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Abstract

Scalar one-dimensional conservation laws with a nonlocal diffusion term corresponding to a Riesz-
Feller differential operator are considered. Solvability results for the Cauchy problem in L∞ are
adapted from the case of a fractional derivative with homogeneous symbol. The main interest of
this work is the investigation of smooth shock profiles. In case of a genuinely nonlinear smooth
flux function we prove the existence of such travelling waves, which are monotone and satisfy the
standard entropy condition. Moreover, the dynamic nonlinear stability of the travelling waves
under small perturbations is proven, similarly to the case of the standard diffusive regularization,
by constructing a Lyapunov functional.
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1. Introduction

We consider one-dimensional conservation laws for a density u(t, x), t > 0, x ∈ R, of the form

∂tu+ ∂xf(u) = ∂xDαu , (1)

where Dα is the non-local operator

(Dαu)(x) =
1

Γ(1− α)

∫ x

−∞

u′(y)

(x− y)α
dy , (2)

with 0 < α < 1. The flux function f(u) is smooth and satisfies f(0) = 0.
We shall analyse the local and global solvability of the Cauchy problem for (1), as well as

the existence and stability of travelling wave solutions. In particular, we shall show that smooth
travelling wave solutions exist, which are asymptotically stable. These waves are shock profiles
satisfying the standard entropy conditions like those derived from the standard parabolic regular-
ization with Dα replaced by ∂x.

Since Dαu can be written as the convolution of the derivative u′ with Γ(1−α)−1θ(x)x−α (with
the Heaviside function θ), Dα is a pseudo-differential operator with symbol

ik
√

2π

Γ(1− α)
F
(
θ(x)

xα

)
(k) = ik (aα − ibα sgn(k)) |k|α−1 = (bα + iaα sgn(k)) |k|α ,

i.e. F(Dαu)(k) = (bα + iaα sgn(k)) |k|αû(k). Here F denotes the Fourier transform

Fϕ(k) = ϕ̂(k) =
1√
2π

∫
e−ikxϕ(x)dx ,

and
aα = sin

(απ
2

)
> 0 , bα = cos

(απ
2

)
> 0 ,
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(see [2] for the details of the computation). Obviously, the operator on the right hand side of (1)
also is a pseudo-differential operator with symbol

F(∂xDα) = − (aα − ibα sgn(k)) |k|α+1 . (3)

Due to the negativity of its real part, it is dissipative.

Remark 1. For s ∈ R, we use the Sobolev space

Hs := {u : ‖u‖Hs <∞} , ‖u‖Hs := ‖(1 + |k|)sû‖L2(R) ,

and the corresponding homogeneous norm

‖u‖Ḣs := ‖|k|sû‖L2(R) .

The fact ‖Dαu‖Ḣs =
√
a2
α + b2α ‖u‖Ḣs+α justifies to interpret Dα as a differentiation operator of

order α. It is bounded as a map from Hs to Hs−α.
Denoting by Cmb , m ≥ 0, the set of functions, whose derivatives up to order m are continuous

and bounded on R, Dαu : C1
b → Cb is bounded. This can be easily seen by splitting the domain

of integration in (2) into (−∞, x− δ] and [x− δ, x] for some positive δ > 0. Then integration by
parts in the first integral shows the boundedness of Dαu.

The operator ∂xD1/3 occurs in applications. It has been derived as the physically correct
viscosity term in two layer shallow water flows by performing formal asymptotic expansions as-
sociated to the triple-deck regularization used in fluid mechanics (see, e.g., [18]). Moreover D1/3

appears in the work of Fowler [12] in an equation for dune formation:

∂tu+ ∂xu
2 = ∂2

xu− ∂xD1/3u . (4)

Here the fractional derivative appears with the negative sign, but this instability is regularized
by the second order derivative. Alibaud et al. showed the well-posedness of (4) in L2 as well as
the violation of the maximum principle, which is intuitive in the context of the application due to
underlying erosions [1]. Travelling wave solutions of (4) have been analysed by Alvarez-Samaniego
and Azerad in [2].

Fractal conservation laws of the form

∂tu+ ∂xf(u) = Dα+1u , (5)

whereDα+1 is the pseudo-differential operator with symbol−|k|α+1 (meaningDα+1u = F−1(−|k|α+1û))
have been investigated in several works, see e.g. Biler et al. [5] and Droniou et al. [10].

This work is organized as follows. In the remainder of this section we present an existence result
for the Cauchy problem in L∞. The crucial property here is the nonnegativity of the semigroup
generated by ∂xDα, which is a consequence of its interpretation as a Riesz-Feller derivative [11, 13].
This allows to prove a maximum principle for solutions of (1) as in [10].

Section 2 is devoted to the analysis of travelling wave solutions connecting different far-field
values. Such wave profiles are typically smooth. Working with the original representation (2)
of Dα, we obtain a nonlinear Volterra integral equation as the travelling wave version of (1).
Assuming (even a bit less than) convexity of the flux function and that the solutions of the
associated linear Volterra integral equation form a one-dimensional subspace of H2(R−), we can
show the existence and uniqueness of monotone solutions satisfying the entropy condition for
classical shock waves of the inviscid conservation law underlying (1). This essentially requires
to extend the well known results for the existence of viscous shock profiles, which solve (local)
ordinary differential equations.

Biler et al. [5] showed that no travelling wave solutions of (5) can exist for α ∈ (−1, 0]. For
the case α ∈ (0, 1) also no existence result is available.

To show the asymptotic stability of the travelling waves, we use the antiderivative method
typically applied in the case of the classical viscous regularisation and derive a Lyapunov functional.
This allows to deduce the decay of initially small perturbations.

In the appendix we consider linear Volterra integral equations and prove the assumption on
the dimension of the solution space with respect to subspaces of H2(R−).
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The Cauchy Problem

In the following, we verify the applicability of the work of Droniou et al. [10] on the Cauchy
problem of (5) in L∞ to

∂tu+ ∂xf(u) = ∂xDαu, u(0, x) = u0(x). (6)

Applying the Fourier transform to the linear evolution equation ∂tu = ∂xDαu, we see that the
semigroup generated by the fractional derivative is formally given by the convolution with the
kernel

K(t, x) = F−1e−Λ(k)t(x), where Λ(k) = (aα − ibαsgn(k))|k|α+1. (7)

To analyse the well-posedness, we use the mild formulation of (6),

u(t, x) = K(t, .) ∗ u0(x)−
∫ t

0

K(t− τ, .) ∗ ∂xf(u(τ, .))(x)dτ. (8)

As a main ingredient in [10], Droniou et al. used the non-negativity of the kernel associated to
the semigroup generated by Dα+1. To make use of their methods in the analysis of the Cauchy
problem (6), we need to investigate the properties of the kernel K associated to the operator ∂xDα.

