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QUANTITATIVE STABILITY ANALYSIS OF OPTIMAL

SOLUTIONS IN PDE-CONSTRAINED OPTIMIZATION

KERSTIN BRANDES AND ROLAND GRIESSE

Abstract. PDE-constrained optimization problems under the influence of
perturbation parameters are considered. A quantitative stability analysis for
local optimal solutions is performed. The perturbation directions of great-
est impact on an observed quantity are characterized using the singular value
decomposition of a certain linear operator. An efficient numerical method
is proposed to compute a partial singular value decomposition for discretized
problems, with an emphasis on infinite-dimensional parameter and observation
spaces. Numerical examples are provided.

1. Introduction

In this work we consider nonlinear infinite-dimensional equality-constrained opti-
mization problems, subject to a parameter p in the problem data:

min
x
f(x, p) subject to e(x, p) = 0. (1.1)

The optimization variable x and the parameter p are in some Banach and Hilbert
spaces, respectively, and f and e are twice continuously differentiable. In particular,
we have in mind optimal control problems for partial differential equations (PDE).
When solving practical optimal control problems which describe the behavior of
physical systems, uncertainty in the physical parameters is virtually unavoidable. In
(1.1), the uncertain data is expressed in terms of a parameter p for which a nominal
or expected value p0 is available but whose actual value is unknown. Having solved
problem (1.1) for p = p0, it is thus natural and sometimes crucial to assess the
stability of the optimal solution with respect to unforeseen changes in the problem
data.

In this contribution we quantify the first-order stability properties of a local optimal
solution of (1.1), and more generally, the stability properties of an observed quan-
tity depending on the solution. We make use of the singular value decomposition
(SVD) for compact operators. Moreover, we propose a practical and efficient proce-
dure to approximate the corresponding singular system. The right singular vectors
corresponding to the largest singular values represent the perturbation directions of
greatest impact on the observed quantity. The singular values themselves provide
an upper bound for the influence of unit perturbations. Altogether, this information
allows practitioners to assess the stability properties of any given optimal solution,
and to avoid the perturbations of greatest impact.

Let us briefly relate our effort to previous results in the field. The differentiability
properties of optimal solutions with respect to p in the context of PDE-constrained
optimization were studied in, e.g., [4, 10]. The impact of given perturbations on
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optimal solutions and the optimal value of the objective has also been discussed
there. For the dependence of a scalar quantity of interest on perturbations we refer
to [6]. All of these results admit pointwise inequality constraints for the control
variable. For simplicity of the presentation, we elaborate on the case without
inequality constraints. However, our results extend to problems with inequality
(control) constraints in the presence of strict complementarity, see Remark 3.6.

The material is organized as follows: In Section 2, we perform a first order per-
turbation analysis of solutions for (1.1) in the infinite-dimensional setting of PDE-
constrained optimization, and discuss their stability properties using the singular
value decomposition of a certain compact linear map. In Section 3 we focus on the
discretized problem and propose a practical and efficient method to compute the
most significant part of the singular system. Finally, we present numerical examples
in Section 4.

For normed linear spaces X and Y , L(X,Y ) denotes the space of bounded linear
operators from X into Y . The standard notation Lp(Ω) and H1(Ω) for Sobolev
spaces is used, see [1].

2. Infinite-Dimensional Perturbation Analysis

As mentioned in the introduction, we are mainly interested in the analysis of optimal
control problems involving PDEs. Hence we re-state problem (1.1) as

min
y,u

f(y, u, p) subject to e(y, u, p) = 0 (2.1)

where the optimization variable x = (y, u) splits into a state variable y ∈ Y and a
control or design variable u ∈ U and where e : Y × U → Z⋆ represents the weak
form of a stationary or non-stationary partial differential equation. Throughout, Y ,
U and Z are reflexive Banach spaces and Z⋆ denotes the dual of Z. Problem (2.1)
depends on a parameter p taken from a Hilbert space P , which is not optimized
for but which represents perturbations or uncertainty in the problem data. We
emphasize that p may be finite- or infinite-dimensional.

For future reference, it will be convenient to define the Lagrangian of problem (2.1)
as

L(y, u, λ, p) = f(y, u, p) + 〈λ, e(y, u, p)〉 . (2.2)

The following two results are well known [11]:

Lemma 2.1 (First-Order Necessary Conditions). Let f and e be continuously dif-
ferentiable with respect to (y, u). Moreover, let (y, u) be a local optimal solution for
problem (2.1) for some given parameter p. If ey(y, u, p) ∈ L(Y, Z⋆) is onto, then
there exists a unique Lagrange multiplier λ ∈ Z such that the following optimality
system is satisfied:

Ly(y, u, λ, p) = fy(y, u, p) + 〈λ, ey(y, u, p)〉 = 0 (2.3)

Lu(y, u, λ, p) = fu(y, u, p) + 〈λ, eu(y, u, p)〉 = 0 (2.4)

Lλ(y, u, λ, p) = e(y, u, p) = 0. (2.5)

In the context of optimal control, λ is called the adjoint state. A triple (y, u, λ)
satisfying (2.3)–(2.5) is called a critical point.

Lemma 2.2 (Second-Order Sufficient Conditions). Let (y, u, λ) be a critical point
such that ey(y, u, p) is onto and let f and e be twice continuously differentiable with
respect to (y, u). Suppose that there exists ρ > 0 such that Lxx(y, u, λ, p)(x, x) ≥
ρ ‖x‖2

Y ×U holds for all x ∈ ker ex(y, u, p). Then (y, u) is a strict local optimal
solution of (2.1).
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Let us fix the standing assumptions for the rest of the paper:

Assumption 2.3.

(1) Let f and e be twice continuously differentiable with respect to (y, u, p).
(2) Let p0 be a given nominal or expected value of the parameter, and let (y0, u0)

be a local optimal solution of (2.1) for p0.
(3) Suppose that ey(y0, u0, p0) is onto and that λ0 is the unique adjoint state.
(4) Suppose that the second-order sufficient conditions of Lemma 2.2 hold at

(y0, u0, λ0).

Remark 2.4. For the sake of the generality of the presentation, we abstain from
using more specific, i.e., weaker, second-order sufficient conditions for optimal con-
trol problems with PDEs, see, e.g., [16,17]. In case the setting of a specific problem
at hand requires refined second-order conditions and a careful choice of function
spaces, the subsequent ideas still remain valid, compare Example 2.5.

