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Abstract. A reactive kinetic transport equation whose macroscopic limit is
the KPP-Fisher equation is considered. In a scale, where collisions occur

at a faster rate than reactions, existence of traveling waves close to those

of the KPP-Fisher equation is shown. The method adapts a micro-macro
decomposition in the spirit of the work of Caflisch and Nicolaenko for the

Boltzmann equation. Stability of these waves is shown for perturbations in

a weighted L2-space, where the weight function is exponential and such that
the (macroscopic) linearized operator in the weighted space is self-adjoint and

negative definite. Similar approaches to stability of traveling waves are well-

known for the KPP-Fisher equation.

1. Introduction

When the chemical reaction

A+B ↔ 2A

takes place in a setting, where the density of species B can be assumed as constant
and species A is subject to one-dimensional diffusion, then the dynamics of the
density u(t, x) of species A can be described (after non-dimensionalization) by the
KPP-Fisher equation

∂tu = D∂2
xu+ u(ρ̄− u) , (1.1)

with the diffusion coefficient D > 0. This equation has two constant equilibrium
states, u ≡ 0 and u ≡ ρ̄ > 0, the former linearly unstable and the latter linearly
stable. Thus, an initial perturbation of u ≡ 0 grows to approach u ≡ ρ̄. It is
well-known that, in an unbounded domain, this growth may take the asymptotic
form of a propagating wave front, i.e. as t→ +∞ the solution approaches the form
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u(t, x) = uTW (ξ) with the traveling wave variable ξ = x − st, the constant wave
speed s ∈ R, and uTW satisfying the ordinary differential equation

Du′′TW + su′TW + uTW (ρ̄− uTW ) = 0 . (1.2)

We assume throughout that s ≥ 0. This is no restriction, because (1.2) is invariant
under the reflection s → −s, ξ → −ξ. The waves then propagate to the right and
satisfy the far-field conditions

lim
ξ→−∞

uTW (ξ) = ρ̄ , lim
ξ→+∞

uTW (ξ) = 0 . (1.3)

Equation (1.1) has been introduced by Fisher [5] as a model in population genetics
that describes the advance of individuals with a favorable gene. At the same time
Kolmogorov, Petrovskii and Piskunov [9] investigated (1.1) with a more general
nonlinearity. Some results concerning the traveling wave solutions (which have
been studied extensively) will be reviewed below.

The subject of this work is a kinetic transport model for the same physical
situation. The main modeling difference compared to a reaction-diffusion model is
the replacement of the Brownian motion by a velocity jump process. The latter can
be thought of being caused by collisions with a (non moving) background medium,
which randomize the direction of movement. A kinetic equation for the phase space
density f(t, x, v) of particles of species A can be written in the (dimensionless) form

ε2∂tf + εv∂xf = Lf + ε2Q(f) , (1.4)

with time t > 0, position x ∈ R and velocity v ∈ V ⊂ R. The left hand side of
(1.4) describes the free streaming of particles, and the terms on the right hand side
model collisions (described by the operator L) and chemical reactions (described by
the operator Q). The dimensionless parameter ε is assumed to satisfy 0 < ε � 1.
Considering its occurrence on the right hand side of (1.4), this means that collisions
are much more frequent than reactions. The powers of ε on the left hand side can
be achieved by appropriate scalings for time and position.

Collisions are described as instantaneous velocity jumps with an equilibrium
distribution M(v), satisfying the moment conditions∫
V

M dv = 1 ,

∫
V

vM dv = 0 ,

∫
V

v2M dv = D > 0 ,

∫
V

v3M dv = 0 .

A typical example is the Maxwellian distribution M(v) = (2πD)−1/2e−v
2/(2D),

V = R. The simplest collision model is the relaxation operator

Lf =

∫
V

[M(v)f(v′)−M(v′)f(v)]dv′ = Mρf − f ,

with the macroscopic density ρf (t, x) =
∫
V
f(t, x, v)dv. The collision process obvi-

ously conserves mass:
∫
V
Lf dv = 0. For the chemical reactions, it is assumed that

they produce particles with the same equilibrium velocity distribution:

Q(f) =

∫
V

[ρ̄M(v)f(v′)− f(v)f(v′)]dv′ = ρf (Mρ̄− f) .

We obtain the kinetic reaction model

ε2∂tf + εv∂xf = Mρf − f + ε2ρf (Mρ̄− f) . (1.5)

A connection between (1.5) and (1.1) can be established by the macroscopic limit
ε→ 0. Substitution of the Chapman-Enskog ansatz f = Mρf + εf⊥ into (1.5) and
integration with respect to v leads to the macroscopic equation

∂tρf + ∂x

∫
V

vf⊥dv = ρf (ρ̄− ρf ) .
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On the other hand, (1.5) implies

f⊥ = −vM∂xρf +O(ε) .

Hence, in the formal limit ε → 0, ρf solves (1.1). This is an example of the
derivation of reaction-diffusion equations from kinetic models. Formal asymptotics
of this kind for much more general cases, in particular also systems, has been carried
out by several authors (see, e.g., [1], [11]). However, a rigorous justification is only
known for linear models [1].

It is our aim to study the existence and stability of traveling waves of (1.5).
As a preliminary result, in Section 1.4, we prove global existence of solutions of
the initial value problem for (1.5) for initial data bounded by a global equilibrium.
Our approach for the analysis of traveling waves is based on the fact that, for ε
small, (1.5) can be approximated by (1.1). In Section 2 we present a constructive
existence proof for traveling waves with speed s ≥ s0 = 2

√
D ρ̄ of (1.5), which shows

the asymptotic closeness of the kinetic profiles to the solutions of (1.2) with the same
speed. We follow the approach of [4] (that is applied to traveling waves of kinetic
BGK models for scalar conservation laws) by first constructing a formal asymptotic
approximation, and then showing solvability of the problem for the correction term.
For the latter we adapt the micro-macro decomposition introduced by Caflisch and
Nicolaenko [2] for the Boltzmann equation. The major difficulty in the current
problem is caused by the fact that, in contrast to [4] and [2], the macroscopic
problem is not a conservation law. In Section 3 we show the asymptotic stability
of kinetic profiles with s > s0, under perturbations in suitable spaces. Traveling
waves for the KPP-Fisher equation are stable under perturbations, which decay
faster than (or at least as fast as) the waves. The analogous result is proven here.
The required decay properties are built into an appropriately weighted L2-space.
This has the consequence that we can control the macroscopic terms in a similar way
as for the KPP-Fisher equation. Concerning the control of the microscopic terms,
we have only been successful under the additional assumption that the velocity
space V is bounded. In the remainder of this section we recall the stability results
for traveling wave profiles of (1.1) and also show, how the stability of these profiles
can be proven by using energy estimates. We also carry out the Chapman-Enskog
argument for the approximation of kinetic traveling waves.

1.1. Traveling waves for the KPP-Fisher equation. Concerning existence of
traveling waves of (1.1), the following result is well known.

Theorem 1 ([9]). For s ≥ s0 := 2
√
D ρ̄ there exists a positive solution of (1.2),

(1.3), which is unique, up to a shift in ξ, and strictly decreasing.

Proof. One way of looking at the problem is by writing (1.2) as a planar system
and analyzing the (uTW , u

′
TW ) phase-plane. The critical points are clearly given

by the zeroes (0, 0) and (ρ̄, 0) of the nonlinearity. Linearization shows that (ρ̄, 0) is

a saddle point, with eigenvalues (−s±
√
s2 + s2

0)/(2D), and that there is a unique
orbit coming out of it in the second quadrant.

The critical point (0, 0) has eigenvalues (−s±
√
s2 − s2

0)/(2D), thus it is a stable
node for s ≥ s0 and a stable spiral for s < s0. Hence, a positive solution to (1.2)
satisfying (1.3) can only exist if s ≥ s0. Further, it is easy to see that the triangle

0 ≤ uTW ≤ ρ̄, 0 ≥ u′TW ≥ −
s

2D
uTW , (1.6)

is an invariant region, so that the unique orbit coming out of the saddle point
enters the node, and it does so through the slow manifold when s > s0. This gives
existence of traveling waves (unique up to translation in ξ) for every s ≥ s0. �
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The proof also provides the far-field behavior. On the one hand, we have

ρ̄− uTW (ξ) ∼ c eα−ξ as ξ → −∞ with α− =

√
s2 + s2

0 − s
2D

> 0 , c > 0 .

