & =y_{0} & \text { in } \Omega,
\end{array}
$$

and control constraints

$$
u \geq \phi
$$

The data are given as follows:

$$
\begin{gathered}
f=0, \quad \kappa=1, \quad b(t, x)=15(\sin (2 \pi t), \cos (2 \pi t)), \quad y_{0}=0, \quad \beta=10^{-4} \\
y_{d}(t, x)=x_{1} x_{2}\left(\cos (\pi t)-x_{1}\right)\left(\sin (\pi t)-x_{2}\right), \quad \phi=-0.25
\end{gathered}
$$

This optimal control problem is discretized by space-time finite elements as described above. The resulting finite dimensional problem is solved by the primal dual active set (PDAS) method. In Table 6.1 the number of iterations of the method is shown for a sequence of uniformly refined discretizations. Here, M denotes the number of time-steps and N is the number of nodes in the space discretization.

We present the results for two choices of the initial guess for the control variable: the same choice for all discretization levels, and an interpolated solution from the previous discretization level (nested iteration). It comes at no surprise that in the case where the conditions of local superlinear convergence of the primal dual active set strategy are satisfied (due to sufficient smoothness of the adjoint variable) the results for the nested iteration approach are not significantly different from those without it. This is different, for example, in the case of state constraints, see e.g. [24]. As stopping criterion we check the agreement of active sets for two subsequent iterations. When this is achieved the exact solution of the discrete problem is found [8].

TABLE 6.1
PDAS method on sequence of uniformly refined discretizations

N	M	$\operatorname{dim} X_{h}=M \cdot N$	$\operatorname{dim} U_{h}$	PDAS Iterations	PDAS-Nested Iterations
25	2	50	32	2	2
81	4	324	128	3	3
289	8	2312	512	4	3
1089	16	17424	2048	4	3
4225	32	135200	8192	5	4
16641	64	1065024	32768	6	4

6.2. Example 2: Terminal functional. In this example we consider a Dirichlet optimal control problem with a terminal cost functional:

$$
\min \quad J(u, y)=\frac{1}{2}\left\|y(T)-y_{d}^{T}\right\|_{L^{2}(\Omega)}^{2}+\frac{\beta}{2}\|u\|_{L^{2}(\Sigma)}^{2}
$$

subject to

$$
\begin{array}{rlr}
y_{t}-\kappa \Delta y+b \cdot \nabla u & =f & \text { in } \Omega \times(0, T), \\
y & =u & \text { on } \partial \Omega \times(0, T), \\
y(0) & =y_{0} & \text { in } \Omega,
\end{array}
$$

and control constraints

$$
\phi \leq u \leq \psi, \quad u=0 \text { on } \partial \Omega \times\left(T_{1}, T\right)
$$

The data are given as follows:

$$
\begin{aligned}
& f=0, \quad \kappa=1, \quad b(t, x)=15(\sin (2 \pi t), \cos (2 \pi t)), \quad y_{0}=0, \quad \beta=10^{-4}, \quad T_{1}=0.75 \\
& y_{d}^{T}(x)=3\left(x_{1} x_{2}+\sin \left(12 \pi x_{1}^{2}\left(1-x_{1}\right)^{2}\right) \sin \left(12 \pi x_{2}^{2}\left(1-x_{2}\right)^{2}\right)\right), \quad \phi=-0.1, \quad \psi=2.5
\end{aligned}
$$

In Table 6.2 we present the corresponding results:
TABLE 6.2
PDAS method on sequence of uniformly refined discretizations

N	M	$\operatorname{dim} X_{h}=M \cdot N$	$\operatorname{dim} U_{h}$	PDAS Iterations	PDAS-Nested Iterations
25	2	50	32	3	3
81	4	324	128	3	3
289	8	2312	512	4	4
1089	16	17424	2048	5	4
4225	32	135200	8192	5	5
16641	64	1065024	32768	6	5