Let us define now the Karush-Kuhn-Tucker (KKT) operator

K =





Lyy Lyu e⋆
y

Luy Luu e⋆
u

ey eu 0



 (2.6)

where all terms are evaluated at the nominal solution (y0, u0, λ0) and the nominal
parameter p0, and e⋆

y and e⋆
u denote the adjoint operators of ey and eu, respectively.

Note that K is self-adjoint. Here and in the sequel, when no ambiguity arises, we
will frequently omit the function arguments.

Under the conditions of Assumption 2.3, K is boundedly invertible as an element
of L(Y × U × Z, Y ⋆ × U⋆ × Z⋆).

Example 2.5 (Optimal Control of the Stationary Navier-Stokes System). As men-
tioned in Remark 2.4, nonlinear PDE-constrained problems may require refined
second-order sufficient conditions. Consider, for instance, the distributed optimal
control problem for the stationary Navier-Stokes equations,

min
y,u

1

2
‖y − yd‖

2
[L2(Ω)]N +

γ

2
‖u‖2

[L2(Ω)]N

s.t.











−ν∆y + (y · ∇)y + ∇p = u on Ω

div y = 0 on Ω

y = 0 on ∂Ω

on some bounded Lipschitz domain Ω ⊂ R
N , N ∈ {2, 3}. Suitable function spaces

for the problem are

Y = Z = closure in [H1(Ω)]N of {v ∈ [C∞
0 (Ω)]N : div v = 0}, U = [L2(Ω)]N .

In [17, Theorem 3.16] it was proved that the condition

‖y‖2
[L2(Ω)]N + γ‖u‖2

[L2(Ω)]N + 2

∫

Ω

(y · ∇)yλ0 ≥ ρ ‖u‖2
[L4/3(Ω)]N

for some ρ > 0 and all (y, u) satisfying the linearized state equation at (y0, u0)
is a second-order sufficient condition of optimality for a critical point (y0, u0, λ0).
Hence this weaker condition may replace Assumption 2.3(4) for this problem. Still,
it can be proved along the lines of [4,10] that K is boundedly invertible as an element
of L(Y × [L4/3(Ω)]N ×Z, Y ⋆ × [L4(Ω)]N ×Z⋆). The subsequent ideas remain valid
when U is replaced by L4/3(Ω).

From the bounded invertibility of K, we can easily derive the differentiability of the
parameter-to-solution map from the implicit function theorem [2]:
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Lemma 2.6. There exist neighborhoods B1 of p0 and B2 of (y0, u0, λ0) and a
continuously differentiable function Ψ : B1 → B2 such that for all p ∈ B1, Ψ(p) is
the unique solution in B2 of (2.3)–(2.5). The Fréchet derivative of Ψ at p0 is given
by

Ψ′(p0) = −K−1





Lyp

Lup

ep



 (2.7)

where the right hand side is evaluated at the nominal solution (y0, u0, λ0) and p0.

In particular, we infer from Lemma 2.6 that for a given perturbation direction p,
the directional derivatives of the nominal optimal state and optimal control and the
corresponding adjoint state (y, u, λ) are given by the unique solution of the linear
system in Y ⋆ × U⋆ × Z⋆

K





y
u

λ



 = B p where B = −





Lyp

Lup

ep



 . (2.8)

These directional derivatives are called the parametric sensitivities of the state,
control and adjoint variables. They describe the first-order change in these variables
as p changes from p0 to p0 + p.

It is worth noting that these sensitivities can be characterized alternatively as the
unique solution x = (y, u) and adjoint state of the following auxiliary problem with
quadratic objective and linear constraint:

min
y,u

1

2
Lxx(y0, u0, λ0, p0)(x, x) + Lxp(y0, u0, λ0, p0)(x, p)

subject to ey(y0, u0, p0) y + eu(y0, u0, p0)u = −ep(y0, u0, p0) p. (2.9)

Hence, computing the parametric sensitivity in a given direction p amounts to
solving one linear-quadratic problem (2.9).

We recall that it is our goal to analyze the stability properties of an observed
quantity

q : Y × U × Z ∋ (y, u, λ) 7→ q(y, u, λ) ∈ H

depending on the solution, whereH is another finite- or infinite-dimensional Hilbert
space and q is differentiable. By the chain rule, the first-order change in the observed
quantity, as p changes from p0 to p0 + p, is given by

Π(y, u, λ) := q′(y0, u0, λ0)(y, u, λ). (2.10)

We refer to Π = q′(y0, u0, λ0) ∈ L(Y ×U ×Z,H) as the observation operator. Due
to (2.8), we have the following linear relation between perturbation direction p and
first order change in the observed quantity:

Π(y, u, λ) = ΠK−1B p.

Example 2.7 (Observation Operators).

(i) If one is interested in the impact of perturbations on the optimal state on
some subset Ω′ of the computational domain Ω, one has q(y, u, λ) = y|Ω′

and, due to linearity, Π = q holds.
(ii) If the quantity of interest is the impact of perturbations on the average

value of the control variable, one chooses q(y, u, λ) =
∫

u where the integral
extends over the control domain.
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It is the bounded linear map ΠK−1B that we now focus our attention on. The
maximum impact of all perturbations (of unit size) on the observed quantity is
given by the operator norm

‖ΠK−1B‖L(P,H) = sup
p6=0

‖ΠK−1B p‖H

‖p‖P
. (2.11)

To simplify the notation, we will also use the abbreviation

A := ΠK−1B.

In general, the operator norm need not be attained for any direction p. Therefore,
and in order to perform the singular value decomposition, we make the following
assumption:

Assumption 2.8. Suppose that A is compact from P to H.

To demonstrate that this assumption is not overly restrictive, we discuss several
important examples. Recall that in PDE-constrained optimization, Y and Z are
infinite-dimensional function spaces. Hence, K−1 cannot be compact since then its
spectrum would contain 0 which entails non-invertibility of K−1. (Of course, if all
of Y , U and Z are finite-dimensional, Assumption 2.8 holds trivially.)

Example 2.9 (Compactness of A).

(i) If at least one of the parameter or observation spaces P or H is finite-
dimensional, A is trivially compact.