(1.7)
On the other hand, for every s > s0,

uTW (ξ) ∼ cs e−α+ξ as ξ → +∞ , with α+ =
s−

√
s2 − s2

0

2D
> 0 , cs > 0 ,

(1.8)
and, for s = s0,

uTW (ξ) ∼ c0ξ e−(s0/2D) ξ as ξ → +∞ , c0 > 0 . (1.9)

1.2. Stability of traveling waves for the Fisher equation. Throughout this
section we let uTW be a traveling wave of (1.2) with speed s > s0. We write (1.1)
in the moving coordinates t and ξ = x− st,

∂tρf − s∂ξρf −D∂2
ξρf − ρf (ρ̄− ρf ) = 0 , (1.10)

and look for solutions that are small perturbations of ρTW . Thus we assume ρf =
uTW + ρ where ρ � 1, in a sense to be made precise later. The equation for the
perturbation ρ reads

∂tρ− s∂ξρ−D∂2
ξρ+ ρ(2uTW + ρ− ρ̄) = 0 . (1.11)

It is well known that traveling waves of (1.1) are in general unstable to pertur-
bations, c.f. Canosa [3]. In the classical approach to stability, one studies linear
stability first by analyzing the spectrum of the linearized operator. In a Lp-setting
with p ≥ 2, the spectrum of the linearized operator about waves having s > s0

extends to the right hand complex plane and always contains 0 as an eigenvalue
with eigenfunction ∂ξuTW (this eigenfunction is the one generated by perturbations
equivalent to small translations in the traveling wave). To overcome this problem
one introduces norms with appropriate weights, that push the spectrum into the
left hand plane and ∂ξuTW out of the space, thus creating a spectral gap. In the
seminal work by Sattinger [10] such analysis is undertaken in L∞ with an expo-
nential weight. We borrow this idea here, but, in our setting, it is more convenient
to use L2 estimates and we show next how this is done for (1.1). In the process
we need to control ‖ρ‖∞ for all times by an appropriate upper bound. For (1.1)
this can be achieved by a comparison principle. Here, however, we use the con-
tinuous Sobolev embedding H1 ⊂ L∞. The reason for choosing this approach is
two-fold. First, for a kinetic model with complicated collision and reaction terms
a comparison principle is difficult to prove, if available. And second, to our knowl-
edge, the idea of applying integral estimates with a Sobolev embedding argument
to prove stability of traveling waves of (1.1) is new. For the current kinetic model
a comparison principle is easy to prove and stability can be achieved by this type
of arguments too assuming a maximum principle for the macroscopic profile. This
approach is outlined in the Appendix for completeness.

We define the weight function

W (ξ) = e
s

2D ξ (1.12)

and introduce the Hilbert spaces L2
ξ = L2(R), H1

ξ = H1(R), L2
W and H1

W of
functions of ξ with the respective norms

‖ρ‖2ξ =

∫
R
ρ2dξ , ‖ρ‖2H1

ξ
= ‖ρ‖2ξ + ‖∂ξρ‖2ξ , (1.13)

‖ρ‖W = ‖ρW‖ξ , ‖ρ‖2H1
W

= ‖ρ‖2W + ‖∂ξρ‖2W . (1.14)
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Local existence of solutions of (1.11) in H1
ξ ∩ H1

W (which means the weight acts

only as ξ → +∞) follows by a standard contraction argument. Hence, if we can
show the decay of the solution in H1

ξ ∩H1
W as time evolves, global existence follows

by a continuation principle.
We assume that ρf (0, ξ) ≥ 0, then ρf = uTW + ρ ≥ 0 holds as a consequence

of the maximum principle. For definiteness, we assume that the traveling wave
satisfies uTW (0) = 3ρ̄/4 (which makes it unique by monotonicity), implying

uTW (ξ) ≥ 3ρ̄

4
for ξ ≤ 0 . (1.15)

Multiplication of (1.11) with W gives

∂t(ρW )−D∂2
ξ (ρW ) + (κ+ 2uTW + ρ) ρW = 0 , (1.16)

with

κ :=
s2

4D
− ρ̄ > 0

by s > s0. Testing (1.11) with ρ and (1.16) with αρW (for some α > 0) and adding
the resulting equations leads to

1

2

d

dt

(
‖ρ‖2ξ + α‖ρ‖2W

)
+D

(
‖∂ξρ‖2ξ + α‖∂ξ(ρW )‖2ξ

)
+

∫
R

(2uTW + ρ− ρ̄)ρ2 dξ + α

∫
R
(2uTW + ρ+ κ)(ρW )2 dξ = 0 .

(1.17)

The only problematic term is −ρ̄
∫
ρ2 dξ. In order to control it, we use the growth

of the weight on [0,+∞) and the monotonicity of the wave on (−∞, 0], i.e. (1.15).
First, we write (1.17) in the more convenient form

1

2

d

dt

(
‖ρ‖2ξ + α‖ρ‖2W

)
+D

(
‖∂ξρ‖2ξ + α‖∂ξ(ρW )‖2ξ

)
+

1

2

∫
R
uTW (1 + αW 2)ρ2 dξ

+α

∫
R
(κ+ uTW + ρ)(ρW )2 dξ +

α

2

∫
R
uTW (ρW )2 dξ +

∫
R

(
3uTW

2
+ ρ− ρ̄

)
ρ2 dξ

= 0 .

All terms after the time derivative are obviously nonnegative, except the last one.
Its contribution for ξ < 0 can be estimated using (1.15):∫ 0

−∞
ρ2

(
3uTW

2
− ρ̄+ ρ

)
dξ ≥

( ρ̄
8
− ‖ρ‖∞

)∫ 0

−∞
ρ2dξ . (1.18)

On the other hand, the contributions of the last two terms for ξ > 0 can be estimated
by

α

2

∫ ∞
0

(ρW )2uTW dξ +

∫ ∞
0

ρ2(3uTW /2− ρ̄+ ρ)dξ ≥
∫ ∞

0

ρ2(αW 2uTW /2− ρ̄)dξ .

Since W 2 increases faster than uTW decreases (see (1.8)), α can be chosen such
that

α
W 2

2
uTW − ρ̄ ≥

ρ̄

16
on [0,+∞) . (1.19)

If we succeed below in proving ‖ρ‖∞ ≤ ρ̄/16, then the inequality

1

2

d

dt

(
‖ρ‖2ξ + α‖ρ‖2W

)
≤ − ρ̄

16
‖ρ‖2ξ − κα‖ρ‖2W ≤ −min

{ ρ̄

16
, κ
}(
‖ρ‖2ξ + α‖ρ‖2W

)
(1.20)

is satisfied, implying exponential decay of the perturbation ρ. For proving the
required L∞-bound, we shall derive a H1-bound and use Sobolev embedding. The
third term in (1.18) is then needed to control terms resulting in the estimates on
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the L2-norm of the derivatives of r = ∂ξρ and rW . In terms of r, the derivative
with respect to ξ of (1.11) and its product with W read

∂tr −D∂2
ξ r − s∂ξr + r(2uTW − ρ̄+ 2ρ) + 2ρu′TW = 0 ,

∂t(rW )−D∂2
ξ (rW ) + rW (κ+ 2uTW + 2ρ) + 2Wρu′TW = 0 .

We proceed with this system in a similar way as for (1.11), (1.16), note however
some small differences: In the parentheses, 2ρ replaces ρ, and there are additional
terms containing u′TW in both equations. When testing with r and, respectively,
with αrW , the identity 2rρ = ∂ξ(ρ

2) is used in these terms:

1

2

d

dt

(
‖r‖2ξ + α‖r‖2W

)
+D

(
‖∂ξr‖2ξ + α‖∂ξ(rW )‖2ξ

)
+

∫
R
r2(2uTW − ρ̄+ 2ρ)dξ

+α

∫
R

(rW )2(κ+ 2uTW + 2ρ)dξ =

∫
R
ρ2∂ξ((1 + αW 2)u′TW )dξ .

(1.21)
For the right hand side we observe that

u′′TW = − s

D
u′TW −

uTW
D

(ρ̄− uTW ) ≤ s2

2D2
uTW

showing also that ∂ξ(W
2u′TW ) ≤ 0. This implies

∂ξ((1 + αW 2)u′TW ) ≤ s2

2D2
uTW .

Therefore the right hand side of (1.21) can be dominated by a multiple of the third
term of (1.18). Similarly, the other problematic term in (1.21), −ρ̄

∫
R r

2dξ, can

be controlled by a multiple of the term D‖∂ξρ‖2ξ in (1.18). Therefore, for a small
enough positive constant β, the functional

J [ρ] := ‖ρ‖2ξ + α‖ρ‖2W + β
(
‖∂ξρ‖2ξ + α‖∂ξρ‖2W

)
,

is nonincreasing in time as long as

‖ρ‖∞ ≤
ρ̄

16
(1.22)

holds. Since, by Sobolev embedding, ‖ρ‖2∞ ≤ cJ [ρ], (1.22) can be guaranteed for
all time under the initial smallness assumption

J [ρ(t = 0)] ≤ 1

c

( ρ̄
16

)2

.

