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Abstract

We study travelling wave solutions of a Korteweg-de Vries-Burgers equation with a
non-local diffusion term. This model equation arises in the analysis of a shallow water flow
by performing formal asymptotic expansions associated to the triple-deck regularisation
(which is an extension of classical boundary layer theory). The resulting non-local opera-
tor is of fractional type with order between 1 and 2. Travelling wave solutions are typically
analysed in relation to shock formation in the full shallow water problem. We show rig-
orously the existence of these waves. In absence of the dispersive term, the existence of
travelling waves and their monotonicity was established previously by two of the authors.
In contrast, travelling waves of the non-local KdV-Burgers equation are not in general
monotone, as is the case for the corresponding classical (or local) KdV-Burgers equa-
tion. This requires a more complicated existence proof compared to the previous work.
Moreover, the travelling wave problem for the classical KdV-Burgers equation is usually
analysed via a phase-plane analysis, which is not applicable here due to the presence of
the non-local diffusion operator. Instead, we apply fractional calculus results available in
the literature and a Lyapunov functional. In addition we discuss the monotonicity of the
waves in terms of a control parameter and prove their dynamic stability in case they are
monotone.
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1 Introduction

In this paper we study existence and stability of travelling waves of the following one-
dimensional evolution equation:

∂tu+ ∂xu
2 = ∂xDαu+ τ∂3xu , x ∈ R , t ≥ 0 (1.1)

with τ > 0 and Dα denotes the non-local operator

Dαu(x) = dα

∫ x

−∞

u′(y)

(x− y)α
dy , with 0 < α < 1 , dα =

1

Γ(1− α)
> 0 , (1.2)

where Γ denotes the Gamma function.
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Equation (1.1) with α = 1/3 and either a quadratic flux, as above, or a cubic one, has been
derived from one (quadratic flux) and two (cubic flux) layer shallow water flows, respectively,
by performing formal asymptotic expansions associated to the triple-deck (boundary layer)
theory used in fluid mechanics (see, e.g. [12] and [19]). In [19] numerical simulations indicate
the existence of travelling waves that resemble the inner structure in a very particular limit
of small amplitude shock waves for the original shallow water problem. In this manuscript we
aim to study rigorously the existence and stability of these type of solutions for the quadratic
flux.

In [1] travelling waves for (1.1) with τ = 0 were analysed. In this case travelling waves
are monotone, as it is the case for the classical (or local) Burgers equation. The existence
prove relies on this fact. However, travelling waves are in general non-monotone if τ is larger
that certain value τ0 > 0 in the (local) KdV-Burgers equation, see e.g. [3] (this can be
inferred by linearisation of the critical points of the resulting travelling wave equation, an
ODE in the local case). Numerical computations performed in [19] and in[12] suggest that
we may expect a similar oscillatory behaviour of the travelling waves of (1.1). This has an
immediate implication that the present existence proof (with τ > 0) differs significantly from
the existence proof in [1] as we shall see below. On the other hand, and in contrast to the
classical KdV-Burgers equation, the presence of the non-local operator in (1.1) does not allow
to approach the problem using phase-plane analysis of the travelling wave equation, since this
becomes a (non-linear) integro-differential equation.

Let us first recall some basic properties of the fractional differential operator Dαu. Since
it can be written as the convolution of u′ with θ(x)x−α/Γ(1 − α) (where θ is the Heaviside
function), Dα is a pseudo-differential operator with symbol

ik
√
2π

Γ(1− α)
F
(

θ(x)

xα

)

(k) = (bα + iaα sgn(k)) |k|α , (1.3)

i.e. F(Dαu)(k) = (bα + iaα sgn(k)) |k|αû(k) where F denotes the Fourier transform

Fϕ(k) = ϕ̂(k) =
1√
2π

∫

e−ikxϕ(x)dx ,

and the coefficients aα and bα are given by

aα = sin
(απ

2

)

> 0 , bα = cos
(απ

2

)

> 0 , (1.4)

(we refer to [2] for the details of the computation to obtain (1.3)). The operator on the
right-hand side of (1.1) then is a pseudo-differential operator with symbol

F(∂xDα) = − (aα − ibα sgn(k)) |k|α+1 , (1.5)

which is dissipative in the sense that the real part of (1.5) is negative.
For s ∈ R we shall adopt the following notation for the Sobolev of square integrable

functions,
Hs := {u : ‖u‖Hs <∞} , ‖u‖Hs := ‖(1 + |k|2)s/2û‖L2(R) ,

and the corresponding homogeneous norm

‖u‖Ḣs := ‖|k|sû‖L2(R) .

2



Using that (a2α + b2α) = 1 it is easy to see that ‖Dαu‖Ḣs = ‖u‖Ḣs+α , and this suggests that
one can interpret Dα as a differentiation operator of order α. We also observe that Dα is a
bounded linear operator from Hs to Hs−α.

We shall also let denote Cm
b with m ≥ 0, the set of functions, whose derivatives up to

order m are continuous and bounded. Then one can also infer that Dαu is a bounded linear
operator from C1

b (R) to Cb(R). As explained in [1], this can be easily seen by splitting the
domain of integration in (1.2) into (−∞, x − δ] and [x − δ, x] for some positive δ > 0. Then
integration by parts in the first integral shows the boundedness of Dαu.

It is also known thatDα can be inverted by multiplying it with (z−ξ)−(1−α) and integrating
with respect to ξ from −∞ to z. Applying this to (1.2) we obtain:

IαDα(u(x)) = u(x)− lim
x→−∞

u(x) , (1.6)

with the integral operator

Iαu(x) = d1−α

∫ x

−∞

u(y)

(x− y)1−α
dy u ∈ C1

b (R) . (1.7)

We shall use this inversion of Dα in Section 2.
In some instances we shall also need to split the integral operator (1.2) as follows

(Dαu)(x) = dα

∫ x0

−∞

u′(y)

(x− y)α
dy + dα

∫ x

x0

u′(y)

(x− y)α
dy , for some x0 < x , (1.8)

and treat the first term as a known function, whereas the second one can be viewed as a
left-sided Caputo derivative, see e.g. [11], and that we denote by Dα

x0
, indicating that the

integration is from a finite value x0, i.e. u ∈ C1
b ([x0,∞)) and α ∈ (0, 1]

Dα
x0
u(x) = I1−α

x0
u′(x) =

1

Γ(1− α)

∫ x

x0

u′(y)

(x− y)α
dy . (1.9)

Notice that the first term in the right-hand side of (1.8), which is a function of x, is not equal
to (Dαu)(x0), which is a number for fixed x0.

2 Existence of Travelling Wave Solutions

We introduce the travelling wave variable ξ = x − ct with wave speed c and look for solu-
tions u(x, t) = φ(ξ) of (1.1) which connect two different far-field real values φ− and φ+. A
straightforward calculation shows that if φ depends on x and t only through the travelling
wave variable, then so does Dαφ, and so the travelling wave problem becomes

−cφ′ + (φ2)′ = (Dαφ)′ + τφ′′′ , (2.1)

subject to
lim

ξ→−∞
φ(ξ) = φ− , lim

ξ→∞
φ(ξ) = φ+ . (2.2)

Here ′ denotes differentiation with respect to ξ. We can then integrate (2.1) with respect to
ξ and use (2.2) to arrive at the following travelling wave equation:

h(φ) = Dαφ+ τφ′′ , where h(φ) := −c(φ− φ−) + φ2 − φ2− . (2.3)
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If φ′ decays to zero fast enough as ξ → ±∞, then we obtain the Rankine-Hugoniot condition

c = φ+ + φ− (2.4)

that we assume throughout. Since h(φ) is convex, the left hand side of (2.3) is negative
between its only zeroes φ = φ− and φ = φ+. In what follows we shall show the existence of
solutions of (2.3) provided the entropy condition

φ− > φ+ , (2.5)

is satisfied. We shall not make further assumptions on the far-field values (regarding the sign,
for example), but just note (2.4) and (2.5) imply that

h′(φ−) = φ− − φ+ > 0 and h′(φ+) = φ+ − φ− < 0 . (2.6)

We observe that (2.5) is a necessary condition for existence of the travelling wave if α = 1.
Their existence for τ = 0 and α ∈ (0, 1), where this condition is crucial, is shown in [1].

As in [1], we shall start our analysis by proving a ’local’ existence result on (−∞, ξ̃] with
ξ̃ < 0 and |ξ| sufficiently large. Global existence will then follow by a continuation argument
and global boundedness of solutions. The lack of monotonicity for τ > 0 requires additional
investigations in order to show that a travelling wave solution tends to φ+ as ξ → ∞. In
order prove this we use that the functional H(φ)−H(φ−), where

H(φ) =

∫ φ

0
h(y)dy = −cφ

2

2
+
φ3

3
+Aφ , with A = cφ− − φ2− , (2.7)

is increasing with respect to ξ. This step allows to show that if a travelling wave tends to a
constant value as ξ tends to ∞ then that constant must be φ+. Then we show that indeed
the solutions of (2.3) satisfying φ(−∞) = φ− tend to a constant as ξ tends to ∞.

The local existence result is based on linearisation about ξ = −∞ (or, equivalently, φ =
φ−). As it could be expected for ordinary differential equations, the linearisation about
φ ≡ φ−,

h′(φ−)v = Dαv + τv′′ , (2.8)

has solutions of the form v(ξ) = beλξ, b ∈ R, where λ > 0 is a root of

P (z) = τz2 + zα − h′(φ−) . (2.9)

We observe that there is a unique positive real root of (2.9). Indeed, this follows from the
fact that P (z) → ∞ as z → ∞ and

P (0) = −h′(φ−) < 0 , P ′(z) = 2τz + αzα−1 ≥ 0 for z ≥ 0 .

In Lemma B.1 of Appendix B we show, using Rouche’s theorem, that (2.9) has exactly three
roots, one positive real one and two complex conjugates with negative real part.

We assume for the moment that the only solutions of (2.8) that decay to 0 as ξ → −∞
are of the form beλξ for some constant b and λ being the real root of (2.9). We have not fully
succeeded in proving this, however in Appendix A we do it in suitable weighted spaces (see
Theorem A.2).

Henceforth, we assume that

N
(

τ∂2ξ +Dα − h′(φ−)Id
)

= span{eλξ} in H4(R) (2.10)

where Id denotes the identity operator.
The main result of this section is the following:
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Theorem 2.1 Let (2.5) and (2.10) hold. Then, there exists a solution φ ∈ C3
b (R) of (2.1)-

(2.2) that is unique (up to a shift in ξ) among all φ ∈ φ− +H4((−∞, 0)) ∩ C3
b (R).

We prove Theorem 2.1 in several steps that we write as lemmas. The first one below is a
’local’ existence result that says that the nonlinear problem has, up to translations, only two
nontrivial solutions, which can be approximated by φ−±eλξ for large negative ξ (observe that
the shift in ξ gives a positive constant multiplying the exponential and that we have taken
equal to 1 without loss of generality).

Lemma 2.1 [Local existence] Let the assumptions of Theorem 2.1 hold. Then, for every
small enough ε > 0, (2.3) has solutions φup, φdown ∈ φ− +H4(Iε), where Iε = (−∞, ξε] and
ξε = log ε/λ, such that

φup(ξε) = φ− + ε , φdown(ξε) = φ− − ε . (2.11)

Moreover, these are unique among all functions φ satisfying ‖φ−φ−‖H4(Iε) ≤ δ, with δ small
enough, but independent of ε. They satisfy, with an ε-independent constant C,

‖φup − φ− − eλξ‖H4(Iε) ≤ Cε2 , ‖φdown − φ− + eλξ‖H4(Iε) ≤ Cε2 .

Proof.We follow the proof of [1]. We only prove existence and uniqueness for φdown, the
proof of for φup is analogous and we do not do it here.

