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1 Introduction

A wide class of discontinuous Galerkin (DG) methods, the so called interior penalty
methods, arise from the idea that inter-element continuity could be attained by mim-
icking the techniques previously developed for weakly enforcing suitable boundary
conditions for PDE’s, see [7]. Although the DG methods are usually defined by
means of the so called numerical fluxes between neighboring mesh cells, see [1], for
most of the interior penalty methods for second order elliptic problems it is possi-
ble to correlate the expression of the numerical fluxes with a corresponding set of
local interface conditions that are weakly enforced on each inter-element boundary.
Such conditions are suitable to couple elliptic PDE’s with smooth coefficients and it
seems that a little attention is paid to the case of problems with discontinuous data
or to the limit case where the viscosity vanishes in some parts of the computational
domain.

In this paper, we discuss the derivation of a DG method arising from a set of
generalized interface conditions, considered in [4], which are adapted to couple both
elliptic and hyperbolic problems. In order to obtain such method, it is necessary
to modify the definition of the numerical fluxes, replacing the standard arithmetic
mean with suitably weighted averages where the weights depend on the coefficients
of the problem. Even though the underlying ideas could be equivalently applied both
to mortars and DG methods, we privilege here the discussion of the latter case, since
the former has already been considered in [2].

In the framework of mortar finite-element methods, different authors have high-
lighted the possibility of using an average with weights that differ from one half, see
[8, 5]. These works present several mortaring techniques to match conforming finite
elements on possibly non conforming computational meshes. However, these works
do not consider any connection between the averaging weights and the coefficients
of the problem. More recently, Burman and Zunino [2] have introduced this depen-
dence for an advection-diffusion-reaction problem with discontinuous viscosity, and
they have shown that the application of the harmonic mean on the edges where the
viscosity is discontinuous improves the stability of the numerical scheme. In this
work, we aim to generalize the definition of such method and to apply it to the DG
case. After introducing the model problem and some notation, particular attention
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will be devoted here to illustrate how the definition of the scheme and the corre-
sponding numerical fluxes obey to the requirement of obtaining a method which is
well posed and robust not only in the elliptic regimen, but also in the presence of a
locally vanishing viscosity. A complete a-priori error analysis is not addressed here,
but we illustrate the behavior of the method by means of some numerical tests.

2 Derivation of the Numerical Method

We aim to find u, the solution of the following boundary value problem,

{
∇·(−ǫ∇u+ βu) + µu = f in Ω ⊂ Rd, d = 2, 3,[

1
2

(
|β · n| − β · n

)
+ χ∂Ω(ǫ)

]
u = 0 on ∂Ω,

(1)

where Ω is a polygonal domain, n is the outer normal unit vector with respect
to ∂Ω and χ∂Ω(ǫ) ≥ 0, satisfying χ∂Ω(0) = 0, will be made precise later. Here
µ ∈ L∞(Ω) is a positive function and β ∈ [W 1,∞(Ω)]d is a vector function such that
µ + 1

2
(∇ · β) ≥ µ0 > 0, f ∈ L2(Ω) and ǫ is a nonnegative function in L∞(Ω). The

well posedness of problem (1), with ǫ ∈ W 1
∞(Ω), is addressed in [6] and references

therein.
For the numerical approximation of problem (1) we consider a shape regular

triangulation Th of the domain Ω, we denote with K an element in Th and with
n∂K its outward unit normal. We define a totally discontinuous approximation space,

Vh := {vh ∈ L2(Ω); ∀K ∈ Th, vh|K ∈ P
k}, with k > 0.

Let Γe be the set of the element edges e ⊂ ∂K such that e ∩ ∂Ω = ∅ and let ne
be the unit normal vector associated to e. Nothing is said hereafter depends on the
arbitrariness on the sign of ne. We denote with Γ∂Ω the collection of the edges on
∂Ω. For all e ∈ Γe ∪ Γ∂Ω let he be the size of the edge. For any vh ∈ Vh we define,

v∓h (x) := lim
δ→0+

vh(x∓ δne) for a.e. x ∈ e, with e ∈ Γe.

When not otherwise indicated, the v−h value is implied. Similar definitions apply to
all fields that are two-valued on the internal interfaces. The jump over interfaces is
defined as [[vh(x)]] := v−h (x)−v+

h (x). We denote the arithmetic mean with {vh(x)} :=
1
2
(v−h (x) + v+

h (x)). We also introduce the weighted averages for any e ∈ Γe and a.e.
x ∈ e,

{vh(x)}w := w−e (x)v−h (x) + w+
e (x)v+

h (x),

{vh(x)}w := w+
e (x)v−h (x) + w−e (x)v+

h (x),

where the weights necessarily satisfy w−e (x)+w+
e (x) = 1. We say that these averages

are conjugate, because they satisfy the following identity,

[[vhwh]] = {vh}w[[wh]] + {wh}w[[vh]], ∀vh, wh ∈ Vh. (2)

The role of {·}w and {·}w can also be interchanged, but for symmetry this choice
does not affect the final setting of the method. Finally, there is no need to extend the
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definitions of jumps and averages on the boundary ∂Ω, because the contributions
of Γe and Γ∂Ω will be always treated separately.