As shown above, this implies (1.20). Obviously, when κ = 0 (or s = s0) we cannot
deduce exponential convergence by this procedure. In fact, the linearized operator
in L2

ξ ∩ L2
W has spectrum that extends up to the origin (see [10]). A more delicate

treatment is needed here and without further discussion we refer the reader to
Kirchgässner [8].

Remark 2. (i) The weight in the norm implies that the initial perturbation
decays faster than the travelling wave as x → ∞, which is known to be
necessary for stability. A decay of the perturbation is also required as
x→ −∞, which is a weakness of the L2-approach.

(ii) Another weakness of the result is that the exponential decay rate λ de-
pends on the initial data through γ. This could be improved by L∞-decay
of the perturbation, so possibly in the framework of the H1-approach [7]
mentioned above.

(iii) Obviously, when s = s0, we cannot deduce exponential convergence by this
procedure. In fact, the spectrum of the linearized operator in L2

ξ ∩ L2
W

extends to the origin (see [10]). A more delicate treatment is needed here,
and without further discussion we refer the reader to Kirchgässner [8].
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1.3. Formal approximation of kinetic traveling waves. It is instructive to
perform the formal limit ε → 0 before proving existence of traveling waves. We
look for traveling waves of (1.5), i.e. solutions of the form f(t, x, v) = fTW (ξ, v)
with ξ = x− st and s > 0, satisfying

ε(v − εs)∂ξfTW = MρTW − fTW + ε2ρTW (Mρ̄− fTW ) , ρTW := ρfTW , (1.23)

subject to the far-field conditions

fTW (−∞, v) = ρ̄M(v) and fTW (+∞, v) = 0 for all v ∈ V . (1.24)

We make the ansatz

fTW (ξ, v) = ρTW (ξ)M(v) + εf⊥TW (ξ, v) with

∫
V

f⊥TW dv = 0 . (1.25)

Substitution of (1.25) and integration in (1.23) lead to

−s∂ξρTW + ∂ξ

∫
V

vf⊥TW dv = ρTW (ρ̄− ρTW ) . (1.26)

Substitution of (1.25) into (1.23) gives the asymptotic expansion of f⊥TW as ε→ 0,

f⊥TW = −vM∂ξρTW + ε[sM∂ξρTW − v∂ξf⊥TW +MρTW (ρ̄− ρTW )] +O(ε2)

= −vM∂ξρTW + ε(v2 −D)M∂2
ξρTW +O(ε2) , (1.27)

where in the last step we have used (1.26). Substitution of (1.27) into (1.26) shows
that ρTW formally solves (1.2) up to O(ε2)-terms.

1.4. Notation and preliminary results. Next we introduce the underlying spaces
of our analysis and establish the global existence of the Cauchy problem and a max-
imum principle as preliminary results.

We define the weighted inner product in the v-direction by

〈f, g〉v =

∫
V

fg

M
dv

and denote the induced Hilbert space and norm by (L2
v, ‖·‖v). With respect to 〈·, ·〉v,

the linear collision operator Lf = Mρf − f is symmetric and negative semidefinite,
a consequence of

〈Lf, g〉v = −〈Lf,Lg〉v .
The standard norms and spaces of functions of ξ are denoted by (L2

ξ , ‖ ·‖ξ), (Hk
ξ , ‖ ·

‖Hkξ ), and (Cbξ , ‖ · ‖∞), and with weight (1.12) by (L2
W , ‖ · ‖W ) (see (1.14)). The

Hilbert space (L2
ξ(L

2
v), ‖ · ‖ξ,v) is then naturally defined by the scalar product

〈f, g〉ξ,v =

∫
R
〈f, g〉v dξ .

For k ∈ N ∪ {0}, the space Hk
ξ (L2

v) of functions whose derivatives up to order k

with respect to ξ are in L2
ξ,v is equipped with the norm

‖f‖Hkξ (L2
v) =

(
‖f‖2ξ,v + · · ·+ ‖∂kξ f‖2ξ,v

)1/2
.

In a similar way Cbξ(L
2
v) is defined by

‖f‖∞,v = sup
ξ∈R
‖f‖v .

Finally, we extend the definition of the norm with weight (1.12) to functions on
R× V , leading to the space (L2

W (L2
v), ‖ · ‖W,v) with norm

‖f‖W,v = ‖fW‖ξ,v .
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For later reference we note that the Cauchy-Schwarz inequality implies

‖ρf‖ξ ≤ ‖f‖ξ,v . (1.28)

A global existence and uniqueness result for the kinetic Cauchy problem is not hard
to prove. We choose a simple setting, where the initial datum is bounded in terms
of the equilibrium distribution.

Theorem 3 (Global existence). Let 0 ≤ f0(x, v) ≤ ρ̂M(v) hold. Then the kinetic
equation (1.5) subject to the initial condition f(t = 0) = f0 has a unique mild
solution f ∈ C([0,∞); L∞(R× V )), satisfying

0 ≤ f(t, x, v) ≤ max{ρ̄, ρ̂}M(v) , ∀ (t, x, v) ∈ [0,∞)× R× V . (1.29)

Proof. The mild formulation of the initial value problem is given by

f(t, x, v) = f0(x− vt/ε, v) +M(v)

(
1

ε2
+ ρ̄

)∫ t

0

ρf (τ, x− vτ/ε)dτ

−
∫ t

0

(
1

ε2
+ ρf (τ, x− vτ/ε)

)
f(τ, x− vτ/ε, v)dτ . (1.30)

For T > 0, we introduce the Banach space

CT = {f ∈ C([0, T ]; L∞(R× V )) : ‖f‖CT <∞} ,

‖f‖CT = sup
(t,x,v)∈[0,T ]×R×V

|f(t, x, v)|
M(v)

.

Using the property |ρf (t, x − vt/ε)| ≤ ‖f‖CT for all (t, x, v) ∈ [0, T ] × R × V , it
is straightforward to uniquely solve (1.30) in CT for small enough T by Picard
iteration. Global existence will follow from (1.29).

The nonnegativity of f is an obvious consequence of the maximum principle for
kinetic equations, after writing (1.5) in the form

ε2∂tf + εv∂xf + f(1 + ε2ρf ) = ρfM(1 + ε2ρ̄) ,

and solving by a fixed point iteration, where ρf is considered as given and nonneg-
ative. The same argument applies to the function h(t, x, v) = max{ρ̄, ρ̂}M(v) −
f(t, x, v), that satisfies

ε2∂th+ εv∂xh+ h(1 + ε2ρf ) = ρhM + ε2ρfM(ρ̂− ρ̄)+ , h(t = 0) ≥ 0 ,

proving h ≥ 0 and, thus, (1.29). �

Lemma 4. Let f1(t, x, v), f2(t, x, v) ≥ 0 be two solutions of (1.5). Let f2(0, x, v) ≤
ρ̄M(v) and f1(0, x, v) ≥ γf2(0, x, v), for all x ∈ R and v ∈ V , with γ ≤ 1. Then
f1(t, x, v) ≥ γf2(t, x, v), for all t ≥ 0, x ∈ R, v ∈ V .

Proof. A simple computation shows that g := f1 − γf2 satisfies

ε2∂tg + εv∂xg + (1 + ε2ρ1)g = ρg(M + ε2(ρ̄M − f2)) + ε2ρ1f2(1− γ) .

Theorem 3 implies that f2 ≤ ρ̄M for all times, such that the coefficient of ρg
is nonnegative. Since also the last term is nonnegative by the assumptions, the
nonnegativity of g for all times follows as in the proof of Theorem 3. �

2. Existence of traveling waves

We prove existence of traveling waves of (1.1) with a given s ≥ s0 for ε� 1. The
proof follows the steps of that in [4], stated in the subsequent sections. Essentially,
we make the expansion in Section 2.1 rigorous, but first produce a residual term
whose zeroth order moment in v vanishes.
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2.1. The asymptotic approximation. We start by defining an asymptotic ap-
proximation of a traveling wave profile. In view of the computation of Section 1.3
we choose

fas(ξ, v) = M(v)uTW (ξ) + εf⊥[uTW ](ξ, v) ,

where uTW is a traveling wave of the Fisher equation (i.e. satisfying (1.2), (1.3)),
made unique by the requirement

uTW (0) =
ρ̄

2
. (2.1)

Recalling the formal expansion (1.27), we set

f⊥[u] = −vMu′ + ε(v2 −D)Mu′′ .