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Academic Press, Amsterdam, 2005.
[2] N. Arada and J.-P. Raymond, Dirichet boundary control of semilinear prarbolic equations, part 1: Problems with no state constraints, Appl.Math.Optim., 45 (2002), pp. 125-143.
[3] R. Becker, Mesh adaptation for dirichlet flow control via nitsche's method, Comm. Numer. Methods Engrg., 18 (2002), pp. 669-680.
[4] R. Becker, D. Meidner, and B. Vexler, Efficient numerical solution of parabolic optimization problems by finite element methods, submitted, (2005).
[5] R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods, submitted, (2006).
[6] F. B. Belgacem, H. E. Fekih, and H. Metoui, Singular perturbation for the dirichlet boundary control of elliptic problems, M2AN Math. Model. Numer. Anal., 37 (2003), pp. 883-850.
[7] M. Berggren, Approximations of very weak solutions to boundary-value problems, SIAM J. Numer. Anal., 42 (2004), pp. 860-877.
[8] M. Bergounioux, K. Ito, and K. Kunisch, Primal-dual strategy for constrained optimal control problems, SIAM J. Control Optim., 37 (1999), pp. 1176-1194.
[9] E. Burman and P. Hansbo, Edge stabilization for galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Eng., 193 (2004), pp. 14371453.
[10] E. Casas and J.-P.Raymond, Error estimates for the numerical approximation of dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., (2006). to appear.
[11] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 40 of Classics Appl. Math., SIAM, Philadelphia, 2002.
[12] S. S. Collis and M. Heinkenschloss, Analysis of the streamline upwind/Petrov Galerkin method applied to the solution of optimal control problems, CAAM TR02-01, (2002).
[13] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Evolution Problems I, vol. 5, Springer-Verlag, Berlin, 1992.
[14] J. De Los Reyes and K. Kunisch, A semi-smooth newton method for control constrained boundary optimal control of the navier-stokes equations, Nonlinear Anal., Theory Methods Appl., 62 (2005), pp. 1289-1316.
[15] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational differential equations, Cambridge University Press, Cambridge, 1996.
[16] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I: A linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 43-77.
[17] K. Eriksson, C. Johnson, and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modelisation Math. Anal. Numer., 19 (1985), pp. 611-643.
[18] D. French and J. King, Analysis of a robust finite element approximation for a parabolic equation with rough boundary data, Math. Comp., 60 (1993), pp. 79-104.
[19] A. Fursikov, Optimal Control of Distributed Systems: Theory and Applications, vol. 187 of Transl. Math. Monogr., AMS, Providence, 1999.
[20] P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J.Math. Pures et Appl., 45 (1966), pp. 143-206.
[21] J.-L. GUERMOND, Stabilization of Galerkin approximations of transport equations by subgrid modeling, Modél. Math. Anal. Numér., 36 (1999), pp. 1293-1316.
[22] M. Gunzburger, L. Hou, and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary navier-stokes equations with dirichlet controls, Math. Model. Numer. Anal., 25 (1991), pp. 711-748.
[23] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semismooth newton method, SIAM J. Optim., 13 (2003), pp. 865-888.
[24] M. Hintermüller and K. Kunisch, Feasible and non-interior path-following in constrained minimization with low multiplier regularity, SIAM J. Control Optim., (2006). to appear.
[25] K. Ito and K. Kunisch, The primal-dual active set method for nonlinear optimal control problems with bilateral constraints, SIAM J. Control Optim., 43 (2004), pp. 357-376.
[26] C. Johnson, Numerical solution of partial differential equations by finite element method, Cambridge University Press, Cambridge, 1987.
[27] F. Kappel and K. Kunisch, Invariance results for delay and volterra equations in fractional order sobolev spaces, Trans. Americ. Math. Soc., 304 (1987), pp. 1-51.
[28] A. Kunoth, Adaptive wavelet schemes for an elliptic control problem with dirichlet boundary control, Numer. Algorithms, 39 (2005), pp. 199-200.
[29] I. LASIESKA, Galerkin approximation of abstract parabolic boundary value problems with rough boundary data-l l^{p} theory, Math. Comp., 175 (1986), pp. 55-75.
[30] H.-C. Lee, Analysis and computational methods of dirichlet boundary optimal control problems for $2 d$ boussinesq equations, Adv. Comput. Math., 19 (2003), pp. 255-275.
[31] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, vol. 170 of Grundlehren Math. Wiss., Springer-Verlag, Berlin, 1971.
[32] J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol. 1,2, Springer-Verlag, Berlin, 1972.
[33] M. H. M. Bergounioux, M. Haddou and K. Kunisch, Comparison of a moreau-yosida based active strategy and interior point methods for constrained optimal control problems, SIAM J. Optim., 11 (2000), pp. 495-521.
[34] H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems, Math. Program., 16 (1979), pp. 98-110.
[35] D. Meidner and B. Vexler, Adaptive space-time finite element methods for parabolic optimization problems, submitted, (2006).
[36] V. A. S. O. A. Lady \hat{z} enskaja and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, American Math. Soc., 1968.
[37] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, vol. 23 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1994.
[38] H.-G. Roos, M. Stynes, and L. Tobiska, Numerical methods for singularly perturbed differential equations, vol. 24 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1996.
[39] M. Schmich and B. Vexler, Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations, submitted, (2006).
[40] H. Triebel, Interpolation theory, function spaces, differential operators, J. A. Barth Verlag, Heidelberg-Leipzig, 1995.
[41] B. Vexler, Finite element approximation of elliptic dirichlet optimal control problems, Numerical Functional Analysis and Optimization, (2006). to appear.

[^0]: ${ }^{\dagger}$ University of Graz, Institute for Mathematics and Scientific Computing, Heinrichstraße 36, A-8010 Graz, Austria, karl.kunisch@uni-graz.at
 \ddagger Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria, boris.vexler@oeaw.ac.at