(ii) For sufficiently regular perturbations, B and thus A is compact: Consider
the standard distributed optimal control problem with Y = Z = H1

0 (Ω),
U = L2(Ω), where Ω is a bounded domain with Lipschitz boundary in R

N ,
N ≥ 1, yd, ud ∈ L2(Ω), and

f(y, u) =
1

2
‖y − yd‖

2
L2(Ω) +

γ

2
‖u− ud‖

2
L2(Ω)

e(y, u, p)(ϕ) = (∇y,∇ϕ) − (u, ϕ) − 〈p, ϕ〉H−1(Ω),H1

0
(Ω), ϕ ∈ H1

0 (Ω),

which corresponds to −∆y = u + p on Ω and y = 0 on ∂Ω. It is straight-
forward to verify that B = (0, 0, id)⊤. By compact embedding, see [1], B is
compact from P = L(N+2)/(2N)+ε(Ω) into Y ⋆ ×U⋆ ×Z⋆ for any ε > 0, and
in particular for the Hilbert space P = L2(Ω) in any dimension N . Hence
A = ΠK−1B is compact for P = L2(Ω) and arbitrary linear and bounded
observation operators Π.

(iii) In the previous example, neither B nor K−1B is compact if P = H−1(Ω).
In that case, one has to choose an observation space of sufficiently low
regularity, so that Π and hence A is compact. For instance, in the previous
example, Π(y, u, λ) = y is compact into H = L2(Ω) due to the compact
embedding of H1

0 (Ω) into L2(Ω).

We refer to Section 4 for more examples and return to the issue of computing the
operator norm (2.11). This can be achieved by the singular value decomposition [3,
Ch. 2.2]:

Lemma 2.10. There exists a countable system {(σn, vn, un)}n∈N such that {σn}n∈N

is non-increasing and non-negative, {(σ2
n, vn)} ⊂ R × P is a complete orthonormal

system of eigenpairs for AHA (spanning the closure of the range of AH), and
{(σ2

n, un)} ⊂ R × H is a complete orthonormal system of eigenpairs for AAH
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(spanning the closure of the range of A). In addition, Avn = σnun holds and we
have

A p = ΠK−1B p =

∞
∑

n=1

σn(p, vn)Pun (2.12)

for all p ∈ P , where the series converges in H. Every value in {σn}n∈N appears
with finite multiplicity.

In Lemma 2.10, AH : H → P denotes the Hilbert space adjoint of A and (·, ·)P is
the scalar product of P . A system according to Lemma 2.10 is called a singular
system for A, with singular values σn, left singular vectors un ∈ H , and right
singular vectors vn ∈ P . Knowledge of the singular system will not only allow us
to compute the operator norm (2.11) and the direction(s) p for which this bound is
attained, but in addition, we obtain a complete sequence of perturbation directions
in decreasing order of importance with regard to the perturbations in the observed
quantity. This is formulated in the following proposition:

Proposition 2.11. Let {(σn, vn, un)}n∈N be a singular system for A. Then the
operator norm in (2.11) is given by σ1. Moreover, the supremum is attained exactly
for all non-zero vectors p ∈ span{v1, . . . , vk} =: V1, where k is the largest integer
such that σ1 = σk. Similarly, when A is restricted to V ⊥

1 , its operator norm is given
by σk+1 and it is attained exactly for all non-zero vectors p ∈ span{vk+1, . . . , vl},
where l is the largest integer such that σk+1 = σl, and so on.

Proof. The claim follows directly from the properties of the singular system. �

Proposition 2.11 shows that the question of greatest impact of arbitrary pertur-
bations on the observed quantity is answered by the singular value decomposition
(SVD) of A. It is well known that SVD is closely related to principal compo-
nents analysis (PCA) in statistics and image processing [8], and proper orthogonal
decomposition (POD) in dynamical systems, compare [13, 18]. To our knowledge,
however, this technique has not been exploited for the quantitative stability analysis
of optimization problems.

In the following section we focus on an efficient algorithm for the numerical com-
putation of the largest singular values and left and right singular vectors for a
discretized version of problem (2.1).

3. Numerical Stability Analysis

In this section, we propose an efficient algorithm for the numerical computation of
the singular system for a discretized (matrix) version of ΠK−1B. The convergence
of the singular system of the discretized problem to the singular system of the
continuous problem will be discussed elsewhere. In practice, it will be sufficient
to compute only a partial SVD, starting with the largest singular value, down
to a certain threshold, in order to collect the perturbation directions of greatest
impact with respect to the observed quantity. The method we propose makes use
of existing standard software which iteratively approximates the extreme eigenpairs
of non-symmetric matrices, and it will be efficient in the following sense: It is
unnecessary to assemble the (discretized) matrix ΠK−1B, which is prohibitive for
high-dimensional parameter and observation spaces. Only matrix–vector products
with K−1B are required, i.e., the solution of sensitivity problems (2.8), and the
inexpensive application of the observation operator Π. In particular, we avoid
the computation of certain Cholesky factors which relate the Euclidean norms of
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coordinate vectors and the function space norms of the functions represented by
them, see below.

We discretize problem (2.1) by a Galerkin procedure, e.g., the finite element or
wavelet method. To this end, we introduce finite-dimensional subspaces Yh ⊂
Y , Uh ⊂ U and Zh ⊂ Z, which inherit the norms from the larger spaces. The
discretized problem reads

min
y,u

f(y, u, p) subject to e(y, u, p)(ϕ) = 0 for all ϕ ∈ Zh, (3.1)

where (y, u) ∈ Yh × Uh. In the general case of an infinite-dimensional parameter
space, we also choose a finite-dimensional subspace Ph ⊂ P . Should any of the
spaces be finite-dimensional in the first place, we leave it unchanged by discretiza-
tion.

Suppose that for the given parameter p0 ∈ Ph, a critical point for the discretized
problem has been computed by a suitable method, for instance, by sequential qua-
dratic programming (SQP) methods [12, 15]. That is, (yh, uh, λh) ∈ Yh × Uh × Zh

satisfies the discretized optimality system, compare (2.3)–(2.5):

fy(yh, uh, p0)(δyh) + 〈λh, ey(yh, uh, p0)(δyh)〉 = 0 for all δyh ∈ Yh (3.2)

fu(yh, uh, p0)(δuh) + 〈λh, eu(yh, uh, p0)(δuh)〉 = 0 for all δuh ∈ Uh (3.3)

e(yh, uh, p0)(δzh) = 0 for all δzh ∈ Zh. (3.4)

We consider the discrete analog of the sensitivity system (2.8), i.e.,

〈

Kh





yh

uh

λh



 ,





δyh

δuh

δzh





〉

=
〈

Bh ph,





δyh

δuh

δzh





〉

for all (δyh, δuh, δzh) ∈ Yh × Uh × Zh,

(3.5)

where Kh and Bh are defined as before in (2.6) and (2.8), evaluated at the critical
point (yh, uh, λh). The perturbation direction ph is taken from the discretized
parameter space Ph.