We start by writing (2.3) and the initial condition (2.11) in terms of the perturbation
Φ(ξ) = φdown(ξ)− φ− + eλξ:

(τ∂2ξ +Dα − h′(φ−)Id)Φ = h(φ− − eλξ +Φ) + h′(φ−)(e
λξ − Φ) , Φ(ξε) = 0 . (2.12)

We then define a fixed-point map by considering the right-hand side of (2.12) as given.
In order to use Fourier methods, we need a smooth enough extension of functions to ξ ∈ R.

Then, in general, for a f ∈ H4(Iε) we let E(f) ∈ H4(R) denote a smooth extension of f that
satisfies

E(f)
∣

∣

∣

Iε
= f , ‖E(f)‖H4(R) ≤ γ‖f‖H4(Iε) .

And denote by Φ a bounded solution of

(τ∂2ξ +Dα − h′(φ−)Id)Φ = E(f) in R ,

then Φ and its derivatives with respect to ξ can be written as

dmΦ

dξm
= F−1

[

(

−τk2 + bα|k|α − h′(φ−) + iaαsgn(k)|k|α
)−1F

(

dmE(f)
dξm

)]

, m = 0, 1, 2, 3, 4 .

(2.13)
The Fourier symbol in (2.13) is uniformly bounded in k and this implies that there exist
constants C1, C2 > 0 such that

‖Φ|Iε‖H4(Iε) ≤ ‖Φ‖H4(R) ≤ C1‖E(f)‖H4(R) ≤ C2‖f‖H4(Iε) .

By the assumption (2.10), the unique solution of

(τ∂2ξ +Dα − h′(φ−)Id)U = f in Iε , U(ξε) = 0 ,
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is U [f ](ξ) = Φ(ξ)−Φ(ξε)e
λ(ξ−ξε). This allows to write (2.12) as the fixed-point problem

φ̄(ξ) = U
[

h(φ− − eλξ + φ̄(ξ)) + h′(φ−)(e
λξ − φ̄(ξ))

]

.

The continuous embedding of H4(Iε) in C
3
b (Iε) gives

∥

∥

∥
h(φ− − eλξ + φ̄) + h′(φ−)(e

λξ − φ̄)
∥

∥

∥

H4(Iε)
≤ L

(

ε2 + ε‖φ̄‖H4(Iε) + ‖φ̄‖2H4(Iε)

)

,

where L is a positive non-decreasing function. It is now easily seen that the fixed point map
is a contraction in small enough balls (independent of ε) and that maps a ball with radius of
O(ε2) into itself (see [1] for such similar details).

Lemma 2.2 [Continuation principle] Let φ ∈ C3
b ((−∞, ξ0]) be a solution of (2.3) as con-

structed in Lemma 2.1. Then there exists a δ > 0, such that φ can be extended uniquely to
C3
b ((−∞, ξ0 + δ)).

Proof.The idea is to write the integro-differential equation as a system of Caputo-differential
equations. We use the definition of the Caputo derivative and the inversion formula for it(1.9).
Since φ ∈ C1([ξ0,∞)) and α ∈ (0, 1] then this allows to write down derivatives of entire order
by using that Dα

ξ0
Iα
ξ0

≡ Id (cf. [11]). Indeed, we can write

φ′(ξ) = Dα
ξ0D

1−α
ξ0

φ(ξ) = D1−α
ξ0

Dα
ξ0 φ(ξ) ,

hence, also
φ′′(x) = D1−α

ξ0
Dα

ξ0D1−α
ξ0

Dα
ξ0 φ(ξ) .

We can now express (2.3) as a system:

Dα
ξ0 φ = ψ , D1−α

ξ0
ψ = θ , Dα

ξ0 θ = χ , (2.14)

τD1−α
ξ0

χ = h(φ)− ψ −
∫ ξ0

−∞

φ′(y)

(ξ − y)α
dy . (2.15)

The system is locally Lipschitz continuous in C3
b (ξ0, ξ0 + δ). Local existence then follows by

using a Picard-Lindelöf type of argument, taking as initial conditions the values of φ, Dα
ξ0
φ,

φ′ and Dα
ξ0
φ′ at ξ = ξ0. The well-posedness of linear integro-differential systems of this form

is given by Jafari and Daftardar-Gejji [9], so we do not give further details.
It is now clear that boundedness of the solutions will guarantee global existence by ap-

plying repeatedly Lemma 2.2 as long as φ′ remains integrable. First we show that a solution
of (2.3) as constructed in lemmas 2.1 and 2.2 is uniformly bounded.

Lemma 2.3 (Uniform boundedness) Let φ ∈ C3
b ((−∞, ξ0]) be a solution of (2.3) as con-

structed in Lemma 2.1. Then the solution is bounded for ξ ∈ (−∞, ξ0) by

φ̄ < φ(ξ) < φ− , where φ̄ =
3φ+ − φ−

2
< φ+ (2.16)

is the second root of
H(φ)−H(φ−)

φ− φ−
= 0 .
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Proof.We first derive an energy type of estimate for (2.3). This is done, as in the local case,
by multiplying the equation by φ′ and integrating with respect to ξ:

H (φ(ξ))−H (φ−) =
τ

2

(

φ′(ξ)
)2

+

∫ ξ

−∞
φ′(y)Dαφ(y)dy . (2.17)

The first term on the right-hand side of (2.17) is clearly non-negative.
Let us show that the second term is also non-negative.
We first observe that

∫ ξ

−∞
φ′(y)Dαφ(y)dy =

1

2

∫ ξ

−∞
φ′(y)

∫ ξ

−∞

φ′(x)

|x− y|α dx dy (2.18)

this is shown by noticing that

∫ ξ

−∞
φ′(y)

∫ ξ

y

φ′(x)

(x− y)α
dx dy =

∫ ξ

−∞
φ′(x)

∫ x

−∞

φ′(y)

(x− y)α
dy dx .

Then, we can consider an extension φ′E ∈ L2(R) of φ′ to R so that φ′E(y) = 0 for y > ξ. Then,
by applying Theorem 9.8[15] to (2.18) with this extension we obtain that

∫ ξ

−∞
φ′(y)Dαφ(y)dy =

1

2

∫

R

φ′E(x)

∫

R

φ′E(y)

|x− y|α dy dx ≥ 0 . (2.19)

Let us now prove the upper bound. Suppose that there exists a ξ̄ <∞ such that φ(ξ̄) = φ−,

then from (2.17) one gets that
∫ ξ̄
−∞ φ′(y)Dαφ(y)dy = 0, and (2.19) implies that φ′(ξ) = 0 for

all ξ ∈ (−∞, ξ̄] (see [15]). Assume now that limξ→∞ φ(ξ) = φ−, then
∫∞
−∞ φ′(y)Dαφ(y)dy = 0.

But, we can write (2.18) with ξ = ∞ and without using an extension of φ′;

∫ ξ

−∞
φ′(y)Dαφ(y)dy =

1

2

∫

R

φ′(x)

∫

R

φ′(y)

|x− y|α dy dx = 0 ,

thus also φ′(ξ) = 0 for all ξ ∈ R. Then a non constant solution is always below φ−.
In order to get the lower bound, we use that the right hand side of (2.17) is non-negative,

thus

H (φ)−H (φ−) = − c
2
(φ2 − (φ−)

2) +
1

3
(φ3 − (φ−)

3) +A(φ− φ−) ≥ 0 .

Since we have just shown that φ− φ− < 0 in (−∞, ξ0], we obtain the condition

H(φ)−H(φ−)

φ− φ−
= − c

2
(φ+ φ−) +

1

3
(φ2 + φφ− + (φ−)

2) +A < 0

and this implies (2.16).

Lemma 2.4 (Global uniqueness) Let φ ∈ φ− +H4((−∞, ξ0)) be a solution of (2.3). Then,
up to a shift in ξ, φ is the continuation of either φup or φdown, otherwise φ ≡ φ−.

Proof.For every δ > 0 there exists a ξ∗ ≤ ξ0, such that ‖φ − φ−‖H4((−∞,ξ∗)) < δ and,
therefore, by Sobolev embedding, also |φ(ξ∗) − φ−| < δ. Choosing δ small enough, there are
only two possibilities, either φ(ξ∗) = φ− (implying that φ ≡ φ−) or φ(ξ

∗) 6= φ−. Whence, by
local uniqueness, φ is, up to a shift, either equal to φup or φdown, depending on the sign of
φ(ξ∗)− φ−.

It remains to analyse the far-field behaviour.
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Lemma 2.5 Let φ ∈ φ−+H
4((−∞, ξ0)) be a continuation of φdown as in Lemma 2.4. Suppose

that
lim
ξ→∞

φ = φ0 ∈ R , (2.20)

then φ0 = φ+.

Proof.We argue by contradiction. Assume that (2.20) holds with φ0 6= φ+, then h(φ(ξ)) →
h(φ0) 6= 0. Suppose first that for ξ > ξ0, h(φ(ξ)) > C+ > 0, then applying the integral
operator (1.7) to h(φ) we get

d−1
1−αIαh(φ(ξ)) >

∫ ξ0

−∞

h(φ(y))

(ξ − y)1−α
dy + C+

∫ ξ

ξ0

dy

(ξ − y)1−α

=

∫ ξ0

−∞

h(φ(y))

(ξ − y)1−α
dy +

C+

α
(ξ − ξ0)

α → ∞ as ξ → ∞ .

This and (2.3) imply that Iαφ′′ → ∞ as ξ → ∞. Similarly, if for all ξ > ξ0 we have
h(φ(ξ)) < C− < 0, we obtain

d−1
1−αIαh(φ) <

∫ ξ0

−∞

h(φ(y))

(ξ − y)1−α
dy + C−

∫ ξ

ξ0

dy

(ξ − y)1−α

=

∫ ξ0

−∞

h(φ(y))

(ξ − y)1−α
dy + C−(ξ − ξ0)

α → −∞ as ξ → ∞

as before, this implies that Iαφ′′ → −∞ as ξ → ∞. In both cases and using (2.3) we obtain
that |Iαφ′′| is unbounded as well. Let us see that this contradicts (2.20).

Since φ ∈ C3
b (R) by Lemma 2.2 and (2.20) holds, we can take for any ε > 0 and ξ large

enough, ξ∗ = ξ − δ for a fixed δ > 0 such that |φ′′(ξ)| < ε for all ξ > ξ∗. Then

∣

∣

∣

∣

∫ ξ

ξ∗

φ′′(y)

(ξ − y)1−α
dy

∣

∣

∣

∣

< ε(ξ − ξ∗)α = εδα . (2.21)

Now if we write

d−1
1−αIαφ′′ =

∫ ξ

−∞

φ′′(y)

(ξ − y)1−α
dy =

∫ ξ∗

−∞

φ′′(y)

(ξ − y)1−α
dy +

∫ ξ

ξ∗

φ′′(y)

(ξ − y)1−α
dy , (2.22)

(2.21) implies that the second term of (2.22) converges. We integrate by parts the first term:

∫ ξ∗

−∞

φ′′(y)

(ξ − y)1−α
dy =

φ′(ξ∗)

(ξ − ξ∗)1−α
− lim

y→−∞

φ′(y)

(ξ − y)1−α
+ (1− α)

∫ ξ∗

−∞

φ′(y)

(ξ − y)2−α
dy

=
φ′(ξ∗)

δ1−α
+ (1− α)

∫ ξ∗

−∞

φ′(y)

(ξ − y)2−α
dy .

The absolute value of the second term on the right hand side is also bounded by C/δ1−α.
Since δ was a fixed number, this contradicts the unboundedness of Iαφ′′.

Next we show that a solution as constructed in Lemma 2.1 approaches a constant value
as ξ → ∞. Once this is proved we can conclude the proof of Theorem 2.1 since this then
implies that limξ→∞ φ = φ+ by Lemma 2.5.
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Lemma 2.6 Let φ be a solution of (2.3) as in Lemma 2.4. Then there exist a constant
φ0 ∈ R such that limξ→∞ φ(ξ) = φ0.