Integration shows that
∫
V
f⊥[u]dv = 0, implying ρas := ρfas = uTW . Clearly, fas

satisfies (1.24) and the equation (1.23) up to the residual

ε3h = ε(v − εs)∂ξfas −Mρas + fas − ε2ρas(Mρ̄− fas)
= ε3(svMu′′TW + (v − εs)(v2 −D)Mu′′′TW + uTW f

⊥[uTW ]) .

It is now not hard to prove that∫
V

h dv = 0, and ‖h‖Hkξ (L2
v) ≤ Ck for any k ∈ N , (2.2)

with ε-independent constants Ck.

2.2. The micro-macro decomposition and the correction term. In terms of
the correction ε2g = fTW − fas, the traveling wave equation reads

ε(v − εs)∂ξg = Lg + ε2Bg + ε4R[g]− εh , (2.3)

where

Bg = ρg(Mρ̄− fas)− ρasg , R[g] = −ρgg .
On the right hand side of (2.3), we have collected the linear collision operator, a
linear term of O(ε2), a nonlinear term of O(ε4), and the residual. By the properties
of fas, a solution g of (2.3) must satisfy the far-field conditions

g(±∞, v) = 0 for all v ∈ V . (2.4)

To prove the existence of such a g, we need some preparation. First, we observe
that integration of (2.3) shows that necessarily

∂ξ

∫
V

(v − εs)g dv = ερg(ρ̄− 2ρas)− ε3ρ2
g . (2.5)

We now decompose g into a macroscopic term (with separated variables), containing
the leading order terms, and a microscopic term of order ε:

g(ξ, v) = Φ(v)z(ξ) + εw(ξ, v) . (2.6)

Here Φ is chosen such that LΦ = −ετ(v−εs)Φ+O(ε2) for some constant τ , leading
to

Φ(v) =

(
1 + ε

s

D + ε2s2
(v − εs)

)
M(v) ,

where the coefficient s/(D + ε2s2) guarantees that∫
V

(v − εs)Φ dv = 0 , (2.7)

and the decomposition of g is unique by requiring∫
V

(v − εs)2w dv = 0 . (2.8)
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Integration also shows that ρΦ = 1− ε2τs and that

D1 :=

∫
V

(v − εs)2Φdv = D
D − ε2s2

D + ε2s2
= D +O(ε2) ,

which is positive for ε small enough. We also observe that, due to (2.7), (2.5) is
equivalent to

∂ξ

∫
V

(v − εs)w dv = ρg(ρ̄− 2ρas)− ε2ρ2
g . (2.9)

The problem we now solve is obtained by substituting (2.6) into (2.3), thus

(v − εs)Φ z′ + ε(v − εs)∂ξw =
1

ε
z LΦ + Lw + εBg + ε3R(g)− h , (2.10)

and, like g, its micro- and macro-components z and w have to satisfy the homoge-
neous far-field conditions

w(±∞, v) ≡ 0 , z(±∞) = 0 . (2.11)

The next step consists of writing (2.10) as a system of two equations; one con-
taining only derivatives of z and the other containing only derivatives of w. This is
achieved by applying the right macroscopic and microscopic projections. Applying

Pf :=

∫
V

(v − εs)f dv (2.12)

to (2.10) we obtain, by (2.8),

D1z
′ + sρΦz = PLw + εPBg + ε3PR(g)− Ph . (2.13)

We differentiate (2.13) and use the moment relation (2.9). After multiplying the re-
sulting equation by D/D1 = 1+O(ε2) and collecting the small linear and nonlinear
terms on the right hand side we arrive at

Dz′′ + sz′ + z(ρ̄− 2ρas) = εBz(z, z′, w, ∂ξw) + ε2Rz(g, ∂ξg)− h̃ , (2.14)

where

Bz(z, z′, w, ∂ξw) =
D

D1
[−ρw(ρ̄− 2ρas)− sρ′w + ∂ξPBg]

+
1

ε

(
1− D

D1
ρΦ

)
(sz′ + z(ρ̄− 2ρas)) ,

Rz(g, ∂ξg) =
D

D1

[
ρ2
g + ε∂ξPR(g)

]
, h̃ = − D

D1
∂ξPh .

The right hand side of (2.14) is the linearization of the Fisher equation at ρas.
The microscopic projection

Πf := f − (v − εs)Φ
D1

Pf (2.15)

has the properties Π(v− εs)Φ = 0 and Π(v− εs)w = (v− εs)w, by (2.8). Applying
Π to (2.10) we get the following equation for w:

ε(v− εs)∂ξw−Lw =
(v − εs)Φ

D1

∫
V

vw dv+ εΛ z + εΠBg+ ε3ΠR(g)−Πh , (2.16)

where

Λ :=
1

ε2
ΠLΦ = s2 v2 −D

D2 − ε4s4
M = O(1) .

Since the symmetric operator L is only negative semidefinite, we introduce a new
symmetric operator M, which is strictly negative and coincides with L on the set
of functions w satisfying (2.8) (this idea is borrowed from [2]):

Mw := Lw − (v − εs)2M

∫
V

(v − εs)2w dv .



KINETIC TRANSPORT MODEL FOR KPP-FISHER EQUATION 11

Lemma 5. The operator M is symmetric and negative definite with respect to
〈·, ·〉v. There exists a constant σ > 0, such that

−〈Mw,w〉v ≥ σ‖w‖2v for all w ∈ L2
v . (2.17)

The proof is analogous to that in [4] and we do not repeat it here.
We now replace L in (2.16) by the operator M:

ε(v − εs)∂ξw −Mw =
(v − εs)Φ

D1

∫
V

vw dv + εΛ z + εΠBg + ε3ΠRg −Πh. (2.18)

The equivalence to the original problem is not obvious:

Lemma 6. The function g = Φz + εw is a solution of (2.3), (2.4) if and only if z
and w solve (2.14), (2.18) subject to (2.11).

Proof. We follow the proofs in [2] and [4]. The problem (2.14), (2.18) (2.11) has
been derived from (2.3), (2.4) using the properties (2.9), (2.8) of solutions of the
latter. In particular (2.8) is not a necessary condition for existence. Hence we
have to check that (2.8) also holds for solutions of (2.14), (2.18), (2.11), without
requiring it as a side condition. Using∫

V

Πf dv =

∫
V

f dv,

∫
V

(v − εs)Πf dv = 0 ,

integration of (2.18) implies

ε∂ξ

∫
V

(v − εs)w dv = −(D + ε2s2)

∫
V

(v − εs)2w dv + ε(ρg(ρ̄− 2ρas)− ε2ρ2
g) ,

ε∂ξ

∫
V

(v − εs)2w dv = 2εsD

∫
V

(v − εs)2w dv .

The second equation is a linear ODE with constant coefficients for the unknown∫
V

(v − εs)2w dv. Since w(±∞, v) = 0, the only possible solution is∫
V

(v − εs)2w dv = 0 .

Knowing this and returning to the first differential equation we also recover (2.9).
�

We now eliminate the first term on the right hand side in (2.18) by substituting
(2.13):

ε(v − εs)∂ξw −Mw = A(z, z′) + εBg + ε3Rg − h , (2.19)

where

A(z, z′) = − (v − εs)Φ
D1

(D1z
′ + sρΦz) + εΛ z .

Thus we have arrived at our final differential problem (2.14), (2.19), subject to
(2.11). In the following sections we show solvability via a fix-point argument.

2.3. The Linear Problem. We first analyze the leading order system of (2.14),
(2.19), where the given inhomogeneity contains the higher order terms. In partic-
ular, we prove the solvability of

Dz′′ + sz′ + z(ρ̄− 2ρas) = hz , with hz ∈ H1
ξ , (2.20)

ε(v − εs)∂ξw −Mw = A(z, z′) + hw , with hw ∈ H2
ξ (L2

v) . (2.21)

We shall look for solutions in the same spaces as the inhomogeneities. This replaces
the homogeneous far-field conditions, and provides uniqueness for the solution of
(2.21). This requirement allows, however, a one-parameter set of solutions of (2.20).
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This reflects the arbitrary shift in the wave and uniqueness will be guaranteed by
posing also an initial condition,

z(0) = z0 , z0 ∈ R . (2.22)

For (2.20) we obtain

Lemma 7. Let hz ∈ Hk
ξ , k ≥ 0. Then the problem (2.20), (2.22) with s ≥ s0

possesses a unique solution z ∈ Hk+2
ξ , satisfying (with C > 0 independent from z0

and hz)
‖z‖Hk+2

ξ
≤ C(|z0|+ ‖hz‖Hkξ ) .