Assumption 3.1. Suppose that the critical point (yh, uh, λh) is sufficiently close
to the local solution of the continuous problem (y0, u0, λ0), such that second-order
sufficient conditions hold for the discretized problem. That is, ey(yh, uh, p0) maps
Yh onto Zh, and there exists ρ′ > 0 such that Lxx(yh, uh, λh, p0)(x, x) ≥ ρ′ ‖x‖2

Y ×U

for all x ∈ Yh × Uh satisfying 〈ex(yh, uh, p0)x, ϕ〉 = 0 for all ϕ ∈ Zh.

Under Assumption 3.1, the KKT operator Kh at the discrete solution is invertible
and equation (3.5) gives rise to a linear map

(Kh)−1Bh : Ph → Yh × Uh × Zh

which acts between finite-dimensional spaces and thus is automatically bounded.
There is no need to discretize the observation space H since ΠK−1B, restricted
to Ph, has finite-dimensional range. Nevertheless, we define for convenience the
subspace of H ,

Rh = range of Πh(Kh)−1Bh considered as a map Ph → H,

where Πh = q′(yh, uh, λh), compare (2.10).

We recall that it is our goal to calculate the portion of the singular system for
Πh(Kh)−1Bh : Ph → Rh which belongs to the largest singular values. At this point,
we introduce a basis for the discretized parameter space Ph, say

Ph = span {ϕ1, . . . , ϕm}.
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Likewise, we define a space Hh by

Hh := span {ψ1, . . . , ψn} such that Hh ⊃ Rh.

Both the systems {ϕi} and {ψj} are assumed linearly independent without loss
of generality. As the range space Rh is usually not known exactly, we allow the
functions ψj to span a larger spaceHh. For instance, in case of the state observation

operator Πh(yh, uh, λh) = yh, we may choose {ψj}
n
j=1 to be identical to the finite

element basis of the state space Yh, which certainly contains the range space Rh.

For the application of numerical procedures, we need to switch to a coordinate
representation of the elements of the discretized parameter and observation spaces
Ph and Hh. Note that a function p ∈ Ph can be identified with its coordinate vector
p = (p1, . . . ,pm)⊤ with respect to the given basis. In other words, R

m and Ph are
isomorphic, and the isomorphism and its inverse are given by the expansion and
coordinate maps

EP : R
m ∋ p 7→

m
∑

i=1

piϕi ∈ Ph

CP = E−1
P : Ph → R

m.

We also introduce the mass matrix associated to the chosen basis of Ph,

MP = (mij)
m
i,j=1, mij = (ϕi, ϕj)P .

In case of a discretization by orthogonal wavelets, MP is the identity matrix, while
in the finite element case, MP is a sparse symmetric positive definite matrix. In any
case, we have the following relation between the Euclidean norm of the coordinate
vector p and the norm of the element p ∈ Ph represented by it:

‖p‖2
P = p⊤MPp = ‖M

1/2
P p‖2

2,

where M
1/2
P is the Cholesky factor of MP = M

1/2⊤
P M

1/2
P , and ‖ · ‖2 denotes the

Euclidean norm of vectors in R
m or R

n. Similarly as above, we define expansion
and coordinate maps EH : R

n → Hh and CH = E−1
H and the mass matrix

MH = (mij)
n
i,j=1, mij = (ψi, ψj)H

to obtain

‖h‖2
H = h

⊤
MHh = ‖M

1/2
H h‖2

2

for an element h =
∑n

j=1 hjψj ∈ Hh with coordinate vector h = (h1, . . . ,hn)⊤.

Any numerical procedure which solves the sensitivity problem (3.5) and applies the
observation operator Πh does not directly implement the operator Πh(Kh)−1Bh.
Rather, it realizes its representation in the coordinate systems given by the bases
of Ph and Hh, i.e.,

Ah := CHΠh(Kh)−1BhEP ∈ R
n×m.

As mentioned earlier, the proposed method will employ matrix-vector products with
Ah. Every matrix-vector product requires the solution of a discretized sensitivity
equation (3.5) followed by the application of the observation operator.

Note that there is a discrepancy in the operator Ah being given in terms of co-
ordinate vectors and the requirement that the SVD should respect the norms of
the spaces Ph and Hh. One way to overcome this discrepancy is to exchange the
Euclidean scalar products in the SVD routine at hand by scalar products with re-
spect to the mass matrices MP and Mh, respectively. In the sequel, we describe an
alternative approach based on iterative eigen decomposition software, without the
need of modifying any scalar products.
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By the relations between coordinate vectors and functions, we have

‖Πh(Kh)−1Bh‖L(Ph,Hh) = sup
ph∈Ph\{0}

‖Πh(Kh)−1Bh ph‖H

‖ph‖P

= sup
p∈Rm\{0}

‖Πh(Kh)−1BhEP p‖H

‖EPp‖P
= sup

p∈Rm\{0}

‖EHAh p‖H

‖M
1/2
P p‖2

= sup
p∈Rm\{0}

‖M
1/2
H Ah p‖2

‖M
1/2
P p‖2

= sup
p

′∈Rm\{0}

‖M
1/2
H AhM

−1/2
P p′‖2

‖p′‖2
. (3.6)

The last manipulation is a coordinate transformation in Ph, and M
−1/2
P denotes

the inverse of the Cholesky factor of MP . This transformation shows that a finite-
dimensional SVD procedure which employs the standard Euclidean vector norms

in the image and pre-image spaces should target the matrix M
1/2
H AhM

−1/2
P .

Coordinate vectors referring to the new coordinate systems will be indicated by a
prime. We have the relationships

p′ = M
1/2
P p and ‖p′‖2 = ‖M

1/2
P p‖2 = ‖p‖P .