Lemma 1. For 0 < α < 1, the kernel K given by (7) is non-negative:

K(t, x) ≥ 0, for all t > 0, x ∈ R.

Additionally, the kernel K satisfies the properties:

(i) For all t > 0 and x ∈ R, K(t, x) = 1
t1/(1+α)K

(
1, x

t1/(1+α)

)
.

(ii) For all t > 0, ‖K(t, .)‖L1(R) = 1.

(iii) K(t, x) is C∞ on (0,∞)× R and for all m ≥ 0 there exists a Bm such that

∀(t, x) ∈ (0,∞)× R, |∂mx K(t, x)| ≤ 1

t(1+m)/(1+α)

Bm
(1 + t−2/(1+α)|x|2)

. (9)

(iv) There exists a C0 such that for all t > 0: ‖∂xK(t, .)‖L1(R) = C0

t1/(1+α) .

Proof. We already mentioned that the operator ∂xDα is a Riesz-Feller differential operator, see
also Gorenflo and Mainardi [13]. Due to Feller [11], the symbol of ∂xDα is the characteristic
exponent of a random variable with Lévy stable distribution. Hence the kernel K is the scaled
probability density function of a Lévy stable distribution and is non-negative.

The additional properties of the kernel K are verified in the same manner as in [10]: (i) follows
from the change of variable η = t1/(1+α)k under the integral sign. Since the kernel K is non-
negative, we deduce ‖K(1, .)‖L1(R) =

∫
K(1, x)dx = F(K(1, .))(0) = 1, which together with (i)

implies (ii). To show (iii), we write ∂mx K(1, x) =
∫

(ik)meikxe−Λ(k)tdk. Since α > 0, we can
integrate by parts twice and obtain ∂mx K(1, x) = O(1/x2). Together with the boundedness of
∂mx K(1, x), we get the estimate for t = 1 and deduce the estimate for arbitrary t > 0 from (i).
Finally, (iv) follows from (i) and (iii).

Hence the kernel associated to ∂xDα satisfies the same properties as the one for Dα+1 required
in the work of Droniou et al. [10]. Thus their analysis carries over to our problem and we obtain
the analogous result:

Theorem 1. If u0 ∈ L∞, then there exists a unique solution u ∈ L∞((0,∞)×R) of (6) satisfying
the mild formulation (8) almost everywhere. In particular

‖u(t, .)‖∞ ≤ ‖u0‖∞, for t > 0.

Moreover, the solution has the following properties:

3



1. u ∈ C∞((0,∞)× R) and u ∈ C∞b ((t0,∞)× R) for all t0 > 0.

2. u satisfies equation (1) in the classical sense.

3. u(t)→ u0, as t→ 0, in L∞(R) weak-∗ and in Lploc(R) for all p ∈ [1,∞).

To motivate the well-posedness, we estimate the terms in (8) for t > 0, with the help of the
properties of the kernel K, as follows: |K(t, .) ∗ u0(x)| ≤ ‖u0‖∞ and∣∣∣∣∫ t

0

∂xK(t− s, .) ∗ f(u(s, .))ds

∣∣∣∣ ≤ C‖f(u)‖L∞((0,t)×R)t
1− 1

1+α .

Due to the Lipschitz continuity of f , we get a contraction for small times t0 on L∞((0, t0) × R)
and therefore the well-posedness.

To show the global existence as well as the maximum principle, Droniou et al. [10] constructed
an approximate solution by a splitting method and used a compactness argument to pass to the
limit.

We shall also mention that an alternative L2-based existence theory of (1) can be obtained
by standard approaches such as contraction arguments and Lyapunov functionals. Here the main
ingredient is the a priori decay of the L2-norm. Testing (1) with u and assuming vanishing far-field
values of u, the flux term vanishes∫

R
u∂xf(u)dx =

∫
R
uf ′(u)∂xudx =

∫
R
∂xG(u)dx = 0, G(u) =

∫ u

0

vf ′(v)dv,

since G is smooth and G(0) = 0. We obtain the L2-estimate:

1

2

d

dt

∫
R
u2dx = −aα

∫
R
|k|1+α|û|2dk ≤ 0 .

Here we have used Plancherel’s theorem together with |û(k)|2 = |û(−k)|2, implying∫
R

sgnk|k|j |û(k, t)|2dk = 0 .

This relation shows that in an L2-framework the operator ∂xDα behaves similarly to Dα+1. Due
to the decay of the L2-norm of the solution to (1), one would hope for well-posedness of the Cauchy
problem with initial data in L2 allowing us to deduce the global existence. Using a contraction
argument similar to the one by Dix for the classical viscous Burgers equation, we can show the
well-posedness in L2 for the quadratic flux f(u) = u2 in the case α > 1/2. This critical value was
already mentioned by Biler, Funaki and Woyczynski [5] for (5). For the general flux and α ∈ (0, 1)
we have to require higher regularity of the initial data: u0 ∈ H1. To deduce global existence of
solutions in H1, a Lyapunov functional can be derived under an additional smallness assumption
on ‖u0‖H1 . These results follow from the proofs we carry out in Section 2.2. Since obviously the
assumptions on the initial data are much more restrictive as in the L∞-based existence result, we
do not go into more details here.