Proof. Since (2.20) is the linearization of (2.1) at its solution ρas, the derivative ρ′as
is a solution of the homogeneous equation. The standard order reduction procedure
then allows to rewrite (2.20) as the first order system

z′ =
ρ′′as
ρ′as

z + z1 , z′1 = −
(
s

D
+
ρ′′as
ρ′as

)
z1 +

hz
D
. (2.23)

Starting with the second equation, (2.1), ρ′as < 0, and 0 < ρas < ρ̄ imply

−
(
s

D
+
ρ′′as
ρ′as

)
=
ρas(ρ̄− ρas)

Dρ′as
< 0 .

Since, by the asymptotic behavior of ρas, this coefficient converges to negative
values as ξ → ±∞, the stronger statement

−
(
s

D
+
ρ′′as
ρ′as

)
≤ −γ < 0 ,

holds. By standard ODE methods, a unique decaying solution z1 of the second
equation in (2.23) exists for decaying hz (using the ’boundary condition’ z1(−∞) =
0). It can be estimated by testing the equation with z1, giving

‖z1‖ξ ≤
1

γD
‖hz‖ξ .

Turning to the first equation in (2.23), we observe that

lim
ξ→∞

ρ′′as(ξ)

ρ′as(ξ)
< 0 , lim

ξ→−∞

ρ′′as(ξ)

ρ′as(ξ)
> 0 .

This is the situation covered in Lemma 3.5 of [4], implying the existence of a unique
solution satisfying

‖z‖ξ ≤ C ′(|z0|+ ‖z1‖ξ) ≤ C ′
(
|z0|+

1

γD
‖hz‖ξ

)
.

Testing (2.20) with z and with z′′ we obtain estimates for the first and second
derivatives, implying ‖z‖H2

ξ
≤ C(|z0| + ‖hz‖L2

ξ
). Finally, the same procedure can

be applied to differentiated versions of (2.20), completing the proof. �

We remark that the previous proof makes use of the positivity and strict mono-
tonicity of ρas. The assumption s ≥ s0 is therefore crucial.

Now A(z, z′) can be considered as a given inhomogeneity in (2.21), and the
following result from [4] can be used:

Proposition 8. Let h̃w ∈ Hk
ξ (L2

v), k ≥ 0. Then there exists a unique solution

w ∈ Hk
ξ (L2

v) of

ε(v − εs)∂ξw −Mw = h̃w ,

satisfying

‖w‖Hkξ (L2
v) ≤

1

σ
‖h̃w‖Hkξ (L2

v) ,
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with σ as in Lemma 5.

Sketch of the proof. Uniqueness and the stability estimate are obtained by testing
the equation with w and the k-th derivative of the equation with ∂kξw. Existence can
be proven in several ways, one of which is the approximation by a discrete velocity
system with a finite number of discrete velocities. This reduces the problem to an
ODE system. Care has to be taken in order not to destroy the definiteness of M
by the approximation. �

The final result on the linear problem can now be easily proven.

Lemma 9. Let hz ∈ Hk
ξ and hw ∈ H l

ξ(L
2
v), then there exists a unique solution

(z, w) ∈ Hk+2
ξ ×Hm

ξ (L2
v), m = min{k + 1, l}, of (2.20), (2.21), (2.22), satisfying

‖z‖Hk+2
ξ (L2

v) ≤ C(|z0|+‖hz‖Hkξ ) , ‖w‖Hmξ (L2
v) ≤ C(|z0|+‖hz‖Hkξ +‖hw‖Hlξ(L2

v)) .

Proof. The only thing left to note is the estimate

‖A(z, z′)‖Hk+1
ξ (L2

v) ≤ ‖z‖Hk+2
ξ

,

whose proof is straightforward by the definition of A. �

2.4. The Nonlinear Problem. In this section we prove existence and uniqueness
of solutions of the nonlinear problem (2.19), (2.14), subject to z(0) = z0, in the
spacesH3

ξ andH2
ξ (L2

v), respectively. After the preparations in the previous sections,
the proof is a straightforward contraction argument. We need, however, estimates
for the right hand sides of (2.19) and (2.14). In the following, C denotes (possibly
different) ε-independent constants.

Lemma 10. (i) The linear terms B and Bz satisfy the estimate

‖B(Φz + εw)‖H2
ξ (L2

v) + ‖Bz(z, z′, w, ∂ξw)‖H1
ξ
≤ C(‖z‖H2

ξ
+ ‖w‖H2

ξ (L2
v)) .

(ii) The nonlinearities R and Rz are quadratic: Let g1, g2 ∈ H2
ξ (L2

v), then

‖R(g1)−R(g2)‖H2
ξ (L2

v) + ‖Rz(g1, ∂ξg1)−Rz(g2, ∂ξg2)‖H1
ξ

≤ C
(
‖g1‖H2

ξ (L2
v) + ‖g2‖H2

ξ (L2
v)

)
‖g1 − g2‖H2

ξ (L2
v) .

Proof. The proof is straightforward. All that is needed for (ii) is the one-dimensional
Sobolev embedding H1

ξ ⊂ Cbξ and (1.28). �

According to the spaces of the solutions and inhomogeneities of the linear prob-
lem we define the norm

‖(z, w)‖ := ‖z‖H3
ξ

+ ε‖w‖H2
ξ (L2

v) (2.24)

Clearly, ‖g‖H2
ξ (L2

v) is bounded from above by ‖(z, w)‖.
Before stating the existence result for traveling waves we note that in terms of

the original unknown fTW = fas + ε2g, the condition z(0) = z0 reads∫
V

(v − εs)2(fTW (0, v)− fas(0, v))dv = ε2D1z0 . (2.25)

Theorem 11. Let the wave speed satisfy s ≥ s0. For every z0 ∈ R and for ε small
enough, there exists a solution fTW of (1.23) satisfying (2.25), which is unique in
a ball {f : ‖f − fas‖ ≤ δ}, where the radius δ can be chosen independently from ε.
It satisfies

‖fTW − fas‖H2
ξ (L2

v) = O(ε2) ,

or, more precisely,

fTW = fas + ε2Φz+ ε3w = MuTW − εvMu′TW + ε2(v2 −D)Mu′′TW + ε2Φz+ ε3w ,
(2.26)
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where uTW satisfies (1.2), (1.3) with (2.1), and ‖z‖H3
ξ

and ‖w‖H2
ξ (L2

v) are uniformly

bounded as ε→ 0.

Proof. Let ε be small enough. Then as a consequence of Lemma 10 (i), the solv-
ability results for the above linear problem (2.20), (2.21) can be extended to the
full linear problem

Dz′′ + sz′ + z(ρ̄− 2ρ) = εBz(z, z′, w, ∂ξw) + hz ,

ε(v − εs)∂ξw −Mw = A(z, z′) + εB(z, w) + hw ,

with inhomogeneities hz, hw and z(0) = z0. Applying the solution operator to the
nonlinear problem (2.14), (2.19), we obtain a fixed point problem (z, w) = G(z, w),
where the fix point operator is bounded by

‖G(z, w)‖ ≤ C0(1 + ε2‖(z, w)‖2) .

The constant C0 bounds the initial condition and the residual terms, and the non-
linear terms are of order ε2. We see that for ε small enough, G maps both the ball
with radius 2C0 and the ball with radius 1/(2ε2C0) into themselves. Also, with the
property of the nonlinearity, the fixed point operator G is a contraction on a ball
with radius of order O(ε−2).

We can conclude that for ε small enough, the fixed point problem has a solution
(z, w) with ‖(z, w)‖ ≤ 2C0, which is unique in a ball with an O(ε−2)-radius. Know-
ing this and returning to the fixed point problem, the boundedness of ‖w‖H2

ξ (L2
v)

follows. �

We remark that the contraction argument above could also be carried out in
Hk
ξ (L2

v) for any k ∈ N, by using Lemma 9, so the existence result also holds in

Hk
ξ (L2

v) for k ∈ N.

3. Dynamic stability of traveling waves

In this section we prove the local asymptotic stability of traveling waves with
speed s > s0. For this purpose it is necessary to make the assumption

H1. The set of velocities V is bounded, and we let vmax := supv∈V |v|.
As for the macroscopic equation in Section 1.2, we restrict our attention to nonnega-
tive solutions. This can be done by taking nonnegative initial data, since Theorem 3
guarantees the nonnegativity of the solution.

