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Abstract

We consider the problem of splitting a symmetric positive definite
(SPD) stiffness matrix A arising from finite element discretization into
the sum of edge matrices thereby assuming that A is given as the
sum of symmetric positive semidefinite (SPSD) element matrices. We
give necessary and sufficient conditions for the existence of a splitting
into SPSD edge matrices and provide a feasible algorithm for their
computation.

Based on this disassembling process we present a new concept of
“strong” and “weak” connections (edges), which provides a basis for
selecting the coarse-grid nodes in algebraic multigrid methods. Fur-
thermore, we examine the utilization of computational molecules (small
collections of edge matrices) for deriving interpolation rules. The re-
production of edge matrices on coarse levels offers the opportunity to
combine classical coarsening algorithms with effective (energy minimiz-
ing) interpolation principles yielding a flexible and robust new variant
of AMG.

AMS Subject Classification: 65F10, 65N20, 65N30
Key words: edge matrices, algebraic multigrid, interpolation weights, coarse-
grid selection

1 Introduction

We are concerned with the solution of large-scale systems of linear equations
Au="f (1)

arising from finite element (FE) dicretization of self-adjoint elliptic boundary-
value problems. In this situation, the matrix A in (1) is typically sparse and
symmetric positive definite (SPD).

In many instances (of this huge class of problems) Algebraic MultiGrid
(AMG) methods [2, 3, 4, 5] can be used to build highly efficient and ro-
bust linear solvers [10, 12, 15, 17, 18, 20]. AMG using element interpola-
tion (AMGe) [6, 13, 14], so-called spectral AMGe [9], and AMG based on



smoothed aggregation [16, 21, 23, 24, 25] have even broadened the range of
applicability of the classical AMG algorithm [17]. These more recent de-
velopments are based on techniques of energy-minimizing interpolation (or
prolongation), which can be attained by different means. The basic func-
tioning of algebraic multigrid, however, is the same in all cases.

A two-grid method for solving (1) is given by:

Relax vq times on Au = f. (2)
Correct u « u+ P(PTAP)"'PT(f — Au). (3)
Relax v5 times on Au = f. (4)

Here P is an nxmn,. interpolation (or prolongation) matrix that transfers
coarse-grid corrections onto the fine grid whereas PT gives the correspond-
ing restriction of fine-grid vectors onto the coarse grid. This requires the
selection of a proper coarse grid D, i.e., a set of n. < n coarse-grid nodes,
which is a critical point in the design of two-grid (and multigrid) methods.

An (algebraic) multigrid method recursively uses the two-grid method
(2)—(4) to solve the linear systems involving the so-called Galerkin coarse-
grid operator A.:= PTAP. The coarse-grid correction step (3) applies the
matrix C:= I — PAZ7!'PT A, which shows that Range(P) = Range(I — C).
Further, if A is SPD (A induces an inner product) the matrix C' provides the
A-orthogonal projection onto Range(P). The coarse-grid correction (3) then
minimizes the energy norm of the fine-grid error over all possible corrections
in the range of P [7]. Moreover, a basic requirement for any multigrid
method is that relaxation and coarse-grid correction complement each other,
i.e., error not reduced by one has to be reduced by the other [6].

The computation of edge matrices, we are suggesting in the present
paper, is motivated by the fact that they provide a good starting point
for building efficient AMG components, while keeping their set-up costs
low. The main emphasis of this paper is on the algebraic construction of
edge matrices and their utilization in the framework of algebraic multigrid:
We discuss how to alter the concept of “strong” and “weak” connections,
as it is used in the process of coarse-grid selection (and interpolation) with
classical AMG. The interpolation component in our approach is very similar
to the element interpolation used in so-called AMGe methods. However, the
computational molecules involved in the arising local min-max problem are
assembled from edge matrices in our case.

The general idea is to achieve higher flexibility and adaptivity by us-
ing the presented edge-based methodology. The resulting method lies in-
between classical AMG (the concept of “strong” and “weak” edges affects the
coarsening as well as the formation of interpolation molecules) and AMGe
based on element agglomeration (small-sized neighborhood matrices form
the basis for the computation of the actual interpolation coefficients).



Numerical tests indicate the robustness of the considered method to
which we refer as AMGm (Algebraic MultiGrid based on computational
molecules) with respect to operator anisotropy as well as perturbations of
the M-matrix property.

2 Edge Matrices

Let Ar be an (nd) x (nd) symmetric and semipositive element matrix. Here,
n denotes the number of nodes in the element 7', and d denotes the number
of degrees of freedom in each node. For ¢,j, 1 < i < j < n, let Ej;; be an
(nd) x (nd) symmetric matrix whose entries are zero except for the (2d) x (2d)
entries corresponding to the nodes 7,j. We will say that E;; is an edge
matriz of Ap iff E;jjv = 0 for all v € ker(Ar). We say that Ay has a
positive splitting (decomposition) iff we can write it as a sum of positive
semidefinite edge matrices.