2. Travelling wave solutions

2.1. Existence of travelling wave solutions

We introduce the travelling wave variable ξ = x − st with the wave speed s and look for
solutions u(x, t) = u(ξ) of (1), which are connecting the different far-field values u− and u+. A
straightforward calculation shows that if u depends on x and t only through the travelling wave
variable ξ, then so does Dαu, and we arrive at

−su′ + f(u)′ = (Dαu)′ , u(−∞) = u− , u(∞) = u+ ,
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where the prime denotes differentiation with respect to ξ. Integration gives the travelling wave
equation

h(u) := −s(u− u−) + f(u)− f(u−) = Dαu = dα

∫ ∞
0

u′(ξ − y)

yα
dy , (10)

with dα = 1/Γ(1−α). If the derivative u′ decays to zero fast enough as ξ → ±∞, then we obtain,
at least formally, the Rankine-Hugoniot conditions, which correspond to shock solutions of the
inviscid conservation law and relate the far-field values and the wave speed via

s =
f(u+)− f(u−)

u+ − u−
. (11)

If the flux function f(u) is convex between the far-field values u− and u+, then the left hand side
h(u) of (10) is negative between its zeroes u− and u+. If u(ξ) is monotone, the right hand side
in (10) has the same sign as u′. Therefore if a monotone solution exists, it has to be nonincreasing,
leading to the standard entropy condition

u− > u+ ,

derived by replacing Dαu by u′. Under this assumption, the existence of a smooth monotone
travelling wave will be proved. The precise assumptions on the flux function will be formulated in
terms of h(u): We require

h ∈ C∞([u+, u−]) , h(u+) = h(u−) = 0 , h < 0 in (u+, u−) ,

∃um ∈ (u+, u−) such that h′ < 0 in (u+, um) , h′ > 0 in (um, u−] . (12)

Note that this is a little less than asking for convexity of f , and it allows for the slightly weakened
form f ′(u+) ≤ s < f ′(u−) of the Lax entropy condition.

The integral operator

Dαu(ξ) = dα

∫ ξ

−∞

u′(y)

(ξ − y)α
dy

in the travelling wave problem

h(u) = Dαu , u(−∞) = u− , u(∞) = u+ , (13)

is of the Abel type. It is well known that it can be inverted by multiplying (13) with (z− ξ)−(1−α)

and integrating with respect to ξ from −∞ to z. This leads to

u(ξ)− u− = D−α(h(u))(ξ) := d1−α

∫ ξ

−∞

h(u(y))

(ξ − y)1−α dy . (14)

Equations (13) and (14) are equivalent if u ∈ C1
b (R) and u′ ∈ L1(R−), hence in particular if

u ∈ C1
b (R) is monotone. We will use both formulations to deduce the existence result. An

important property of both integral equations is their translation invariance, which will be used
several times below.

The equation (14) is a nonlinear Volterra integral equation with a locally integrable kernel,
where a well developed theory exists for problems on bounded intervals. Therefore we shall
start our investigations by proving a ’local’ existence result around ξ = −∞. The subsequent
monotonicity and boundedness results will lead to global existence for ξ ∈ R.

The local existence result is based on linearisation at ξ = −∞ (or, equivalently, at u = u−).
This can be done for either (13) or (14) with the same result. As could be expected for ordinary
differential equations, the linearisations

h′(u−)v = Dαv , v = h′(u−)D−αv , (15)
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have solutions of the form v(ξ) = beλξ, b ∈ R, where a straightforward computation gives λ =
h′(u−)1/α, see also [6]. We will need that these are the only non-trivial solutions of (15) in the
space H2(−∞, ξ0] for some ξ0 ≤ 0. In particular, we assume that

N
(
id− h′(u−)D−α

)
= span{exp(λξ)} with λ = h′(u−)1/α , (16)

which is reasonable due to our analysis in the appendix Appendix A. The main result of this
section is the following.

Theorem 2. Let (12) and (16) hold. Then there exists a decreasing solution u ∈ C1
b (R) of the

travelling wave problem (13). It is unique (up to a shift) among all u ∈ u−+H2((−∞, 0))∩C1
b (R).

The following local existence result shows that the nonlinear problem has, up to translations,
only two nontrivial solutions, which can be approximated by u− ± eλξ for large negative ξ. The
choice 1 of the modulus of the coefficient of the exponential is irrelevant due to the translation
invariance of the solution.

Lemma 2. (Local existence) Let (16) hold. Then, for every small enough ε > 0, the equation (13)
has solutions uup, udown ∈ u− +H2(Iε), Iε = (−∞, ξε], ξε = log ε/λ, satisfying

uup(ξε) = u− + ε , udown(ξε) = u− − ε . (17)

These are unique among all functions u satisfying ‖u − u−‖H2(Iε) ≤ δ, with δ small enough, but
independently from ε. They satisfy (with an ε-independent constant C)

‖uup − u− − eλξ‖H2(Iε) ≤ Cε
2 , ‖udown − u− + eλξ‖H2(Iε) ≤ Cε

2 .

Proof. The proof will only be given for existence and uniqueness of udown, which will be of greater
interest below, but the proof for uup is analogous.

We start by writing (13) and the initial condition (17) in terms of the perturbation ū(ξ) =
udown(ξ)− u− + eλξ:

(Dα − h′(u−))ū = h(u− − eλξ + ū) + h′(u−)(eλξ − ū) , ū(ξε) = 0 . (18)

The idea is to write this as a fixed point problem considering the right hand side as given. Since
we shall use the Fourier transform for constructing a particular solution, we need a smooth enough
extension to ξ ∈ R, although we are only interested in ξ < ξε. For f ∈ H2(Iε), let the extension
E(f) ∈ H2(R) satisfy

E(f)
∣∣∣
Iε

= f , ‖E(f)‖H2(R) ≤ γ‖f‖H2(Iε) .

The bounded solution of the equation

(Dα − h′(u−))upart = E(f) ,

and of its derivatives with respect to ξ can be written as

u
(m)
part = F−1

[
(bα|k|α − h′(u−) + iaαsgn(k)|k|α)

−1 FE(f)(m)
]
, m = 0, 1, 2 .

The coefficient can easily be seen to be bounded uniformly in k, leading to the estimate

‖upart‖H2(Iε) ≤ ‖upart‖H2(R) ≤ C‖E(f)‖H2(R) ≤ Cγ‖f‖H2(Iε) .

By the assumption (16), U [f ](ξ) = upart(ξ)− upart(ξε)eλ(ξ−ξε) is the unique solution of

(Dα − h′(u−))U = f in Iε , U(ξε) = 0 .

This allows to write (18) as a fixed point problem:

ū = U
[
h(u− − eλξ + ū) + h′(u−)(eλξ − ū)

]
.
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The right hand side of (18) can be written as

h′′(ũ)

2

(
eλξ − ū

)2
=
h′′(ũ)

2

(
ε2e2λ(ξ−ξε) − 2εeλ(ξ−ξε)ū+ ū2

)
.