Hence the Euclidean norm of the transformed coordinate vector equals the norm
of the function represented by it. The corresponding basis can in principle be
obtained by an orthonormalization procedure with respect to the scalar product in
P , starting from the previously chosen basis {ϕi}. Assembling the mass matrices

and forming the Cholesky factors M
1/2
H and M

1/2
P , however, will be too costly in

general. Therefore, we propose the following strategy which avoids the Cholesky
factors altogether. It is based on the following Jordan-Wielandt Lemma, see, e.g.,
[14, Theorem I.4.2]:

Lemma 3.2. The singular value decomposition of M
1/2
H AhM

−1/2
P is equivalent to

the eigen decomposition of the symmetric Jordan-Wielandt matrix

J =

(

0 M
1/2
H AhM

−1/2
P

M
−1/2⊤
P Ah⊤M

1/2⊤
H 0

)

∈ R
(m+n)×(m+n)

in the following sense: The eigenvalues of J are exactly ±σi, where {σi}
min{m,n}
i=1 are

the singular values of M
1/2
H AhM

−1/2
P , plus a suitable number of zeros. The eigen-

vectors v′
i belonging to the nonnegative eigenvalues σi, i = 1, . . . ,min{m,n}, can

be partitioned into v′
i = (l′i, r

′
i)

⊤, where r′i ∈ R
m and l′i ∈ R

n. After normalization,

r′i and l′i are the right and left singular vectors of M
1/2
H AhM

−1/2
P .

Exchanging the singular value decomposition of M
1/2
H AhM

−1/2
P for an eigen de-

composition of the Jordan-Wielandt matrix J does not resolve the issue of forming

the Cholesky factors M
1/2
H and M

1/2
P . To this end, we apply a similarity transform

to J using the similarity matrices

X =

(

M
−1/2
H 0

0 M
−1/2
P

)

, X−1 =

(

M
1/2
H 0

0 M
1/2
P

)

.

Then the transformed matrix

XJX−1 =

(

0 Ah

M−1
P Ah⊤MH 0

)

(3.7)

has the same eigenvalues as J , including the desired singular values ofM
1/2
H AhM

−1/2
P .
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Lemma 3.3. The transformed matrix has the form

XJX−1 =

(

0 CHΠh(Kh)−1BhEP

CP (Bh)⋆(Kh)−1(Πh)⋆EH 0

)

, (3.8)

where (Bh)⋆ : Yh × Uh × Zh → Ph and (Πh)⋆ : Hh → Yh × Uh × Zh are the adjoint
operators of Bh and Πh, respectively.

Proof. We only need to consider the lower left block. By transposing Ah, we obtain

Ah⊤ = E⋆
P (Bh)⋆(Kh)−1(Πh)⋆C⋆

H

since Kh is symmetric. By definition, the adjoint operatorE⋆
P satisfies 〈E⋆

P ξ,p〉Rm =
〈ξ, EP p〉P for all ξ ∈ Ph and p ∈ R

m. Hence, we obtain

p⊤(E⋆
P ξ) = 〈ξ,

m
∑

i=1

piϕi〉P = p⊤MP (CP ξ)

and thus E⋆
P = MPCP . Moreover,

C⋆
H = (E−1

H )⋆ = (E⋆
H)−1 = (MHCH)−1 = C−1

H M−1
H = EHM

−1
H

holds. Consequently,

M−1
P Ah⊤MH = CP (Bh)⋆(Kh)−1(Πh)⋆EH

as claimed. �

Remark 3.4. Algorithmically, evaluating a matrix-vector product with (3.8) and
a given coordinate vector (h,p)⊤ ∈ R

n × R
m amounts to solving two sensitivity

problems:

(1) The first problem is (3.5) with the perturbation direction p = EPp ∈ Ph.
(2) For the second problem, the right hand side operator Bh in (3.5) is replaced

by (Πh)⋆, and the observation operator Πh is replaced by (Bh)⋆. The direc-

tion of evaluation is h = EHh ∈ Hh.

Step (2) requires a modification of the original sensitivity problem (3.5). As an
alternative, one may apply the following duality argument to (3.7): The vector

M−1
P Ah⊤MHh is equal to the transpose of h

⊤
MHAhM−1

P . In case that the dimen-
sion of the parameter space m is small, the inversion of MP and the solution of m
sensitivity problems to get AhM−1

P may be feasible.

Let us denote by wi = (w
(1)
i ,w

(2)
i )⊤ the eigenvectors of XJX−1 belonging to the

nonnegative eigenvalues σi, i = 1, . . . ,min{m,n}. This similarity transformation
with X and X−1 does indeed avoid the Cholesky factors of the mass matrices, as
will become clear in the sequel.

Recall that the eigenvalues of XJX−1 are ±σi, plus a suitable number of zeros,
where σi are the desired singular values. Hence the largest singular values corre-
spond to the eigenvalues of largest magnitude, which can be conveniently computed
iteratively, e.g., by an implicitly restarted Arnoldi process [19, Ch. 6.4]. Available
software routines include the library ArPack (DNAUPD and DNEUPD), see [9], and
Matlab’s eigs function. In case that the parameter space (or the observation
space) is low-dimensional, we may also compute the matrix XJX−1 explicitly, see
Sections 4.1 and 4.2, but these cases are not considered typical for our applications.

We now discuss how to recover the desired partial singular value decomposition
from the partial eigen decomposition of XJX−1. For later reference, we note the
following property of the eigenvectors of (3.7), which is readily verified:

w
(1)⊤
i MHw

(1)
i = w

(2)⊤
i MPw

(2)
i . (3.9)
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Note also that the eigenvectors wi of XJX−1 and v′
i of J are related by wi = Xv′

i.

As the left and right singular vectors of M
1/2
H AhM

−1/2
P are just a partitioning of

v′
i according to Lemma 3.2, we get

(

l′i
r′i

)

= v′
i = X−1

(

w
(1)
i

w
(2)
i

)

,

which in turn seems to bring up the Cholesky factors we wish to avoid. However, r′i
is a coordinate vector with respect to an artificial (orthonormal) basis of Ph, which
does not in general coincide with our chosen basis {ϕi}. Going back to this natural
basis and normalizing, we arrive at

ri =
w

(2)
i

(

w
(2)⊤
i MPw

(2)
i

)1/2
(3.10)

Now ri is the coordinate representation of the desired i-th right singular vector
with respect to the basis {ϕi}. Due to the normalization, the function represented
by ri has P -norm one.