The main goal in this section is to give a necessary and sufficient criterion
for the existence of a positive splitting in the case d = 1. We also specify
the construction for the case when this criterion is fulfilled.

Using the terminology from [22], we say that a matrix is irreducible iff
the graph with nodes 1, ...,n and edges representing nonzero matrix entries
is connected. If Ar is reducible, then there is a numbering of nodes for
which Ar has the shape of a block diagonal matrix. One can show that
A7 has a positive splitting iff every diagonal block has a positive splitting.
Therefore, we will focus our attention to irreducible matrices.

We say that Ar = (ai;);; is an L-matrix iff a;; > 0 and a;; < 0 for
1 <i#j<mn.If Ap is not an L-matrix, then there is a unique L-matrix
B := (bj;); j such that |a;j| = |b;| for all i, j. We say that B is the L-ation
of AT.

Lemma 2.1 A symmetric matriz Ar has a positive splitting iff its L-ation
has a positive splitting.

Proof. Let Ap = Z” E;; be a splitting into edge matrices. Then the
L-ation of At is the sum of the L-ations of the edge matrices E;;. Because
positivity of a symmetric 2x2-matrix does not depend on the sign of the
off-diagonal entry, the original splitting is positive iff the L-ated splitting is
positive. 0

Lemma 2.2 If Ar is an irreducible singular L-matriz, then its kernel has
dimension 1, and it is generated by a positive vector.

Proof. This is well-known [1]. We include a proof for the sake of self-
containedness.

Let v = (v1,...,v,)" be an element of the kernel. By simultanuous
permutation of rows and columns, and maybe replacing v by —v, we may



assume that vy,...,v > 0, vj41,...,05, <0, and vy = -+ = vy, = 0 for
indices I,m such that 1 < < m < n. Then Ap can be written as block
matrix

A A Agg
Ar = | Aar A A |,
Asr Aszz Asz
with positive semidefinite A;;, and A;; < 0 elementwise for i # j.
Fori=141,...,m, we have

m
a;1v1 + -+ ayu + E Q505 = 0,
=141

hence
m l
E ai;0;V5 = Uj E ai;U; S 0.
j=i+1 j=1

Summing up, we get Z?}:Hl a;jv;v; < 0. But Ay is positive semidefinite,
which shows that we have equality everywhere. Hence As; = 0 and the

vectors w := (v1,...,1;,0,...,0)! and v — w are both in the kernel of A.
But Aw = 0 implies A3; = 0, and A(v —w) = 0 imples A3z = 0. Since A is
assumed to be connected, we have [ = m = n. 0

Lemma 2.3 If A7 is an irreducible singular L-matriz, then it has a unique
splitting into edge matrices. Moreover, this splitting is positive.

Proof. By Lemma 2.2, there is a positive vector v = (vy,...,v,)" gener-
ating the kernel. For any 7,7, 1 <17 < j < n, there is a unique edge matrix
E;; annihilating v and with off-diagonal entry a;;, namely the matrix with

nonzero entries
—agvi/vi  aij
a; ¥ —a; 7 V; / Uj

(except when a;; = 0, which yields a zero edge matrix). Direct computation
shows that the sum of these E;; equals Ar. This shows that we have a
unique splitting. The positivity is a consequence of a;; < 0 and v;v; > 0. O

Lemma 2.4 Any positive semidefinite matriz can be written as a sum of
a singular positive semidefinite matriz and a positive semidefinite diagonal
matric.

Proof. Let B be a positive semidefinite matrix. Let D be a nonzero
positive diagonal matrix. The set of all real numbers A such that B — AD is
positive semidefinite is closed and it contains zero. Moreover, it is bounded
because —D is certainly not positive semidefinite. If A\g is the maximum of
this set, then B — A\gD is singular and positive semidefinite and A\gD is a
positive semidefinite diagonal matrix. O



Theorem 2.1 A symmetric matriz Ap has a positive splitting iff its L-ation
is positive semidefinite.

Proof. Without loss of generality, we may assume that A7 is irreducible.
By Lemma 2.1, we may also assume that A is an L-matrix. Then one direc-
tion is obvious: if Ap has a positive splitting, then it is positive semidefinite.