Using the continuous imbedding of H2(Iε) in Cb(Iε), it can easily be shown that∥∥h(u− − eλξ + ū) + h′(u−)(eλξ − ū)
∥∥
H2(Iε)

≤ L(‖ū‖H2(Iε))
(
ε2 + ε‖ū‖H2(Iε) + ‖ū‖2H2(Iε)

)
,

where L is a positive nondecreasing function. Now it is easily seen that the fixed point map is
a contraction in (independently of ε) small enough balls and that it maps a ball with an O(ε2)
radius into itself.

Lemma 3. (Local monotonicity) Let the assumptions of Lemma 2 hold. Then, in Iε,

uup > u− , u′up > 0 , udown < u− , u′down < 0 .

Proof. Again we restrict our attention to udown and skip the analogous proof for uup. As a
consequence of Lemma 2 and of Sobolev imbedding

|udown(ξ)− u− + eλξ| ≤ Cε2 , ξ ≤ ξε .

Thus, there exists ξ∗ satisfying

udown(ξ∗) = u− − 2Cε2 , ξCε2 ≤ ξ∗ ≤ ξ3Cε2 .

Since udown(ξ) < u− for ξ ≥ ξ∗, we may restrict our attention in the following to ξ ≤ ξ∗. Thus,
we eliminated a subinterval of length d1 ≥ ξε − ξ3Cε2 . Now we set ε1 = ε, ε2 = 2Cε2

1, and, by
a shift in ξ, replace ξ∗ by ξε2 . This means that the shifted solution becomes the unique udown
from Lemma 2, where ε1 has been replaced by ε2. Of course, the argument can be iterated to
produce a sequence {εn}, determined by εn+1 = 2Cε2

n, and in each step a subinterval of length
dn ≥ ξεn − ξ3Cε2n can be eliminated, where udown < u− holds. It is easily seen that, for ε1 = ε
small enough,

∑∞
n=1 dn =∞ completing the proof of udown < u− in Iε.

The proof of the second property of udown is completely analogous noting that, again by
Sobolev imbedding,

|u′down(ξ) + λeλξ| ≤ Cε2 for ξ ≤ ξε .

Remark 2. Together with uup − u−, udown − u− ∈ L2(Iε), the result of the lemma implies

lim
ξ→−∞

uup(ξ) = lim
ξ→−∞

udown(ξ) = u− .

Together the two solutions constitute the ’unstable manifold’ of the point u−.

The Lemmata 2 and 3 show the existence of a solution u of (13), which satisfies u ∈ C1
b and is

monotone. Thus u is also a solution of equation (14).

Lemma 4. (Continuation principle) Let u ∈ C1
b ((−∞, ξ0]) be a (continuation of a) solution

of (14) as constructed in Lemma 2. Then there exists a δ > 0, such that it can be extended
uniquely to C1

b ((−∞, ξ0 + δ)).

Proof. Defining

f(ξ) = u− + d1−α

∫ ξ0

−∞

h(u(y))

(ξ − y)1−α dy ,
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which can be considered as given and smooth by the assumptions, (14) can be written as

u(ξ) = f(ξ) + d1−α

∫ ξ

ξ0

h(u(y))

(ξ − y)1−α dy .

Local existence of a smooth solution for ξ close to ξ0 is a standard result for Volterra integral
equations, see e.g. Linz [16].

It is now obvious that, as for ordinary differential equations, boundedness will be enough for
global existence.

Lemma 5. (Global uniqueness) Let u ∈ u− +H2((−∞, ξ0)) be a solution of (14). Then, up to a
shift in ξ, it is the continuation of uup or of udown, or u ≡ u−.

Proof. For every δ > 0 there exists a ξ∗ ≤ ξ0, such that ‖u − u−‖H2((−∞,ξ∗)) < δ, and therefore,
by Sobolev imbedding, also |u(ξ∗)−u−| < δ. Choosing δ small enough, there are only the options
u(ξ∗) = u− (implying u ≡ u−) or u(ξ∗) 6= u− whence, by local uniqueness, u is up to a shift either
equal to uup or to udown, depending on the sign of u(ξ∗)− u−.

This result already implies the uniqueness of the travelling wave, if it exists.

Lemma 6. (Global monotonicity) Let u ∈ C1
b (−∞, ξ0] be (a continuation of) the solution udown

of (14) as constructed in Lemma 2. Then u is nonincreasing.

Proof. We recall the properties of h given in (12). We shall use both formulations (13) and (14).
First we prove that the derivative of u remains negative as long as u ≥ um. Assume to the contrary
that

u(ξ∗) ≥ um , u′(ξ∗) = 0 , u′ < 0 in (−∞, ξ∗) .

Then we obtain from the derivative of (14), evaluated at ξ = ξ∗, the contradiction

0 = u′(ξ∗) = d1−α

∫ ξ∗

−∞

h′(u(y))u′(y)

(ξ∗ − y)1−α dy < 0 .

Now we show that u cannot become increasing for u < um. Again, assume the contrary

u(ξ∗) < um , u′ > 0 in (ξ∗, ξ∗ + δ) , u′ ≤ 0 in (−∞, ξ∗] ,

where we assume additionally that δ is small enough such that u(ξ∗ + δ) < um. This implies∫ ξ∗+δ

−∞

u′(y)

(ξ∗ + δ − y)α
dy =

∫ ξ∗

−∞

u′(y)

(ξ∗ + δ − y)α
dy +

∫ ξ∗+δ

ξ∗

u′(y)

(ξ∗ + δ − y)α
dy

>

∫ ξ∗

−∞

u′(y)

(ξ∗ − y)α
dy .

But on the other hand we know

0 > h(u(ξ∗ + δ))− h(u(ξ∗))

= dα

∫ ξ∗+δ

−∞

u′(y)

(ξ∗ + δ − y)α
dy − dα

∫ ξ∗

−∞

u′(y)

(ξ∗ − y)α
dy > 0 ,

leading again to a contradiction. Therefore u′ cannot get positive.