To set up a numerical approximation scheme for problem (1), we assume for
simplicity that ǫ is piecewise constant on Th. We define σh(vh) := −ǫ∇vh + βvh
or simply σh if the flux is applied to the primal unknown uh, and we consider the
Galerkin discretization method in Vh, which originates from the following expression,

∫

Ω

fvh =

∫

Ω

(
∇ · σhvh + µuhvh

)
=
∑

K∈Th

∫

K

(
∇ · σhvh + µuhvh

)

=
∑

K∈Th

[ ∫

K

(
− σh · ∇vh + µuhvh

)
+

∫

∂K

σh · n∂Kvh
]
, ∀vh ∈ Vh. (3)

Then, considering the identity,

∑

K∈Th

∫

∂K

σh · n∂Kvh =
∑

e∈Γe

∫

e

[[σhvh]] · ne +
∑

e∈Γ∂Ω

∫

e

(σhvh) · n,

and replacing it into (3), owing to (2) we obtain,

∑

e∈Γe

∫

e

(
{σh}w · ne[[vh]] + [[σh]] · ne{vh}w

)
+
∑

e∈Γ∂Ω

∫

e

σh · nvh

+
∑

K∈Th

∫

K

(
− σh · ∇vh + µuhvh

)
=

∫

Ω

fvh, ∀vh ∈ Vh. (4)

We need now to apply suitable conditions on each inter-element interface and on
the boundary of the domain. To this aim, we define γe(ǫ, β) := 1

2

(
|β · ne| − ϕe(ǫ)β ·

ne
)

+ χe(ǫ)h
−1
e , where χe(ǫ) ≥ 0 such that χe(0) = 0 and |ϕe(ǫ)| ≤ 1 will be

defined later, and we set [[σh]] · ne = 0, γe(ǫ, β)[[uh]] = 0 on any e ∈ Γe. We also
set γ∂Ω(ǫ, β) := 1

2

(
|β · n| − β · n

)
+ χ∂Ω(ǫ)h−1

e . Introducing the boundary and local
interface conditions into (4) we obtain,

∑

K∈Th

∫

K

(
− σh · ∇vh + µuhvh

)
+
∑

e∈Γe

∫

e

{σh}w · ne[[vh]] +
∑

e∈Γ∂Ω

∫

e

σh · nvh

+
∑

e∈Γe

∫

e

γe(ǫ, β)[[uh]][[vh]] +
∑

e∈Γ∂Ω

∫

e

γ∂Ω(ǫ, β)uhvh =

∫

Ω

fvh, ∀vh ∈ Vh. (5)

The left hand side of equation (5) can be split in two parts. The former corresponds
to the symmetric terms and it reads as follows,

ash(uh, vh) :=
∑

K∈Th

∫

K

[
ǫ∇uh · ∇vh +

(
µ+ 1

2
∇ · β

)
uhvh

+
∑

e∈Γe

∫

e

[
−{ǫ∇uh}w ·ne[[vh]]−{ǫ∇vh}w ·ne[[uh]] +

(
1
2
|β ·ne|+χe(ǫ)h

−1
e

)
[[uh]][[vh]]

]

+
∑

e⊂Γ∂Ω

∫

e

[
− ǫ∇uh · nvh − ǫ∇vh · nuh +

(
1
2
|β · n|+ χ∂Ω(ǫ)h−1

e

)
uhvh

]
,



324 P. Zunino

where we have added the new terms {ǫ∇vh}w ·ne[[uh]] on Γe and ǫ∇vh ·nuh on Γ∂Ω
to preserve symmetry. The remaining part of the bilinear form is,

arh(uh, vh) := −
∑

K∈Th

∫

K

[
(βuh) · ∇vh + 1

2
(∇ · β)uhvh

]

+
∑

e∈Γe

∫

e

[
{βuh}w · ne[[vh]]− 1

2
ϕe(ǫ)β · ne[[uh]][[vh]]

]
+
∑

e∈Γ∂Ω

∫

e

1
2
β · nuhvh.