We also wish to find the coordinate representation li of the response of the system

Ah, given the perturbation input ri. As ri is a multiple of w
(2)
i and thus part of an

eigenvector of XJX−1, we infer from (3.7) that Ah maps ri to a multiple of w
(1)
i .

We are thus led to define

li =
w

(1)
i

(

w
(1)⊤
i MHw

(1)
i

)1/2
. (3.11)

Despite the individual normalizations of w
(1)
i and w

(2)
i , li and ri are still related

by the same proportionality constant:

Ahri = σili, (3.12)

as can be easily verified using (3.9). We have thus proved our main result:

Theorem 3.5. Suppose that σi > 0 is an eigenvalue of the matrix XJX−1 with

eigenvector wi = (w
(1)
i ,w

(2)
i )⊤. Let ri and li be given by (3.10) and (3.11), respec-

tively and let ri = EP ri ∈ Ph and li = EH li ∈ Hh be the functions represented by
them. Then the following relations are satisfied:

(a) ‖ri‖P = ‖li‖H = 1.
(b) The perturbation ri invokes the first order change σili of magnitude σi in

the observed quantity. In terms of coordinate vectors, Ahri = σili.

Based on these considerations, we propose to compute the desired singular value

decomposition of M
1/2
H AhM

−1/2
P by iteratively approximation the extreme eigen-

values and corresponding eigenvectors of XJX−1. This avoids the Cholesky factors
of the mass matrices, as desired. We summarize the proposed procedure in Algo-
rithm 1.

Remark 3.6. The singular value decomposition of A and Ah relies on the linearity
of the map p 7→ (y, u, λ), which maps a perturbation direction p to the directional
derivative of the optimal solution and adjoint state, compare (2.7)–(2.8). For opti-
mal control problems with pointwise control constraints a(x) ≤ u(x) ≤ b(x) almost
everywhere on the control domain, the derivative need not be linear with respect to
the direction, see [4,10]. The presence of strict complementarity, however, restores
the linearity. The procedure outlined above carries over to this case, with only mi-
nor modifications of the operators Kh and Bh on the so-called active sets, compare
also [6].
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Algorithm 1

Given: discretized spaces Yh, Uh, Zh and Ph, Hh,
a discrete critical point (yh, uh, λh) satisfying (3.2)–(3.4) for p0 ∈ Ph,

a routine evaluating XJX−1(h,p)⊤ for any given coordinate vector
(h,p)⊤, see Remark 3.4

Desired: a user-defined number s of singular values and perturbation directions
(right singular vectors) in coordinate representation, which are of great-
est first order impact with respect to the observed quantity

1: Call a routine which iteratively computes the 2s eigenvalues λ1 ≥ λ2 ≥ . . . ≥
λs ≥ 0 ≥ λs+1 ≥ . . . ≥ λ2s of largest absolute value and corresponding eigen-
vectors wi of XJX−1.

2: Set σi := λi for i = 1, . . . , s.

3: Split wi into (w
(1)
i ,w

(2)
i ) of lengths n and m, respectively, for i = 1, . . . , s.

4: Compute vectors ri and li for i = 1, . . . , s according to (3.10) and (3.11).

4. Numerical Examples

We consider as an example the optimal control problem

minimize −
1

4

∫

Ω

y(x) dx +
γ

2
‖u‖2

L2(C)

s.t.







−κ∆y = χC u on Ω

κ
∂

∂n
y = α (y − y∞) on ∂Ω.

(4.1)

It represents the optimal heating of a room Ω = (−1, 1)2 ⊂ R
2 to maximal average

temperature y, subject to quadratic control costs. Heating is achieved through two
radiators on some part of the domain C ⊂ Ω, and the heating power u serves as a
distributed control variable. κ denotes the constant heat diffusivity, while α is the
heat transfer coefficient with the environment. The latter has constant temperature
y∞. α is taken to be zero at the walls but greater than zero at the two windows,
see Figure 4.1.

window 1

window 2

radiator 1

radiator 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
FEM Mesh

Figure 4.1. Layout of the domain and an intermediate finite el-
ement mesh with 4225 vertices (degrees of freedom).
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In the sequel, we consider the window heat transfer coefficients as perturbation
parameters. As its nominal value, we take

α(x) =











0 at the walls

1 at the lower (larger) window # 2

2 at the upper (smaller) window # 1.

We will explore how the optimal temperature y changes under changes of α. Our
example fits in the framework of Section 2 with

f(y, u) = −
1

4

∫

Ω

y(x) dx +
γ

2
‖u‖2

L2(C)

e(y, u, p)(ϕ) = κ(∇y,∇ϕ)Ω − (u, ϕ)C − (α(y − y∞), ϕ)∂Ω.

Suitable function spaces for the problem are

Y = H1(Ω), U = L2(C), Z = H1(Ω), P = L2(W1) × L2(W2).

f and e are infinitely differentiable w.r.t. (y, u, p). For any given (y, u, p) ∈ Y ×
U × P , ey(y, u, p) : Y → Z⋆ is onto and even boundedly invertible. Moreover,
the problem is strictly convex and thus has a unique global solution which satisfies
the second-order condition. The KKT operator is boundedly invertible. As state
observation operator, we will use Π(y, u, λ) = y ∈ H = L2(Ω). Compactness of
A then follows from compactness of the embedding Y →֒ H . Hence the example
satisfies the Assumptions 2.3 and 2.8. Note that the parameter enters only in the
PDE and not in the objective.

The problem is discretized using standard linear continuous finite elements for the
state and adjoint, and discontinuous piecewise constant elements for the control.
In order to estimate the order of convergence for the singular values, a hierarchy
of uniformly refined triangular meshes is used. An intermediate mesh is shown in
Figure 4.1 (right).

Since the problem has a quadratic objective and a linear PDE constraint, its solution
requires the solution of only one linear system involving K. Here and throughout,
systems involving K were solved using the conjugate gradient method applied to
the reduced Hessian operator

Kred =

(

−e−1
y eu

id

)⋆(
Lyy Lyu

Luy Luu

)(

−e−1
y eu

id

)

,

see, e.g., [5, 7] for details. The state and adjoint partial differential equations are
solved using a sparse direct solver.

Figure 4.2 shows the nominal solution (yh, uh) in the case

κ = 1, γ = 0.005, y∞ = 0

C = (−0.8, 0.0)× (0.4, 0.8) ∪ (−0.75, 0.75)× (−0.8,−0.6)

W1 = (−0.75, 0)× {1}, W2 = (−0.75, 0.75)× {−1}.