In the traveling wave variable (1.5) becomes

ε2∂tf + ε(v − εs)∂ξf = Mρf − f + ε2ρf (Mρ̄− f) . (3.1)

The traveling wave fTW (ξ, v) constructed in Theorem 11 becomes a stationary
solution. We choose z0 in (2.22) such that the shift of ρTW is fixed to

ρTW (0) =
3

4
ρ̄ . (3.2)

The initial datum G0(v, ξ) of the perturbation

G(t, v, ξ) = f(t, v, ξ)− fTW (v, ξ) , ρ(t, ξ) := ρG(t, ξ) ,

is assumed to satisfy G0 + fTW ≥ 0 guaranteeing G(t, ·, ·) + fTW ≥ 0 for all t ≥ 0
and, in particular, ρ+ ρTW ≥ 0. Then G satisfies

ε2∂tG+ ε(v − εs)∂ξG = Mρ−G+ ε2(Mρρ̄− (ρTW + ρ)G− ρ fTW ) . (3.3)

Before proceeding with the energy estimates we apply a micro-macro decomposition
to G as follows

G = Mρ+ εg , i.e.

∫
V

g dv = 0 , implying ‖G‖2v = ρ2 + ε2‖g‖2v . (3.4)
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Using (3.4), the scalar product of (3.3) with G gives

1

2

d

dt
‖G‖2ξ,v + ‖g‖2ξ,v +

∫
R

(2ρTW + ρ− ρ̄)ρ2dξ + ε2

∫
R

(ρTW + ρ)‖g‖2vdξ

= −ε
∫
R
ρ〈fTW , g〉vdξ ≤ ε2C(‖ρ‖2ξ + ‖g‖2ξ,v) ,

(3.5)

with an ε-independent constant C, here we have used fTW = MρTW + O(ε). As
in the purely macroscopic case, the integrand of the third term of (3.5) is negative
as ξ → +∞, and we shall control it by combining (3.5) with an estimate on L2

W,v.

We rewrite (3.3) in terms of GW ,

∂t(GW ) +
1

ε
(v − εs)∂ξ(GW )− 1

ε

s

2D
(v − εs)GW

= −1

ε
gW + (Mρ̄ρ− (ρTW + ρ)G− ρfTW )W ,

and perform the scalar product with GW , which gives the estimate

1

2

d

dt
‖G‖2W,v + ‖g‖2W,v +

∫
R

(κ+ 2ρTW + ρ) (ρW )2dξ + ε2

∫
R

(ρTW + ρ)W 2‖g‖2vdξ

≤ − s2

4D
‖ρ‖2W +

s

D

∫
R
ρW 2

∫
V

vg dv dξ + ε
s

2D

∫
R
〈(v − εs)g, g〉2vW 2dξ

−ε
∫
R
ρ〈fTW , g〉vW 2dξ

≤ κ

2
‖ρ‖2W +

s2

s2 + 2Dκ
‖g‖2W,v + ε

s

2D
vmax‖g‖2W,v + ε2C(‖ρ‖2W + ‖g‖2W,v) . (3.6)

In the last inequality we have used (3.4), the Young inequality and
(∫
V
vg dv

)2 ≤
D‖g‖2v and also that κ > 0 and H1.

We take α > 0 such that (1.19) holds, with ρTW replaced by ρas = uTW . Using
that there is a constant C̄ for which

ρTW (ξ) ≥ ρas(ξ)− ε2C̄ for ξ ∈ R

(by the representation (2.26) in Theorem 3) then

α
W 2(ξ)

2
(ρTW (ξ) + ε2C̄)− ρ̄ ≥ ρ̄

16
for ξ ≥ 0 . (3.7)

We now combine (3.5) and (3.6). Here we apply the obvious simplification to (3.6)
and let

γ := 1− s2/(s2 + 2Dκ) > 0 .

We also rearrange the macroscopic terms conveniently to show how they are con-
trolled below:

1

2

d

dt
(‖G‖2ξ,v + α‖G‖2W,v) + (1− ε2C)‖g‖2ξ,v + α (γ − εC) ‖g‖2W,v

+

∫
R

(
3ρTW

2
+ ρ− ρ̄− ε2C

)
ρ2dξ +

α

2

∫
R
ρTW (ρW )2dξ (3.8)

+
1

2

∫
R
ρTW (1 + αW 2)ρ2dξ + α

∫
R

(κ
2
− ε2C + (ρTW + ρ)

)
(ρW )2dξ

+ε2

∫
R

(ρTW + ρ)‖g‖2v(1 + αW 2)dξ ≤ 0 .

As in section 1.2, the sixth term will be needed to control terms coming from the
estimates on the derivatives of G and GW .
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Using (1.15) we obtain∫ 0

−∞

(
3ρTW

2
− ρ̄+ ρ− ε2C

)
ρ2dξ ≥

( ρ̄
8
− ε2C − ‖ρ‖∞

)∫ 0

−∞
ρ2dξ . (3.9)

Moreover, by (3.7),∫ ∞
0

(α
2
ρTWW

2 − ρ̄− ε2C
)
ρ2dξ ≥

( ρ̄
16
− ε2C

)∫ ∞
0

ρ2dξ − αε2C̄

∫ ∞
0

(ρW )2dξ .

(3.10)
We state the final estimate in the next lemma.

Lemma 12. Let H1 hold, let ε > 0 be small enough, and let fTW be a traveling
wave as constructed in Theorem 11. Let G be a solution of (3.3) for initial data G0

with G0 + fTW ≥ 0. Let α > 0 satisfy (3.7). Then there exists C > 0 independent
of ε such that

1

2

d

dt
(‖G‖2ξ,v + α‖G‖2W,v) + (1− ε2C)‖g‖2ξ,v + α (γ − εC) ‖g‖2W,v

+
( ρ̄

8
− ε2C − ‖ρ‖∞

)∫ 0

−∞
ρ2dξ +

( ρ̄
16
− ε2C

)∫ ∞
0

ρ2dξ

+
1

2

∫
R
ρ2ρTW (1 + αW 2)dξ + α

∫
R

(κ
2
− ε2C + (ρTW + ρ)

)
(ρW )2dξ

+ε2

∫
R

(ρTW + ρ)‖g‖2v(1 + αW 2)dξ ≤ 0 .

For controlling the nonlinearity we have to bound ρ in L∞(R). By Sobolev
embedding this can be done by controlling the H1(R)-norm. Thus we also derive
estimates for the derivative in a similar procedure as above and denote

H = ∂ξG , r = ∂ξρ , h = ∂ξg .

We start by differentiating (3.3):

∂tH+
1

ε
(v−εs)∂ξH = −1

ε
h+Mρ̄r− (ρTW +ρ)H−fTW r− (ρ′TW +r)G−ρ∂ξfTW ,

(3.11)
yielding the estimate

1

2

d

dt
‖H‖2ξ,v + ‖h‖2ξ,v +

∫
R

(2(ρTW + ρ)− ρ̄)r2dξ + ε2

∫
R

(ρTW + ρ)‖h‖2vdξ

=

∫
R
ρ′′TW ρ

2dξ − ε2

∫
R
(ρ′TW + r)〈g, h〉vdξ − ε

∫
R
〈fTW , h〉vrdξ

−ε
∫
R
〈∂ξfTW , h〉vρdξ (3.12)

≤ s2

2D2

∫
R
ρTW ρ

2dξ + ε2C
(
‖ρ‖2H1

ξ
+ ‖g‖2H1

ξ (L2
v)

)
+ ε2‖g‖∞,v

(
‖r‖2ξ + ‖h‖2ξ,v

)
.

Here we have used the Cauchy-Schwarz inequality, fTW = MρTW +O(ε), and the
fact that ρTW −ρas = O(ε2), implying Dρ′′TW = −sρ′TW −ρTW (ρ̄−ρTW )+O(ε2) ≤
s2

2DρTW +O(ε2), see (1.6). We now write (3.11) in terms of HW ,

∂t(HW ) +
1

ε
(v − εs)∂ξ(HW )− 1

ε

s

2D
(v − εs)HW +

1

ε
hW

= (Mρ̄r − (ρTW + ρ)H − fTW r − (ρ′TW + r)G− ρ∂ξfTW )W ,
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and compute the scalar product with HW . Treating the terms on the right hand
side similarly to (3.12) and the transport terms analogously to (3.5), we obtain

1

2

d

dt
‖H‖2W,v +

(
γ − ε s

2D
vmax

)
‖h‖2W,v +

∫
R

(κ
2

+ 2(ρTW + ρ)
)

(rW )2dξ

+ε2

∫
R

(ρTW + ρ)‖h‖2vW 2dξ

≤ ε2C
(
‖ρ‖2H1

W
+ ‖g‖2H1

W (L2
v)

)
+ ε2‖g‖∞,v

(
‖r‖2W + ‖h‖2W,v

)
,

where we have also used

−2

∫
ρ′TW ρ rW

2dx =

∫
(ρ′′TW +

s

D
ρ′TW )ρ2W 2dξ ≤ ε2C‖ρ‖2W

since Dρ′′TW + sρ′TW = −uTW (ρ̄ − uTW ) + O(ε2) ≤ Cε2. We state the combined
estimate for H and HW in a lemma.