Lemma 7. (Boundedness) Let u ∈ C1
b (−∞, ξ0] be (a continuation of) the solution udown of (14)

as constructed in Lemma 2. Then u+ < u < u−.
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Proof. Suppose the solution would reach the value u+ in finite time, i.e. there exists a ξ∗, such
that u(ξ∗) = u+. Since u is nonincreasing and, by Lemma 3, strictly decreasing at least close to
ξ = −∞, we obtain the contradiction

0 = h(u+) = dα

∫ ξ∗

−∞

u′(y)

(ξ∗ − y)α
dy < 0 .

The proof of Theorem 2 is completed by proving limξ→∞ u(ξ) = u+. Assuming to the contrary
limξ→∞ u(ξ) > u+, would imply limξ→∞ h(u(ξ)) < 0. Then, however, −D−αh(u) = u−− u would
increase above all bounds, which is impossible by Lemma 7.

2.2. Asymptotic stability of travelling waves for convex fluxes

We change to the moving coordinate ξ = x− st in (1),

∂tu+ ∂ξ(f(u)− su) = ∂ξDαu , (19)

and look for solutions of (19), which are small perturbations of travelling wave solutions and in
particular share the same far-field values. Let u0(ξ) be an initial datum and φ(ξ) a travelling wave
solution as constructed in the previous section, with the shift chosen such that∫

R
(u0(ξ)− φ(ξ))dξ = 0 . (20)

Due to the conservation property of the equation (19) we see that (formally)∫
R

(u(t, ξ)− φ(ξ))dξ = 0 , for all t ≥ 0 .

The flux function will be assumed to be convex between the far-field values of the travelling wave,
i.e.

f ′′(φ(ξ)) ≥ 0 , for all ξ ∈ R .

The perturbation U = u− φ satisfies the equation

∂tU + ∂ξ((f
′(φ)− s)U) +

1

2
∂ξ
(
f ′′(φ+ ϑU)U2

)
= ∂ξDαU , (21)

for some ϑ ∈ (0, 1). The aim is to show local stability of travelling waves, i.e. the decay of U for
small initial perturbations U0 = u0 − φ. Testing (21) with U , we get

1

2

d

dt
‖U‖2L2 +

1

2

∫
R
f ′′(φ)φ′U2dξ − 1

2

∫
R
f ′′(φ+ ϑU)U2∂ξU dξ

= −aα‖U‖2Ḣ(1+α)/2 , (22)

where several integrations by parts have been carried out. Recalling φ′ ≤ 0, we see that the second
term has the unfavourable sign. As one would do for the conservation law with the classical viscous
regularisation, we introduce the primitive of the perturbation:

W (t, ξ) =

∫ ξ

−∞
U(t, η)dη , W0(ξ) =

∫ ξ

−∞
U0(η)dη .

Integration of (21) gives the equation for W ,

∂tW + (f ′(φ)− s)∂ξW +
1

2
f ′′(φ+ ϑU)(∂ξW )2 = ∂ξDαW , (23)
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which we test with W to obtain

1

2

d

dt
‖W‖2L2 −

1

2

∫
R
f ′′(φ)φ′W 2dξ +

1

2

∫
R
f ′′(φ+ ϑU)(∂ξW )2W dξ

= −aα‖W‖2Ḣ(1+α)/2 . (24)

This equation has the crucial property that the quadratic terms have the favour-able sign. From
the cubic term (arising from the nonlinearity) we pull out the L∞-norm of W (and of U if f ′′ is
not constant), which we shall control by Sobolev imbedding.

Well-posedness of the perturbation equation

Before deriving decay estimates, we have to guarantee the well-posedness of the Cauchy prob-
lem for (23),

∂tW + (f ′(φ)− s)∂ξW +
1

2
f ′′(φ+ ϑU)(∂ξW )2 = ∂ξDαW , W (0, x) = W0(x). (25)

Therefore we use a contraction argument. Assuming f(u) = u2 and α > 1/2 allows to estimate
the nonlinearity in the fashion of Dix [7] implying the well-posedness in H1. For the general flux
and α ∈ (0, 1) we have to require more regularity of the initial data, W0 ∈ H2.

We recall the definition (7) of the kernel K associated to the linear evolution equation and
rewrite (25) in its mild formulation

W (t, x) = K(t, .) ∗W0(x)

−
∫ t

0

K(t− τ, .) ∗
(

(f ′(φ)− s)U(τ, .) +
f ′′(φ+ ϑU))

2
(U(τ, .))2

)
(x)dτ. (26)

Before proceeding with the contraction arguments, we note that for any W0 ∈ Hs we have K(t, .)∗
W0 →W0 as t→ 0 in Hs. In particular, the integral

‖K(t, .) ∗W0 −W0‖2Hs =

∫
(1 + |k|)2s|e−Λ(k)t − 1|2|Ŵ0(k)|2dk

is bounded by 4‖W0‖2Hs and we can apply the Dominated Convergence Theorem to pass to the
limit under the integral sign. Moreover ‖K(t, .) ∗W0‖Hs ≤ ‖W0‖Hs .
Proposition 1. Let f(u) = u2 and α > 1

2 . Then for any W0 ∈ H1 there exists a T > 0 such that
(25) has a unique solution W ∈ H1 for t ∈ [0, T ).

Proof. Denoting the right hand side of (26) with GW the mild formulation gives a fixed point
problem W = GW . We note that f ′′ = 2 and briefly explain how to carry out the contraction
argument. Let T > 0 and denote ‖W‖∗Hs = supt∈[0,t0] ‖W‖Hs . Applying Plancherel’s Theorem

we can bound the H1 norm of GW by

‖GW‖∗H1 ≤ ‖W0‖H1 +

∫ T

0

∥∥∥(1 + |k|)e−Λ(k)(t−τ)F((2φ− s)U + U2)(τ, k)
∥∥∥
L2
dτ

≤ ‖W0‖H1 + C

∫ T

0

sup
k∈R

∣∣∣(1 + |k|)e−Λ(k)(t−τ)
∣∣∣ ‖U(τ, .)‖L2dτ

+

∫ T

0

∥∥∥(1 + |k|)e−Λ(k)(t−τ)
∥∥∥
L2

sup
k∈R
|(U(τ, .)2)̂|dτ

Using Cauchy-Schwarz inequality it is easy to see that ‖(gh)̂‖∞ ≤ ‖g‖L2‖h‖L2 , hence supk∈R |(U(τ, .)2) |̂ ≤
‖U‖∗ 2