Assume that Ar is positive semidefinite. If A7 is singular, then it has a
positive descomposition by Lemma 2.3. Otherwise, we use Lemma 2.4 and
write Ay = A’ + D, where A’ is a singular L-matrix and D is a positive
diagonal matrix. By Lemma 2.3, A’ has a positive splitting. Clearly, D has
a positive splitting. By summing the edge matrices for A’ and for D, we get
a positive splitting for Ar. O

We turn to the question how to compute a positive splitting, in case we
know there exists one? In the case n = 3, we use the computer algebra
system Maple to compute an explicit formula

ain a2 a3
Ar = |ai2 ax a3
ais a3 dass

a11a22a33+a3,a33—a11a33—aszas

2(az2a33—a3;) ) , ,

= alo 11022033+0715033—011053—022073 0
2(a11a33—a%3)

0 0 0

a2 0

a11a22033+a%3¢122—allagg—aswfg ai
2(a22a33—a%3) 3
+ 0 0 0

2 2 2
a11022033+073022—011053—033075

o

a3 0 2(a11a22—at,)
0 0 0
0 ariageazztadsaii—aiiad;—agzal, o
+ 2(a11a33—ais) ) 23 ) )
111022033+053011—011053—0220
O a23 23 23 13

2((111 a9 —a%2)

Proposition 2.1 If the L-ation of Ar is positive semidefinite, then the
splitting above is positive.

Proof. A matrix is positive semidefinite iff the determinants of all main
minors are greater than or equal to zero. We compute all determinants of
main minors of the summands above, and factorize them; it turns out that
the only factors that appear are either determinants of main minors of A,
or determinants of main minors of A’., which is constructed from Az by
multiplying each off diagonal element with —1. By a combinatorial case by
case analysis, the proposition can then be checked easily. O



If n > 3, we proceed as follows. If Ay is a singular positive semidefinite L-
matrix, then we can use the explicit construction in the proof of Lemma 2.3.
If A7 is a nonsingular positive semidefinite L-matrix, then we compute the
smallest eigenvalue A, construct a positive splitting of Ap — Aminf, and
add suitable diagonal edge matrices. Finally, if A7 is not an L-matrix but
its L-ation is positive semidefinite, then we L-ate A, compute a positive
splitting of the L-ation, and de-L-ate the edge matrices again by multiplying
the off diagonal elements with +1.

3 Coarse grid selection

3.1 “Weak” and “strong” edges

In contrast to Geometric MultiGrid (GMG) the relaxation in AMG is fixed
[17]. Thus the coarsening process and the interpolation rule have to be
chosen in a way such that the range of interpolation approximates those
errors not efficiently reduced by relaxation.! These algebraically smooth
error components e are characterized by

[Sella ~ [le]la, (5)

wherein S denotes the smoother. For (most of) the common smoothers,
e.g., GauB}-Seidel or Jacobi, error that is slow to converge in energy norm
equivalently fulfills the condition

Qi€ ~ — Z Qi5€j. (6)

J#i
In particular, for M-matrices this means that for each node 7 the error com-
ponent e; is essentially determined by those e; for which —a;; is large. This

leads to the following definition of strong connections used in classical AMG
[17]:

Definition 3.1 (Strong connections in Classical AMG) Node i is strongly
connected to node j (strongly depends on j) if —a;; > 0-maxy;i{—a;} with
some 0 <60 <1 (eg., §=0.25)

Here we want to base the concept of strong connectivity on edge matrices.
In [8] a reliable evaluation of strong connections based on element stiffness
matrices has been presented. It uses the simple formula

Qis
Sij:: 7‘ ZJ‘ (7)
Vi@

In GMG the hierarchy of grid equations is given, i.e., a fixed coarsening is used, and
the smoother is adjusted in order to obtain efficient multigrid cycles.




where A1 = (ai5):,j is a local stiffness matrix corresponding to some element
T € T. Note that (7) defines the energy cosine of the abstract angle be-
tween the i-th and j-th (nodal) basis function. However, the reproduction
of local element stiffness matrices on coarser levels increases the set-up costs
of an AMG method significantly and—what is even more serious—is subject
to strong geometrical restrictions. That is why we suggest to construct edge
matrices (from element matrices) and reproduce those on coarser levels. The
concept of “strong” edges can be established as follows:

Definition 3.2 (Direct connections) Any two nodes i and j are said to be
directly connected iff there is an edge {i, j} connecting i and j; let E;; denote
the corresponding edge matriz.

Now for every loop of length 3 (triangle) in the algebraic grid with direct
connections (edges) {7,j}, {Jj, k}, and {k,i} we consider the molecule

MUIR.= E;; + Eji + B (8)
Furthermore, let
MP = { M) = {cpg} 1 cpp #0 Vp=1,2,3} 9)

be the set of all such local matrices given as the sum of three edge con-
tributions (for edges that form a triangle) having non vanishing diagonal
entries. Then the following definition provides an altered concept of strong
connections (“strong” edges).