Proof.The solution φ can be extended to any interval of the form (−∞, ξ0] by repeating the
continuation result of Lemma 2.2 as necessary, since (2.16) is satisfied. Now, knowing that
the smooth wave profile exists, we split the non-local differential operator and rewrite the
travelling wave equation in the following form

τφ′′ +Dα
ξ0φ+ φ = q(φ, ξ) (2.23)

for ξ ≥ ξ0, where

q(φ, ξ) = −dα
∫ ξ0

−∞

φ′(y)

(ξ − y)α
dy + h(φ(ξ)) + φ(ξ) .

We can know write down the solution to (2.23) implicitly. In order to do that one applies
Laplace transform methods as in e.g. [8] to obtain a ’variations of constants’ representation
of the solution with initial conditions at ξ = ξ0. One gets

φ(ξ) = φ(ξ0) v(ξ) − φ′(ξ0) v
′(ξ)−

∫ ξ

ξ0

q(φ(ξ − s), ξ − s)v′(s)ds

where the function v and its derivatives are uniformly bounded and satisfy (we give more
details in Appendix C, see (C.12)-(C.14)):

lim
ξ→∞

(ξ − ξ0)
αv(ξ) =

dα
τ
, lim

ξ→∞
(ξ − ξ0)

α+1v′(ξ) =
dα−1

τ
.

Now using that φ is uniformly bounded in R, we conclude that q(φ, ξ) is also uniformly
bounded and it is easy to see the integrability of the term with the inhomogeneity q as well
as the decay of φ towards a constant.

We end the section with the proof of the main theorem:
Proof of Theorem 2.1. The proof follows by applying the previous lemmas. First,
Lemma 2.1 (local existence), then Lemma 2.2 (continuation principle) and then lemmas 2.3
and 2.4 imply the global existence and uniqueness up to translation in ξ of solutions
of (2.3) satisfying φ(−∞) = φ−. Finally, Lemma 2.6 implies that such solution satisfies
limξ→∞ |φ(ξ)| <∞ and from Lemma 2.5 we conclude that in fact limξ→∞ φ(ξ) = φ+.

3 Analysis of the monotonicity of travelling waves

In this section we discuss the role of the parameter τ in the monotonicity of the travelling
waves. To start with, we remark that one can show ’local’ monotonicity for all τ > 0 in the
interval Iε for ε small enough:

Lemma 3.1 (Local monotonicity) Let the assumptions of Lemma 2.1 hold. Then, for ε
small enough,

φup > φ− , φ′up > 0 , φdown < φ− , φ′down < 0 , in Iε .

9



Proof.The proof follows as in [1].
Now, if τ = 0 we know from [1] that travelling waves are monotone decreasing. Moreover,

if τ 6= 0 and α = 1, thus in the classical KdV-Burgers case, it is easy to see that the waves
are monotone if τ is smaller than some critical value (see [3]). In fact, travelling waves are
heteroclinic connections of the corresponding ODE system. The critical points represent the
far-field values φ− and φ+, linearisation about these points shows that the one associated to
φ− is a saddle point and the one associated to φ+ is an attractor. It is important to notice
that the attractor has the eigenvalues

λ± =
−1±

√

1 + 4τh′(φ+)

2τ

and that h′(φ+) < 0 (see (2.6)). It then becomes clear that heteroclinic connections give
monotone travelling waves when τ ≤ −1/(4h′(φ+)).

We expect a similar behaviour for (2.3), although the decay of φ towards φ+ is not
exponential, as we have seen in the proof of Lemma 2.6.

Let us now prove that if τ is small enough then the solution of (2.2)-(2.3) that is a extension
of φdown is close to the solution with τ = 0 (as constructed in [1]) on a large interval, thus
implying monotonicity for small values of τ on such intervals. Before we give the result let
us introduce the appropriate notation. Let us denote by φτ a travelling wave solution for a
given τ and φ0 a travelling wave of the problem with τ = 0. Then:

Theorem 3.1 (Monotonicity) If τ is small enough, then there exist an interval Iτ =

(−∞, ξτ ] with ξτ = O(τ−
1

2−α ) as τ → 0, and a value ξ = ξ0τ < ξτ such that φτ (ξ
0
τ ) = φ0(ξ

0
τ ),

moreover, |φτ (ξ) − φ0(ξ)| ≤ τC and |φ′τ (ξ) − φ′0(ξ)| ≤ τ1/(2−α)C for all ξ ∈ Iτ . Thus for τ
small enough φτ is also monotone decreasing in Iτ .

We prove this theorem in several lemmas. First we fix the shift in ξ:

Lemma 3.2 For a given small τ there exists a ξ0τ < log τ/(h′(φ−))
1/α small and a travelling

wave solution φτ such that, if φ0 is the travelling wave solution of the problem with τ = 0
such that φ0(log τ/(h

′(φ−))
1/α) = φ− − τ , then φτ is monotone decreasing in (−∞, ξ0τ ] and

φτ (ξ
0
τ ) = φ0(ξ

0
τ ) , |φ′τ (ξ)− φ′0(ξ)| , |φ′′τ (ξ)− φ′′0(ξ)| ≤ τC for ξ ∈ (−∞, ξ0τ ] (3.1)

with some order one constant C > 0.

Proof.We want to compare travelling wave solutions for a small τ > 0 with solutions of the
problem with τ = 0. The later ones are monotone and are constructed ’locally’ near −∞
as in Lemma 2.1 in [1]. In particular, for a given small enough ε then φ0(ξ

0
ε) = φ− − ε

where ξ0ε = log ε/(h′(φ−))
1/α. On the other hand, if λτ denotes the real root of (2.9) then

φτ (log ε)/λτ ) = φ− − ε. The asymptotic behaviour of λτ as τ → 0 (see (B.3) in Appendix B)
and (2.6) imply that if τ is small enough then ξ0ε < log ε/λτ , hence, by local monotonicity,
φ− − ε < φτ (ξ

0
ε ) < φ− i.e. φτ (ξ

0
ε ) − φ0(ξ

0
ε) < ε. Again by monotonicity, we can find a

value ξε < ξ0ε , by shifting φτ in ξ if necessary, such that φτ (ξε) = φ0(ξε). Finally, by the
construction of these waves, they are close to φ− by an exponential difference in H3(−∞, ξ0τ ),
it holds that |φ′τ (ξ) − φ′0(ξ)|, |φ′′τ (ξ) − φ′′0(ξ)| ≤ εC with an order 1 constant C > 0. Finally,
we can do this same construction by taking ε = τ .

Let ψτ := φτ − φ0, then ψτ satisfies the following equation

τψ′′
τ +Dα

ξ0τ
ψτ = R(φ0, φτ , ξ)− τφ′′0(ξ) (3.2)
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where

R(φ0, φτ , ξ) = [−c+ (φτ (ξ) + φ0(ξ))]ψτ (ξ)− dα

∫ ξ0τ

−∞

ψ′
τ (y)

(ξ − y)α
dy , (3.3)

(for simplicity, we do not write the dependency of R in ψτ which implicit in the dependency
on φτ and φ0) here we have used the expression of h in (2.3) to write h(φτ ) − h(φ0) =
[−c+ (φτ + φ0)]ψτ . That can be solved subject to the initial conditions (see (3.1))

ψ(ξ0τ ) = 0 , ψ′(ξ0τ ) = φ′τ (ξ
0
τ )− φ′0(ξ

0
τ ) . (3.4)

Using Laplace transform we can write the solution to (3.2)-(3.4) taking φτ and φ0 as given.
In order to do that more conveniently we can first shift the independent variable so that
η = ξ − ξ0τ and let ψ̄τ (η) = ψτ (η + ξ0τ ), so (3.2) and (3.3) read

τψ̄′′
τ +Dα

0 ψ̄τ + ψ̄τ = Q(φ0, φτ , η) ,
′ =

d

dη
(3.5)

Q(φ0, φτ , η) = R(φ0, φτ , η + ξ0τ )− τφ′′0(η + ξ0τ ) + ψ̄τ (η) (3.6)

where we add an subtract the term ψ̄τ for technical reasons outlined below. Then, (3.5)-(3.6)
must be solved with initial conditions (see (3.4))

ψ̄τ (0
+) = 0 , ψ̄′

τ (0
+) = ψ′(ξ0τ ) . (3.7)

Employing the computation performed in Appendix C, but here with a = 1, the solution
of (3.5)-(3.7) is given implicitly by

ψ̄(η) = −τψ̄′(0+)v′(η) −
∫ η

0
v′(y)Q(φ0, φτ , η − y) dy (3.8)

where v(η) reads (see (C.12) and (C.13))

v(η) =
sin(απ)

π

∫ ∞

0
e−ηrKτ,α(r) dr + 2Re

(

es1η
τs1 + sα−1

1

2τs1 + αsα−1
1

)

, (3.9)

and s1 is the solution of
τz2 + zα + 1 = 0 (3.10)

with positive imaginary part, and β = arg(s1) ∈ (π/2, π) (see Lemma B.1 and Appendix C),
and where

Kτ,α(r) = rα−1K̃τ,α(r) with K̃τ,α(r) =
1

(τr2 + 1)2 + 2(τr2 + 1)rα cos(απ) + r2α
. (3.11)

Then it is easy to see that

v′(η) =
sin(απ)

π

∫ ∞

0
e−ηrrαK̃τ,α(r) dr + 2Re

(

es1η
τs21 + sα1

2τs1 + αsα−1
1

)

. (3.12)

The reason to introduce the term ψ̄τ is that this implies that the resulting algebraic function
when applying the Laplace transform to the left-hand side of (3.5) has poles away from the
negative real axis. Without this term, 0 would be a pole of such function, but is also a branch
point, thus making the computation of the inverse Laplace transform a little cumbersome.
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We also need to get pointwise estimates on |ψ̄τ (η)|. We shall do this directly from the
expression obtained differentiating (3.8):

ψ̄′
τ (η) = −τψ̄′

τ (0
+)v′′(η)− v′(η)Q(φ0, φτ , 0) −

∫ η

0
v′(y)

dQ
dη

(φ0, φτ , η − y) dy . (3.13)

The following estimates hold:

Lemma 3.3 If r < 1/τ
1

2−α , for some τ small enough, then there exists a C > 0 independent
of τ such that

∣

∣

∣

∣

K̃τ,α(r)−
1

1 + 2rα cos(απ) + r2α

∣

∣

∣

∣

≤ C τ .

If on the contrary r ≥ 1/τ
1

2−α , for some τ small enough, there exists a C > 0 independent of
τ such that

|K̃τ,α(r)| ≤ Cτ
2

2−α .

Proof.We leave the proof to the reader. One can convince him or herself by inspecting the
functions involved and a formal dominant balance analysis that can be made rigorous by
performing the calculus.

Regarding the second term on the right-hand side of (3.9) we have the following prelimi-
nary estimates that give exponential decay (observe that cos(β) < 0:

Lemma 3.4 If τ is small enough then, there exists a 0 < C(τ) < 1 such that C(τ) ∼ 2/(2+α)
as τ → 0 and

∣

∣

∣

∣

Re

(

es1η
τs1 + sα−1

1

2τs1 + αsα−1
1

)∣

∣

∣

∣

≤ C(τ)e(|s1| cos β) η

where β = arg(s1) ∈ (π/2, π) with β → π/(2 − α) and |s1| = O(1/τ1/(2−α)) as τ → 0.
Similarly, estimates on derivatives with respect to η of this term differ by a factor |s1|n where
n is the order of the derivative.

Proof.This is proved by using Lemma B.1 and (B.6) of Appendix B. Details are left to the
reader.

We next derive estimates that we apply to (3.8) and (3.13). Essentially, we get estimates
on the uniform norms of v, v′, Q and dQ/dη, estimates on the integral of |v′| over [0, η] and
on v′′. We also need to get estimates on the integral terms of Q and dQ/dη.