Lemma 13. Let the assumptions of Lemma 12 hold and let α > 0. Then

1

2

d

dt

(
‖H‖2ξ,v + α‖H‖2W,v

)
+
(
1− ε2(C + ‖g‖∞,v)

)
‖h‖2ξ,v

+α (γ − ε(C + ε‖g‖∞,v)) ‖h‖2W,v + ε2

∫
R

(ρTW + ρ)‖h‖2v
(
1 + αW 2

)
dξ

+2

∫
R
(ρTW + ρ)r2

(
1 + αW 2

)
dξ −

(
ρ̄+ ε2(C + ‖g‖∞,v

)
‖r‖2ξ

+α
(κ

2
− ε2(C + ‖g‖∞,v)

)
‖r‖2W

≤ s2

2D2

∫
R
ρTW ρ

2dξ + ε2C
(
‖ρ‖2ξ,v + α‖ρ‖2W,v + ‖g‖2ξ,v + α‖g‖2W,v

)
.

We still need to control −ρ̄‖r‖2ξ . In the purely macroscopic case we used the
diffusion to control this term, but this is not directly available from the transport
term in the kinetic equation. One can now proceed in two different ways. For the
shortest way one can use the positivity of κ instead. This would however result in
requiring that the perturbation is initially bounded by a multiple of κ, which is very
restrictive for κ small. We rather perform a Chapman-Enskog approximation from
which we can recover the diffusion term in the macroscopic part of the equation.

We split (3.3) into two equations that are, to leading order, an equation for ρ
and the other for g. Integrating (3.3) we obtain

∂tρ− sr + (2ρTW + ρ− ρ̄)ρ = −
∫
V

vh dv . (3.13)

Applying −L to (3.3) gives the equation for g:

ε2∂tg + vMr − εM
∫
V

vh dv + ε(v − εs)h+ g = ερLfTW − ε2(ρTW + ρ)g .

We compute

−
∫
V

vh dv = D∂ξr + ε2∂t

∫
V

vh dv + ε∂ξS[g] ,

where we denote

S[g] :=

∫
V

v(v − εs)h dv + ε

(
ρ

ε

∫
V

vfTW dv + (ρTW + ρ)

∫
V

vg dv

)
.

In the macroscopic equation we now recover the diffusion:

∂tρ−D∂ξr − sr + (2ρTW + ρ− ρ̄)ρ = ε2∂t

∫
V

vh dv + ε∂ξS[g] . (3.14)
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Testing this equation with ρ gives

1

2

d

dt
‖ρ‖2ξ +D‖r‖2ξ +

∫
R

(2ρTW + ρ− ρ̄)ρ2dξ = ε2 d

dt

∫
R
ρ

∫
V

vh dvdξ

−ε2

∫
R

(
sr − (2ρTW + ρ− ρ̄)ρ−

∫
V

vh dv

)∫
V

vh dv dξ − ε
∫
R
S[g]rdξ ,

(3.15)

where we have substituted the expression for ∂tρ given by according to (3.13) and
integrated by parts to obtain the first term on the right hand side. Applying the
Young inequality we get

d

dt

(
1

2
‖ρ‖2ξ − ε2

∫
R
ρ

∫
V

vh dv dξ

)
+D‖r‖2ξ +

∫
R

(2ρTW + ρ− ρ̄)ρ2dξ

≤ D

4
‖r‖2ξ + ε2C

(
‖g‖2H1

ξ (L2
v) + ‖ρ‖2H1

ξ

)
+ε

∫
R
(ρTW + ρ)

(
ρ2 + r2 + ε2C(‖g‖2v + ‖h‖2v)

)
dξ .

As before we rewrite (3.14) in terms of ρW :

∂t(ρW )−D∂2
ξ (ρW ) + (κ+ 2ρTW + ρ)ρW = ε2∂t

∫
V

vhW dv + ε∂ξS[g]W .

And the scalar product with ρW gives

d

dt

(
1

2
‖ρ‖2W − ε2

∫
R
ρW 2

∫
V

vh dv dξ

)
+

3D

4
‖∂ξ(ρW )‖2ξ

+

∫
R

(κ+ 2ρTW + ρ)(ρW )2dξ

≤ εC(‖h‖2W,v + ‖ρ‖2W ) + ε2C
(
‖g‖2H1

W (L2
v) + ‖ρ‖2H1

W

)
+ε

∫
R

(ρTW + ρ)
(
ρ2 + r2 + ε2C(‖g‖2v + ‖h‖2v)

)
W 2dξ .

(3.16)

We combine (3.16) and (3.16), treating the macroscopic part as in (3.9), (3.10), and
obtain the following Lemma.

Lemma 14. Let the assumptions of Lemma 12 hold, let α satisfy (3.7), and let ε
be small. Then

d

dt
I +

(
3D

4
− ε2C

)
(‖r‖2ξ + α‖∂ξ(ρW )‖2ξ) +

( ρ̄
8
− εC − ‖ρ‖∞

)∫ 0

−∞
ρ2dξ

+
( ρ̄

16
− εC

)∫ ∞
0

ρ2dξ + α(κ− εC)‖ρ‖2W

≤ εC‖h‖2W,v + ε2C
(
‖g‖2H1

ξ (L2
v) + α‖g‖2H1

ξ (L2
v)

)
+ε

∫
R
(ρTW + ρ)

(
r2 + ε2C

(
‖g‖2v + ‖h‖2v

))
(1 + αW 2)dξ ,

where

I =
1

2

(
‖ρ‖2ξ + α‖ρ‖2W − 2ε2

∫
R
ρ(1 + αW 2)

∫
V

vhdv dξ

)
.

We are now ready to prove the main result of this section.

Theorem 15. Let H1 hold, let fTW be the traveling wave from Theorem 11 with
speed s > s0 made unique by (3.2), and let ε be small. Let f0(v, ξ) satisfy

0 ≤ f0 ≤ ρ̂M , and ‖f0 − fTW ‖H1
ξ (L2

v) + ‖f0 − fTW ‖H1
W (L2

v) ≤ δ ,

for a δ > 0 small enough, but independently of ε, and ρ̂ > 0.
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Then the solution of (3.1) with initial datum f0 satisfies

‖f − fTW ‖2H1
ξ (L2

v)(t) + ‖f − fTW ‖2H1
W (L2

v)(t)

≤ Ce−λt(‖f0 − fTW ‖2H1
ξ (L2

v) + ‖f0 − fTW ‖2H1
W (L2

v)) ,

with an exponential decay rate λ > 0.

Proof. Applying a standard contraction argument, one can show the well posedness
of (3.3) in H1

ξ (L2
v) ∩ H1

W (L2
v) for initial data G0 ∈ H1

ξ (L2
v) ∩ H1

W (L2
v). Hence it

only remains to derive the a priori estimate.
We construct a Lyapunov functional by combining the above estimates. We

introduce

J(t) = I(t) +
1

2

(
‖G‖2ξ,v + α‖G‖2W,v + β(‖H‖2ξ,v + α‖H‖2W,v)

)
,

where β > 0 is determined below and α > 0 satisfies (3.7). The functional J is
bounded from above and below by

α∗

(
‖G‖2H1

ξ (L2
v) + ‖G‖2H1

W (L2
v)

)
≤ J ≤ α∗

(
‖G‖2H1

ξ (L2
v) + ‖G‖2H1

W (L2
v)

)
,

where α∗, α
∗ > 0 are independent of κ and ε, if the same is true for β. For ε small

enough, the estimate for J reads

d

dt
J + 2

( ρ̄
16
− ‖ρ‖∞

)∫ 0

−∞
ρ2dξ +

ρ̄

16

∫ ∞
0

ρ2dξ +
ακ

4
‖ρ‖2W

+

(
1

2
− β s2

2D2

)∫
R
ρTW ρ

2(1 + αW 2)dξ +

(
D

2
− βρ̄− ε2β‖g‖∞,v

)
‖r‖2ξ

+αβ
(κ

4
− ε2‖g‖∞,v

)
‖r‖2W +

1

2
‖g‖2ξ,v + α

γ

2
‖g‖2W,v

+

(
β

2
− ε2‖g‖∞,v

)
‖h‖2ξ,v + αβ

(γ
2
− ε2‖g‖∞,v

)
‖h‖2W,v ≤ 0 .