This setup describes the goal to heat up the room to a maximal average temperature
(taking control costs into account) at an environmental temperature of 0◦C. One
clearly sees how heat is lost through the two windows.

In the sequel, we consider three variations of this problem. In every case, the
insulation of the two windows, i.e., the heat transfer coefficient α restricted to the
window areas, serves as a perturbation parameter. In Problem 1, this parameter
is constant for each window and it is a spatial function in Problems 2 and 3. The
optimal temperature y is the basis of the observation in all cases. In Problems 1
and 3, we observe the temperature at every point. In Problem 2, we consider
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Nominal control
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Figure 4.2. Nominal solution: Optimal state (left) and optimal
control (right).

only the average temperature throughout the room. Hence, these problems cover
all cases where at least one of the parameter or observation spaces P and H is
infinite-dimensional and high-dimensional after discretization.

All examples are implemented using Matlab’s PDE toolbox. In every case, we
use Matlab’s eigs function with standard tolerances to compute a partial eigen
decomposition of the matrix XJX−1. For Problems 1 and 2, we assemble this
matrix explicitly according to (3.7). For Problem 3, we provide matrix-vector
products with XJX−1 according to (3.8). Every matrix-vector product comes at
the expense of the solution of two sensitivity problems (3.5), compare Remark 3.4.

4.1. Problem 1: Few Parameters, Large Observation Space. We begin by
considering perturbations of the heat transfer coefficient on each window, i.e.,

p = (α|W1
, α|W2

) ∈ R
2.

That is, we study the effect of replacing the windows by others with different insula-
tion properties. While the parameter space is only two-dimensional, we consider an
infinite-dimensional observation space and observe the effect of the perturbations
on the overall temperature throughout the room. That is, we have the observation
operator Π(y, u, λ) = y, and the space H is taken as L2(Ω). Hence the mass matrix
MH in the discrete observation space is given by the L2(Ω)-inner products of the
linear continuous finite element basis on the respective grid. The mass matrix in
the parameter space MP is chosen as

MP =

(

0.75 0
0 1.50

)

and it is generated by the L2-inner product of the constant functions of value one on
W1 and W2. It thus reflects the lengths of the two windows and allows a comparison
with Problem 3 later on.

Since the matrix Ah ∈ R
n×2 has only two columns, it can be formed explicitly by

solving only two sensitivity systems. From there, we easily set upXJX−1 according
to (3.7) to avoid Cholesky factors of mass matrices, and perform an iterative partial
eigen decomposition. Note that since Ah has only two nonzero singular values, only
four eigenvalues of XJX−1 are needed.

Table 4.1 shows the convergence of the singular values as the mesh is uniformly
refined. In addition, the number of degrees of freedom of each finite element mesh
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and the total number of variables in the optimization problem is shown. The last
column lists the number of QP steps, i.e., solutions of (3.5) with matrix Kh, which
were necessary to obtain convergence of the (partial) eigen decomposition. For this
problem, the number of QP solves is always two since Ah ∈ R

n×2 was assembled
explicitly. Note also that our original problem (4.1) is linear-quadratic, hence find-
ing the nominal solution requires only one solution with Kh and computing the
singular values and vectors is twice as expensive.

# dof # var σ1 rate σ2 rate # Ahp

81 168 5.0572 1.1886 2
289 626 11.8804 0.93 2.2487 0.81 2

1 089 2 394 13.3803 0.32 2.5896 0.40 2
4 225 9 530 16.6974 1.15 3.2168 1.29 2

16 641 38 136 18.8838 2.31 3.5678 2.38 2
66 049 151 898 19.3367 2.48 3.6283 1.87 2

263 169 605 946 19.4352 3.6510 2
Table 4.1. Degrees of freedom and total number of discrete state,
control and adjoint variables on a hierarchy of finite element grids.
Singular values and estimated rate of convergence w.r.t. grid size
h for Problem 1. Number of sensitivity problems (3.5) solved.

In this and the subsequent problems, we observed monotone convergence of the
computed singular values. The estimated rate of convergence given in the tables
was calculated according to

log |σh−σ∗|
|σ2h−σ∗|

log 1/2
,

where σ∗ is the respective singular value on the finest mesh, and σh and σ2h is the
same value on two neighboring intermediate meshes. The exact rate of convergence
is difficult to predict from the table and clearly deserves further investigation.

On the finest mesh, we obtain as singular values and right singular vectors

σ1 = 19.3367 r1 =

(

−0.5103
−0.7324

)

σ2 = 3.6283 r2 =

(

−1.0358
0.3609

)

.

Recall that r1 and r2 represent piecewise constant functions r1 and r2 on W1 ∪W2

whose values on W1 and W2 are given by the upper and lower entries, respectively,
see Figure 4.3 (right). The corresponding left singular vectors are shown in Fig-
ure 4.3 (left). These results can be interpreted as follows: Of all perturbations
of unit size (with respect to the scalar product given by MP ), the nominal state
(from Figure 4.2) is perturbed most (in the L2(Ω)-norm) when both windows are
better insulated with the ratio of the improvement given by the ratio of the entries
of the right singular vector r1. The effect of this perturbation direction on the
observed quantity (the optimal state) is represented by the first left singular vector
l1 = EH l1, multiplied by σ1, compare (3.12). Due to the improved insulation at
both windows, l1 is positive, i.e., the optimal temperature increases throughout the
domain Ω when p changes from p0 to p0 +r1. Since the second entry in r1 is greater
in magnitude, the effect on the optimal temperature is more pronounced near the
lower window, see Figure 4.3 (top left).

Since the parameter space is only two-dimensional, the second right singular vector
r2 represents the unit perturbation of lowest impact on the optimal state. Fig-
ure 4.3 (bottom left) shows the corresponding second left singular vector. Note
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Figure 4.3. Problem 1: First and second left singular vectors l1
and l2 (left) and first and second right singular vectors (right),
lower window (red) and upper window (blue).

that ‖l1‖L2(Ω) = ‖l2‖L2(Ω) = 1 and that l1 and l2 are perpendicular with respect

to the inner product of L2(Ω). The singular value σ2 shows that any given pertur-
bation of the heat transfer coefficients of unit size has at least an impact of 3.6283
on the optimal state in the L2(Ω)-norm, to first order. This should be viewed in
relation to the L2(Ω)-norm of the nominal solution, which is 48.3982.