L2 . We then bound

sup
k∈R

∣∣∣(1 + |k|)e−Λ(k)(T−τ)
∣∣∣ ≤ 1 +

∥∥∥ye−aα|y|α+1
∥∥∥
∞

(T − τ)
1

1+α

≤ C
(

1 + (T − τ)−
1

1+α

)
, (27)

‖(1 + |k|)e−Λ(k)(T−τ)‖L2 ≤ C
(

(T − τ)−
1

2(1+α) + (T − τ)−
3

2(1+α) )
)
,
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where we have performed the substitution k 7→ k(t − τ)
1

α+1 in the integrand. For α > 1/2, the
terms on the right hand side are integrable from 0 to T and the operator G is a contraction for
small times T : There exists a constant C0 > 0, such that

‖GW‖∗H1 ≤ C0

(
1 + (T + T 1− 1

1+α )‖W‖∗H1 + (T 1− 1
2(1+α) + T 1− 3

2(α+1) )‖W‖∗ 2
H1

)
,

Then for T small enough, G maps the ball B2C0(T ) = {W ∈ C([0, T ], H1) : ‖W‖∗H1 ≤ 2C0}
into itself. With Banach’s fixed point argument we can conclude the existence of a solution
W ∈ B2C0

(T ) of (26), which is therefore the solution of (25) on [0, T ). The uniqueness result is
only local in B2C0

. Hence let us now assume W,V ∈ C([0, T ], H1) are two solutions of (26) and let
M = max{‖W‖∗H1 , ‖V ‖∗H1}. Then W − V solves a fixed point equation, where for a small enough
T0 > 0 the fixed point operator is again a contraction on B2M (T0). Therefore W = V on [0, T0].
Repetition of this argument provides uniqueness on the whole time interval of existence.

Proposition 2. Let W0 ∈ H2. Then there exists a T > 0 such that the Cauchy problem (25) has
a unique solution W ∈ H2 for t ∈ [0, T ).

Proof. We again consider the fix point operator GW associated to the right hand side of (26),
where now f ′′ is not constant. This requires to pull out the L∞-norm of U and therefore, by
Sobolev-Imbedding, we shall control W in H2. We estimate the nonlinearity as follows:∥∥K(T − τ, .) ∗ f ′′(φ+ ϑU)U2(τ, .)

∥∥
H2

=
∥∥∥(1 + |k|)K̂ (1 + |k|)F(f ′′(φ+ ϑU)U2)

∥∥∥
L2

≤ C
(

1 + (T − τ)−
1

1+α

)
‖f ′′(φ+ ϑU)U2‖H1

≤ L(‖U‖H1)‖U‖2H1

(
1 + (T − τ)−

1
1+α

)
,

where we have used (27) and Sobolev Imbedding. L is a positive non-decreasing function. The
linear terms are estimated in a similar fashion as above, such that for a C0 > 0

‖GW‖∗H2 ≤ C0

(
1 + (T + T 1− 1

1+α ) (1 + L(‖W‖∗H2)‖W‖∗H2) ‖W‖∗H2

)
.

The proof can be concluded in a similar way as before.

Global existence will be the consequence of the existence of a Lyapunov functional, which also
allows to deduce the asymptotic stability of travelling waves. The Lyapunov functional is also
easier to derive in the case of the Burgers flux. Mainly for pedagogical reasons we first derive the
result in this simplified situation and then proceed with the stability for the general convex flux
function.

Stability of travelling waves for the quadratic flux

Assuming f(u) = u2 and α > 1/2, the Cauchy problem for (23) is well-posed in H1. Since
f ′′ = 2, the nonlinear term in (22) vanishes. Therefore to derive the global existence as well as
asymptotic stability it suffices to construct a Lyapunov-functional controlling the H1-norm of W .

Theorem 3. Let f(u) = u2 and α > 1/2. Let φ be a travelling wave solution as in Theorem 2, and

let u0(ξ) be an initial datum for (19), such that W0(ξ) =
∫ ξ
−∞(u0(η)−φ(η))dη satisfies W0 ∈ H1.

If ‖W0‖H1 is small enough, the Cauchy problem for equation (19) with initial datum u0 has a
unique global solution converging to the travelling wave in the sense that

lim
t→∞

∫ ∞
t

‖u(τ, ·)− φ‖L2dτ = 0 .

Remark 3. Note that the condition (20), which can be translated to W0(±∞) = 0, is incorporated
in the condition W0 ∈ H1.
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Proof. Equations (22) and (24) imply the estimates

1

2

d

dt
‖U‖2L2 − C0‖U‖2L2 ≤ −aα‖U‖2Ḣ(1+α)/2 , (28)

1

2

d

dt
‖W‖2L2 − ‖W‖L∞‖∂ξW‖2L2 ≤ −aα‖W‖2Ḣ(1+α)/2 , (29)

with C0 = ‖φ′‖L∞ . We shall construct a Lyapunov functional by a linear combination of these
estimates. For γ > 0, we denote γ∗ = min{1, γ} and γ∗ = max{1, γ}. Then

J(t) =
1

2

(
‖W‖2L2 + γ‖U‖2L2

)
is bounded from above and below by

γ∗
2
‖W‖2H1 ≤ J ≤

γ∗

2
‖W‖2H1 . (30)

The combined estimate reads

dJ

dt
− (γC0 + ‖W‖L∞) ‖W‖2

Ḣ1 + aα
(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
≤ 0 .

The idea is to control the second term by the third, which seems plausible, since the interpolation
inequality

‖W‖2
Ḣ1 ≤ ‖W‖2Ḣ(1+α)/2 + ‖W‖2

Ḣ(3+α)/2 , (31)

holds as a consequence of k2 ≤ |k|1+α + |k|3+α, k ∈ R. The same inequality with k replaced by
k(aα/(2C0))1/(1+α) implies

γC0‖W‖2Ḣ1 ≤
aα
2

(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
,

with γ = (aα/(2C0))2/(1+α). For the term arising from the nonlinearity we use the consequence
‖W‖2

Ḣ1 ≤ 1
γ∗

(‖W‖2
Ḣ(1+α)/2 + γ‖W‖2

Ḣ(3+α)/2) of (31), which leads to

dJ

dt
+

(
aα
2
− 1

γ∗
‖W‖L∞

)(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
≤ 0 .