Definition 3.3 (Strong connections via edge matrices) The strength of a
(direct) connection {i,j} is defined by

Sij = min{17 M(iﬂr_gggMé‘{‘cpin ’/(\/ cpz'picpjpj)}} (10)
where connections with s;; > 0 are said to be strong, 0 < 0 < 1 (e.g.,
6 = 1/3). Here p; and p; denote the local indices associated with nodes i
and j, respectively, i.e., 1 <p; = p(i),p; = p(j) < 3.

Remark 3.1 Note that the strength of a connection {i,j} computed via ei-
ther of the formulas (7) or (10) will be non-negative and bounded above by
1 for general symmetric positive semidefinite stiffness matrices. A wvalue
close to one (an abstract angle close to zero) indicates a strong connection.
Extending the definition (10) by ming{...}:= oo one gets s;j = 1 whenever
nodes i and j are directly connected but there is no path of length two con-
necting 1 and j via a third node k. In consequence of the special construction
of coarse edges presented in Section 5.1 this maintains the connectivity of
coarse grids for connected fine grids, in practice.



3.2 Coarsening algorithm

There are several reasonable ways of selecting the coarse grid nodes in AMG.
Our approach is similar to the one used in classical AMG [17] in that it is
based on a concept of strong connections (here “strong” edges). However,
since the precise coarsening algorithm we use in detail differs from the one
proposed in [17] it will be presented in this section. Following [17] a good
coarse grid D, should satisfy the following two criterions:

C1: D, should be a mazimum independent set, which means that no
strong connections within D. are allowed.

C2: FEach node j being strongly connected to an f-node i is either
contained in D. or it strongly depends on at least one c-node k
that itself is strongly connected to node 1.

Similar to the procedure proposed in [17] we select the coarse grid in a
two-stage process: First, a quick c-node choice attempts to enforce criterion
(C1). Then, at a second stage, all f-nodes resulting from the first stage are
tested to ensure that criterion (C2) holds, adding new c-nodes if necessary.

The main difference to the methodology in [17] is that our relation of
strong connectivity, as defined in Definition 3.3, is symmetric whereas this is
not the common practice in classical AMG, even not in the SPD case. That
means, whenever a node ¢ is strongly connected to a node j the reverse
(j being strongly connected to i) is also true. However, this even simpli-
fies the selection of an initial coarse grid that takes into account criterion
(C1). A greedy algorithm serving this purpose is given by Algorithm 3.1.
The testing of the initial coarse grid, and its adjustment with respect to
criterion (C2), can be performed according to Algorithm 3.2. Note that we
slightly simplified the corresponding procedure from [17] by avoiding mul-
tiple testing of f-nodes in the course of adding c-nodes (doing without an
intermediate choice of “tentative” c-nodes). Instead, we prefer to decide
immediately which f-nodes are going to be changed into c-nodes: if two
f-nodes are strongly connected to each other with no c-node that strongly
depends on both of them the necessity arises to change either of them to
a c-node; we take the one having fewer strongly dependent c-nodes. For a
formal description of this two stage process we define the node sets:

Dy ... fine nodes (f-nodes)

D. ... coarse nodes (c-nodes)

D:=D;UD, ... all nodes

N; ... direct neighbors of node 4

./\/if =N,;ND; ... fine direct neighbors

S; ... strongly connected direct neighbors of node ¢
S§i=8ND, ... strongly connected coarse direct neighbors
|D| or |Sp| ... cardinality of D respectively S,



Algorithm 3.1 (Selection of initial coarse grid)

[ Dp:=0; Dsp=0; U:=D;
Am = |Sm| Ym=1,2,...,|D|; n=0;
while (n < |DJ)
find i such that \; = max,;,cy Am
D= D, Ui}
U=U\/{i}
n=n-+1
[ forallj € §;NU
Dyp=DsU{j}
U=U\{j}
n=n-+1
forallk e §;NU
A= A+ 1

Algorithm 3.2 (Adjustment of initial coarse grid)

[An=0 VYm=12,...,|D; i=0;
[ while (i < |D|)

=1+ 1
[ if (i € Dy)

np =0

[ for all k € S;ND,
ni=ni+1

| =1

[ for all j € §;N Dy

no=0; n3=0;

[ for allk € S;ND,
Nng=ng + 1
if (A =1)

| ng=n3+ 1

[ if (713 < 1)

[ Zf (n1 < ng)
De:=D.U{i}
D=y \ {1}

else
D.=D.U{j}
Dy=Ds\ {j}
ni=ni; +1

Ll N=1

L L [ forallkeN; MN=0




4 Interpolation

In this section we want to figure out how to benefit from edge matrices when
constructing the interpolation component of our AMGm method. The basic
idea is to construct suitable small-sized computational molecules from edge
matrices and to choose the interpolation coefficients in such a way that they
provide a local minimum energy extension with respect to the considered
interpolation molecule.