Then, setting ah(uh, vh) := ash(uh, vh) + arh(uh, vh) and F (vh) :=
∫
Ω
fvh our proto-

type of method reads as follows: find uh ∈ Vh such that,

ah(uh, vh) = F (vh), ∀vh ∈ Vh. (6)

Before proceeding, we choose the weights w−e , w
+
e on each edge such that w−e ǫ

− =
w+
e ǫ

+, and accordingly we define, ωe(ǫ) := 1
2
{ǫ}w = w−e ǫ

− = w+
e ǫ

+. Together with
w+
e + w−e = 1 this leads to the expressions,

w−e =
ǫ+

ǫ− + ǫ+
, w+

e =
ǫ−

ǫ− + ǫ+
, if ǫ− + ǫ+ > 0,

or w−e = w+
e = 1

2
, if ǫ− = ǫ+ = 0. (7)

Replacing (7) into {ǫ}w, we observe that it is equivalent to the harmonic mean of
the coefficient ǫ across the edges. In what follows, we will see how this is related to
the behavior of the method. For any admissible value of χe(ǫ) and ϕe(ǫ) we observe
that method (6) is by construction consistent with respect to the weak formulation
of problem (1). Now, the definition of χe(ǫ) and ϕe(ǫ) has to be made precise in
order to enforce that ah(·, ·) is coercive in the following norm,

|||vh|||2 := ‖ǫ 1
2∇vh‖20,Th

+ ‖µ
1
2
0 vh‖20,Th

+ ‖( 1
2
|β · ne|+ 1

2
{ǫ}wh−1

e )
1
2 [[vh]]‖20,Γe

+ ‖( 1
2
|β · n|+ ǫh−1

e )
1
2 vh‖20,Γ∂Ω

,

where we have introduced the notation ‖vh‖20,Th
:=
∑
K∈Th

‖vh‖20,K , and ‖vh‖20,Γe
:=∑

e∈Γe
‖vh‖20,e, being ‖·‖0,K and ‖·‖0,e the L2-norms on K and e respectively. Then,

we consider the bilinear form arh(·, ·) that can be manipulated as follows,

arh(uh, uh) =
∑

e∈Γe

∫

e

[
β · ne{uh}w[[uh]]− β · ne{uh}[[uh]]− 1

2
β · neϕe(ǫ)[[uh]]2

]

= 1
2

∑

e∈Γe

∫

e

(2w−e − ϕe(ǫ)− 1)β · ne[[uh]]2 = 0, (8)

provided that we set ϕe(ǫ) := (2w−e − 1) or equivalently, owing to (7),

ϕe(ǫ) =
2ǫ+

ǫ+ + ǫ−
− 1 = − [[ǫ]]

2{ǫ} , if {ǫ} > 0, (9)

and ϕe(ǫ) = 0 if {ǫ} = 0. Definition (9) satisfies |ϕe(ǫ)| ≤ 1 and the expression
1
2

(
|β · ne| − ϕe(ǫ)β · ne

)
represents a natural generalization of the standard upwind

scheme. As a consequence of (8), the coercivity only depends on the properties of
ash(·, ·). First of all, it is straightforward to verify that,
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∑

K∈Th

∫

K

[
ǫ(∇uh)2 +

(
µ+ 1

2
∇ · β

)
u2
h

]

+
∑

e∈Γe

∫

e

(
1
2
|β · ne|+ χe(ǫ)h

−1
e

)
[[uh]]2 +

∑

e∈Γ∂Ω

∫

e

(
1
2
|β · n|+ χ∂Ω(ǫ)h−1

e

)
u2
h

≥ ‖ǫ 1
2∇uh‖20,Th

+ ‖µ
1
2
0 uh‖20,Th

+ ‖
(

1
2
|β · ne|+ χe(ǫ)h

−1
e

) 1
2 [[uh]]‖20,Γe

+ ‖
(

1
2
|β · n|+ χ∂Ω(ǫ)h−1

e

) 1
2 uh‖20,Γ∂Ω

. (10)

To treat the remaining terms of ash(uh, uh), as usual for DG methods, we make use
of the following trace/inverse inequality,

he‖∇vh · ne‖20,e ≤ CI‖∇vh‖20,K , ∀K ∈ Th and ∀e ∈ ∂K,

where CI > 0 does not depend on he. Then, we obtain the following bounds,

2
∑

e∈Γe

∫

e

{ǫ∇uh}w · ne[[uh]] + 2
∑

e∈Γ∂Ω

∫

e

ǫ∇uh · nuh

=2
∑

e∈Γe

∫

e

ωe(∇u−h +∇u+
h ) · ne[[uh]] + 2

∑

e∈Γ∂Ω

∫

e

ǫ∇uh · nuh

≤
∑

e∈Γe

[
αhe

(
‖(ǫ−)

1
2∇u−h · ne‖20,e + ‖(ǫ+)

1
2∇u+

h · ne‖20,e
)

+
1

αhe
‖ω

1
2
e [[uh]]‖20,e

]