By Sobolev imbedding and (30) we have

‖W‖L∞ ≤ ‖W‖H1 ≤
√

2

γ∗
J .

We now let the initial data be small enough such that J(0) < (γ∗)
3a2
α/8. This immediately implies

the existence of a λ > 0, such that

dJ

dt
≤ −λ

(
‖W‖2

Ḣ(1+α)/2 + γ‖W‖2
Ḣ(3+α)/2

)
≤ −λγ∗‖U‖2L2 , for all t > 0 .

Integration with respect to time concludes the proof.

Stability for a general convex flux function

In contrary to the quadratic flux, now the nonlinearity in estimate (22) does not vanish:

1

2

d

dt
‖U‖2L2 − C0‖U‖2L2 − L(‖U‖L∞)‖U‖L∞‖U‖2H1 ≤ −aα‖U‖2Ḣ(1+α)/2 , (32)

with a positive nondecreasing function L and, similarly to above, C0 =
‖f ′′(φ)φ′‖L∞/2. The estimate for W reads

1

2

d

dt
‖W‖L2 − L(‖U‖L∞)‖W‖L∞‖∂ξW‖2L2 ≤ −aα‖W‖2Ḣ(1+α)/2 , (33)
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We see that now we have to control U and W in H1 ⊂ L∞, and therefore also need to derive
an estimate for ∂ξU . As we have mentioned above, the Cauchy problem for (23) is well-posed in
H2. Hence the decay of W in H2 is needed to repeat the local existence as well as to control the
nonlinearities. We differentiate (21) and test it with ∂ξU . After several integrations by parts, we
can estimate

1

2

d

dt
‖∂ξU‖2L2 − C1‖U‖2H1 − L(‖U‖L∞)

(
‖U‖L∞‖∂ξU‖2L2 + ‖∂ξU‖3L3

)
≤ −aα‖∂ξU‖2Ḣ(1+α)/2 , (34)

where C1 depends on the travelling wave and its derivatives up to order 2. We now apply a
generalisation of the celebrated Gagliardo-Nirenberg inequalities (see e.g. [14]) to Sobolev spaces
with fractional order, which was proven by Amann [4] (Proposition 4.1):

‖∂ξU‖3L3 ≤ C‖∂ξU‖2
H
α+1
4
‖∂ξU‖L2 ≤ C‖U‖H1‖U‖2

H
5+α
4

(35)

We are now ready to prove a stability result similar to Theorem 3 for the general convex flux
function:

Theorem 4. Let (12) hold and let φ be a travelling wave solution as in Theorem 2. Let u0 be

an initial datum for (19) such that W0(ξ) =
∫ ξ
−∞(u0(η)− φ(η))dη satisfies W0 ∈ H2. If ‖W0‖H2

is small enough, then the Cauchy problem for equation (19) with initial datum u0 has a unique
global solution converging to the travelling wave in the sense that

lim
t→∞

∫ ∞
t

‖u(τ, ·)− φ‖H1dτ = 0 .

Proof. We proceed similarly to above and define

J(t) =
1

2
(‖W‖2L2 + γ1‖U‖2L2 + γ2‖∂ξU‖2L2) ,

with positive constants γ1, γ2 > 0. We denote γ∗ = min{1, γ1, γ2} and γ∗ = max{1, γ1, γ2}. Then,
as a functional of W , J is equivalent to the square of the H2-norm. Combining (33), (32) and (34)
together with (35) gives the complete estimate

d

dt
J + aα

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
−γ1C0‖U‖2L2 − γ2C1‖U‖2H1 − L(‖W‖H2)‖W‖H2‖U‖2H(5+α)/4 ≤ 0 .

Similarly to above we now choose γ1, γ2 > 0 such that

γ1C0‖U‖2L2 + γ2C1‖U‖2H1

≤ aα
2

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
,

and get the final estimate

d

dt
J +

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2

)
+γ2

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)
‖W‖2

Ḣ(5+α)/2 ≤ 0 .

Letting again the initial data be such that J(0) is small enough, we can deduce that J is nonin-
creasing for all times and moreover ∫ ∞

0

‖U(t, ·)‖2H1dt <∞ .

13



Appendix A. Linear Integral Equation

In this appendix we analyse the assumption (16) in more detail. We will show that all contin-
uous and bounded solutions on R− of the linear equation

v(ξ) = C0

∫ ξ

−∞

v(y)

(ξ − y)1−α dy, v(−∞) = 0, C0 = h′(u−)/Γ(α), (A.1)

are given by the one-parameter family {beλξ : b ∈ R} with λ = h′(u−)1/α. A proof for the space
Cb(R−) cannot be carried out directly, since the kernel is only locally integrable. Therefore we
first derive the uniqueness result in the space of continuous functions with exponential decay as
ξ → −∞. We also present a less direct, but more general approach, which gives a similar result for
the underlying space L∞(R−). In addition we show that no continuous solutions with polynomial
decay can exist.

We start by analysing solutions of (A.1) in Cb(−∞, ξ0] for a ξ0 < 0. Since it is easier to work
with integral operators acting on a finite domain, we perform the transformation

w(η) = u(ξ), where η = −1

ξ
∈ [0, η0], for an η0 > 0,

leading to the following equation for w

w(η) = C0 η
1−α

∫ η

0

w(s)

(η − s)1−αs1+α
ds, w(0) = 0. (A.2)

To prove that the only non-trivial solutions with exponential decay are w(η) = be−
λ
η , we adapt

the approach of Wolfersdorf for another integral equation (see the Appendix in [20]):

Lemma 8. All solutions of (A.1) within the space

Cw(R−) = {f ∈ Cb(R−) : f(ξ) = eµξg(ξ) for a 0 < µ < λ, where g ∈ Cb(R−)}

are given by the one-parameter family {beλξ : b ∈ R} with λ = h′(u−)1/α.