Lemma 3.5 The following estimates hold for all η > 0 and τ small enough:

(i) There exist constants C(‖φ′′0‖L∞) > 0 and C > 0 such that

|Q(φ0, φτ , η)| ≤ (1 + 3|φ−|+ |φ+|) |ψ̄τ (η)|+ τC(‖φ′′0‖L∞) (3.14)

and
∣

∣

∣

∣

dQ
dη

(φ0, φτ , η)

∣

∣

∣

∣

≤ C
(

|ψ̄τ (η)|+ |ψ̄′
τ (η)|+ τη1−α

)

+ τ ‖φ′′′0 ‖L∞ . (3.15)

(ii) There exists a constant C > 0 such that

|Q(φ0, φτ , 0)| ≤ τ
(

C + |φ′′0(ξ0τ )|
)

.
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(iii) The functions v, v′ and v′′ are uniformly bounded on [0,∞). the first one by a constant
independent of τ , whereas the other two by an constant that becomes unbounded as
τ → 0+. Moreover, for all η > 0 there exists a constant C > 0

|v′(η)| ≤ C
(

τ
α

2(2−α) η
α−2
2 + τ

1−α
2−α η−α + τ

3−α
2−α

)

+ 2C(τ)e(|s1| cos β) η|s1| (3.16)

s1 being the zero of (3.10) with positive imaginary part and β ∈ (π/2, π) its principal
argument, and

|v′′(η)| ≤ C(τ−1 + τ−
2

2−α + τ−
α

2−α + τ
1−α
2−α ) . (3.17)

Proof.Statement (i) follows from the properties of φτ and φ0. In order to estimate the
integral term of Q we use the construction of the solutions φτ and φ0 in the interval (−∞, ξ0τ ]
and that λτe

λτ y − λ0e
λ0y = eλ0yF (τ, y) where F (τ, y) in uniformly bounded in y < ξ0τ τ > 0

(see Lemma 3.2, (3.1)). One can show (ii) similarly, since

Q(φ0, φτ , 0) = −dαDα(ξ0τ )− φ′′0(ξ
0
τ ) .

The integral term of dQ/dη reads, here η > 0,

I := −dα
∫ ξ0τ

−∞

ψ′
τ (y)

(ξ − y)α+1
dy = −dα

∫ 0

−∞

ψ̄′
τ (y)

(η − y)α+1
dy .

Integration by parts gives

I = −dα
α

ψ̄′
τ (0)

ηα
+
dα
α

∫ 0

−∞

ψ̄′′
τ (y)

(η − y)α
dy

and using Lemma 3.2, (3.1) gives the estimate.
The statement in (iii) about v and v′ follows from (C.5) and (C.14) of Appendix C.
Let us get the estimate on |v′(η)|. Using the expression of v′(η) in (3.12) and Lemma 3.4

we obtain a first estimate

|v′(η)| ≤ 1

π

∫ ∞

0
e−ηrrα

∣

∣

∣
K̃τ,α(r)

∣

∣

∣
dr + 2

∣

∣

∣

∣

Re

(

es1η
τs21 + sα1

2τs1 + αsα−1
1

)∣

∣

∣

∣

≤ 1

π

∫ ∞

0
e−ηrrα

∣

∣

∣K̃τ,α(r)
∣

∣

∣ dr + Ce(|s1| cos β) η)|s1| ,

for some positive constant independent of τ , where s1 is the zero of (3.10) with positive
imaginary part and β its principal argument. We estimate the first term on the right-hand
side of the inequality above assuming that τ is small enough and so that we can apply
Lemma 3.3. Thus we first split the integral over r and apply this lemma:

∫ τ
− 1

2−α

0
e−ηrrα

∣

∣

∣
K̃τ,α(r)

∣

∣

∣
dr

≤
∫ τ

− 1
2−α

0

e−ηrrα−γrγ

1 + 2rα cos(απ) + r2α
dr + τ1−

1
2−αC

∫ τ
− 1

2−α

0
e−ηrrα−1 dr , (3.18)

where γ ∈ (α, 2α) and
∫ ∞

τ
− 1

2−α

e−ηrrα
∣

∣

∣K̃τ,α(r)
∣

∣

∣ dr ≤ τ
2

2−αC

∫ ∞

τ
− 1

2−α

e−ηrrα dr . (3.19)
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In order to estimate (3.18) we shall use that

∫ B

A
e−ηrrσ dr ≤

∫ ∞

0
e−ηrrσ dr =

Γ(σ + 1)

ησ+1
with σ > −1 , 0 ≤ A < B , η > 0 (3.20)

and in each integral term we apply this as an estimate with different values of σ. For the

first term on the right-hand side of (3.18) we first rescale r = τ−
1

2−α r̄ and observe that for

any γ ∈ (α, 2α] the function r̄γ/(τ
2α
2−α a2 + τ

α
2−α 2r̄α cos(απ) + r̄2α) is uniformly bounded for

r̄ ∈ [0, 1] by a constant independent of τ . Then, after this change of variables, the estimate
and applying (3.20) with A = 0, B = 1 and σ = α− γ one gets:

∫ τ
− 1

2−α

0

e−ηrrα

1 + 2 cos(απ)rα + r2α
dr ≤ τ

α−1
2−αC

∫ 1

0
e−τ

− 1
2−α ηr̄ r̄α−γ dr̄ ≤ τ

2α−γ
2−α C(α)

1

ηα−γ+1
.

We obtain

∫ τ
− 1

2−α

0
e−ηrrα

∣

∣

∣
K̃τ,α(r)

∣

∣

∣
dr ≤ τ

2α−γ
2−α C(α)ηγ−α+1 + τ

1−α
2−αCΓ(α)η−α

and, taking γ = 3α/2, this gives the first two terms on the right-hand side of (3.16).
We further estimate (3.19) as follows:

∫ ∞

τ
− 1

2−α

e−ηrrα
∣

∣

∣K̃τ,α(r)
∣

∣

∣ dr

≤ τ
2

2−αC

∫ ∞

τ
− 1

2−α

e−ηrr2rα−2 dr ≤ τ
2

2−αC

∫ ∞

τ
− 1

2−α

rα−2 dr = τ
3−α
2−αC ,

where we use Lemma 3.3 in the first step. Putting the estimates together we obtain (3.16).
Let us get now the estimate on |v′′(η)|. We differentiate (3.12) and estimate the last term

as in Lemma 3.4, then

|v′′(η)| ≤ | sin(απ)|
π

∫ ∞

0
e−rηrα+1|K̃(r)|dr + 2

∣

∣

∣

∣

Re

(

es1η
τs31 + sα+1

1

2τs1 + αsα−1
1

)∣

∣

∣

∣

≤ | sin(απ)|
π

∫ ∞

0
e−rηrα+1|K̃(r)|dr + C e(|s1| cos β)η |s1|2 . (3.21)

We get estimates on the first term on the right-hand side by dividing the integral over the
intervals (0, τ−1/(2−α)) and (τ−1/(2−α),∞) and apply the estimates on K̃ of Lemma 3.3, then

| sin(απ)|
π

∫ ∞

0
e−rηrα+1|K̃(r)|dr

≤ C





∫ τ
− 1

2−α

0

e−rηr2αr1−α

1 + 2rα cos(απ) + r2α
dr + τ

∫ τ
− 1

2−α

0
e−rηrα+1dr + τ

2
2−α

∫ ∞

τ
− 1

2−α

e−rηr3rα−2dr





≤ C





∫ τ
− 1

2−α

0
r1−αdr + τ−

α
2−α + τ

2
2−α

∫ ∞

τ
− 1

2−α

rα−2dr



 = C

(

τ−1

2− α
+ τ−

α
2−α +

τ
1−α
2−α

1− α

)

.

This together with (3.21) and the asymptotic behaviour of |s1| as τ → 0+ (see Lemma 3.4)
concludes the proof of (3.17).
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We can now prove Theorem 3.1
Proof of Theorem 3.1. We start estimating |ψ̄τ (η)| and |ψ̄′

τ (η)| directly from (3.8) and
(3.13) and using the estimates of Lemma 3.5:

|ψ̄τ (η)| ≤ τC(‖φ′′0‖L∞)

∫ η

0
|v′(y)|dy + τ2C|v′(η)| +

∫ η

0
|v′(y)| |ψ̄τ (η − y)|

|ψ̄′
τ (η)| ≤ τC(|v′(η)| + τ |v′′(η)|) +

∫ η

0
|v′(y)|

(

|ψ̄τ (η − y)|+ τ(η − y)1−α + τ‖φ′′′0 ‖L∞

)

dy

+

∫ η

0
|v′(y)| |ψ̄′

τ (η − y)|dy| .

The result follows by using Gronwall’s Lemma, which implies that

|ψ̄τ (η)| ≤ A1(η) +

∫ η

0
A1(x)B(x)e

∫ η
x B(s)dsdx (3.22)

|ψ̄′
τ (η)| ≤ A2(η) +

∫ η

0
A2(x)B(x)e

∫ η
x B(s)dsdx (3.23)

where

A1(η) = τC(‖φ′′0‖L∞)

∫ η

0
|v′(y)|dy + τ2C|v′(η)| , B(η) = |v′(η − x)|

A2(η) = τC(|v′(η)| + τ |v′′(η)|) +
∫ η

0
|v′(y)|

(

|ψ̄τ (η − y)|+ τ(η − y)1−α + τ‖φ′′′0 ‖L∞

)

dy .

Observe that A1,
∫ η
0 B1(y)dy and exp(

∫ η
s B1(s)ds) are uniformly bounded for η < Cτ−1/(2−α)

and, moreover, |A1(η)| ≤ τC for some C > 0. Using this in (3.22) implies |ψ̄τ (η)| ≤ τC for
some C > 0 for all such η’s. We can apply this last fact to (3.23) to conclude the proof, since
A2 ≤ τCη1−α, thus in this range of η’s A2 ≤ τ1/(2−α)C.

Finally, we discuss the fact that in the tail travelling waves are monotone as long as τ is
small enough. This does not imply that the waves are decreasing in the whole of the domain,
however. The following result holds:

Theorem 3.2 Let φ be a solution of (2.1)-(2.2) as constructed in Theorem 2.1, then there
exist a ξ̄ large enough such that if τ is small enough φ is monotone decreasing in (ξ̄,∞).

Proof.We only sketch the proof. It can be done by a bootstrap argument based on the
behaviour of the solutions in the tail for τ small enough. For every δ, let ξδ ∈ R be such that
ξδ = inf{ξ : φ(ξ)− φ+ = δ}. Let us write (2.1) as follows:

h(φ) = Dα
ξδ
φ+

∫ ξδ

−∞

φ′(y)

(ξ − y)α
dy + τφ′′ . (3.24)

Let ψ(ξ) = φ(ξ)− φ+, then (3.24) reads

h(φ) − h(φ+)− h′(φ+)ψ = Dα
ξδ
ψ +

∫ ξδ

−∞

ψ′(y)

(ξ − y)α
dy + τψ′′ − h′(φ+)ψ ,

where we use that h(φ+) = 0. It is convenient to shift the independent variable as follows
ζ = ξ − ξδ and let ψ(ξ) = Ψ(ζ). Then, (3.24) reads, rearranging terms,

τΨ′′ +Dα
0Ψ− h′(φ+)Ψ = h(φ)− h(φ+)− h′(φ+)Ψ−

∫ 0

−∞

Ψ′(y)

(ζ − y)α
dy , (3.25)
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Then, we express the solution implicitly as in Appendix C with a = −h′(φ+) > 0

Ψ(ζ) = ψ̄(0+)v(ζ) +
τ

h′(φ+)
ψ̄′(0+)v′(ζ) +

1

h′(φ+)

∫ ζ

0
v′(y)Q(ζ − y) dy , (3.26)

Q(ζ) := h(φ(ζ + ξδ))− h(φ+)− h′(φ+)Ψ(ζ)−
∫ 0

−∞

Ψ′(y)

(ζ − y)α
dy (3.27)

(cf. (C.6)) where v(ζ) has been computed in Appendix C and reads (see (C.12) and (C.13))

v(ζ) = −h′(φ+)
sin(απ)

π

∫ ∞

0
e−ζrKα(r) dr + 2Re

(

es1ζ
τs1 + sα−1

1

2τs1 + αsα−1
1

)

, (3.28)

(cf. (3.9)) where, as before, s1 is the solution of

τz2 + zα − h′(φ+) = 0 (3.29)

with positive imaginary part, and β = arg(s1) ∈ (π/2, π) (see appendixes B and C), and
where

Kα(r) = rα−1K̃α(r) with K̃α(r) =
1

(τr2 − h′(φ+))2 + 2(τr2 − h′(φ+))rα cos(απ) + r2α
.