We choose β = min{D4ρ̄ ,
D2

2s2 }. By the Sobolev embedding

‖G‖∞,v ≤ ‖G‖H1
ξ (L2

v) ≤
√

J

α∗
,

such that in particular ‖ρ‖∞ and ε‖g‖∞,v are bounded by
√
J/α∗. We now denote

L =
√
J(0)/α∗ and let the initial data be small enough such that

L <
ρ̄

16
,

which in particular implies εL < min{κ/4, β/2, γ/2, D/(4β)} for ε small enough.
Then all coefficients above are positive initially and therefore J is decreasing at
t = 0. Since in turn J controls the coefficients, the functional J decreases for all
times. This in particular means that there exists a constant λ > 0 such that

d

dt
J ≤ −λJ ,

and we get the exponential decay of J , which is equivalent to ‖G‖2
H1
ξ (L2

v)
+‖G‖2

H1
W (L2

v)
.

�
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Appendix. The comparison principle approach to stability

Assuming additionally that the macroscopic density of the traveling wave profile
remains between the far-field values 0 and ρ̄ (which we know only up to error terms
of order O(ε2)), we can derive a comparison argument also for the kinetic profile,
based on ideas of Golse [6].

Lemma 16. Let fTW be a traveling wave solution of (1.23) constructed in Theo-
rem 11 and let us assume additionally that 0 ≤ ρTW ≤ ρ̄. The fTW satisfies the
maximum principle

0 ≤ fTW (ξ, v) ≤M(v)ρ̄ , for all (ξ, v) ∈ R× V .

Proof. We rearrange terms in (1.23) and write it as

ε(v − εs)∂ξfTW + (1 + ε2ρTW )fTW = (1 + ε2ρ̄)MρTW ≥ 0 .

We also observe that if we set f̄ = Mρ̄− fTW , then f̄ satisfies

ε(v − εs)∂ξ f̄ + (1 + ε2ρTW )f̄ = M(ρ̄− ρTW ) ≥ 0 .

Thus, we only need to prove that for a given g, continuous in ξ, such that g →Mρ±
as x→ ±∞ at an exponential rate, for constants ρ± ≥ 0, then the inequality

ε(v − εs)∂ξg + (1 + ε2ρTW )g ≥ 0 (A.1)

implies g ≥ 0, where ρTW is the macroscopic profile of a given traveling wave fTW .
The key to prove this is to rewrite (A.1) as

ε(v − εs)e
(
−ξ−ε2

∫ ξ
ξ0
ρTW (y) dy

)
/(ε(v−εs))

∂ξ

(
e

(
ξ+ε2

∫ ξ
ξ0
ρTW (y) dy

)
/(ε(v−εs))

g

)
≥ 0

for a ξ0 ∈ R. Then the function

ξ → e

(
ξ+ε2

∫ ξ
ξ0
ρTW (y) dy

)
/(ε(v−εs))

g

is nondecreasing when v− εs > 0 and nonincreasing when v− εs < 0. Now, taking
any sequence {ξn}n such that ξn → −∞ as n→∞, when v − εs > 0, implies that
for all ξ > ξn,

e

(
ξ+ε2

∫ ξ
ξ0
ρTW (y) dy

)
/(ε(v−εs))

g(ξ, v) ≥ e
(
ξn+ε2

∫ ξn
ξ0

ρTW (y) dy
)
/(ε(v−εs))

g(ξn, v)→ 0

as n → ∞. Taking sequences ξn → ∞ when v − εs < 0, gives that g(ξ, v) ≥ 0 for
all ξ < ξn, and the result follows. �

We indicate how a comparison principle can be used to control ‖ρ‖∞, where ρ is
the perturbation about a traveling wave solution, in the integral estimates for both
(1.1) and (1.5). This avoids getting estimates on the derivatives of the perturbation,
simplifying the analysis for this particular model.

Lemma 17. Let fTW be a traveling wave solution of (1.23) as in Lemma 16 and
let G satisfy (3.3). We assume for the initial data G0 that

0 ≤ fTW (ξ, v) +G0(ξ, v) and 0 ≤ fTW (ξ, v) + cG0(ξ, v)

for a c ∈ R. Then

0 ≤ fTW (ξ, v) + cG(t, ξ, v) for all t ≥ 0.
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Proof. Let h = fTW + cG, then

ε2∂th+ (v − εs)∂ξh = Mρh − h+ ε2(Mρ̄ρh − fTW ρh − cG(ρTW + ρ)).

The terms can be rearranged such that

ε2∂th+ (v − εs)∂ξh+ (1 + ε2(ρTW + ρ))h

= Mρh + ε2(ρh(Mρ̄− fTW ) + fTW (ρTW + ρ)) ≥ 0 if ρh ≥ 0 ,

where we have used Lemma 16 and Theorem 3 to obtain fTW + G ≥ 0 for all
t ≥ 0. Solving this equation by a fixed-point iteration gives the desired result
0 ≤ h = fTW + cG for all t ≥ 0. �.

In particular for c = 2 we obtain

0 ≤ ρTW
2

+ ρ, if 0 ≤ fTW
2

+G0. (A.2)

The corresponding comparison argument also holds for the purely macroscopic case.

Lemma 18. Let ρTW be a traveling wave solution of the KPP-Fisher equation
(1.2) and let ρ satisfy (1.11). We assume for the initial data ρ0 that it is bounded
and satisfies

0 ≤ ρTW (ξ) + ρ0(ξ) and 0 ≤ ρTW (ξ) + c ρ0(ξ)

for a c ∈ R. Then
0 ≤ ρTW (ξ) + c ρ(t, ξ) for all t ≥ 0.

Proof. Let, as above, ρh = ρTW + c ρ, then

∂tρh −D∂2
xρh + a(x, t)ρh ≥ 0,

where a(x, t) = 2ρTW + ρ − ρ̄. Here we have used ρTW + ρ ≥ 0. The function a
is bounded from below, and by standard arguments (see e.g. [9]) we can deduce
ρh ≥ 0. �

Let us now briefly discuss the integral estimates that give asymptotic stability. We
start with the estimates for (1.1) and proceed as in Section 1.2. We derive the
estimate in L2 ∩ L2

W , without extracting the third term in (1.18), which reads

1

2

d

dt

(
‖ρ‖2ξ + α‖ρ‖2W

)
+D

(
‖∂ξρ‖2ξ + α‖∂ξ(ρW )‖2ξ

)
+α

∫
R
(κ+ ρTW + ρ)(ρW )2 dξ + α

∫
R
ρTW (ρW )2 dξ +

∫
R

(2ρTW + ρ− ρ̄)ρ2 dξ = 0 .

Assuming ρTW + 2ρ0 ≥ 0, Lemma 18 and (1.15) imply

2ρTW + ρ− ρ̄ ≥ ρ̄

8
on (−∞, 0] , (A.3)

One then chooses α > 0 such that αW 2ρTW − ρ̄ > 0 on [0,+∞), and asymptotic
stability can be deduced without estimating the derivatives.

We now argue for the kinetic equation (1.5). We follow the steps of Section 3 to
conclude with the following (combined) estimate for a perturbation in L2

ξ,v ∩L2
W,v,

again, without extracting the sixth term in (3.8),

1

2

d

dt
(‖G‖2ξ,v + α‖G‖2W,v) + (1− ε2C)‖g‖2ξ,v + α (γ − εC) ‖g‖2W,v

+

∫
R

(
2ρφ + ρ− ρ̄− ε2C

)
ρ2dξ +

α

2

∫
R
ρφ(ρW )2dξ

+α

∫
R

(κ
2
− ε2C + (ρTW + ρ)

)
(ρW )2dξ ≤ 0 .

Assuming fTW + 2G0 ≥ 0 and again 0 ≤ ρTW ≤ ρ̄, we obtain (A.3) also for
the macroscopic densities of the kinetic profile and perturbation. Now asymptotic



22 CARLOTA M. CUESTA, SABINE HITTMEIR AND CHRISTIAN SCHMEISER

stability follows from this estimate only, by requiring that ε is small enough and by
choosing α > 0 such that αW 2uTW − ρ̄ > βρ̄ on [0,+∞) for some 0 < β < 1. It is
remarkable that no further estimates are needed in this case.
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