4.1 Interpolation molecules

We will say that M is a computational molecule if M is a small-sized irre-
ducible matrix that can be assembled from edge matrices. Let £ys be a small
subset of the set of all edges &, &y C €. Then, for notational convenience
we represent the molecule associated with the edge set £y by

Note that M is a small-sized n s xnjs matrix where njy; denotes the number
of distinct nodes k belonging to any of the edges {i,j} € Eys. To be precise,
this matrix is obtained from the full-sized N x N matrix

{igteénm

by deleting all its zero rows and columns; the 2x /N permutation matrices
R;; in (12) provide the mapping to the global ordering of nodes.

Consider now the set {Ar} of individual element matrices all of which
are split (disassembled) into edge matrices, i.e.,

Ar= Y Ej VI (13)

{i,5}CT

We note that if the splittings (13) are positive throughout, i.e., all edge
matrices E;; are SPSD, then every computational molecule locally preserves
the kernel of the global stiffness matrix:

Lemma 4.1 Let B = ZTGTB Ar andvp € ker(B), i.e., Bvg = 0. Further,
let M = Z{i,j}eSM E;; be any computational molecule such that every edge
{i,7} € En belongs to some element T € Tg. Moreover, let vy denote the
restriction of vg to the edges in Eny, i.e., Vari=vple,,. If the splitting (13)
is positive for all elements T € Tp, it follows that

Mvy = 0. (14)

10



Proof. For an SPSD matrix B the condition Bvp = 0 is equivalent to
VEBVB = 0. Thus,

0 = V%BVB:Vg Z Ez‘j—i- Z E;;|vp
{z»J}egM {ZJ}GEB\g]W

= V,]I\} Z Ez'j Vy -+ XTFX
{ij}eém

for an SPSD matrix F' and adequate restriction v of the vector vg. This
proves v1,Mvyr =0 and thus (14). n|

The task is now to define suitable computational molecules for building
interpolation. Assume that “weak” and “strong” edges have been identified,
the coarse grid has been selected, and a set of edge matrices is available.
Then for any f-node ¢ (to which interpolation is desired) we define a so-
called interpolation molecule

M(i):=> Ex+ > Ej+ >  Ej (1)

keSy JeNT:3kesN; keSENNG: jeNT

This molecule arises from assembling all edge matrices associated with three
types of edges: The first sum corresponds to the strong edges connecting
node i to some coarse direct neighbor k (interpolatory edges). The second
sum represents edges connecting the considered f-node 7 to any of its fine
direct neighbors j being directly connected to at least one c-node k that is
strongly connected to node i. Finally, the last sum in (15) corresponds to
these latter mentioned connections (edges) between fine direct neighbors j
and strongly connected coarse direct neighbors k of node ¢. The formation
of interpolation molecules is illustrated in Figure 1.

Figure 1: Formation of interpolation molecule

11



4.2 Interpolation rule

Element interpolation has been established in connection with so-called
AMGe methods [6, 14]. This technique is based on a heuristic for SPD
matrices that takes into account the nature of algebraically smooth error,
cf. (5): Provided that a standard smoother is used, error that is slow to con-
verge in energy norm corresponds to the lower part of the spectrum. Hence,
one tries to fit interpolation to these low-energy modes, in particular, to
the (near) null space components. The key idea is to construct local neigh-
borhood matrices that represent the correct coupling between any given
fine node and its interpolatory coarse (neighbor) nodes. In AMGe these
neighborhood matrices are local versions of the stiffness matrix, i.e., small
collections of element matrices. We propose the usage of the interpolation
molecule (15), instead.
For a given f-node 7 let

N g Mpr My
M@i)=M = < My M. ) (16)
be the interpolation molecule where the 2x2 block structure in (16) cor-
responds to the nﬁ/l f-nodes and the n§; c-nodes the molecule is based on.
Then there is a bijection between the local and the global ordering of these
nodes, which maps the global number i to some local number i/, 1 < ' < nﬁ/l
Consider now the small-sized (local) interpolation matrix

pM:P:<’Zj) (17)

associated with (16). The ng/[ xnf, submatrix Py, produces interpolation in
the f-nodes; for the c-nodes P equals the identity. Under the assumption
that M is SPSD the AMGe interpolation concept can be applied directly
[6, 11]:

For any vector e’ = (e?, el) 1 ker(M) we denote by

dy=es; — Pree. (18)

the defect of (local) interpolation. With the objective of realizing the AMGe
heuristic we choose Py, to be the argument that minimizes

(ef - PfceC)T(ef - PfCQC)

. 19
ej_%lezri(}i\/[) e'Me (19)

Using the substitutions (18) and
G:= P}, M Ps. + P{.Mjsc + Mg Psc + Mec (20)

we have the follwing equivalence for (19):

12



d’d;

max 7
f1€e ( df+PfceC ) ( Mff Mfc > ( df+Pfcec )

€c Mcf Mcc €c
d?df

= max

dy,ec <Mff(df + Pfcec), df + Pfcec> + 2<Mfcec, df + Pfcec> + (Mccec, ec)

d?d

= max Yf ! (21)

’eC
() ()
€. €.
where
Mgy MyyPre+ Myc
B = 22
<Rﬁwqf4—hﬂf G (22)
is SPSD. Hence
) d:]fdf . d?df
1}}111 (Iinax 7 = r}gm néax T
Y () () oY)
€. €. €c €c
d?d
= min max 177 (23)

Pfc df d? |:Mff —_ (MffPfC‘FMfc)Gil(P};Mff +Mcf):| df

Assuming that My, and G both are SPD we observe that the denominator of
(23) for an arbitrary but fixed vector d s is maximized and thus the minimum
is attained for

Rﬁ::—Aq?A@a (24)

which results in the value 1/(Anmin(Myr)). This motivates to choose the
interpolation coefficients for node i to equal the #’-th row of (24).

Remark 4.1 In case the interpolation molecule M defined via (15) is not
SPSD the interpolation coefficients can be computed from M' = M? which
then simply plays the role of M in (24). Actually, this results in the inter-
polation rule

Pfciz _(M,]%f +MfcMcf)_1(Mffoc+MfCMCC)7 (25)
which provides the minimizer of

(&1 = Preec)’ (e — Preec)
elker(M?) el M2e '

For a more general framework of AMG, including convergence analysis, we
refer to [11].
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5 Multilevel method

In this section we will outline the multilevel procedure for AMGm (Algebraic
MultiGrid based on computational molecules). So far we discussed how to
disassemble element matrices into edge matrices that can be utilized in the
coarse-grid selection process as well as in the interpolation set-up, resulting
in a new two-level method. However, assuming that the individual element
matrices are given for the initial (fine) grid only, we need some technique
for generating course-edge matrices in order to enable recursion and finally
define a multilevel algorithm on this basis.

5.1 Generation of coarse-edge matrices

The construction of edge matrices as described in Section 2 is such that their
total contributions exactly add up to the fine-grid stiffness matrix (without
any essential boundary conditions imposed), i.e., the global stiffness matrix
A in (1) is alternatively composed of the (level-zero) edge-matrices, instead
of the element matrices. However, it is not intended to assemble the coarse-
grid operators from coarse-edge matrices, in the present approach. Hence,
we give up this property (at coarse levels) in favour of the following practi-
cable procedure for an inexpensive computation of coarse-edge matrices.

e Firstly, one generates a coarse edge connecting any pair of c-nodes
{i,j} if either or both of the statements below are true:

1. 4 and j are directly connected on the fine grid D
2. 3k € Dy: {i,j} C S

e Secondly, for any coarse edge {7, j} one forms a specific computational
molecule M) which is a pre-stage for the computation of the cor-
responding edge matrix; here, the molecule M7 accumulates the
contributions (edge-matrices) of all edges that yield paths of length
two, starting in node ¢, passing some f-node k, and ending in node j,
including also the contribution of a direct edge {i,j} if there is one,
see Figure 2.

e Finally, one generates the coarse-edge matrix by computing the Schur
complement of M®7) with respect to its two c-nodes (eliminating all
dofs associated with all of its f-nodes), i.e.,

.. i ij —1 i
B =MD - MD (M) . (26)

Thus, another particular class of molecules serves for computing the coarse-

edge matrices in our method. As can be seen from Figure 2 the important
pairs of edges in these molecules are those connecting f-nodes k to both of

14



the c-nodes ¢ and j, which are going to be connected via a coarse edge.
Additionally, one could take into account the (fine) edges connecting the
corresponding f-nodes among each other, as indicated by the dotted lines in
Figure 2. However, according to our experience this modification does not
improve the results significantly (at least not for the test problems considered
in the next section) but it slightly increases the set-up costs. That is why we
prefer to assemble M (49 without any f-f connections, resulting in a cheaper
evaluation of (26).