Observe that v(ζ) is the sum of a monotone (first term on the right-hand side of (3.28))
and a oscillatory term (second term on the right-hand side of (3.28)). On the other hand, the
non-monotone contribution of v′(ζ) is given by the derivative of the exponential oscillatory
term of v(ζ) if ζ is very large (thus if δ is very small), and the last term on the right
hand side of (3.26) can be made arbitrarily small for δ small. Thus taking ζ large enough
and τ small enough the small oscillations get damped by the algebraic decaying terms of

the monotone part. Observe that Re
(

es1ζ
τs1+sα−1

1

2τs1+αsα−1
1

)

has infinitely many oscillations with

frequency ω = ρ sin β = Im(s1), but its amplitude decreases exponentially like e(|s1| cos β)ζ as
ζ → ∞ (recall that |s1| = O(τ−1/(2−α)) and cos(β) < 0).

4 Asymptotic stability of monotone travelling waves

In this section we assume that the travelling waves found in Theorem 2.1 are monotone
(decreasing) and we prove their dynamic stability. Existence of such waves is guaranteed
for small enough values of τ as the analysis of the previous section suggests. The stability
analysis is done in a similar way as for the KdV-Burgers equation and the Burgers equation
(see e.g. [17], and also [1] for the corresponding fractional diffusion Burgers equation). We
next outline the key ideas of the proof.

It is convenient to first change variables to x→ ξ = x− ct in (1.1), so it becomes

∂tu+ ∂ξ(u
2 − cu) = ∂ξDαu+ τ∂3ξu . (4.1)

We then look for solutions of (4.1) which are a small perturbation of a travelling wave and
that in particular share the same far-field values. Let u0(ξ) be an initial datum and φ(ξ) a
monotone travelling wave as constructed in Theorem 2.1, with a shift in ξ chosen such that

∫

R

(u0(ξ)− φ(ξ)) dξ = 0 . (4.2)
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Observe that conservation of mass, a property satisfied by (4.1), implies that
∫

R

(u(t, ξ) − φ(ξ))dξ = 0 , for all t ≥ 0 .

Now, the perturbation U = u− φ satisfies the equation

∂tU + ∂ξ((2φ − c)U) + ∂ξU
2 = ∂ξDαU + τ∂3ξU . (4.3)

The aim is to show that U tends to 0 in a suitable sense as t tends to ∞ for small enough
U0 = u0 − φ. We use integral estimates. For instance, testing (4.3) with U , we get

1

2

d

dt
‖U‖2L2 +

∫

R

φ′U2dξ = −aα‖U‖2
Ḣ(1+α)/2 , (4.4)

where several integrations by parts have been carried out. Since we are assuming that φ′ ≤ 0,
the second term in (4.4) is non-positive. We next introduce the primitive of the perturbation
and of the corresponding initial data

W (t, ξ) =

∫ ξ

−∞
U(t, η)dη , W0(ξ) =

∫ ξ

−∞
U0(η)dη ,

which satisfies the integrated version of (4.3),

∂tW + (2φ − c)∂ξW + (∂ξW )2 = Dα∂ξW + τ∂3ξW , (4.5)

and
1

2

d

dt
‖W‖2L2 −

∫

R

φ′W 2d ξ +

∫

R

(∂ξW )2W dξ = −aα‖W‖2
Ḣ(1+α)/2 . (4.6)

This integral identity has the crucial property that the term involving φ′ is non-negative. In
the cubic term (arising from the nonlinearity) we can estimate |W | by the L∞-norm, this
factor can then be controlled by using the Sobolev embedding H1(R) ⊂ L∞(R).

The right-hand side in (4.4) is obtained using Plancherel’s theorem that, together with
|û(k)|2 = |û(−k)|2, implies that

∫

R

sgn(k) |k|j |û(k, t)|2 dk = 0 j ∈ N .

We observe that (as one can easily check based on (1.3) and (1.5))

F(∂xDα) = F(Dα∂x) = −(aα − ibαsgn(k))|k|α+1 , (4.7)

and from this we can obtain in the same way as for (4.4) the right-hand side of (4.6).
The well-posedness result below and the fact that (1.1), or (4.1), is a third order equation

requires that we work with U ∈ H2, in fact we shall require that at least U0 ∈ H3(R) since
we need integral estimates of higher order. We assume for the moment that the following
theorem holds, and we prove it in Section 5:

Theorem 4.1 For every U0 ∈ Hs(R), s ≥ 3 and assuming that φ ∈ Hs+1(R), there is a T > 0
such that (4.3) with initial data U(ξ, 0) = U0(ξ) has a unique solution U ∈ C([0, T ];Hs(R))∩
C1([0, T ];L2(R)) satisfying

‖U‖Hs ≤ C‖U0‖Hs .

The same result applies to (4.5) with initial condition W (ξ, 0) =W0(ξ).
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Then assuming this, we can locally perform further integral estimates of the consecutive
differentiations of (4.5). Namely, from

∂t∂
2
ξW + ∂2ξ ((2φ − c)∂ξW ) + ∂2ξ (∂ξW )2 = ∂2ξDα∂ξW + τ∂5ξW . (4.8)

we obtain, testing with ∂2ξW , the integral identity

1

2

d

dt
‖∂2ξW‖2L2 −

∫

R

φ′′′(∂ξW )2dξ + 3

∫

R

φ′(∂2ξW )2dξ +

∫

R

(∂2ξW )3dξ = −aα‖∂2ξW‖2
Ḣ(1+α)/2 .

(4.9)
Further, from the equation

∂t∂
3
ξW + ∂3ξ ((2φ − c)∂ξW ) + ∂3ξ (∂ξW )2 = ∂3ξDα∂ξW + τ∂6ξW , (4.10)

we obtain testing now with ∂3ξW the integral identity

1

2

d

dt
‖∂3ξW‖2L2 + 2

∫

R

φ′′′∂ξW ∂3ξWdξ − 3

∫

R

φ′′′(∂2ξW )2dξ + 5

∫

R

φ′(∂3ξW )2dξ

+ 5

∫

R

∂2ξW (∂3ξW )2dξ = −aα‖∂3ξW‖2
Ḣ(1+α)/2 . (4.11)

In order to justify the vanishing of the integral terms coming from the highest order term
in each equation, we use Theorem 4.1 above, that allows to obtain these identities in [0, T ]
provided the initial condition W0 ∈ Hs+1 with s ≥ 3. The proof of stability then uses a
combination of the integral identities just obtained choosing the coefficients in such a way
that the resulting functional is decreasing in time. The main point is that the terms with the
wrong sign, coming in general from the nonlinear terms and the ones involving derivatives of
φ, can be controlled by the dissipative ones via versions of the interpolation inequality

b2‖g‖2
Ḣ1 ≤ b1+α‖g‖2

Ḣ(1+α)/2 + b3+α‖g‖2
Ḣ(3+α)/2 , b > 0 (4.12)

that holds as a consequence of (bk)2 ≤ |bk|1+α + |bk|3+α, k ∈ R with b > 0. We shall also
need the following one

‖g‖2
Ḣ1 ≤ max{1, 1/b}

(

‖g‖2
Ḣ(1+α)/2 + b‖g‖2

Ḣ(3+α)/2

)

, b > 0 , (4.13)

that follows from (k)2 ≤ |k|1+α + |k|3+α ≤ min{b̃|k|1+α + |k|3+α, |k|1+α + b̃|k|3+α} for any
b̃ > 1.

After these preparations we can prove the following result.

Theorem 4.2 Let φ be a travelling wave as in Theorem 2.1, and let u0(ξ) be an initial datum

for (4.1), such that W0(ξ) =
∫ ξ
−∞(u0(η) − φ(η))dη satisfies W0 ∈ Hs+1 with s ≥ 3. Then if

‖W0‖H3 is small enough, the Cauchy problem for (4.1) with initial datum u0 has a unique
global solution with u(t) ∈ Hs−1 for all t > 0 converging to the travelling wave in the sense
that

lim
t→∞

∫ ∞

t
‖u(σ, ·) − φ‖2H2dσ = 0 .
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Note that (4.2), which can be translated into the condition W0(±∞) = 0, is part of the
assumption W0 ∈ Hs in Theorem 4.2.
Proof.As mentioned earlier the integral identities (4.4)-(4.11) are justified by Theorem 4.1
in an interval [0, T ]. Then, (4.4) and (4.6) imply the estimates

1

2

d

dt
‖U‖2L2 − C0‖U‖2L2 ≤ −aα‖U‖2

Ḣ(1+α)/2 , (4.14)

1

2

d

dt
‖W‖2L2 − ‖W‖L∞‖∂ξW‖2L2 ≤ −aα‖W‖2

Ḣ(1+α)/2 , (4.15)

with C0 = ‖φ′‖L∞ . Now, (4.9) and (4.11) imply the estimates

1

2

d

dt
‖∂2ξW‖2L2 − C1‖∂ξW‖2L2 − (‖∂2ξW‖L∞ + 3C0) ‖∂2ξW‖2L2 ≤ −aα‖∂2ξW‖2

Ḣ(1+α)/2 , (4.16)

1

2

d

dt
‖∂3ξW‖2L2 − C1‖∂ξW‖2L2 − 3C1‖∂2ξW‖2L2

−
(

5‖∂2ξW‖L∞ + 5C0 + C1

)

‖∂3ξW‖2L2 ≤ −aα‖∂3ξW‖2
Ḣ(1+α)/2 . (4.17)

with C1 = ‖φ′′′‖L∞ and where we choose the constant X > 0 below.
Then we can combine the estimate by choosing three positive constants, say A, B and C

to obtain the functional (that can be seen as a function of t)

J = ‖W‖2L2 +A‖∂ξW‖2L2 +B‖∂2ξW‖2L2 + C‖∂3ξW‖2L2

that clearly satisfies that there exist constants C∗ and C∗ such that

C∗‖W‖2H3 ≤ J ≤ C∗‖W‖2H3 . (4.18)

Combining these estimates we obtain

1

2

dJ

dt
− (‖W‖L∞ +AC0 +BC1 + CC1) ‖W‖2

Ḣ1

−B
(

‖∂2ξW‖L∞ + 3C0

)

‖W‖2
Ḣ2 − C

(

5‖∂2ξW‖L∞ + 5C0 + C1

)

‖W‖2
Ḣ3

+aα

(

‖W‖2
Ḣ(1+α)/2 +A‖W‖2

Ḣ(3+α)/2 +B‖W‖2
Ḣ(5+α)/2 + C‖W‖2

Ḣ(7+α)/2

)

≤ 0 .

Then we can estimate as follows

(AC0 +BC1 +CC1)‖W‖2
Ḣ1 ≤ aα

2

(

‖W‖2
Ḣ(1+α)/2 +

A

2
‖W‖2

Ḣ(3+α)/2

)

, (4.19)

3(CC1 +BC0)‖W‖2
Ḣ2 ≤ aα

2

(

A

2
‖W‖2

Ḣ(3+α)/2 +
B

2
‖W‖2

Ḣ(5+α)/2

)

, (4.20)

C (5C0 + C1) ‖W‖2
Ḣ3 ≤ aα

2

(

B

2
‖W‖2

Ḣ(5+α)/2 + C‖W‖2
Ḣ(7+α)/2

)

. (4.21)

In order to obtain this we use (4.12), this implies, identifying coefficients, that the following
must be satisfied:

2

aα
(AC0 +BC1 + CC1) =

(

A

2

)
1−α
2

,

12

aαA
(CC1 +BC0) =

(

B

A

)
1−α
2

,

B = C

(

2α+3

aα
(5C0 + C1)

)
2

1+α

.
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This can be solved using the third equation to eliminate C from the second one that can then
be solve for B/A. Then one can eliminate C and B from the first equation to solve for A,
and recovering B and C from the second and third equations, one gets

A =
1

2
3−α
1+α

(

aαL1L2

C0L1L2 + C1(L1 + 1)

) 2
1+α

, B =
A

L2
, C =

B

L1
(4.22)

where

L1 =

(

2α+3

aα
(5C0 + C1)

)
2

1+α

, L2 =

(

12

aα

(

C0 +
C1

L1

)) 2
1+α

.