The data obtained from the singular value decomposition can be used to decide
whether the observed quantity depending on the optimal solution is sufficiently
stable with respect to perturbations. This decision should take into account the
expected range of parameter variations and the tolerable variations in the observed
quantity.

4.2. Problem 2: Many Parameters, Small Observation Space. In contrast
to the previous situation, we now consider the window heat transfer coefficients to
be spatially variable. That is, we have parameters

p = (α(x)|W1
, α(x)|W2

) ∈ L2(W1) × L2(W2).

As an observed quantity, we choose the scalar value of the temperature averaged
over the entire room. Hence the observation space is H = R and

Π(y, u, λ) =
1

4

∫

Ω

y(x) dx.
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Such a scalar output quantity is often called a quantity of interest. The weight in
the observation space is MH = 1 and the mass matrix in the parameter space is the
boundary mass matrix on W1 ∪W2 with respect to piecewise constant functions on
the boundary of the respective finite element grid.

The matrix Ah ∈ R
1×m now has only one row. It is thus strongly advisable to com-

pute its transpose which requires only one solution of a linear system with Kh. This
transposition technique was already used in [6] to compute derivatives of a quantity
of interest depending on an optimal solution in the presence of perturbations. As
above, we show in Table 4.2 the convergence behavior of the only non-zero singular
value of Ah.

# dof # var σ1 rate # Ahp

81 168 2.5381 1
289 626 5.9245 0.93 1

1 089 2 394 6.6786 0.32 1
4 225 9 530 8.3316 1.15 1

16 641 38 136 9.4157 2.31 1
66 049 151 898 9.6393 2.47 1

263 169 605 946 9.6887 1
Table 4.2. Problem 2: Singular value and estimated rate of con-
vergence w.r.t. grid size h for Problem 2. Number of sensitivity
problems (3.5) solved.

Figure 4.4 (right) displays the right singular vector r1 = EP r1 belonging to this
problem. From this we infer that the largest increase in average temperature is
achieved when the insulation at the larger (lower) window is improved to a higher
degree than that of the smaller (upper) window, although the nominal insulation
of the larger (lower) window is already twice as good. It is interesting to note
that for the maximum impact on the average temperature, the insulation should
be improved primarily near the edges of the windows. Again, the sensitivity y
of the optimal state belonging to the perturbation of greatest impact is positive
throughout (Figure 4.4 (left)).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45
Problem 2: First right singular vector (windows 1 and 2)

x position

Figure 4.4. Problem 2: Parametric sensitivity y (left) of the op-
timal state belonging to the first right singular vector r1 (right).
Lower window (red) and upper window (blue).
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4.3. Problem 3: Many Parameters, Large Observation Space. The final
example features both large parameter and observation spaces, so that assembling
the matrices Ah and XJX−1 as in the previous examples is prohibitive. Instead,
we supply only matrix-vector products ofXJX−1 to the iterative eigen solver. This
situation is considered typical for many applications.

The parameter space is chosen as in Problem 2, and the observation is the temper-
ature on all of Ω as in Problem 1. Table 4.3 shows again the convergence of the
singular values as the mesh is uniformly refined.

# dof # var σ1 rate σ2 rate # Ahp

81 168 5.0771 1.1947 40
289 626 11.9262 0.93 2.3426 0.83 68

1 089 2 394 13.4326 0.32 2.6603 0.35 68
4 225 9 530 16.7587 1.15 3.3093 1.20 68

16 641 38 136 18.9500 2.31 3.7092 2.31 68
66 049 151 898 19.4037 2.48 3.7896 2.31 68

263 169 605 946 19.5024 3.8099 68
Table 4.3. Problem 3: Singular values and estimated rate of con-
vergence w.r.t. grid size h for Problem 3. Number of sensitivity
problems (3.5) solved.

Note that the parameter space of Problem 1 (two constant heat transfer coeffi-
cients) is a two-dimensional subspace of the current high-dimensional parameter
space. Hence, we expect the singular values for Problem 3 to be greater than those
for Problem 1. This is confirmed by comparing Tables 4.1 and 4.3. However, the
first two singular values σ1 and σ2 are only slightly larger than in Problem 1. In
particular, the augmentation of the parameter space does not lead to additional
perturbation directions of an impact comparable to the impact of r1. Comparing
the right singular vector r1, Figure 4.5 (top right), with the right singular vector
r1 = (−0.5103,−0.7324)⊤ from Problem 1, representing a piecewise constant func-
tion, we infer that the stronger insulation near the edges of the windows does not
significantly increase the impact on the optimal state.

We also observe that the first right singular vector r1 (Figure 4.5 (top right))
describing the perturbation of largest impact on the optimal state is very similar to
the right singular vector in Problem 2, see Figure 4.4 (right), although the observed
quantities are different in Problems 2 and 3.

Finally, we present in Figure 4.6 the distribution of the largest 20 singular values.
Their fast decay shows that only a few singular values and the corresponding right
singular vectors capture the practically significant perturbation directions of high
impact for the problem at hand.

5. Conclusion

In this paper, we presented an approach for the quantitative stability analysis of
local optimal solutions in PDE-constrained optimization. The singular value de-
composition of a compact linear operator was used in order to determine the pertur-
bation direction of greatest impact on an observed quantity which in turn depends
on the solution. After a Galerkin discretization, mass matrices and their Cholesky
factors naturally appear in the singular value decomposition of the discretized op-
erator. In order to avoid forming these Cholesky factors, we described a similar-
ity transformation of the Jordan-Wielandt matrix. A matrix-vector multiplication
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Figure 4.5. Problem 3: First and second left singular vectors
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Figure 4.6. Problem 3: First 20 singular values.

with this transformed matrix amounts to the solution of two sensitivity problems.
The desired (partial) singular value decomposition can be obtained using standard
iterative eigen decomposition software, e.g., implicitly restarted Arnoldi methods.

We presented a number of numerical examples to validate the proposed method
and to explain the results in the context of a concrete problem. The order of
convergence of the singular values deserves further investigation. We observed that
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the numerical effort even for the computation of few singular values may be large
compared to the solution of the nominal problem itself. In order to accelerate the
computation of the desired singular values and vectors, however, it may be sufficient
to compute them on a coarser grid. In addition, parallel implementations of eigen
solvers can be used.
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