+
∑

e∈Γ∂Ω

[
αhe‖ǫ

1
2∇uh · n‖20,e +

1

αhe
‖ǫ 1

2 uh‖20,e
]

≤6αCI‖ǫ
1
2∇uh‖20,Th

+
1

α
‖( 1

2
{ǫ}w)

1
2 h
− 1

2
e [[uh]]‖20,Γe

+
1

α
‖ǫ 1

2 h
− 1

2
e uh‖20,Γ∂Ω

. (11)

The coercivity of ah(·, ·) in the norm |||·||| directly follows from the combination of
(8), (10) and (11) provided α is such that 6αCI < 1 and,

χe(ǫ) := 1
2
ζ{ǫ}w, χ∂Ω(ǫ) := ζǫ, (12)

where ζ is a suitable constant such that ζ > 1
α

. Due to (9) and (12) the method (6)
is completely determined.

By virtue of the second Strang lemma and owing to the continuity (not addressed
here), the consistency and the coercivity of the bilinear form ah(·, ·), it is possible
to prove optimal a-priori error estimates in the norm |||·||| for problem (6). This
analysis has been fully addressed in [3] in the case of a similar method applied to
anisotropic diffusivity.

3 Numerical Results and Conclusions

In order to pursue a quantitative comparison between our scheme and the standard
interior penalty method, we aim to build up a test problem featuring discontinuous
coefficients which allows us to analytically compute the exact solution. To this aim,
we consider the following test case, already proposed in [2]. We split the domain Ω
into two subregions, Ω1 = (x0, x 1

2
)× (y0, y1), Ω2 = (x 1

2
, x1)× (y0, y1) and we choose
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for simplicity x0 = 0, x 1
2

= 1, x1 = 2 while y0 = 0, y1 = 1
2
. The viscosity ǫ(x, y) is a

discontinuous function across the interface x = x 1
2
, for any y ∈ (y0, y1). Precisely, we

consider a constant ǫ(x, y) in each subregion with several values for ǫ1 in Ω1 and a
fixed ǫ2 = 1.0 in Ω2. In the case β = [1, 0], µ = 0, f = 0 and the boundary conditions
u1(x0, y) = 1, u2(x1, y) = 0 for simplicity, the exact solution of the problem on each
subregion Ω1, Ω2 can be expressed as an exponential function with respect to x
independently from y. The global solution u(x, y) is then provided by choosing the
value at the interface, u(x 1

2
, y), in order to ensure the continuity of both u(x, y) and

the normal fluxes with respect to the interface, namely −ǫ(x, y)∂xu(x, y). For the

corresponding explicit expressions of u
(
x 1

2
, y
)

and u1(x, y), u2(x, y), we remand to

[2].
In the following numerical simulations, our reference standard interior penalty

method (IP) is obtained by replacing the weights w−e = w+
e = 1

2
into (6). To com-

pare the method proposed here (WIP) with IP we consider a uniform triangulation
Th with h = 0.05 and we apply piecewise linear elements. We perform a quantitative
comparison based on the energy norm of the error |||u − uh||| and on the follow-
ing indicator, ∆extr := max(|maxΩ(uh)−maxΩ(u)|, |minΩ(uh)−minΩ(u)|) which
quantifies to which extent the numerical solution exceeds the extrema of the exact
one. The results reported in table 1 and in figure 1 put into evidence that the WIP
scheme performs better than the standard IP method, particularly in those cases
where the solution is non smooth and at the same time the computational mesh
is not completely adequate to capture the singularities. This happens in particular
for the smallest value of ǫ1, precisely ǫ1 = 5 10−3, while in the other cases the two
methods are equivalent. In the case ǫ1 = 5 10−3 the weighted interior penalties
turn out to be very effective, since they allow the scheme to approximate the very
steep boundary layer at the interface x = x 1

2
with a jump. Conversely, the standard

interior penalty scheme computes a solution that is almost continuous. As can be ob-
served in figure 1, this behavior promotes the instability of the approximate solution
in the neighborhood of the boundary layer, because the computational mesh is not
adequate to smoothly approximate the very high gradients across the interface. The
quantity ∆extr shows that the the spurious oscillations generated in this case reach
the 40% of the maximum of the exact solution. The different behavior of the two
methods can also be interpreted observing that, disregarding the advective terms, in
the case of the standard IP scheme the satisfaction of the inter-element continuity is
proportional to {ǫ}, as the neighboring elements of each edge were ideally connected
by two adjacent springs of stiffness ǫ− and ǫ+. Conversely, in the WIP case the mor-
tar between elements is proportional to {ǫ}w, which is the harmonic mean of the
values ǫ−, ǫ+ and corresponds to the stiffness of two sequential springs of stiffness
ǫ− and ǫ+ respectively. The latter case seems to be more natural for problems with
discontinuous coefficients.
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