Finally, we can also estimate the terms that contain coefficients with L∞ norms of W
and/or its second derivative. Namely, the following hold easily from (4.13)

‖W‖2
Ḣ1 ≤ max{1, 2/A}

(

‖W‖2
Ḣ(1+α)/2 +

A

2
‖W‖2

Ḣ(3+α)/2

)

(4.23)

B‖W‖2
Ḣ2 ≤ B

A
max{1, 2A/B}

(

A

2
‖W‖2

Ḣ(3+α)/2 +
B

2
‖W‖2

Ḣ(5+α)/2

)

(4.24)

5C‖W‖2
Ḣ3 ≤ 10C

B
max{1, B/2C}

(

B

2
‖W‖2

Ḣ(5+α)/2 + C‖W‖2
Ḣ(7+α)/2

)

(4.25)

and hence the combined estimate reads:

1

2

dJ

dt
+
(aα
2

−max{1, 2/A}‖W‖L∞

)

(

‖W‖2
Ḣ(1+α)/2 +

A

2
‖W‖2

Ḣ(3+α)/2

)

+
(aα

2
−max{B/A, 2}‖∂2ξW‖L∞

)

(

A

2
‖W‖2

Ḣ(3+α)/2 +
B

2
‖W‖2

Ḣ(5+α)/2

)

(4.26)

+
(aα

2
−max{10C/B, 5}‖∂2ξW‖L∞

)

(

B

2
‖W‖2

Ḣ(5+α)/2 + C‖W‖2
Ḣ(7+α)/2

)

≤ 0 .

By the Sobolev embedding and (4.18) we have

‖W‖L∞ , ‖∂2ξW‖L∞ ≤ ‖W‖H3 ≤
√

1

C∗
J .

then letting the initial data be small enough such that J(0) < C∗a
2
α(min{1/5, B/10C,A/B,A/2})2/8,

this and (4.26) imply the existence of a λ > 0 and a λ̄ > 0, such that

dJ

dt
≤ −λ

(

‖W‖2
Ḣ(1+α)/2 +A‖W‖2

Ḣ(3+α)/2 +B‖W‖2
Ḣ(5+α)/2 + C‖W‖2

Ḣ(7+α)/2

)

≤ −λ̄‖U‖2H2

for all t > 0. Integration with respect to time concludes the proof.

5 The proof of Theorem 4.1

We now prove the well-posedness of the Cauchy problem for (4.5) for a given initial data
W (0, x) = W0(x) ∈ Hs(R) with s ≥ 3. In fact we show that the operators involved sat-
isfy certain properties, collected in Lemma 5.1 below. Then, we can prove the existence of
the Cauchy problem for (4.3) by applying Lemma 5.1 and then we can apply the lemma
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again (writing (∂ξW )2 = U∂ξW in (4.5)) to conclude local existence of the Cauchy problem
associated to (4.5).

In the analysis we follow the semigroup approach for the Korteweg-de Vries equation by
Pazy in [16, Section 8.5], which is a variant of Kato [10], Namely, one has to use [16, Theorem
6.4.3] and the fact that the conditions of the theorem can be relaxed for time independent
and transport type operators, as is done in [16, Section 8.5] for the KdV equation. We can
then use the following version of [16, Theorem 6.4.3] to conclude local existence:

Lemma 5.1 Let X and Y be Banach spaces such that Y is densely and continuously embedded
in X. For every r > 0, let A(v) be a family of operators A(v), v ∈ Br := {v ∈ Y : ‖v‖Y ≤ r}
that satisfies the conditions

(i) Each of the operators of family A(v), with v ∈ Br, generate a C0 semigroup Tv(t) in Y
such that ‖Tv(t)‖ ≤ exp(βt) where β ≥ c0‖v‖Y with c0 independent of v.

(ii) There is an isomorphism S from Y onto X such that, for every v ∈ Br, SA(v)S
−1−A(v)

is a bounded operator in X and

‖SA(v)S−1 −A(v)‖X→X ≤ C1 for all v ∈ Br .

(iii) For each v ∈ Br, D(A(v)) ⊂ Y , A(v) is a bounded linear operator from Y into X and

‖A(v1)−A(v2)‖Y→X ≤ C2‖v1 − v2‖X for all v1 , v2 ∈ Br .

Then, there exists a T > 0 such that the quasilinear problem
{

∂tu+A(u)u = 0 for 0 ≤ t ≤ T ,

u(0) = u0 ∈ Y ,
(5.1)

has a unique mild solution u ∈ C([0, T ], Y ) ∩C1([0, T ],X).

In order to verify the conditions of the lemma, we shall split the homogeneous linear
operators of (4.3) (and of (4.5)) into two operators. Namely, we take

A0 : D(A0) = H3(R) 7→ L2(R) , u 7−→ ∂3ξu , (5.2)

A2 : D(A2) = H2(R) 7→ L2(R) , u 7−→ ∂ξDαu . (5.3)

In addition we define the following family of transport operators for v ∈ Br:

A1(v) : D(A1(v)) = H1(R) 7→ L2(R) , u 7→ v∂ξu . (5.4)

In order to show that the conditions of Lemma 5.1 are satisfied, we first derive some
properties of these operators.

Lemma 5.2 (i) A0 is the infinitesimal generator of a C0 group of isometries on L2(R).

(ii) For every v ∈ Hs(R) with s ≥ 3, the operator A1(v) is well-defined with domain
D(A1(v)) = H1(R) (dense in L2(R)). Moreover, the operator −(A1(v) + βI) is dis-
sipative for all β ≥ β0(v) = c0‖v‖Hs where c0 is independent of v. Also, if u ∈ H3(R)
and ε > 0, the estimate

‖A1(v)‖L2 ≤ ε‖∂3xu‖L2 + C1(ε, ‖v‖Hs)‖u‖L2 (5.5)

holds for some positive constant C1 depending on ε and on ‖v‖Hs .
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(iii) For every 0 < α < 1, the operator A2 is well-defined with domain D(A2) = H2(R)
(dense in L2(R)). Moreover, A2 is dissipative with

(A2u, u) = −aα‖u‖2
Ḣ

α+1
2

≤ 0 for u ∈ H2(R) ,

where aα = sin(απ2 ) > 0. Finally, it satisfies for u ∈ H3(R) and ε > 0 the estimate

‖A2u‖L2 ≤ ε‖∂3xu‖L2 + C2(ε)‖u‖L2 (5.6)

with C2(ε) = (εp)
1

1−p ( p
p−1)

−1 and p = 3
α+1 > 1.

Proof.The proofs of (i) and (ii) can be found in [16, Lemma 8.5.2 and Lemma 8.5.3] respec-
tively. We next prove (iii).

That A2 is dissipative follows from Plancherel’s formula and the fact that |û(k)|2 =
|û(−k)|2 imply

∫

R

sgn(k)|k|γ |û(k, t)|2 dk = 0 for γ > 0

(see [1]). Namely, for every u ∈ H2(R) and 0 < α < 1,

(A2u, u) =

∫

R

(

∂xDαu
)

udx = −
∫

R

(aα − ibα sgn(k)) |k|α+1|F(u)(k)|2dk

= −aα
∫

R

|k|α+1|F(u)(k)|2dk = −aα‖u‖2
Ḣ

α+1
2

≤ 0 .

It remains to prove (5.6). Indeed, for every u ∈ H3(R) and 0 < α < 1, we obtain the estimate

‖A2u‖2L2 =

∫

R

∣

∣|k|α+1F(u)(k)
∣

∣

2
dk =

∫

R

(

|k|α+1|F(u)(k)|α+1
3

)2 (

|F(u)(k)|1−α+1
3

)2
dk

≤
(∫

R

(

|k|3|F(u)(k)|
)2
dk

)
1
p
(∫

R

|F(u)(k)|2 dk
)

p−1
p

= ‖∂3xu‖
2
p

L2 ‖u‖
2(p−1)

p

L2 ,

where we have used again Plancherel’s formula, the fact that (a2α + b2α) = 1, and Hölder’s
inequality with p = 3/(α + 1) > 1. Taking the square root of the last inequality and using
Young’s inequality 1 for some ε > 0, we infer that

‖A2u‖L2 ≤ ε‖∂3xu‖L2 + C2(ε)‖u‖L2

with C2(ε) = (εp)
1

1−p ( p
p−1)

−1 and p = 3
α+1 > 1.

Lemma 5.3 (i) For every v ∈ Hs, the operator A0−A1(v) is the infinitesimal generator of
a C0-semigroup Tv(t) on L

2 satisfying Tv(t) ≤ exp(βt) for every β ≥ β0(v) = c0‖v‖Hs ,
where c0 is a constant independent of v.

1For positive real numbers a, b and ε, as well as 1 < p, q < ∞ with 1
p
+ 1

q
= 1, the inequality

a b ≤ ε a
p + C(ε) bq with C(ε) = (εp)−

q

p q
−1

holds.
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(ii) For every 0 < α < 1 and v ∈ Hs(R) with s ≥ 3, the operator A1(v) − A2 is well-
defined from H2(R) to L2(R). Moreover, the operator A(v) = A0 + A2 − A1(v) is the
infinitesimal generator of a C0-semigroup Sv(t) on L

2 satisfying

‖Sv(t)‖ ≤ exp(βt) (5.7)

for every β ≥ β0(v) := c0‖v‖Hs , where c0 is a constant independent of v.

Proof.The proof of the statement (i) can be found in [16, Lemma 8.5.3]. We then prove (ii).
Due to v ∈ Hs(R) with s ≥ 3, ∂xv ∈ Hs−1(R) and Hs−1(R) →֒ L∞(R) such that

‖∂xv‖L∞ ≤ C‖∂xv‖Hs−1 ≤ C‖v‖Hs . For every u ∈ H2(R),

((A1(v) −A2)u, u) ≥ −c0‖v‖Hs‖u‖2L2 + aα‖u‖2
Ḣ

α+1
2

≥ −c0‖v‖Hs‖u‖2L2 ,

since c0 and aα are positive constants. Therefore −(A1(v) − A2 + βI) is dissipative for all
β ≥ β0(v) := c0‖v‖Hs . A0 is a skew-adjoint operator, whence A0 + A2 − A1(v) − βI is also
dissipative for β ≥ β0(v). Moreover, due to the estimates (5.5) and (5.6),

‖(A1(v)−A2 + βI)u‖L2 ≤ ‖A1(v)u‖L2 + ‖A2u‖L2 + |β|‖u‖L2

≤ 2ε‖∂3xu‖L2 +C3(β, ε, ‖v‖Hs )‖u‖L2

holds with a positive constant C3(β, ε, ‖v‖Hs ) := C1(ε, ‖v‖Hs ) + C2(ε) + |β|. Due to [16,
Corollary 3.3.3] and the last estimate with 0 < ε < 1

2 , we conclude that A0+A2−A1(v)−βI
is the infinitesimal generator of a C0-semigroup of contractions on X for every β ≥ β0(v).
Therefore A0 + A2 − A1(v) is the infinitesimal generator of a C0-semigroup Tv(t) satisfying
(5.7).

We can now prove Theorem 4.1.
Proof of Theorem 4.1. We need only to check that the assumptions of Lemma 5.1 are
satisfied for the operator, in the notation of this section

A(u)u = 2φ′u+ (2φ− c+ 2u)∂ξu− ∂xDαu− τ∂3xu .

We first observe that the second operator term can be seen as the sum of three operators
of the form A1 and the results of the previous lemmas apply. The first term has not been
analysed in the previous lemmas, but since φ′ ∈ Hs+1(R) the operator is bounded and adding
it to the ones of the form A1 preserves the properties shown above. Thus, Lemma 5.2 and
5.3 show that (i) holds with A1 given by

A1(v)u = (2φ− c+ 2w)∂xu with v := 2φ− c+ 2w ,

we only observe that the constants that depend on ‖v‖Hs in these lemmas now depend on
‖w‖Hs , c, ‖φ‖∞ and ‖φ′‖∞.