Figure 2: Basic molecule for coarse-edge matrix

52 AMGm

Regarding the multilevel algorithm, we notice that the AMGm method
agrees with classical AMG, except for the coarse-grid selection and the in-
terpolation component, which are controlled by edge matrices in case of
AMGm. One can also view this as involving an auxiliary problem—the one
determined by the edge matrices—in the coarsening process. The coarse-grid
matrices, however, are still computed via the usual Galerkin tripple matrix
product, i.e., Api1 = PgAkPk for all levels kK =10,1,...,1 — 1.

6 Numerical experiments

For the numerical experiments presented in this section we considered the
boundary-value problem

~V-[CVu]=f in QCR? (27)
u=g on I'pC N (28)
B
%:o on Ty COQ\T;. (29)

Two different specifications of the matrix C, the right-hand side f, the do-
main €2, and of the boundary conditions yield the considered test problems:
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Problem 1

¢= (1)2 , f=0, Q=(-33)x(=3,3)\ (U UQ),

where Q1 = (0.2,0.3)x(—0.5,0.5), Qs = (~0.3, —0.2)x(—0.5,0.5),
I'y = 8((—3, 3)X(—3,3)), I'p =001 U, and

_ 1 on 0O
9=V =1 on 00y

The solution of this problem—describing the potential of the electric field of
a capacitor embedded in an (an)isotropic material-is plotted in Figure 3.

Figure 3: Problem 1: solution for ¢ =1 and € = 0.01

-9.931e-01 -4.968e-01 -4.208e-04d 4,959e-01 9.923e-01

T
s
VAW TATAVAYA YA
FATAVATATATANAY.S

[o]
<L
;
SR
£}
i

T
M

-9,993e-01 -4,996e-01 1.6558-04 4,9992-01 9,996e-01
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For discretization we used a finite element space of piecewise linear func-
tions with Lagrangian basis, where the underlying locally refined triangular
mesh was generated using the NETGEN? mesh generator [19] used in NG-
Solve?, see Figure 4.

Figure 4: Problem 1: locally refined unstructured mesh

Problem 2

€+ (cos®)?  sin® cos @

¢= sin®cos® €+ (sin®)? )’

lea Q:(072)X(071)7

Iy ={(z,y):0<z<2andy e {0,1}}, Tp=02\Tn, and g=0.

Again we used linear shape-functions, but this time for a quasi-uniform
(structured) triangular mesh, in order to compute a numerical soultion by
the finite element method, see Figure 5. A value of 7/12 was chosen for the
angle ® causing the direction of anisotropy to be not aligned with the mesh.

Figure 5: Problem 2: solution for e = 0.01

1,3378-03 2,1608-01 4,3078-01 6,453s-01 8.600e-01

Y AV A YA ¥ LW 00 3 Y.
T YA Y AP A AV AT AT AT AW ATAT AU
TP LA AN AT ATARAPAN WA T

Note that both problems result in stiffness matrices that are not con-
tained in the class of M-matrices. Moreover, the variation from an M-matrix

2http://www.hpfem.jku.at /netgen/index.html
3http://www.hpfem.jku.at /ngsolve /index.html
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increases when € tends to zero, i.e., the positive off-diagonal entries gain
weight in this case. This usually makes the problem harder to solve for
(algebraic) multigrid methods.

We focused on a conjugate gradient solver with a single AMGm iteration
acting as a preconditioner (PCG). In the first experiment we studied the
convergence of this type of PCG method for Problem 1, using either a V(1,1),
or a V(2,2), or a W(1,1) cycle, performing one or two symmetric Gauf-
Seidel pre- and post-smoothing step(s). Table 1 contains the number of
PCG iterations that was required to reduce the residual norm by a factor

10~8, the average convergence factor, as well as the grid complezity o and
A4

the operator complezity o

Table 1: AMGm convergence results for Problem 1

#elements 4062 16248 64992 259968
#levels 3 4 6 8
€=1: V(1,1) 7 006] 9 0.11]10 0.15]11 0.18
V(2,2) 5 003 7 005 7 007] 9 0.11
W(1,1) || 6 004 8 0.08| 8 0.08| 8 0.09
o 1.62 1.72 1.77 1.76
oA 2.24 2.61 2.88 2.90
e=05 V(1,1) 6 005 8 01010 0.15][ 11 0.18
V(2,2) 5 003 6 005| 8 008| 9 0.11
W(1,1) || 6 004 7 0.07| 8 0.08| 8 0.09
o9 1.72 1.82 1.88 1.86
o4 2.46 2.87 3.21 3.24
e=0.1:  V(1,1) 8 0.10 10 0.15] 11 0.17]11 0.17
V(2,2) 5 003 8 008| 8 009| 9 0.11
W(,1) || 7 007] 9 012] 8 0.09| 7 0.06
o9 1.79 1.84 1.89 1.88
o4 2.60 2.87 3.14 3.17
e=0.05 V(1,1) 8 0.10]12 02011 0.18] 12 0.21
V(2,2) 6 003 8 010| 9 0.11]10 0.14
W(1,1) | 7 007|110 015| 8 0.08| 7 0.07
o% 1.80 1.85 1.91 1.90
o4 2.62 2.90 3.23 3.26
e=001: V(1,1) |12 020] 15 028 | 16 0.30 | 18 0.35
V(2,2) 7 007 |11 017]12 0.21]14 025
W(1,1) || 10 0.15 |12 021 |11 0.18 |11 0.17
o 1.79 1.88 1.93 1.93
o4 2.60 3.02 3.33 3.39