Proof. Let w(η) = e−
µ
η z(η) be a solution of (A.2), where 0 < µ < λ. For z ∈ Cb[0, η0] we assume

w.l.o.g. z(0) = 0 (otherwise we can shift some decay of the exponential function onto z). We shall

show that z = be−
λ−µ
η . Therefore we introduce

φ(η) = z(η)− C1e
−λ−µη

∫ η0

0

z(s)ds, 1 = C1

∫ η0

0

e−
λ−µ
s ds

and note that φ(0) = 0. Its primitive Φ(ξ) =
∫ η

0
φ(s)ds satisfies Φ(0) = Φ(η0) = 0. Due to Rolle’s

Theorem there exists an η1 > 0 such that Φ′(η1) = φ(η1) = 0. If φ ≡ 0, the proof is finished. Let
now φ 6= 0. W.l.o.g. we assume that η1 > 0 is the smallest value with φ(η1) = 0 and that φ(η) ≥ 0
in [0, η1] with φ(η) > 0 in (η2, η1) for an η2 ∈ [0, η1). Then we obtain

z(η1) = C0 η
1−α
1

∫ η1

0

e
µ
(

1
η1
− 1
s

)
z(s)

(η1 − s)1−αs1+α
ds

> C0 η
1−α
1

∫ η1

0

e
λ
(

1
η1
− 1
s

)
(η1 − s)1−αs1+α

ds︸ ︷︷ ︸
=1

C1 e
−λ−µη1

∫ η0

0

z(s)ds = z(η1),

leading again to a contradiction, and thus φ ≡ 0.
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We shall also mention a more general approach, which was introduced for integral equations of
Fredholm type. A similar result to Lemma 8 with the underlying space being L∞(R−), can also
be deduced from results on the Wiener-Hopf equation, which has the standard form

W (ξ)−
∫ ∞

0

K(ξ − y)W (y)dy = 0, ξ ≥ 0. (A.3)

Wiener and Hopf related the Fredholm property of the associated operator in (A.3) to conditions
on its symbol [19]. Krein extended the Wiener-Hopf method to equations with L1-integrable
kernels [15]. We only state the part of his result which we will use in the following:

Let K ∈ L1(R). If the symbol a(z) := 1 −
√

2πF(K)(z) is elliptic, i.e. infz∈R |a(z)| > 0,
and the winding number of the curve {aµ(z) : z ∈ (−∞,∞)} around the origin is a non-positive
number r. Then equation (A.3) has exactly |r| linearly independent solutions in any of the Lebesgue
spaces Lp(R+), 1 ≤ p ≤ ∞.

Since the kernel in (A.1) is only locally integrable we introduce as above exponential weights,
which will allow to apply this result.

For a generalization of the Wiener-Hopf method to other spaces than the Lebesgue ones, we
refer to the work of Duduchava [9], in which also the Theorem of Krein is given more detailed.

Lemma 9. All solutions of (A.1) within the space

L∞w (R−) = {f ∈ L∞(R−) : f(ξ) = eµξg(ξ) for a 0 < µ < λ and g ∈ L∞(R−)}

are given by the one-parameter family {beλξ : b ∈ R} with λ = h′(u−)1/α.

Proof. Consider solutions v of (A.1) of the form v(ξ) = eµξw(ξ) for some 0 < µ < λ and w ∈
L∞(R−). Setting W (ξ) = w(−ξ) and K(ξ) = e−µξθ(ξ)ξα−1, equation (A.1) becomes a Wiener
Hopf equation in the form (A.3). The kernel K is integrable, since µ > 0. Thus, to apply the
result of Krein, it remains to investigate the properties of the symbol

aµ(z) = 1− h′(u−)
√

2π

Γ(α)
F
(
θ(ξ)

ξ1−α

)
(z − iµ) = 1− h′(u−)(µ+ iz)−α

= 1− h′(u−)(µ2 + z2)−α/2(cos(αϕµ,z)− i sin(αϕµ,z)) ,

where ϕµ,z = arctan z
µ and

√
2π

Γ(α)F
( θ(ξ)
ξ1−α

)
(z) = (iz)−α for z ∈ C. To check the ellipticity of the

symbol, rewrite |aµ(z)|2 as follows

|aµ(z)|2 =
(
1− h′(u−)(µ2 + z2)−α/2

)2
+ 2h′(u−)(µ2 + z2)−α/2

(
1− cos(αϕµ,z)

)
,

which attains its minimum with respect to z at z = 0 and does not vanish if 0 < µ < λ. Thus the
symbol aµ is elliptic and forms a closed curve {aµ(z) : z ∈ (−∞,∞)}, since aµ(±∞) = 1. Thus
the winding number of the closed curve is a well-defined integer, which remains to be computed.
We note that Re(aµ) is an even function and Re(aµ(0)) < 0 for 0 < µ < λ. Moreover Im(aµ) is
an odd function and Im(aµ(z)) = 0 only if z = 0 or z = ±∞. Hence the parametrization of the
closed curve runs once around the origin in the counter clockwise sense. Thus the winding number
is −1 and the result of Krein implies the statement.

Finally, we show that no bounded solutions with polynomial decay can exist.

Lemma 10. (i) If v ∈ Cb(R−) is a solution of (A.1), then v cannot change the sign.
(ii) Equation (A.1) has no solution v ∈ Cb(R−) with polynomial decay as ξ → −∞.

Proof. Again it easier to consider equation (A.2) instead. Solutions cannot change sign due to
the nonlocality: If a smooth solution w is positive (negative) on (0, η∗) for some η∗ > 0, then
the solution remains positive (negative). In contrast, if w = 0 on [0, η∗), then w(η) is a solution
of equation (A.2) where the integration starts at η∗ instead of s = 0. Therefore, we avoid the
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singularity of the kernel at s = 0 and are left with the integrable singularity at s = η. Given
the initial value w(η∗) = 0, we conclude from standard theory that there exists only the trivial
solution.

We prove statement (ii) by contradiction. Suppose that there exists a solution with polynomial
decay w(η) = ηβz(η) for some β > 0 and z ∈ Cb(−∞, η0] which satisfies w.l.o.g. z(η) ≥ z∗ > 0.
Then

z(η) ≥ z∗
h′(u−)

Γ(α)
η1−α−β

∫ η

0

1

(η − s)1−αs1+α−β ds =
h′(u−)

Γ(α)
z∗B(α, β − α) η−α,

where B denotes the Beta function. We see that for any β the right hand side grows unbounded
as η → 0, which contradicts our assumption z ∈ Cb(−∞, η0].
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