Let us show that (ii) holds. We proceed as in [16]. For s ≥ 3 (for s ≥ 3/2, in fact) the
operator

f → Λsf(x) :=
1√
2π

∫

R

exp(ix · ξ)(1 + ξ2)
s
2 f̂(ξ) dξ ,

is an isomorphism from Hs(R) to L2(R). We notice that for u, v ∈ Hs(R)

(ΛsA(v)Λ−s −A(v))u = (Λsv − vΛs)Λ−s∂xu+ 2(Λsφ′Λ−su− φ′u) , (5.8)
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since for u ∈ Hs

Λs∂3xΛ
−su = ∂3xu and Λs∂xDαΛ−su = ∂xDαu ,

(see [16] for details). Therefore, for u, v ∈ Hs and the multiplication operator u 7→ vu, we
deduce from (5.8) and [16, Lemma 8.5.4] that

‖(Λsv − vΛs)Λ1−sΛ−1∂xu‖L2 ≤ C‖v‖Hs‖u‖L2 .

It is easy to also show that

‖Λsφ′Λ−su− φ′u‖L2 ≤ (‖φ′‖Hs + ‖φ′‖∞)‖u‖L2 ≤ C‖u‖L2 .

This estimate andHs(R) being dense in R, implies that ‖SA(v)S−1−A(v)‖L2→L2 ≤ C(‖w‖Hs+
c+ ‖φ′‖∞ + 1) ≤ C for w ∈ Br ⊂ Hs and (ii) is satisfied with S = Λs.

It remains to show (iii). Observe that for s ≥ 3 and 0 < α < 1,

H3(R) = D(A(v)) ⊃ Hs(R) for every v ∈ L∞(R) ,

and also

‖A(v)u‖L2 ≤ ‖2φ′ u‖L2 + ‖v∂xu‖L2 + ‖∂xDαu‖L2 + ‖∂3xu‖L2

≤ 2‖φ′‖L∞ ‖u‖L2 + ‖v‖L∞ ‖∂xu‖L2 + ‖u‖Ḣα+1 + ‖∂3xu‖L2 ≤ C(1 + ‖v‖∞)‖u‖Hs .

Therefore, for w ∈ Br, A(v) is a bounded operator from Hs(R) into L2(R). Moreover, if
v1, v2 ∈ Br and u ∈ Hs(R), then

‖(A(v1)−A(v2))u‖L2 = ‖(w1 − w2)∂xu‖L2 ≤ ‖w1 − w2‖L2‖∂xu‖L∞ ≤ C‖w1 − w2‖L2‖u‖Hs

and (iii) holds as well, since v1 − v2 = w1 − w2.
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Appendix

A The linear problem (2.8) on (−∞, ξ0]

In this appendix we show that the only solutions of the linear problem (2.8) are exponential
functions in suitable weighted spaces. We shall assume without loss of generality that ξ0 = 0
throughout this section. We use the approach introduced for Wiener-Hopf integral equations
of the form

W (ξ)−
∫ ∞

0
K(ξ − y)W (y)dy = 0 ξ ≥ 0 , (A.1)

which are related to the Fredholm property by conditions on its symbol, see [21]. We use
the result by Krein [13, 14] that extends the method to equations with L1-integrable kernels.
Namely:
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Theorem A.1 (Krein (1958&62)) Let K ∈ L1(R). If the symbol a(k) := 1−
∫

R
e−ixkK(x) dx

(= 1 −
√
2πF [K]) is elliptic, i.e. infs∈R |a(s)| > 0, and the winding number of the curve

{a(s) : s ∈ (−∞,∞)} around the origin is a non-negative integer r, then (A.1) has exactly r
linearly independent solutions in any of the Lebesgue spaces Lp(R+), with 1 ≤ p ≤ ∞.

We observe that have adapted Theorem A.1 from the original result by Krein that is
stated for

√
2πF(−k) instead of F(k).

It is not obvious that (2.8) can be transformed into a Wiener-Hopf equation, i.e. to the
form (A.1). In particular, we will investigate the problem on weighted spaces, such that it is
admissible to consider the integrated equation and compute its symbol.

For a generalisation of the Wiener-Hopf method to other spaces we refer to [5] and for
generalisations to convolution kernels being distributions we refer to [7].

In order to write (2.8) as a Wiener-Hopf equation we first change variables so that it is
posed in R+ rather than in R−:

Lemma A.1 If V ∈ H3(R+) is a solution of the integral equation

0 = τV (ξ) +

∫ ∞

ξ

∫ ∞

y
Dα

−[V ](z) dz dy − h′(φ−)

∫ ∞

ξ

∫ ∞

y
V (z) dz dy (A.2)

where Dα
−[V ](ξ) := −dα

∫∞
ξ

V ′(y)
(y−ξ)α dy, then v(ξ) := V (−ξ) for ξ ∈ R− is a solution of (2.8).

Moreover, if v ∈ H3(R−) is a solution of (2.8) whose primitives are integrable, then
V (ξ) := v(−ξ) for ξ ∈ R+ is a solution of (A.2).

Proof.Due to a Sobolev embedding H3(R−) →֒ C2
b (R−), a solution v ∈ H3(R−) has a

representative in C2
b (R−), such that equation (2.8) holds pointwise. We perform the change

of variables in (2.8) V (−ξ) = v(ξ), such that V ∈ H3(R+) →֒ C2
b (R+), ξ → −ξ ∈ R+ and

y → −y inside the integral term, to get

0 = τV ′′(ξ) +Dα
−[V ](ξ)− h′(φ−)V (ξ) ∀ξ ∈ R+ . (A.3)

Finally, V ∈ H3(R+) →֒ C2
b (R+) implies that V has a representative in C2

b (R+), such that

lim
ξ→+∞

V (ξ) = 0 , lim
ξ→+∞

V ′(ξ) = 0 and lim
ξ→+∞

V ′′(ξ) = 0 .

Integrating (A.3) twice under the assumption that the primitives of V are integrable and
reverting the change of variables yields (A.2).

Lemma A.2 Suppose that µ > 0 and let

V ∈ H3
µ(R+) = {f ∈ H3(R+) : f(ξ) = e−µξg(ξ) for some g ∈ H3(R+)}

be a solution of (A.2). Then, the corresponding equation for W where V (ξ) = e−µξW (ξ) and
W ∈ H3(R+) can be written in the form (A.1) with the L1-integrable kernel

K(z) := −(θ(−z)eµz(−z)α−1) + h′(φ−) (θ(−z)eµz) ∗ (θ(−z)eµz) (A.4)

having support on the negative real line R−, and has symbol

aµ(k) =
τ(µ − ik)2 + (µ− ik)α − h′(φ−)

(µ− ik)2
. (A.5)
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Proof.Let V (ξ) = e−µξW (ξ) with W ∈ H3(R+), then (A.2) becomes, after multiplying by
eµξ ,

0 = τW (ξ) + eµξ
∫ ∞

ξ

∫ ∞

y
Dα

−[We−µ.](z) dz dy − eµξh′(φ−)

∫ ∞

ξ

∫ ∞

y
W (z)e−µz dz dy . (A.6)

We have to extract alternative representations for the integral operators in (A.6). The first
integral operator satisfies

eµξ
∫ ∞

ξ

∫ ∞

y
Dα

−[We−µ·](z) dz dy =

∫ ∞

ξ
eµ(ξ−y)

∫ ∞

y
eµ(y−z)Dα

−[Weµ(z−.)](z) dz dy

= (θ(−·)eµ·) ∗ (θ(−·)eµ·) ∗ Dα
−[Weµ(z−·)](z) .

Observe that

Dα
−[Weµ(z−·)](z) = −dα

∫ ∞

z

(

W (σ)eµ(z−σ)
)′

(σ − z)α
dσ = −dα

(

[θ(−·)eµ·(−·)−α]∗W ′−[µθ(−·)eµ·(−·)−α]∗W
)

.

The convolution kernel (θ(−·)eµ·) is L1 integrable and its Fourier transform satisfies F [θ(−·)eµ·](k) =
(µ − ik)−1/

√
2π. We use the identities F [f ∗ g](k) =

√
2πF [f ](k)F [g](k), F [feµ·](k) =

F [f ](k + iµ), and

F
[

θ(−ξ)
(−ξ)α

]

(k) = F
[

θ(ξ)

ξα

]

(−k) = (−ik)α−1

dα
√
2π

for k ∈ C, to compute

F
[

eµ.Dα[We−µ.](.)

]

(k) = −dαF
[

[θ(−·)eµ·(−·)−α] ∗W ′ − [µθ(−·)eµ.(−·)−α] ∗W
]

= −dα
√
2π

(

F [θ(−·)(−·)−α](k + iµ)

)(

(ik − µ)F [W ](k)

)

= (µ− ik)αF [W ](k) .

Therefore, the first integral operator is a pseudo-differential operator with

F
[

eµξ
∫ ∞

ξ

∫ ∞

y
Dα

−[We−µ.](z) dz dy

]

(k) = (µ − ik)α−2 F [W ](k) . (A.7)

The second integral operator satisfies

−eµξh′(φ−)
∫ ∞

ξ

∫ ∞

y
W (z)e−µz dz dy = −h′(φ−) (θ(−.)eµ.) ∗ (θ(−.)eµ.) ∗W ,

whence the integral operator is a pseudo-differential operator with

F
[

− eµξh′(φ−)

∫ ∞

ξ

∫ ∞

y
W (z)e−µz dz dy

]

(k) = −h′(φ−) (µ − ik)−2 F [W ](k) . (A.8)

Thus the linear operator in (A.6) is a pseudo-differential operator with symbol (A.5).
It remains to justify that (A.6) is a Wiener-Hopf equation with some L1 integrable kernel.

Indeed, inverting the symbols (A.7) and (A.8) allows to write (A.6) as τW (x)−K ∗W (x) = 0
with K given by (A.4), which has support on the negative real line R− and is L1 integrable.

26



Theorem A.2 Suppose that 0 < µ < min{λ, h′(φ−)/(2−α)}, where λ is the unique positive
real root of (2.9). Then, all solutions of (2.8) that are in the space

L∞
w (R−) = {f ∈ L∞(R+) : f(ξ) = eµξg(ξ) for some g ∈ L∞(R−)}

are given by the one-parameter family {beλξ : b ∈ R}.

Proof.Let us see that the conditions of Theorem A.1 are satisfied by the symbol (A.5). The
symbol aµ gives a closed curve s→ aµ(s) for s ∈ R, since lims→±∞ aµ(s) = τ . The ellipticity
follows from the fact that the numerator of (A.5) only vanishes identically at s = 0 and µ = λ
(by assumption 0 < µ < λ) and the denominator of

|aµ(s)|2 =
|τ(µ − is)2 + (µ− is)α − h′(φ−)|2

(µ2 − s2)2 + 4µ2s2

does not vanish.
Moreover, the winding number of the closed curve is a well-defined integer. In order to

compute the winding number around the origin we add the number of times that the curve
crosses the negative real line in the anticlockwise direction and subtract the number of times
it does it in the clockwise one.

There is a crossing at s = 0, since

aµ(0) =
τµ2 + µα − h′(φ−)

µ4
< 0 µ ∈ (0, λ) .

Let us see that this is the only one. In order to do that we compute

Re(aµ(s)) = τ +
(µ2 + s2)

α
2

(

(µ2 − s2) cos(Θs,µα) + 2sµ sin(Θs,µα)
)

− (µ2 − s2)h′(φ−)

µ4 + s4 + 2µ2s2
,

(A.9)
and

Im(aµ(s)) =
(µ2 + s2)

α
2

(

2sµ cos(Θs,µα) − (µ2 − s2) sin(Θs,µα)
)

− 2sµh′(φ−)

µ4 + s4 + 2µ2s2
.