40,9

is the ratio of the total number of points on all grids to that on the fine grid,
whereas o is the ratio of the total number of nonzero entries in all matrices to that in

the fine-grid matrix.
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For the second experiment we decided to compare the performance of
AMGm to that of classical AMG (both used as a preconditioner for conju-
gate gradients) when solving Problem 2 on a quasiuniform mesh with de-
creasing mesh size, i.e., 49152, 196608, and 786432 elements, initializing the
iteration with the zero start vector again. In Tables 2—4 we list the number
of PCG iterations that reduced the norm of the initial residual by a factor
1076, In order to get a comparison in terms of computing time, we used
the PCG method with classical AMG' preconditioning as implemented in
the commercial software package FEMLAB version 3.1.°> We used the same
setting (except for the threshold parameter 6, which was 1/3 for AMGm
and 1/4 for AMGT) for both methods. The solution time provided in the
respective right column includes the set-up time for both preconditioners.
All computations were performed on a 2.0 GHz Unix-machine with 1.5 GB
RAM.

Table 2: Performance comparison for Problem 2: 49152 elements (5 levels)

AMGT AMGm

¢ VI, | V(22) | WD) || VL) | V(22 | W1

1.0 |15 165 |13 1.78 |10 179 |11 148 | 9 146| 9 1.70

05 |15 188 |13 20011 219 9 123 | 8 134 7 131
9
9
1

0.1 20 204 |18 253 |14 230 | 11 134 | 9 1.37 1.42
0.05 || 23 217 |21 230|16 244 | 12 138 |10 1.43 1.40
0.01 || 34 252 |32 278 |24 291 | 15 150 |12 153 |1 1.53

Table 3: Performance comparison for Problem 2: 196608 elements (7 levels)

AMGT AMGm
¢ VLD | V(22) | W) || VI, | V22) | W
1.0 36 153 |34 174 |19 157 12 7.6 |10 &84 9 8.6
05 || 20 153|190 18.0 |12 16810 65| 9 74| 8 7.0
0.1 28 163 |26 180 |17 188 | 12 7.0 |10 7.8 9 7.5
10
12

(L,1)

0.05 |31 166 |29 182 |20 19.0 | 13 73|11 8.1 7.8
0.01 || 44 185 |41 199 |30 249 | 17 84|14 93 8.8

7 Concluding remarks

The application of any AMG method splits into a set-up phase and a solu-
tion phase. Hence, solving a linear system (1) for a single right-hand side,
the computational costs of these two phases have to be well balanced in
order to achieve a low total effort. It is one of the main concerns of the

®http://www.comsol.com
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Table 4: Performance comparison for Problem 2: 786432 elements (9 levels)

AMGT AMGm

€ V(1,1) V(2,2) W(1,1) V(1,1) | V(2,2) | W(1,1)

1.0 79 227 |72 240 |35 236 || 12 35|10 40| 9 40

0.5 56 300 | 51 304 |20 294 | 12 33|10 36| 8 34

0.1 52 294 | 50 302 |21 295 12 33110 37| 9 35
0
3

0.05 || 60 293 | 56 306 | 27 300 || 14 35| 12 41 37
0.01 || 60 293 | 56 307 | 36 317 || 21 44 | 17 49 43

[y N

present paper to introduce a robust method with a fast and low-complexity
set-up. In fact, the set-up of AMGm took approximately half the (total)
time reported in Tables 2—4. The improved robustness is achieved by con-
trolling the coarse-grid selection and the interpolation component via edge-
matrices. Regarding Problem 2, Tables 2-4 report much faster convergence
(and thence shorter solution time) when using AMGm instead of classical
AMG. Regarding Problem 1, the convergence rates reported in Table 1,
satisfy for all tested cycles.® The grid- and operator complexity thereby
incurred is in the range of that for classical AMG [17].

Future investigations will deal with the generalization of the presented
AMGm methodology to cover also systems of PDEs, e.g., arising in struc-
tural mechanics.
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