We observe that when the curve crosses the real line then Im(aµ(s)) = 0, imposing this
condition and using (2.6) gives

h′(φ−) = (µ2 + s2)
α+2
2

sin(Θs,µα)

2sµ
> 0

and substituting this expression into (A.9) gives

Re = τ + (µ2 + s2)
α
2
sin(Θs,µα)

2sµ
> 0 ,

thus the curve crosses the negative real line only once. It remains to determine whether the
crossing is in the clockwise or anticlockwise direction. We compute2

d

ds
Re(aµ(s))

∣

∣

s=0
=

3h′(φ−)

µ2
> 0

2We give the full expressions of the derivatives for completeness:

d

ds
Re(aµ(s)) =

(2− α)(µ2 + s2)
α

2

(

(µ2 − 3s2)µ sin(Θs,µα)− (3µ2 − s2)s cos(Θs,µα)

)

+ (3µ2 − s2)h′(φ−)

µ4 + s4 + 2µ2s2
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and, under the assumption on µ,

d

ds
Im(aµ(s))|s=0 =

(2− α)µα − h′(φ−)

µ
< 0 .

Thus the curve aµ(s) runs once around the origin in the anticlockwise sense, i.e. the winding
number is 1. Applying Theorem A.1 and changing from W to V and then to the original
variable imply the statement.

B The roots of (2.9), (3.10) and (3.29)

In this appendix we show that (2.9) has exactly one real positive root two complex conjugate
roots with negative real part. We prove the result for the more general algebraic equation:

f(z) = z2 + azα − b for a , b > 0 , α ∈ (0, 1) . (B.1)

In order to prove this we use a version of Rouche’s theorem as in [4], where it is shown that

g(z) = z2 + azα + b for a , b > 0 , α ∈ (0, 1) (B.2)

has exactly two complex conjugate roots with negative real part. We observe that (3.10) and
(3.29) are of this form, so they have two complex conjugate roots with negative real part.

Lemma B.1 For any positive values of a, b and any value α ∈ (0, 1). Assume that z is the
principal part of zα (−π < arg(z) < π), then (B.1) has exactly one real positive root and two
complex conjugate roots with negative real part, and (B.2) has exactly two complex conjugate
roots with negative real part on the principal branch.

Proof.The statement about (B.2) has been shown in [4] (Theorem 13), we do not prove it
here. In fact the proof for (B.1) can be done along the same lines, as follows.

First, it is easy to see that the unique positive real root of (B.1) is the only root with
positive real part (see argument following (2.9)). Indeed, we argue by contradiction and
assume that there exists a z0 ∈ C that solves f(z) = 0 and that Re(z0) > 0. Since clearly z̄0
must also solve f(z) = 0 we can assume that arg(z0) ∈ (0, π/2). Then, inspection of f(z0)
shows that Im(f(z0)) > 0, which contradicts the assumption f(z0) = 0.

It is also easy to show by simple inspection of f(z) that there are neither purely imaginary
roots of (B.1) nor negative real ones.

Since f(z) = 0 implies f(z̄) = 0 we can restrict ourselves to the open sector

Q := {z ∈ C : arg(z) ∈ (π/2, π)} .

It then remains to show that there is only one z ∈ Q such that f(z) = 0. In order to do that
we use a version of Rouche’s theorem by T.Estermann [6]. This theorem says that if f and l
are regular functions on a simply connected region Ω ⊂ C and if |f − l| < |f |+ |l| on ∂Ω then

and

d

ds
Im(aµ(s))|s=0 = −

(µ2 + s2)
α

2 (2− α)
(

(3s2 − µ2)µ cos(Θs,µα) + (s2 − 3µ2)s sin(Θs,µα)
)

− 2µ(µ2 − 3s2)h′(φ−)

µ4 + s4 + 2µ2s2
.
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f and h have the same number of zeros in Ω counted with their multiplicity. We shall then
apply this to f as in (B.1), which we shall compare to l given by

l(z) = z2 + i .

Let z ∈ Q ∩ AR where, for any given R > 0, AR denotes the ring {z ∈ C : 1/R < |z| < R}.
One can check that if R is large enough so that for all θ ∈ [π/2, π] z = Reθi then

|f(z)|+ |l(z)| > 2R2 − aRα − b− 1 > aRα + b+ 1 > |f(z)− l(z)| .

In order to prove the strict inequality on the rest of the boundary of Q ∩ AR, we argue by
contradiction and assume that |f − l| = |f | + |l| in this region. Thus, in particular, there
exists a L > 0 such that f = −L l there. Then for z = eiθ/R with θ ∈ (π/2, π) we obtain
|Im(l)| > |Im(f)|, but |Re(l)| < |Re(f)| if R is sufficiently large, and this contradicts f = −L l.
Finally, if θ ∈ {π/2, π} then Im(−l) = −c < 0 and Im(f) = a|z| sin(αθ) > 0, and this also
contradicts f = −L lh. Since we can take R as large as we want, this concludes the proof.

Let us for completeness compute the two term expansion of the roots of (2.9) for very
small values of τ (this can be made rigorous be applying the implicit function theorem): A
regular expansion gives the real root, in this case it is easy to obtain by inserting the ansatz
λ = λ0 + τλ1 +O(τ2), and one gets that

λ = h′(φ−)
1
α − τ

α
h′(φ−)

3−α
α +O(τ2) . (B.3)

The complex conjugated roots are obtained by first performing the scaling λ = τ−
1

2−α λ̄, and

inserting the ansatz λ̄ = λ̄0 + τ
1

2−α λ̄1 in the rescaled equation λ̄2 + λ− τ
1

2−α = 0. To leading
order one gets three zeros, namely λ̄0 = 0, eiπ/(α−2) and e−iπ/(α−2). The first one corresponds
to the real one already found, from the other two one then gets (in the original scaling):

λ = e±iπ 1
α−2

1

τ
1

2−α

+
h′(φ−)

2e±iπ 1
α−2 + αe±iπ (α−1)

α−2

+O(τ
1

2−α ) . (B.4)

A similar approach can be used to compute the expansion of the zeros of

τz2 + azα + b = 0 (B.5)

provided that a and b are of order 1 as τ → 0. In that case the zeros are approximated by

z = a
1

α−2 e±iπ 1
α−2

1

τ
1

2−α

− b

2a
1

α−2 e±iπ 1
α−2 + a

1
α−2

+1αe±iπ
(α−1)
α−2

+O(τ
1

2−α ) as τ → 0+ . (B.6)

C Computation of the linear problems (2.23), (3.5) and (3.25)

In this appendix we give a way of solving implicitly equations of the type (3.5) and (3.25) for
a given inhomogeneity and initial conditions on the unknown and its derivative. The method
is by using the Laplace transform and the computations can be found in e.g. [4] and [8], we
follow the latter.

Given the initial value problem

τψ′′ +Dα
0ψ + aψ = Q(η) , ′ =

d

dη
(C.1)
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subject to
ψ(0+) = C0 , ψ′(0+) = C1 . (C.2)

we apply the Laplace transform, L to get

L(ψ)(s) = 1

τs2 + sα + a

(

L(Q)(s) + (τs+ sα−1)ψ(0+) + τψ′(0+))
)

, (C.3)

we recall that L(f)(s) =
∫∞
0 e−sηf(η)dη. And using that L(f ∗ g)(s) = L(f)(s)L(g)(s) then:

ψ = ψ(0+)L−1

(

τs+ sα−1

τs2 + sα + a

)

+ τψ̄′(0+)L−1

(

1

τs2 + sα + a

)

+ L−1

(

1

τs2 + sα + a

)

∗ Q .

For simplicity, we let

v(η) = L−1

(

τs+ sα−1

τs2 + sα + a

)

and ṽ(s) =
τs+ sα−1

τs2 + sα + a
(C.4)

and observe that, since
1

τs2 + sα + a
=

1

a
(1− sṽ(s))

then

L−1

(

1

τs2 + sα + a

)

(η) = −1

a
v′(η) .

We also observe that:

lim
η→0+

v(η) = lim
s→∞

sṽ(s) = 1 and lim
η→0+

v′(η) = 0 . (C.5)

We can write the expression of ψ in terms of v instead to get

ψ(η) = ψ(0+)v(η) − τ

a
ψ̄′(0+)v′(η)− 1

a

∫ η

0
v′(y)Q(η − y) dy . (C.6)

For a > 0, let us sketch the computation of v(η), we recall that since this is the inverse
Laplace transform of ṽ(s), we have to compute:

v(η) =
1

2πi

∫

Br
esη

τs+ sα−1

τs2 + sα + a
ds (C.7)

where Br ⊂ C is a Bromwich contour:

Br := {s : Re(s) = σ ≥ 1 & Im(s) ∈ (−∞,∞)} (C.8)

moreover, we restrict to the principal representation of s, namely, here arg(s) ∈ (−π, π]. We
follow the approach in [8], although they do it in some more detail for a different example and
in the analogous case the estate the formulae. The results of [4] about the zeros of τz2+zα+a
apply here to the poles of the integrand in (C.7) for a > 0, thus, there exist two zeros that are
complex conjugates and have negative real part, let them be denoted by s1 and s2. Then the
contribution to the integral of these poles can be computed away from the Riemann surface
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cut (since α ∈ (0, 1)) that is the negative part of the real line. One can then split the integral
as follows:

v(η) =
1

2πi
lim
δ→0

∫

Ha(δ)
esη

τs+ sα−1

τs2 + sα + a
ds+

∑

s=s1,s2

Res

(

esη
τs+ sα−1

τs2 + sα + a

)

(C.9)

where Ha(δ) is the Hankel path in C

Ha(δ) = {s = −r+ iδ , r > 0}∪{s = −r− iδ , r > 0}∪{s = δeiβ , β ∈ [−π/2, π/2]} (C.10)

It is easy to see by splitting the first integral term of (C.9) on these three contours that the
one corresponding to the semicircle tends to 0 as δ tends to 0. The contribution of the other
two is symmetric and gives:

v(η) = − 1

π

∫ ∞

0
e−ηrIm

(

τ(reiπ) + (reiπ)α−1

τ(reiπ)2 + (reiπ)α + a

)

dr +
∑

s=s1,s2

Res

(

esη
τs+ sα−1

τs2 + sα + a

)

.

(C.11)
We compute the integrand and residues, and get (using trigonometry)

Im

(

τ(reiπ) + (reiπ)α−1

τ(reiπ)2 + (reiπ)α + a

)

= − arα−1 sin(απ)

(τr2 + a)2 + 2(τr2 + a)rα cos(απ) + r2α

and (using that s1 and s2 are complex conjugates)

∑

s=s1,s2

Res

(

esη
τs+ sα−1

τs2 + sα + a

)

= 2Re

(

es1η
τs1 + sα−1

1

2τs1 + αsα−1
1

)

.

We then write v(η) as

v(η) =
a sin(απ)

π

∫ ∞

0
e−ηrK(r) dr + 2Re

(

es1η
τs1 + sα−1

1

2τs1 + αsα−1
1

)

, (C.12)

where

K(r) = rα−1K̃(r) with K̃(r) =
1

(τr2 + a)2 + 2(τr2 + a)rα cos(απ) + r2α
. (C.13)

That the integral term is bounded follows from application of Watson Lemma (see [20]), since
K̃ is C∞ near r = 0, K̃(0) = 1 6= 0, α−1 > −1 and clearly there exist non-negative constants
C and b such that |K(r)| < Cebr. Then the integral is bounded and moreover if η is large
enough the following approximation holds

∫ ∞

0
e−ηrK(r)dr ∼

∞
∑

n=0

K̃n)(0)Γ(α + n)

n!ηα+n
as η → ∞ .

One can compute the derivatives of K̃ and show that the odd order ones are zero at r = 0
and the even order ones do not vanish there; a two-term expansion reads:

∫ ∞

0
e−ηrK(r)dr ∼ Γ(α)

a2
1

ηα
− 4τΓ(α+ 2)

a3
1

ηα+2
+O

(

1

ηα+4

)

as η → ∞ . (C.14)
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